1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/stackdepot.h> 28 #include <linux/swap.h> 29 #include <linux/cma.h> 30 #include <linux/crash_dump.h> 31 #include <linux/execmem.h> 32 #include <linux/vmstat.h> 33 #include <linux/hugetlb.h> 34 #include "internal.h" 35 #include "slab.h" 36 #include "shuffle.h" 37 38 #include <asm/setup.h> 39 40 #ifdef CONFIG_DEBUG_MEMORY_INIT 41 int __meminitdata mminit_loglevel; 42 43 /* The zonelists are simply reported, validation is manual. */ 44 void __init mminit_verify_zonelist(void) 45 { 46 int nid; 47 48 if (mminit_loglevel < MMINIT_VERIFY) 49 return; 50 51 for_each_online_node(nid) { 52 pg_data_t *pgdat = NODE_DATA(nid); 53 struct zone *zone; 54 struct zoneref *z; 55 struct zonelist *zonelist; 56 int i, listid, zoneid; 57 58 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 59 60 /* Identify the zone and nodelist */ 61 zoneid = i % MAX_NR_ZONES; 62 listid = i / MAX_NR_ZONES; 63 zonelist = &pgdat->node_zonelists[listid]; 64 zone = &pgdat->node_zones[zoneid]; 65 if (!populated_zone(zone)) 66 continue; 67 68 /* Print information about the zonelist */ 69 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 70 listid > 0 ? "thisnode" : "general", nid, 71 zone->name); 72 73 /* Iterate the zonelist */ 74 for_each_zone_zonelist(zone, z, zonelist, zoneid) 75 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 76 pr_cont("\n"); 77 } 78 } 79 } 80 81 void __init mminit_verify_pageflags_layout(void) 82 { 83 int shift, width; 84 unsigned long or_mask, add_mask; 85 86 shift = BITS_PER_LONG; 87 width = shift - NR_NON_PAGEFLAG_BITS; 88 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 89 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 90 SECTIONS_WIDTH, 91 NODES_WIDTH, 92 ZONES_WIDTH, 93 LAST_CPUPID_WIDTH, 94 KASAN_TAG_WIDTH, 95 LRU_GEN_WIDTH, 96 LRU_REFS_WIDTH, 97 NR_PAGEFLAGS); 98 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 99 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 100 SECTIONS_SHIFT, 101 NODES_SHIFT, 102 ZONES_SHIFT, 103 LAST_CPUPID_SHIFT, 104 KASAN_TAG_WIDTH); 105 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 106 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 107 (unsigned long)SECTIONS_PGSHIFT, 108 (unsigned long)NODES_PGSHIFT, 109 (unsigned long)ZONES_PGSHIFT, 110 (unsigned long)LAST_CPUPID_PGSHIFT, 111 (unsigned long)KASAN_TAG_PGSHIFT); 112 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 113 "Node/Zone ID: %lu -> %lu\n", 114 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 115 (unsigned long)ZONEID_PGOFF); 116 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 117 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 118 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 119 #ifdef NODE_NOT_IN_PAGE_FLAGS 120 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 121 "Node not in page flags"); 122 #endif 123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 124 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 125 "Last cpupid not in page flags"); 126 #endif 127 128 if (SECTIONS_WIDTH) { 129 shift -= SECTIONS_WIDTH; 130 BUG_ON(shift != SECTIONS_PGSHIFT); 131 } 132 if (NODES_WIDTH) { 133 shift -= NODES_WIDTH; 134 BUG_ON(shift != NODES_PGSHIFT); 135 } 136 if (ZONES_WIDTH) { 137 shift -= ZONES_WIDTH; 138 BUG_ON(shift != ZONES_PGSHIFT); 139 } 140 141 /* Check for bitmask overlaps */ 142 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 143 (NODES_MASK << NODES_PGSHIFT) | 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 146 (NODES_MASK << NODES_PGSHIFT) + 147 (SECTIONS_MASK << SECTIONS_PGSHIFT); 148 BUG_ON(or_mask != add_mask); 149 } 150 151 static __init int set_mminit_loglevel(char *str) 152 { 153 get_option(&str, &mminit_loglevel); 154 return 0; 155 } 156 early_param("mminit_loglevel", set_mminit_loglevel); 157 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 158 159 struct kobject *mm_kobj; 160 161 #ifdef CONFIG_SMP 162 s32 vm_committed_as_batch = 32; 163 164 void mm_compute_batch(int overcommit_policy) 165 { 166 u64 memsized_batch; 167 s32 nr = num_present_cpus(); 168 s32 batch = max_t(s32, nr*2, 32); 169 unsigned long ram_pages = totalram_pages(); 170 171 /* 172 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 173 * (total memory/#cpus), and lift it to 25% for other policies 174 * to easy the possible lock contention for percpu_counter 175 * vm_committed_as, while the max limit is INT_MAX 176 */ 177 if (overcommit_policy == OVERCOMMIT_NEVER) 178 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 179 else 180 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 181 182 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 183 } 184 185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 186 unsigned long action, void *arg) 187 { 188 switch (action) { 189 case MEM_ONLINE: 190 case MEM_OFFLINE: 191 mm_compute_batch(sysctl_overcommit_memory); 192 break; 193 default: 194 break; 195 } 196 return NOTIFY_OK; 197 } 198 199 static int __init mm_compute_batch_init(void) 200 { 201 mm_compute_batch(sysctl_overcommit_memory); 202 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 203 return 0; 204 } 205 206 __initcall(mm_compute_batch_init); 207 208 #endif 209 210 static int __init mm_sysfs_init(void) 211 { 212 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 213 if (!mm_kobj) 214 return -ENOMEM; 215 216 return 0; 217 } 218 postcore_initcall(mm_sysfs_init); 219 220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 223 224 static unsigned long required_kernelcore __initdata; 225 static unsigned long required_kernelcore_percent __initdata; 226 static unsigned long required_movablecore __initdata; 227 static unsigned long required_movablecore_percent __initdata; 228 229 static unsigned long nr_kernel_pages __initdata; 230 static unsigned long nr_all_pages __initdata; 231 232 static bool deferred_struct_pages __meminitdata; 233 234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 235 236 static int __init cmdline_parse_core(char *p, unsigned long *core, 237 unsigned long *percent) 238 { 239 unsigned long long coremem; 240 char *endptr; 241 242 if (!p) 243 return -EINVAL; 244 245 /* Value may be a percentage of total memory, otherwise bytes */ 246 coremem = simple_strtoull(p, &endptr, 0); 247 if (*endptr == '%') { 248 /* Paranoid check for percent values greater than 100 */ 249 WARN_ON(coremem > 100); 250 251 *percent = coremem; 252 } else { 253 coremem = memparse(p, &p); 254 /* Paranoid check that UL is enough for the coremem value */ 255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 256 257 *core = coremem >> PAGE_SHIFT; 258 *percent = 0UL; 259 } 260 return 0; 261 } 262 263 bool mirrored_kernelcore __initdata_memblock; 264 265 /* 266 * kernelcore=size sets the amount of memory for use for allocations that 267 * cannot be reclaimed or migrated. 268 */ 269 static int __init cmdline_parse_kernelcore(char *p) 270 { 271 /* parse kernelcore=mirror */ 272 if (parse_option_str(p, "mirror")) { 273 mirrored_kernelcore = true; 274 return 0; 275 } 276 277 return cmdline_parse_core(p, &required_kernelcore, 278 &required_kernelcore_percent); 279 } 280 early_param("kernelcore", cmdline_parse_kernelcore); 281 282 /* 283 * movablecore=size sets the amount of memory for use for allocations that 284 * can be reclaimed or migrated. 285 */ 286 static int __init cmdline_parse_movablecore(char *p) 287 { 288 return cmdline_parse_core(p, &required_movablecore, 289 &required_movablecore_percent); 290 } 291 early_param("movablecore", cmdline_parse_movablecore); 292 293 /* 294 * early_calculate_totalpages() 295 * Sum pages in active regions for movable zone. 296 * Populate N_MEMORY for calculating usable_nodes. 297 */ 298 static unsigned long __init early_calculate_totalpages(void) 299 { 300 unsigned long totalpages = 0; 301 unsigned long start_pfn, end_pfn; 302 int i, nid; 303 304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 305 unsigned long pages = end_pfn - start_pfn; 306 307 totalpages += pages; 308 if (pages) 309 node_set_state(nid, N_MEMORY); 310 } 311 return totalpages; 312 } 313 314 /* 315 * This finds a zone that can be used for ZONE_MOVABLE pages. The 316 * assumption is made that zones within a node are ordered in monotonic 317 * increasing memory addresses so that the "highest" populated zone is used 318 */ 319 static void __init find_usable_zone_for_movable(void) 320 { 321 int zone_index; 322 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 323 if (zone_index == ZONE_MOVABLE) 324 continue; 325 326 if (arch_zone_highest_possible_pfn[zone_index] > 327 arch_zone_lowest_possible_pfn[zone_index]) 328 break; 329 } 330 331 VM_BUG_ON(zone_index == -1); 332 movable_zone = zone_index; 333 } 334 335 /* 336 * Find the PFN the Movable zone begins in each node. Kernel memory 337 * is spread evenly between nodes as long as the nodes have enough 338 * memory. When they don't, some nodes will have more kernelcore than 339 * others 340 */ 341 static void __init find_zone_movable_pfns_for_nodes(void) 342 { 343 int i, nid; 344 unsigned long usable_startpfn; 345 unsigned long kernelcore_node, kernelcore_remaining; 346 /* save the state before borrow the nodemask */ 347 nodemask_t saved_node_state = node_states[N_MEMORY]; 348 unsigned long totalpages = early_calculate_totalpages(); 349 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 350 struct memblock_region *r; 351 352 /* Need to find movable_zone earlier when movable_node is specified. */ 353 find_usable_zone_for_movable(); 354 355 /* 356 * If movable_node is specified, ignore kernelcore and movablecore 357 * options. 358 */ 359 if (movable_node_is_enabled()) { 360 for_each_mem_region(r) { 361 if (!memblock_is_hotpluggable(r)) 362 continue; 363 364 nid = memblock_get_region_node(r); 365 366 usable_startpfn = memblock_region_memory_base_pfn(r); 367 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 368 min(usable_startpfn, zone_movable_pfn[nid]) : 369 usable_startpfn; 370 } 371 372 goto out2; 373 } 374 375 /* 376 * If kernelcore=mirror is specified, ignore movablecore option 377 */ 378 if (mirrored_kernelcore) { 379 bool mem_below_4gb_not_mirrored = false; 380 381 if (!memblock_has_mirror()) { 382 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); 383 goto out; 384 } 385 386 if (is_kdump_kernel()) { 387 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); 388 goto out; 389 } 390 391 for_each_mem_region(r) { 392 if (memblock_is_mirror(r)) 393 continue; 394 395 nid = memblock_get_region_node(r); 396 397 usable_startpfn = memblock_region_memory_base_pfn(r); 398 399 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 400 mem_below_4gb_not_mirrored = true; 401 continue; 402 } 403 404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 405 min(usable_startpfn, zone_movable_pfn[nid]) : 406 usable_startpfn; 407 } 408 409 if (mem_below_4gb_not_mirrored) 410 pr_warn("This configuration results in unmirrored kernel memory.\n"); 411 412 goto out2; 413 } 414 415 /* 416 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 417 * amount of necessary memory. 418 */ 419 if (required_kernelcore_percent) 420 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 421 10000UL; 422 if (required_movablecore_percent) 423 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 424 10000UL; 425 426 /* 427 * If movablecore= was specified, calculate what size of 428 * kernelcore that corresponds so that memory usable for 429 * any allocation type is evenly spread. If both kernelcore 430 * and movablecore are specified, then the value of kernelcore 431 * will be used for required_kernelcore if it's greater than 432 * what movablecore would have allowed. 433 */ 434 if (required_movablecore) { 435 unsigned long corepages; 436 437 /* 438 * Round-up so that ZONE_MOVABLE is at least as large as what 439 * was requested by the user 440 */ 441 required_movablecore = 442 round_up(required_movablecore, MAX_ORDER_NR_PAGES); 443 required_movablecore = min(totalpages, required_movablecore); 444 corepages = totalpages - required_movablecore; 445 446 required_kernelcore = max(required_kernelcore, corepages); 447 } 448 449 /* 450 * If kernelcore was not specified or kernelcore size is larger 451 * than totalpages, there is no ZONE_MOVABLE. 452 */ 453 if (!required_kernelcore || required_kernelcore >= totalpages) 454 goto out; 455 456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 458 459 restart: 460 /* Spread kernelcore memory as evenly as possible throughout nodes */ 461 kernelcore_node = required_kernelcore / usable_nodes; 462 for_each_node_state(nid, N_MEMORY) { 463 unsigned long start_pfn, end_pfn; 464 465 /* 466 * Recalculate kernelcore_node if the division per node 467 * now exceeds what is necessary to satisfy the requested 468 * amount of memory for the kernel 469 */ 470 if (required_kernelcore < kernelcore_node) 471 kernelcore_node = required_kernelcore / usable_nodes; 472 473 /* 474 * As the map is walked, we track how much memory is usable 475 * by the kernel using kernelcore_remaining. When it is 476 * 0, the rest of the node is usable by ZONE_MOVABLE 477 */ 478 kernelcore_remaining = kernelcore_node; 479 480 /* Go through each range of PFNs within this node */ 481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 482 unsigned long size_pages; 483 484 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 485 if (start_pfn >= end_pfn) 486 continue; 487 488 /* Account for what is only usable for kernelcore */ 489 if (start_pfn < usable_startpfn) { 490 unsigned long kernel_pages; 491 kernel_pages = min(end_pfn, usable_startpfn) 492 - start_pfn; 493 494 kernelcore_remaining -= min(kernel_pages, 495 kernelcore_remaining); 496 required_kernelcore -= min(kernel_pages, 497 required_kernelcore); 498 499 /* Continue if range is now fully accounted */ 500 if (end_pfn <= usable_startpfn) { 501 502 /* 503 * Push zone_movable_pfn to the end so 504 * that if we have to rebalance 505 * kernelcore across nodes, we will 506 * not double account here 507 */ 508 zone_movable_pfn[nid] = end_pfn; 509 continue; 510 } 511 start_pfn = usable_startpfn; 512 } 513 514 /* 515 * The usable PFN range for ZONE_MOVABLE is from 516 * start_pfn->end_pfn. Calculate size_pages as the 517 * number of pages used as kernelcore 518 */ 519 size_pages = end_pfn - start_pfn; 520 if (size_pages > kernelcore_remaining) 521 size_pages = kernelcore_remaining; 522 zone_movable_pfn[nid] = start_pfn + size_pages; 523 524 /* 525 * Some kernelcore has been met, update counts and 526 * break if the kernelcore for this node has been 527 * satisfied 528 */ 529 required_kernelcore -= min(required_kernelcore, 530 size_pages); 531 kernelcore_remaining -= size_pages; 532 if (!kernelcore_remaining) 533 break; 534 } 535 } 536 537 /* 538 * If there is still required_kernelcore, we do another pass with one 539 * less node in the count. This will push zone_movable_pfn[nid] further 540 * along on the nodes that still have memory until kernelcore is 541 * satisfied 542 */ 543 usable_nodes--; 544 if (usable_nodes && required_kernelcore > usable_nodes) 545 goto restart; 546 547 out2: 548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 549 for_each_node_state(nid, N_MEMORY) { 550 unsigned long start_pfn, end_pfn; 551 552 zone_movable_pfn[nid] = 553 round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 554 555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 556 if (zone_movable_pfn[nid] >= end_pfn) 557 zone_movable_pfn[nid] = 0; 558 } 559 560 out: 561 /* restore the node_state */ 562 node_states[N_MEMORY] = saved_node_state; 563 } 564 565 void __meminit __init_single_page(struct page *page, unsigned long pfn, 566 unsigned long zone, int nid) 567 { 568 mm_zero_struct_page(page); 569 set_page_links(page, zone, nid, pfn); 570 init_page_count(page); 571 atomic_set(&page->_mapcount, -1); 572 page_cpupid_reset_last(page); 573 page_kasan_tag_reset(page); 574 575 INIT_LIST_HEAD(&page->lru); 576 #ifdef WANT_PAGE_VIRTUAL 577 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 578 if (!is_highmem_idx(zone)) 579 set_page_address(page, __va(pfn << PAGE_SHIFT)); 580 #endif 581 } 582 583 #ifdef CONFIG_NUMA 584 /* 585 * During memory init memblocks map pfns to nids. The search is expensive and 586 * this caches recent lookups. The implementation of __early_pfn_to_nid 587 * treats start/end as pfns. 588 */ 589 struct mminit_pfnnid_cache { 590 unsigned long last_start; 591 unsigned long last_end; 592 int last_nid; 593 }; 594 595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 596 597 /* 598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 599 */ 600 static int __meminit __early_pfn_to_nid(unsigned long pfn, 601 struct mminit_pfnnid_cache *state) 602 { 603 unsigned long start_pfn, end_pfn; 604 int nid; 605 606 if (state->last_start <= pfn && pfn < state->last_end) 607 return state->last_nid; 608 609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 610 if (nid != NUMA_NO_NODE) { 611 state->last_start = start_pfn; 612 state->last_end = end_pfn; 613 state->last_nid = nid; 614 } 615 616 return nid; 617 } 618 619 int __meminit early_pfn_to_nid(unsigned long pfn) 620 { 621 static DEFINE_SPINLOCK(early_pfn_lock); 622 int nid; 623 624 spin_lock(&early_pfn_lock); 625 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 626 if (nid < 0) 627 nid = first_online_node; 628 spin_unlock(&early_pfn_lock); 629 630 return nid; 631 } 632 633 int hashdist = HASHDIST_DEFAULT; 634 635 static int __init set_hashdist(char *str) 636 { 637 if (!str) 638 return 0; 639 hashdist = simple_strtoul(str, &str, 0); 640 return 1; 641 } 642 __setup("hashdist=", set_hashdist); 643 644 static inline void fixup_hashdist(void) 645 { 646 if (num_node_state(N_MEMORY) == 1) 647 hashdist = 0; 648 } 649 #else 650 static inline void fixup_hashdist(void) {} 651 #endif /* CONFIG_NUMA */ 652 653 /* 654 * Initialize a reserved page unconditionally, finding its zone first. 655 */ 656 void __meminit __init_reserved_page_zone(unsigned long pfn, int nid) 657 { 658 pg_data_t *pgdat; 659 int zid; 660 661 pgdat = NODE_DATA(nid); 662 663 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 664 struct zone *zone = &pgdat->node_zones[zid]; 665 666 if (zone_spans_pfn(zone, pfn)) 667 break; 668 } 669 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 670 671 if (pageblock_aligned(pfn)) 672 set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE); 673 } 674 675 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 676 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 677 { 678 pgdat->first_deferred_pfn = ULONG_MAX; 679 } 680 681 /* Returns true if the struct page for the pfn is initialised */ 682 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 683 { 684 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 685 return false; 686 687 return true; 688 } 689 690 /* 691 * Returns true when the remaining initialisation should be deferred until 692 * later in the boot cycle when it can be parallelised. 693 */ 694 static bool __meminit 695 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 696 { 697 static unsigned long prev_end_pfn, nr_initialised; 698 699 if (early_page_ext_enabled()) 700 return false; 701 702 /* Always populate low zones for address-constrained allocations */ 703 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 704 return false; 705 706 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 707 return true; 708 709 /* 710 * prev_end_pfn static that contains the end of previous zone 711 * No need to protect because called very early in boot before smp_init. 712 */ 713 if (prev_end_pfn != end_pfn) { 714 prev_end_pfn = end_pfn; 715 nr_initialised = 0; 716 } 717 718 /* 719 * We start only with one section of pages, more pages are added as 720 * needed until the rest of deferred pages are initialized. 721 */ 722 nr_initialised++; 723 if ((nr_initialised > PAGES_PER_SECTION) && 724 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 725 NODE_DATA(nid)->first_deferred_pfn = pfn; 726 return true; 727 } 728 return false; 729 } 730 731 static void __meminit init_reserved_page(unsigned long pfn, int nid) 732 { 733 if (early_page_initialised(pfn, nid)) 734 return; 735 736 __init_reserved_page_zone(pfn, nid); 737 } 738 #else 739 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 740 741 static inline bool early_page_initialised(unsigned long pfn, int nid) 742 { 743 return true; 744 } 745 746 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 747 { 748 return false; 749 } 750 751 static inline void init_reserved_page(unsigned long pfn, int nid) 752 { 753 } 754 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 755 756 /* 757 * Initialised pages do not have PageReserved set. This function is 758 * called for each range allocated by the bootmem allocator and 759 * marks the pages PageReserved. The remaining valid pages are later 760 * sent to the buddy page allocator. 761 */ 762 void __meminit reserve_bootmem_region(phys_addr_t start, 763 phys_addr_t end, int nid) 764 { 765 unsigned long start_pfn = PFN_DOWN(start); 766 unsigned long end_pfn = PFN_UP(end); 767 768 for (; start_pfn < end_pfn; start_pfn++) { 769 if (pfn_valid(start_pfn)) { 770 struct page *page = pfn_to_page(start_pfn); 771 772 init_reserved_page(start_pfn, nid); 773 774 /* 775 * no need for atomic set_bit because the struct 776 * page is not visible yet so nobody should 777 * access it yet. 778 */ 779 __SetPageReserved(page); 780 } 781 } 782 } 783 784 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 785 static bool __meminit 786 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 787 { 788 static struct memblock_region *r; 789 790 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 791 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 792 for_each_mem_region(r) { 793 if (*pfn < memblock_region_memory_end_pfn(r)) 794 break; 795 } 796 } 797 if (*pfn >= memblock_region_memory_base_pfn(r) && 798 memblock_is_mirror(r)) { 799 *pfn = memblock_region_memory_end_pfn(r); 800 return true; 801 } 802 } 803 return false; 804 } 805 806 /* 807 * Only struct pages that correspond to ranges defined by memblock.memory 808 * are zeroed and initialized by going through __init_single_page() during 809 * memmap_init_zone_range(). 810 * 811 * But, there could be struct pages that correspond to holes in 812 * memblock.memory. This can happen because of the following reasons: 813 * - physical memory bank size is not necessarily the exact multiple of the 814 * arbitrary section size 815 * - early reserved memory may not be listed in memblock.memory 816 * - non-memory regions covered by the contigious flatmem mapping 817 * - memory layouts defined with memmap= kernel parameter may not align 818 * nicely with memmap sections 819 * 820 * Explicitly initialize those struct pages so that: 821 * - PG_Reserved is set 822 * - zone and node links point to zone and node that span the page if the 823 * hole is in the middle of a zone 824 * - zone and node links point to adjacent zone/node if the hole falls on 825 * the zone boundary; the pages in such holes will be prepended to the 826 * zone/node above the hole except for the trailing pages in the last 827 * section that will be appended to the zone/node below. 828 */ 829 static void __init init_unavailable_range(unsigned long spfn, 830 unsigned long epfn, 831 int zone, int node) 832 { 833 unsigned long pfn; 834 u64 pgcnt = 0; 835 836 for (pfn = spfn; pfn < epfn; pfn++) { 837 if (!pfn_valid(pageblock_start_pfn(pfn))) { 838 pfn = pageblock_end_pfn(pfn) - 1; 839 continue; 840 } 841 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 842 __SetPageReserved(pfn_to_page(pfn)); 843 pgcnt++; 844 } 845 846 if (pgcnt) 847 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", 848 node, zone_names[zone], pgcnt); 849 } 850 851 /* 852 * Initially all pages are reserved - free ones are freed 853 * up by memblock_free_all() once the early boot process is 854 * done. Non-atomic initialization, single-pass. 855 * 856 * All aligned pageblocks are initialized to the specified migratetype 857 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 858 * zone stats (e.g., nr_isolate_pageblock) are touched. 859 */ 860 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 861 unsigned long start_pfn, unsigned long zone_end_pfn, 862 enum meminit_context context, 863 struct vmem_altmap *altmap, int migratetype) 864 { 865 unsigned long pfn, end_pfn = start_pfn + size; 866 struct page *page; 867 868 if (highest_memmap_pfn < end_pfn - 1) 869 highest_memmap_pfn = end_pfn - 1; 870 871 #ifdef CONFIG_ZONE_DEVICE 872 /* 873 * Honor reservation requested by the driver for this ZONE_DEVICE 874 * memory. We limit the total number of pages to initialize to just 875 * those that might contain the memory mapping. We will defer the 876 * ZONE_DEVICE page initialization until after we have released 877 * the hotplug lock. 878 */ 879 if (zone == ZONE_DEVICE) { 880 if (!altmap) 881 return; 882 883 if (start_pfn == altmap->base_pfn) 884 start_pfn += altmap->reserve; 885 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 886 } 887 #endif 888 889 for (pfn = start_pfn; pfn < end_pfn; ) { 890 /* 891 * There can be holes in boot-time mem_map[]s handed to this 892 * function. They do not exist on hotplugged memory. 893 */ 894 if (context == MEMINIT_EARLY) { 895 if (overlap_memmap_init(zone, &pfn)) 896 continue; 897 if (defer_init(nid, pfn, zone_end_pfn)) { 898 deferred_struct_pages = true; 899 break; 900 } 901 } 902 903 page = pfn_to_page(pfn); 904 __init_single_page(page, pfn, zone, nid); 905 if (context == MEMINIT_HOTPLUG) { 906 #ifdef CONFIG_ZONE_DEVICE 907 if (zone == ZONE_DEVICE) 908 __SetPageReserved(page); 909 else 910 #endif 911 __SetPageOffline(page); 912 } 913 914 /* 915 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 916 * such that unmovable allocations won't be scattered all 917 * over the place during system boot. 918 */ 919 if (pageblock_aligned(pfn)) { 920 set_pageblock_migratetype(page, migratetype); 921 cond_resched(); 922 } 923 pfn++; 924 } 925 } 926 927 static void __init memmap_init_zone_range(struct zone *zone, 928 unsigned long start_pfn, 929 unsigned long end_pfn, 930 unsigned long *hole_pfn) 931 { 932 unsigned long zone_start_pfn = zone->zone_start_pfn; 933 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 934 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 935 936 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 937 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 938 939 if (start_pfn >= end_pfn) 940 return; 941 942 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 943 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 944 945 if (*hole_pfn < start_pfn) 946 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 947 948 *hole_pfn = end_pfn; 949 } 950 951 static void __init memmap_init(void) 952 { 953 unsigned long start_pfn, end_pfn; 954 unsigned long hole_pfn = 0; 955 int i, j, zone_id = 0, nid; 956 957 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 958 struct pglist_data *node = NODE_DATA(nid); 959 960 for (j = 0; j < MAX_NR_ZONES; j++) { 961 struct zone *zone = node->node_zones + j; 962 963 if (!populated_zone(zone)) 964 continue; 965 966 memmap_init_zone_range(zone, start_pfn, end_pfn, 967 &hole_pfn); 968 zone_id = j; 969 } 970 } 971 972 #ifdef CONFIG_SPARSEMEM 973 /* 974 * Initialize the memory map for hole in the range [memory_end, 975 * section_end]. 976 * Append the pages in this hole to the highest zone in the last 977 * node. 978 * The call to init_unavailable_range() is outside the ifdef to 979 * silence the compiler warining about zone_id set but not used; 980 * for FLATMEM it is a nop anyway 981 */ 982 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 983 if (hole_pfn < end_pfn) 984 #endif 985 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 986 } 987 988 #ifdef CONFIG_ZONE_DEVICE 989 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 990 unsigned long zone_idx, int nid, 991 struct dev_pagemap *pgmap) 992 { 993 994 __init_single_page(page, pfn, zone_idx, nid); 995 996 /* 997 * Mark page reserved as it will need to wait for onlining 998 * phase for it to be fully associated with a zone. 999 * 1000 * We can use the non-atomic __set_bit operation for setting 1001 * the flag as we are still initializing the pages. 1002 */ 1003 __SetPageReserved(page); 1004 1005 /* 1006 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 1007 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 1008 * ever freed or placed on a driver-private list. 1009 */ 1010 page->pgmap = pgmap; 1011 page->zone_device_data = NULL; 1012 1013 /* 1014 * Mark the block movable so that blocks are reserved for 1015 * movable at startup. This will force kernel allocations 1016 * to reserve their blocks rather than leaking throughout 1017 * the address space during boot when many long-lived 1018 * kernel allocations are made. 1019 * 1020 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 1021 * because this is done early in section_activate() 1022 */ 1023 if (pageblock_aligned(pfn)) { 1024 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1025 cond_resched(); 1026 } 1027 1028 /* 1029 * ZONE_DEVICE pages are released directly to the driver page allocator 1030 * which will set the page count to 1 when allocating the page. 1031 */ 1032 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1033 pgmap->type == MEMORY_DEVICE_COHERENT) 1034 set_page_count(page, 0); 1035 } 1036 1037 /* 1038 * With compound page geometry and when struct pages are stored in ram most 1039 * tail pages are reused. Consequently, the amount of unique struct pages to 1040 * initialize is a lot smaller that the total amount of struct pages being 1041 * mapped. This is a paired / mild layering violation with explicit knowledge 1042 * of how the sparse_vmemmap internals handle compound pages in the lack 1043 * of an altmap. See vmemmap_populate_compound_pages(). 1044 */ 1045 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1046 struct dev_pagemap *pgmap) 1047 { 1048 if (!vmemmap_can_optimize(altmap, pgmap)) 1049 return pgmap_vmemmap_nr(pgmap); 1050 1051 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1052 } 1053 1054 static void __ref memmap_init_compound(struct page *head, 1055 unsigned long head_pfn, 1056 unsigned long zone_idx, int nid, 1057 struct dev_pagemap *pgmap, 1058 unsigned long nr_pages) 1059 { 1060 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1061 unsigned int order = pgmap->vmemmap_shift; 1062 1063 __SetPageHead(head); 1064 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1065 struct page *page = pfn_to_page(pfn); 1066 1067 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1068 prep_compound_tail(head, pfn - head_pfn); 1069 set_page_count(page, 0); 1070 1071 /* 1072 * The first tail page stores important compound page info. 1073 * Call prep_compound_head() after the first tail page has 1074 * been initialized, to not have the data overwritten. 1075 */ 1076 if (pfn == head_pfn + 1) 1077 prep_compound_head(head, order); 1078 } 1079 } 1080 1081 void __ref memmap_init_zone_device(struct zone *zone, 1082 unsigned long start_pfn, 1083 unsigned long nr_pages, 1084 struct dev_pagemap *pgmap) 1085 { 1086 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1087 struct pglist_data *pgdat = zone->zone_pgdat; 1088 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1089 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1090 unsigned long zone_idx = zone_idx(zone); 1091 unsigned long start = jiffies; 1092 int nid = pgdat->node_id; 1093 1094 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1095 return; 1096 1097 /* 1098 * The call to memmap_init should have already taken care 1099 * of the pages reserved for the memmap, so we can just jump to 1100 * the end of that region and start processing the device pages. 1101 */ 1102 if (altmap) { 1103 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1104 nr_pages = end_pfn - start_pfn; 1105 } 1106 1107 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1108 struct page *page = pfn_to_page(pfn); 1109 1110 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1111 1112 if (pfns_per_compound == 1) 1113 continue; 1114 1115 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1116 compound_nr_pages(altmap, pgmap)); 1117 } 1118 1119 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1120 nr_pages, jiffies_to_msecs(jiffies - start)); 1121 } 1122 #endif 1123 1124 /* 1125 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1126 * because it is sized independent of architecture. Unlike the other zones, 1127 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1128 * in each node depending on the size of each node and how evenly kernelcore 1129 * is distributed. This helper function adjusts the zone ranges 1130 * provided by the architecture for a given node by using the end of the 1131 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1132 * zones within a node are in order of monotonic increases memory addresses 1133 */ 1134 static void __init adjust_zone_range_for_zone_movable(int nid, 1135 unsigned long zone_type, 1136 unsigned long node_end_pfn, 1137 unsigned long *zone_start_pfn, 1138 unsigned long *zone_end_pfn) 1139 { 1140 /* Only adjust if ZONE_MOVABLE is on this node */ 1141 if (zone_movable_pfn[nid]) { 1142 /* Size ZONE_MOVABLE */ 1143 if (zone_type == ZONE_MOVABLE) { 1144 *zone_start_pfn = zone_movable_pfn[nid]; 1145 *zone_end_pfn = min(node_end_pfn, 1146 arch_zone_highest_possible_pfn[movable_zone]); 1147 1148 /* Adjust for ZONE_MOVABLE starting within this range */ 1149 } else if (!mirrored_kernelcore && 1150 *zone_start_pfn < zone_movable_pfn[nid] && 1151 *zone_end_pfn > zone_movable_pfn[nid]) { 1152 *zone_end_pfn = zone_movable_pfn[nid]; 1153 1154 /* Check if this whole range is within ZONE_MOVABLE */ 1155 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1156 *zone_start_pfn = *zone_end_pfn; 1157 } 1158 } 1159 1160 /* 1161 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1162 * then all holes in the requested range will be accounted for. 1163 */ 1164 static unsigned long __init __absent_pages_in_range(int nid, 1165 unsigned long range_start_pfn, 1166 unsigned long range_end_pfn) 1167 { 1168 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1169 unsigned long start_pfn, end_pfn; 1170 int i; 1171 1172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1173 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1174 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1175 nr_absent -= end_pfn - start_pfn; 1176 } 1177 return nr_absent; 1178 } 1179 1180 /** 1181 * absent_pages_in_range - Return number of page frames in holes within a range 1182 * @start_pfn: The start PFN to start searching for holes 1183 * @end_pfn: The end PFN to stop searching for holes 1184 * 1185 * Return: the number of pages frames in memory holes within a range. 1186 */ 1187 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1188 unsigned long end_pfn) 1189 { 1190 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1191 } 1192 1193 /* Return the number of page frames in holes in a zone on a node */ 1194 static unsigned long __init zone_absent_pages_in_node(int nid, 1195 unsigned long zone_type, 1196 unsigned long zone_start_pfn, 1197 unsigned long zone_end_pfn) 1198 { 1199 unsigned long nr_absent; 1200 1201 /* zone is empty, we don't have any absent pages */ 1202 if (zone_start_pfn == zone_end_pfn) 1203 return 0; 1204 1205 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1206 1207 /* 1208 * ZONE_MOVABLE handling. 1209 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1210 * and vice versa. 1211 */ 1212 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1213 unsigned long start_pfn, end_pfn; 1214 struct memblock_region *r; 1215 1216 for_each_mem_region(r) { 1217 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1218 zone_start_pfn, zone_end_pfn); 1219 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1220 zone_start_pfn, zone_end_pfn); 1221 1222 if (zone_type == ZONE_MOVABLE && 1223 memblock_is_mirror(r)) 1224 nr_absent += end_pfn - start_pfn; 1225 1226 if (zone_type == ZONE_NORMAL && 1227 !memblock_is_mirror(r)) 1228 nr_absent += end_pfn - start_pfn; 1229 } 1230 } 1231 1232 return nr_absent; 1233 } 1234 1235 /* 1236 * Return the number of pages a zone spans in a node, including holes 1237 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1238 */ 1239 static unsigned long __init zone_spanned_pages_in_node(int nid, 1240 unsigned long zone_type, 1241 unsigned long node_start_pfn, 1242 unsigned long node_end_pfn, 1243 unsigned long *zone_start_pfn, 1244 unsigned long *zone_end_pfn) 1245 { 1246 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1247 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1248 1249 /* Get the start and end of the zone */ 1250 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1251 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1252 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1253 zone_start_pfn, zone_end_pfn); 1254 1255 /* Check that this node has pages within the zone's required range */ 1256 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1257 return 0; 1258 1259 /* Move the zone boundaries inside the node if necessary */ 1260 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1261 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1262 1263 /* Return the spanned pages */ 1264 return *zone_end_pfn - *zone_start_pfn; 1265 } 1266 1267 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1268 { 1269 struct zone *z; 1270 1271 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1272 z->zone_start_pfn = 0; 1273 z->spanned_pages = 0; 1274 z->present_pages = 0; 1275 #if defined(CONFIG_MEMORY_HOTPLUG) 1276 z->present_early_pages = 0; 1277 #endif 1278 } 1279 1280 pgdat->node_spanned_pages = 0; 1281 pgdat->node_present_pages = 0; 1282 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1283 } 1284 1285 static void __init calc_nr_kernel_pages(void) 1286 { 1287 unsigned long start_pfn, end_pfn; 1288 phys_addr_t start_addr, end_addr; 1289 u64 u; 1290 #ifdef CONFIG_HIGHMEM 1291 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; 1292 #endif 1293 1294 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1295 start_pfn = PFN_UP(start_addr); 1296 end_pfn = PFN_DOWN(end_addr); 1297 1298 if (start_pfn < end_pfn) { 1299 nr_all_pages += end_pfn - start_pfn; 1300 #ifdef CONFIG_HIGHMEM 1301 start_pfn = clamp(start_pfn, 0, high_zone_low); 1302 end_pfn = clamp(end_pfn, 0, high_zone_low); 1303 #endif 1304 nr_kernel_pages += end_pfn - start_pfn; 1305 } 1306 } 1307 } 1308 1309 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1310 unsigned long node_start_pfn, 1311 unsigned long node_end_pfn) 1312 { 1313 unsigned long realtotalpages = 0, totalpages = 0; 1314 enum zone_type i; 1315 1316 for (i = 0; i < MAX_NR_ZONES; i++) { 1317 struct zone *zone = pgdat->node_zones + i; 1318 unsigned long zone_start_pfn, zone_end_pfn; 1319 unsigned long spanned, absent; 1320 unsigned long real_size; 1321 1322 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1323 node_start_pfn, 1324 node_end_pfn, 1325 &zone_start_pfn, 1326 &zone_end_pfn); 1327 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1328 zone_start_pfn, 1329 zone_end_pfn); 1330 1331 real_size = spanned - absent; 1332 1333 if (spanned) 1334 zone->zone_start_pfn = zone_start_pfn; 1335 else 1336 zone->zone_start_pfn = 0; 1337 zone->spanned_pages = spanned; 1338 zone->present_pages = real_size; 1339 #if defined(CONFIG_MEMORY_HOTPLUG) 1340 zone->present_early_pages = real_size; 1341 #endif 1342 1343 totalpages += spanned; 1344 realtotalpages += real_size; 1345 } 1346 1347 pgdat->node_spanned_pages = totalpages; 1348 pgdat->node_present_pages = realtotalpages; 1349 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1350 } 1351 1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1353 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1354 { 1355 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1356 1357 spin_lock_init(&ds_queue->split_queue_lock); 1358 INIT_LIST_HEAD(&ds_queue->split_queue); 1359 ds_queue->split_queue_len = 0; 1360 } 1361 #else 1362 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1363 #endif 1364 1365 #ifdef CONFIG_COMPACTION 1366 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1367 { 1368 init_waitqueue_head(&pgdat->kcompactd_wait); 1369 } 1370 #else 1371 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1372 #endif 1373 1374 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1375 { 1376 int i; 1377 1378 pgdat_resize_init(pgdat); 1379 pgdat_kswapd_lock_init(pgdat); 1380 1381 pgdat_init_split_queue(pgdat); 1382 pgdat_init_kcompactd(pgdat); 1383 1384 init_waitqueue_head(&pgdat->kswapd_wait); 1385 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1386 1387 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1388 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1389 1390 pgdat_page_ext_init(pgdat); 1391 lruvec_init(&pgdat->__lruvec); 1392 } 1393 1394 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1395 unsigned long remaining_pages) 1396 { 1397 atomic_long_set(&zone->managed_pages, remaining_pages); 1398 zone_set_nid(zone, nid); 1399 zone->name = zone_names[idx]; 1400 zone->zone_pgdat = NODE_DATA(nid); 1401 spin_lock_init(&zone->lock); 1402 zone_seqlock_init(zone); 1403 zone_pcp_init(zone); 1404 } 1405 1406 static void __meminit zone_init_free_lists(struct zone *zone) 1407 { 1408 unsigned int order, t; 1409 for_each_migratetype_order(order, t) { 1410 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1411 zone->free_area[order].nr_free = 0; 1412 } 1413 1414 #ifdef CONFIG_UNACCEPTED_MEMORY 1415 INIT_LIST_HEAD(&zone->unaccepted_pages); 1416 #endif 1417 } 1418 1419 void __meminit init_currently_empty_zone(struct zone *zone, 1420 unsigned long zone_start_pfn, 1421 unsigned long size) 1422 { 1423 struct pglist_data *pgdat = zone->zone_pgdat; 1424 int zone_idx = zone_idx(zone) + 1; 1425 1426 if (zone_idx > pgdat->nr_zones) 1427 pgdat->nr_zones = zone_idx; 1428 1429 zone->zone_start_pfn = zone_start_pfn; 1430 1431 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1432 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1433 pgdat->node_id, 1434 (unsigned long)zone_idx(zone), 1435 zone_start_pfn, (zone_start_pfn + size)); 1436 1437 zone_init_free_lists(zone); 1438 zone->initialized = 1; 1439 } 1440 1441 #ifndef CONFIG_SPARSEMEM 1442 /* 1443 * Calculate the size of the zone->pageblock_flags rounded to an unsigned long 1444 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1445 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1446 * round what is now in bits to nearest long in bits, then return it in 1447 * bytes. 1448 */ 1449 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1450 { 1451 unsigned long usemapsize; 1452 1453 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1454 usemapsize = round_up(zonesize, pageblock_nr_pages); 1455 usemapsize = usemapsize >> pageblock_order; 1456 usemapsize *= NR_PAGEBLOCK_BITS; 1457 usemapsize = round_up(usemapsize, BITS_PER_LONG); 1458 1459 return usemapsize / BITS_PER_BYTE; 1460 } 1461 1462 static void __ref setup_usemap(struct zone *zone) 1463 { 1464 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1465 zone->spanned_pages); 1466 zone->pageblock_flags = NULL; 1467 if (usemapsize) { 1468 zone->pageblock_flags = 1469 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1470 zone_to_nid(zone)); 1471 if (!zone->pageblock_flags) 1472 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1473 usemapsize, zone->name, zone_to_nid(zone)); 1474 } 1475 } 1476 #else 1477 static inline void setup_usemap(struct zone *zone) {} 1478 #endif /* CONFIG_SPARSEMEM */ 1479 1480 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1481 1482 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1483 void __init set_pageblock_order(void) 1484 { 1485 unsigned int order = MAX_PAGE_ORDER; 1486 1487 /* Check that pageblock_nr_pages has not already been setup */ 1488 if (pageblock_order) 1489 return; 1490 1491 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1492 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1493 order = HUGETLB_PAGE_ORDER; 1494 1495 /* 1496 * Assume the largest contiguous order of interest is a huge page. 1497 * This value may be variable depending on boot parameters on powerpc. 1498 */ 1499 pageblock_order = order; 1500 } 1501 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1502 1503 /* 1504 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1505 * is unused as pageblock_order is set at compile-time. See 1506 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1507 * the kernel config 1508 */ 1509 void __init set_pageblock_order(void) 1510 { 1511 } 1512 1513 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1514 1515 /* 1516 * Set up the zone data structures 1517 * - init pgdat internals 1518 * - init all zones belonging to this node 1519 * 1520 * NOTE: this function is only called during memory hotplug 1521 */ 1522 #ifdef CONFIG_MEMORY_HOTPLUG 1523 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1524 { 1525 int nid = pgdat->node_id; 1526 enum zone_type z; 1527 int cpu; 1528 1529 pgdat_init_internals(pgdat); 1530 1531 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1532 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1533 1534 /* 1535 * Reset the nr_zones, order and highest_zoneidx before reuse. 1536 * Note that kswapd will init kswapd_highest_zoneidx properly 1537 * when it starts in the near future. 1538 */ 1539 pgdat->nr_zones = 0; 1540 pgdat->kswapd_order = 0; 1541 pgdat->kswapd_highest_zoneidx = 0; 1542 pgdat->node_start_pfn = 0; 1543 pgdat->node_present_pages = 0; 1544 1545 for_each_online_cpu(cpu) { 1546 struct per_cpu_nodestat *p; 1547 1548 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1549 memset(p, 0, sizeof(*p)); 1550 } 1551 1552 /* 1553 * When memory is hot-added, all the memory is in offline state. So 1554 * clear all zones' present_pages and managed_pages because they will 1555 * be updated in online_pages() and offline_pages(). 1556 */ 1557 for (z = 0; z < MAX_NR_ZONES; z++) { 1558 struct zone *zone = pgdat->node_zones + z; 1559 1560 zone->present_pages = 0; 1561 zone_init_internals(zone, z, nid, 0); 1562 } 1563 } 1564 #endif 1565 1566 static void __init free_area_init_core(struct pglist_data *pgdat) 1567 { 1568 enum zone_type j; 1569 int nid = pgdat->node_id; 1570 1571 pgdat_init_internals(pgdat); 1572 pgdat->per_cpu_nodestats = &boot_nodestats; 1573 1574 for (j = 0; j < MAX_NR_ZONES; j++) { 1575 struct zone *zone = pgdat->node_zones + j; 1576 unsigned long size = zone->spanned_pages; 1577 1578 /* 1579 * Initialize zone->managed_pages as 0 , it will be reset 1580 * when memblock allocator frees pages into buddy system. 1581 */ 1582 zone_init_internals(zone, j, nid, zone->present_pages); 1583 1584 if (!size) 1585 continue; 1586 1587 setup_usemap(zone); 1588 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1589 } 1590 } 1591 1592 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1593 phys_addr_t min_addr, int nid, bool exact_nid) 1594 { 1595 void *ptr; 1596 1597 /* 1598 * Kmemleak will explicitly scan mem_map by traversing all valid 1599 * `struct *page`,so memblock does not need to be added to the scan list. 1600 */ 1601 if (exact_nid) 1602 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1603 MEMBLOCK_ALLOC_NOLEAKTRACE, 1604 nid); 1605 else 1606 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1607 MEMBLOCK_ALLOC_NOLEAKTRACE, 1608 nid); 1609 1610 if (ptr && size > 0) 1611 page_init_poison(ptr, size); 1612 1613 return ptr; 1614 } 1615 1616 #ifdef CONFIG_FLATMEM 1617 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1618 { 1619 unsigned long start, offset, size, end; 1620 struct page *map; 1621 1622 /* Skip empty nodes */ 1623 if (!pgdat->node_spanned_pages) 1624 return; 1625 1626 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1627 offset = pgdat->node_start_pfn - start; 1628 /* 1629 * The zone's endpoints aren't required to be MAX_PAGE_ORDER 1630 * aligned but the node_mem_map endpoints must be in order 1631 * for the buddy allocator to function correctly. 1632 */ 1633 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); 1634 size = (end - start) * sizeof(struct page); 1635 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1636 pgdat->node_id, false); 1637 if (!map) 1638 panic("Failed to allocate %ld bytes for node %d memory map\n", 1639 size, pgdat->node_id); 1640 pgdat->node_mem_map = map + offset; 1641 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); 1642 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1643 __func__, pgdat->node_id, (unsigned long)pgdat, 1644 (unsigned long)pgdat->node_mem_map); 1645 #ifndef CONFIG_NUMA 1646 /* the global mem_map is just set as node 0's */ 1647 if (pgdat == NODE_DATA(0)) { 1648 mem_map = NODE_DATA(0)->node_mem_map; 1649 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1650 mem_map -= offset; 1651 } 1652 #endif 1653 } 1654 #else 1655 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1656 #endif /* CONFIG_FLATMEM */ 1657 1658 /** 1659 * get_pfn_range_for_nid - Return the start and end page frames for a node 1660 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1661 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1662 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1663 * 1664 * It returns the start and end page frame of a node based on information 1665 * provided by memblock_set_node(). If called for a node 1666 * with no available memory, the start and end PFNs will be 0. 1667 */ 1668 void __init get_pfn_range_for_nid(unsigned int nid, 1669 unsigned long *start_pfn, unsigned long *end_pfn) 1670 { 1671 unsigned long this_start_pfn, this_end_pfn; 1672 int i; 1673 1674 *start_pfn = -1UL; 1675 *end_pfn = 0; 1676 1677 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1678 *start_pfn = min(*start_pfn, this_start_pfn); 1679 *end_pfn = max(*end_pfn, this_end_pfn); 1680 } 1681 1682 if (*start_pfn == -1UL) 1683 *start_pfn = 0; 1684 } 1685 1686 static void __init free_area_init_node(int nid) 1687 { 1688 pg_data_t *pgdat = NODE_DATA(nid); 1689 unsigned long start_pfn = 0; 1690 unsigned long end_pfn = 0; 1691 1692 /* pg_data_t should be reset to zero when it's allocated */ 1693 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1694 1695 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1696 1697 pgdat->node_id = nid; 1698 pgdat->node_start_pfn = start_pfn; 1699 pgdat->per_cpu_nodestats = NULL; 1700 1701 if (start_pfn != end_pfn) { 1702 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1703 (u64)start_pfn << PAGE_SHIFT, 1704 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1705 1706 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1707 } else { 1708 pr_info("Initmem setup node %d as memoryless\n", nid); 1709 1710 reset_memoryless_node_totalpages(pgdat); 1711 } 1712 1713 alloc_node_mem_map(pgdat); 1714 pgdat_set_deferred_range(pgdat); 1715 1716 free_area_init_core(pgdat); 1717 lru_gen_init_pgdat(pgdat); 1718 } 1719 1720 /* Any regular or high memory on that node ? */ 1721 static void __init check_for_memory(pg_data_t *pgdat) 1722 { 1723 enum zone_type zone_type; 1724 1725 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1726 struct zone *zone = &pgdat->node_zones[zone_type]; 1727 if (populated_zone(zone)) { 1728 if (IS_ENABLED(CONFIG_HIGHMEM)) 1729 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1730 if (zone_type <= ZONE_NORMAL) 1731 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1732 break; 1733 } 1734 } 1735 } 1736 1737 #if MAX_NUMNODES > 1 1738 /* 1739 * Figure out the number of possible node ids. 1740 */ 1741 void __init setup_nr_node_ids(void) 1742 { 1743 unsigned int highest; 1744 1745 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1746 nr_node_ids = highest + 1; 1747 } 1748 #endif 1749 1750 /* 1751 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1752 * such cases we allow max_zone_pfn sorted in the descending order 1753 */ 1754 static bool arch_has_descending_max_zone_pfns(void) 1755 { 1756 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1757 } 1758 1759 /** 1760 * free_area_init - Initialise all pg_data_t and zone data 1761 * @max_zone_pfn: an array of max PFNs for each zone 1762 * 1763 * This will call free_area_init_node() for each active node in the system. 1764 * Using the page ranges provided by memblock_set_node(), the size of each 1765 * zone in each node and their holes is calculated. If the maximum PFN 1766 * between two adjacent zones match, it is assumed that the zone is empty. 1767 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1768 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1769 * starts where the previous one ended. For example, ZONE_DMA32 starts 1770 * at arch_max_dma_pfn. 1771 */ 1772 void __init free_area_init(unsigned long *max_zone_pfn) 1773 { 1774 unsigned long start_pfn, end_pfn; 1775 int i, nid, zone; 1776 bool descending; 1777 1778 /* Record where the zone boundaries are */ 1779 memset(arch_zone_lowest_possible_pfn, 0, 1780 sizeof(arch_zone_lowest_possible_pfn)); 1781 memset(arch_zone_highest_possible_pfn, 0, 1782 sizeof(arch_zone_highest_possible_pfn)); 1783 1784 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1785 descending = arch_has_descending_max_zone_pfns(); 1786 1787 for (i = 0; i < MAX_NR_ZONES; i++) { 1788 if (descending) 1789 zone = MAX_NR_ZONES - i - 1; 1790 else 1791 zone = i; 1792 1793 if (zone == ZONE_MOVABLE) 1794 continue; 1795 1796 end_pfn = max(max_zone_pfn[zone], start_pfn); 1797 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1798 arch_zone_highest_possible_pfn[zone] = end_pfn; 1799 1800 start_pfn = end_pfn; 1801 } 1802 1803 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1804 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1805 find_zone_movable_pfns_for_nodes(); 1806 1807 /* Print out the zone ranges */ 1808 pr_info("Zone ranges:\n"); 1809 for (i = 0; i < MAX_NR_ZONES; i++) { 1810 if (i == ZONE_MOVABLE) 1811 continue; 1812 pr_info(" %-8s ", zone_names[i]); 1813 if (arch_zone_lowest_possible_pfn[i] == 1814 arch_zone_highest_possible_pfn[i]) 1815 pr_cont("empty\n"); 1816 else 1817 pr_cont("[mem %#018Lx-%#018Lx]\n", 1818 (u64)arch_zone_lowest_possible_pfn[i] 1819 << PAGE_SHIFT, 1820 ((u64)arch_zone_highest_possible_pfn[i] 1821 << PAGE_SHIFT) - 1); 1822 } 1823 1824 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1825 pr_info("Movable zone start for each node\n"); 1826 for (i = 0; i < MAX_NUMNODES; i++) { 1827 if (zone_movable_pfn[i]) 1828 pr_info(" Node %d: %#018Lx\n", i, 1829 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1830 } 1831 1832 /* 1833 * Print out the early node map, and initialize the 1834 * subsection-map relative to active online memory ranges to 1835 * enable future "sub-section" extensions of the memory map. 1836 */ 1837 pr_info("Early memory node ranges\n"); 1838 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1839 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1840 (u64)start_pfn << PAGE_SHIFT, 1841 ((u64)end_pfn << PAGE_SHIFT) - 1); 1842 subsection_map_init(start_pfn, end_pfn - start_pfn); 1843 } 1844 1845 /* Initialise every node */ 1846 mminit_verify_pageflags_layout(); 1847 setup_nr_node_ids(); 1848 set_pageblock_order(); 1849 1850 for_each_node(nid) { 1851 pg_data_t *pgdat; 1852 1853 if (!node_online(nid)) 1854 alloc_offline_node_data(nid); 1855 1856 pgdat = NODE_DATA(nid); 1857 free_area_init_node(nid); 1858 1859 /* 1860 * No sysfs hierarcy will be created via register_one_node() 1861 *for memory-less node because here it's not marked as N_MEMORY 1862 *and won't be set online later. The benefit is userspace 1863 *program won't be confused by sysfs files/directories of 1864 *memory-less node. The pgdat will get fully initialized by 1865 *hotadd_init_pgdat() when memory is hotplugged into this node. 1866 */ 1867 if (pgdat->node_present_pages) { 1868 node_set_state(nid, N_MEMORY); 1869 check_for_memory(pgdat); 1870 } 1871 } 1872 1873 for_each_node_state(nid, N_MEMORY) 1874 sparse_vmemmap_init_nid_late(nid); 1875 1876 calc_nr_kernel_pages(); 1877 memmap_init(); 1878 1879 /* disable hash distribution for systems with a single node */ 1880 fixup_hashdist(); 1881 } 1882 1883 /** 1884 * node_map_pfn_alignment - determine the maximum internode alignment 1885 * 1886 * This function should be called after node map is populated and sorted. 1887 * It calculates the maximum power of two alignment which can distinguish 1888 * all the nodes. 1889 * 1890 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1891 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1892 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1893 * shifted, 1GiB is enough and this function will indicate so. 1894 * 1895 * This is used to test whether pfn -> nid mapping of the chosen memory 1896 * model has fine enough granularity to avoid incorrect mapping for the 1897 * populated node map. 1898 * 1899 * Return: the determined alignment in pfn's. 0 if there is no alignment 1900 * requirement (single node). 1901 */ 1902 unsigned long __init node_map_pfn_alignment(void) 1903 { 1904 unsigned long accl_mask = 0, last_end = 0; 1905 unsigned long start, end, mask; 1906 int last_nid = NUMA_NO_NODE; 1907 int i, nid; 1908 1909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1910 if (!start || last_nid < 0 || last_nid == nid) { 1911 last_nid = nid; 1912 last_end = end; 1913 continue; 1914 } 1915 1916 /* 1917 * Start with a mask granular enough to pin-point to the 1918 * start pfn and tick off bits one-by-one until it becomes 1919 * too coarse to separate the current node from the last. 1920 */ 1921 mask = ~((1 << __ffs(start)) - 1); 1922 while (mask && last_end <= (start & (mask << 1))) 1923 mask <<= 1; 1924 1925 /* accumulate all internode masks */ 1926 accl_mask |= mask; 1927 } 1928 1929 /* convert mask to number of pages */ 1930 return ~accl_mask + 1; 1931 } 1932 1933 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1934 static void __init deferred_free_pages(unsigned long pfn, 1935 unsigned long nr_pages) 1936 { 1937 struct page *page; 1938 unsigned long i; 1939 1940 if (!nr_pages) 1941 return; 1942 1943 page = pfn_to_page(pfn); 1944 1945 /* Free a large naturally-aligned chunk if possible */ 1946 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1947 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1948 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1949 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); 1950 return; 1951 } 1952 1953 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ 1954 accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE); 1955 1956 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1957 if (pageblock_aligned(pfn)) 1958 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1959 __free_pages_core(page, 0, MEMINIT_EARLY); 1960 } 1961 } 1962 1963 /* Completion tracking for deferred_init_memmap() threads */ 1964 static atomic_t pgdat_init_n_undone __initdata; 1965 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1966 1967 static inline void __init pgdat_init_report_one_done(void) 1968 { 1969 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1970 complete(&pgdat_init_all_done_comp); 1971 } 1972 1973 /* 1974 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1975 * by performing it only once every MAX_ORDER_NR_PAGES. 1976 * Return number of pages initialized. 1977 */ 1978 static unsigned long __init deferred_init_pages(struct zone *zone, 1979 unsigned long pfn, unsigned long end_pfn) 1980 { 1981 int nid = zone_to_nid(zone); 1982 unsigned long nr_pages = end_pfn - pfn; 1983 int zid = zone_idx(zone); 1984 struct page *page = pfn_to_page(pfn); 1985 1986 for (; pfn < end_pfn; pfn++, page++) 1987 __init_single_page(page, pfn, zid, nid); 1988 return nr_pages; 1989 } 1990 1991 /* 1992 * This function is meant to pre-load the iterator for the zone init from 1993 * a given point. 1994 * Specifically it walks through the ranges starting with initial index 1995 * passed to it until we are caught up to the first_init_pfn value and 1996 * exits there. If we never encounter the value we return false indicating 1997 * there are no valid ranges left. 1998 */ 1999 static bool __init 2000 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2001 unsigned long *spfn, unsigned long *epfn, 2002 unsigned long first_init_pfn) 2003 { 2004 u64 j = *i; 2005 2006 if (j == 0) 2007 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); 2008 2009 /* 2010 * Start out by walking through the ranges in this zone that have 2011 * already been initialized. We don't need to do anything with them 2012 * so we just need to flush them out of the system. 2013 */ 2014 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { 2015 if (*epfn <= first_init_pfn) 2016 continue; 2017 if (*spfn < first_init_pfn) 2018 *spfn = first_init_pfn; 2019 *i = j; 2020 return true; 2021 } 2022 2023 return false; 2024 } 2025 2026 /* 2027 * Initialize and free pages. We do it in two loops: first we initialize 2028 * struct page, then free to buddy allocator, because while we are 2029 * freeing pages we can access pages that are ahead (computing buddy 2030 * page in __free_one_page()). 2031 * 2032 * In order to try and keep some memory in the cache we have the loop 2033 * broken along max page order boundaries. This way we will not cause 2034 * any issues with the buddy page computation. 2035 */ 2036 static unsigned long __init 2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2038 unsigned long *end_pfn) 2039 { 2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2041 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2042 unsigned long nr_pages = 0; 2043 u64 j = *i; 2044 2045 /* First we loop through and initialize the page values */ 2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2047 unsigned long t; 2048 2049 if (mo_pfn <= *start_pfn) 2050 break; 2051 2052 t = min(mo_pfn, *end_pfn); 2053 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2054 2055 if (mo_pfn < *end_pfn) { 2056 *start_pfn = mo_pfn; 2057 break; 2058 } 2059 } 2060 2061 /* Reset values and now loop through freeing pages as needed */ 2062 swap(j, *i); 2063 2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2065 unsigned long t; 2066 2067 if (mo_pfn <= spfn) 2068 break; 2069 2070 t = min(mo_pfn, epfn); 2071 deferred_free_pages(spfn, t - spfn); 2072 2073 if (mo_pfn <= epfn) 2074 break; 2075 } 2076 2077 return nr_pages; 2078 } 2079 2080 static void __init 2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2082 void *arg) 2083 { 2084 unsigned long spfn, epfn; 2085 struct zone *zone = arg; 2086 u64 i = 0; 2087 2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2089 2090 /* 2091 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that 2092 * we can avoid introducing any issues with the buddy allocator. 2093 */ 2094 while (spfn < end_pfn) { 2095 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2096 cond_resched(); 2097 } 2098 } 2099 2100 static unsigned int __init 2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2102 { 2103 return max(cpumask_weight(node_cpumask), 1U); 2104 } 2105 2106 /* Initialise remaining memory on a node */ 2107 static int __init deferred_init_memmap(void *data) 2108 { 2109 pg_data_t *pgdat = data; 2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2111 unsigned long spfn = 0, epfn = 0; 2112 unsigned long first_init_pfn, flags; 2113 unsigned long start = jiffies; 2114 struct zone *zone; 2115 int max_threads; 2116 u64 i = 0; 2117 2118 /* Bind memory initialisation thread to a local node if possible */ 2119 if (!cpumask_empty(cpumask)) 2120 set_cpus_allowed_ptr(current, cpumask); 2121 2122 pgdat_resize_lock(pgdat, &flags); 2123 first_init_pfn = pgdat->first_deferred_pfn; 2124 if (first_init_pfn == ULONG_MAX) { 2125 pgdat_resize_unlock(pgdat, &flags); 2126 pgdat_init_report_one_done(); 2127 return 0; 2128 } 2129 2130 /* Sanity check boundaries */ 2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2133 pgdat->first_deferred_pfn = ULONG_MAX; 2134 2135 /* 2136 * Once we unlock here, the zone cannot be grown anymore, thus if an 2137 * interrupt thread must allocate this early in boot, zone must be 2138 * pre-grown prior to start of deferred page initialization. 2139 */ 2140 pgdat_resize_unlock(pgdat, &flags); 2141 2142 /* Only the highest zone is deferred */ 2143 zone = pgdat->node_zones + pgdat->nr_zones - 1; 2144 2145 max_threads = deferred_page_init_max_threads(cpumask); 2146 2147 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { 2148 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); 2149 struct padata_mt_job job = { 2150 .thread_fn = deferred_init_memmap_chunk, 2151 .fn_arg = zone, 2152 .start = spfn, 2153 .size = first_init_pfn - spfn, 2154 .align = PAGES_PER_SECTION, 2155 .min_chunk = PAGES_PER_SECTION, 2156 .max_threads = max_threads, 2157 .numa_aware = false, 2158 }; 2159 2160 padata_do_multithreaded(&job); 2161 } 2162 2163 /* Sanity check that the next zone really is unpopulated */ 2164 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); 2165 2166 pr_info("node %d deferred pages initialised in %ums\n", 2167 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2168 2169 pgdat_init_report_one_done(); 2170 return 0; 2171 } 2172 2173 /* 2174 * If this zone has deferred pages, try to grow it by initializing enough 2175 * deferred pages to satisfy the allocation specified by order, rounded up to 2176 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2177 * of SECTION_SIZE bytes by initializing struct pages in increments of 2178 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2179 * 2180 * Return true when zone was grown, otherwise return false. We return true even 2181 * when we grow less than requested, to let the caller decide if there are 2182 * enough pages to satisfy the allocation. 2183 */ 2184 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2185 { 2186 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2187 pg_data_t *pgdat = zone->zone_pgdat; 2188 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2189 unsigned long spfn, epfn, flags; 2190 unsigned long nr_pages = 0; 2191 u64 i = 0; 2192 2193 /* Only the last zone may have deferred pages */ 2194 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2195 return false; 2196 2197 pgdat_resize_lock(pgdat, &flags); 2198 2199 /* 2200 * If someone grew this zone while we were waiting for spinlock, return 2201 * true, as there might be enough pages already. 2202 */ 2203 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2204 pgdat_resize_unlock(pgdat, &flags); 2205 return true; 2206 } 2207 2208 /* If the zone is empty somebody else may have cleared out the zone */ 2209 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2210 first_deferred_pfn)) { 2211 pgdat->first_deferred_pfn = ULONG_MAX; 2212 pgdat_resize_unlock(pgdat, &flags); 2213 /* Retry only once. */ 2214 return first_deferred_pfn != ULONG_MAX; 2215 } 2216 2217 /* 2218 * Initialize and free pages in MAX_PAGE_ORDER sized increments so 2219 * that we can avoid introducing any issues with the buddy 2220 * allocator. 2221 */ 2222 while (spfn < epfn) { 2223 /* update our first deferred PFN for this section */ 2224 first_deferred_pfn = spfn; 2225 2226 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2227 touch_nmi_watchdog(); 2228 2229 /* We should only stop along section boundaries */ 2230 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2231 continue; 2232 2233 /* If our quota has been met we can stop here */ 2234 if (nr_pages >= nr_pages_needed) 2235 break; 2236 } 2237 2238 pgdat->first_deferred_pfn = spfn; 2239 pgdat_resize_unlock(pgdat, &flags); 2240 2241 return nr_pages > 0; 2242 } 2243 2244 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2245 2246 #ifdef CONFIG_CMA 2247 void __init init_cma_reserved_pageblock(struct page *page) 2248 { 2249 unsigned i = pageblock_nr_pages; 2250 struct page *p = page; 2251 2252 do { 2253 __ClearPageReserved(p); 2254 set_page_count(p, 0); 2255 } while (++p, --i); 2256 2257 set_pageblock_migratetype(page, MIGRATE_CMA); 2258 set_page_refcounted(page); 2259 /* pages were reserved and not allocated */ 2260 clear_page_tag_ref(page); 2261 __free_pages(page, pageblock_order); 2262 2263 adjust_managed_page_count(page, pageblock_nr_pages); 2264 page_zone(page)->cma_pages += pageblock_nr_pages; 2265 } 2266 /* 2267 * Similar to above, but only set the migrate type and stats. 2268 */ 2269 void __init init_cma_pageblock(struct page *page) 2270 { 2271 set_pageblock_migratetype(page, MIGRATE_CMA); 2272 adjust_managed_page_count(page, pageblock_nr_pages); 2273 page_zone(page)->cma_pages += pageblock_nr_pages; 2274 } 2275 #endif 2276 2277 void set_zone_contiguous(struct zone *zone) 2278 { 2279 unsigned long block_start_pfn = zone->zone_start_pfn; 2280 unsigned long block_end_pfn; 2281 2282 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2283 for (; block_start_pfn < zone_end_pfn(zone); 2284 block_start_pfn = block_end_pfn, 2285 block_end_pfn += pageblock_nr_pages) { 2286 2287 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2288 2289 if (!__pageblock_pfn_to_page(block_start_pfn, 2290 block_end_pfn, zone)) 2291 return; 2292 cond_resched(); 2293 } 2294 2295 /* We confirm that there is no hole */ 2296 zone->contiguous = true; 2297 } 2298 2299 /* 2300 * Check if a PFN range intersects multiple zones on one or more 2301 * NUMA nodes. Specify the @nid argument if it is known that this 2302 * PFN range is on one node, NUMA_NO_NODE otherwise. 2303 */ 2304 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn, 2305 unsigned long nr_pages) 2306 { 2307 struct zone *zone, *izone = NULL; 2308 2309 for_each_zone(zone) { 2310 if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid) 2311 continue; 2312 2313 if (zone_intersects(zone, start_pfn, nr_pages)) { 2314 if (izone != NULL) 2315 return true; 2316 izone = zone; 2317 } 2318 2319 } 2320 2321 return false; 2322 } 2323 2324 static void __init mem_init_print_info(void); 2325 void __init page_alloc_init_late(void) 2326 { 2327 struct zone *zone; 2328 int nid; 2329 2330 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2331 2332 /* There will be num_node_state(N_MEMORY) threads */ 2333 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2334 for_each_node_state(nid, N_MEMORY) { 2335 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2336 } 2337 2338 /* Block until all are initialised */ 2339 wait_for_completion(&pgdat_init_all_done_comp); 2340 2341 /* 2342 * We initialized the rest of the deferred pages. Permanently disable 2343 * on-demand struct page initialization. 2344 */ 2345 static_branch_disable(&deferred_pages); 2346 2347 /* Reinit limits that are based on free pages after the kernel is up */ 2348 files_maxfiles_init(); 2349 #endif 2350 2351 /* Accounting of total+free memory is stable at this point. */ 2352 mem_init_print_info(); 2353 buffer_init(); 2354 2355 /* Discard memblock private memory */ 2356 memblock_discard(); 2357 2358 for_each_node_state(nid, N_MEMORY) 2359 shuffle_free_memory(NODE_DATA(nid)); 2360 2361 for_each_populated_zone(zone) 2362 set_zone_contiguous(zone); 2363 2364 /* Initialize page ext after all struct pages are initialized. */ 2365 if (deferred_struct_pages) 2366 page_ext_init(); 2367 2368 page_alloc_sysctl_init(); 2369 } 2370 2371 /* 2372 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2373 * machines. As memory size is increased the scale is also increased but at 2374 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2375 * quadruples the scale is increased by one, which means the size of hash table 2376 * only doubles, instead of quadrupling as well. 2377 * Because 32-bit systems cannot have large physical memory, where this scaling 2378 * makes sense, it is disabled on such platforms. 2379 */ 2380 #if __BITS_PER_LONG > 32 2381 #define ADAPT_SCALE_BASE (64ul << 30) 2382 #define ADAPT_SCALE_SHIFT 2 2383 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2384 #endif 2385 2386 /* 2387 * allocate a large system hash table from bootmem 2388 * - it is assumed that the hash table must contain an exact power-of-2 2389 * quantity of entries 2390 * - limit is the number of hash buckets, not the total allocation size 2391 */ 2392 void *__init alloc_large_system_hash(const char *tablename, 2393 unsigned long bucketsize, 2394 unsigned long numentries, 2395 int scale, 2396 int flags, 2397 unsigned int *_hash_shift, 2398 unsigned int *_hash_mask, 2399 unsigned long low_limit, 2400 unsigned long high_limit) 2401 { 2402 unsigned long long max = high_limit; 2403 unsigned long log2qty, size; 2404 void *table; 2405 gfp_t gfp_flags; 2406 bool virt; 2407 bool huge; 2408 2409 /* allow the kernel cmdline to have a say */ 2410 if (!numentries) { 2411 /* round applicable memory size up to nearest megabyte */ 2412 numentries = nr_kernel_pages; 2413 2414 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2415 if (PAGE_SIZE < SZ_1M) 2416 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2417 2418 #if __BITS_PER_LONG > 32 2419 if (!high_limit) { 2420 unsigned long adapt; 2421 2422 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2423 adapt <<= ADAPT_SCALE_SHIFT) 2424 scale++; 2425 } 2426 #endif 2427 2428 /* limit to 1 bucket per 2^scale bytes of low memory */ 2429 if (scale > PAGE_SHIFT) 2430 numentries >>= (scale - PAGE_SHIFT); 2431 else 2432 numentries <<= (PAGE_SHIFT - scale); 2433 2434 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2435 numentries = PAGE_SIZE / bucketsize; 2436 } 2437 numentries = roundup_pow_of_two(numentries); 2438 2439 /* limit allocation size to 1/16 total memory by default */ 2440 if (max == 0) { 2441 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2442 do_div(max, bucketsize); 2443 } 2444 max = min(max, 0x80000000ULL); 2445 2446 if (numentries < low_limit) 2447 numentries = low_limit; 2448 if (numentries > max) 2449 numentries = max; 2450 2451 log2qty = ilog2(numentries); 2452 2453 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2454 do { 2455 virt = false; 2456 size = bucketsize << log2qty; 2457 if (flags & HASH_EARLY) { 2458 if (flags & HASH_ZERO) 2459 table = memblock_alloc(size, SMP_CACHE_BYTES); 2460 else 2461 table = memblock_alloc_raw(size, 2462 SMP_CACHE_BYTES); 2463 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { 2464 table = vmalloc_huge(size, gfp_flags); 2465 virt = true; 2466 if (table) 2467 huge = is_vm_area_hugepages(table); 2468 } else { 2469 /* 2470 * If bucketsize is not a power-of-two, we may free 2471 * some pages at the end of hash table which 2472 * alloc_pages_exact() automatically does 2473 */ 2474 table = alloc_pages_exact(size, gfp_flags); 2475 kmemleak_alloc(table, size, 1, gfp_flags); 2476 } 2477 } while (!table && size > PAGE_SIZE && --log2qty); 2478 2479 if (!table) 2480 panic("Failed to allocate %s hash table\n", tablename); 2481 2482 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2483 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2484 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2485 2486 if (_hash_shift) 2487 *_hash_shift = log2qty; 2488 if (_hash_mask) 2489 *_hash_mask = (1 << log2qty) - 1; 2490 2491 return table; 2492 } 2493 2494 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2495 unsigned int order) 2496 { 2497 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2498 int nid = early_pfn_to_nid(pfn); 2499 2500 if (!early_page_initialised(pfn, nid)) 2501 return; 2502 } 2503 2504 if (!kmsan_memblock_free_pages(page, order)) { 2505 /* KMSAN will take care of these pages. */ 2506 return; 2507 } 2508 2509 /* pages were reserved and not allocated */ 2510 clear_page_tag_ref(page); 2511 __free_pages_core(page, order, MEMINIT_EARLY); 2512 } 2513 2514 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2515 EXPORT_SYMBOL(init_on_alloc); 2516 2517 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2518 EXPORT_SYMBOL(init_on_free); 2519 2520 static bool _init_on_alloc_enabled_early __read_mostly 2521 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2522 static int __init early_init_on_alloc(char *buf) 2523 { 2524 2525 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2526 } 2527 early_param("init_on_alloc", early_init_on_alloc); 2528 2529 static bool _init_on_free_enabled_early __read_mostly 2530 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2531 static int __init early_init_on_free(char *buf) 2532 { 2533 return kstrtobool(buf, &_init_on_free_enabled_early); 2534 } 2535 early_param("init_on_free", early_init_on_free); 2536 2537 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2538 2539 /* 2540 * Enable static keys related to various memory debugging and hardening options. 2541 * Some override others, and depend on early params that are evaluated in the 2542 * order of appearance. So we need to first gather the full picture of what was 2543 * enabled, and then make decisions. 2544 */ 2545 static void __init mem_debugging_and_hardening_init(void) 2546 { 2547 bool page_poisoning_requested = false; 2548 bool want_check_pages = false; 2549 2550 #ifdef CONFIG_PAGE_POISONING 2551 /* 2552 * Page poisoning is debug page alloc for some arches. If 2553 * either of those options are enabled, enable poisoning. 2554 */ 2555 if (page_poisoning_enabled() || 2556 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2557 debug_pagealloc_enabled())) { 2558 static_branch_enable(&_page_poisoning_enabled); 2559 page_poisoning_requested = true; 2560 want_check_pages = true; 2561 } 2562 #endif 2563 2564 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2565 page_poisoning_requested) { 2566 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2567 "will take precedence over init_on_alloc and init_on_free\n"); 2568 _init_on_alloc_enabled_early = false; 2569 _init_on_free_enabled_early = false; 2570 } 2571 2572 if (_init_on_alloc_enabled_early) { 2573 want_check_pages = true; 2574 static_branch_enable(&init_on_alloc); 2575 } else { 2576 static_branch_disable(&init_on_alloc); 2577 } 2578 2579 if (_init_on_free_enabled_early) { 2580 want_check_pages = true; 2581 static_branch_enable(&init_on_free); 2582 } else { 2583 static_branch_disable(&init_on_free); 2584 } 2585 2586 if (IS_ENABLED(CONFIG_KMSAN) && 2587 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2588 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2589 2590 #ifdef CONFIG_DEBUG_PAGEALLOC 2591 if (debug_pagealloc_enabled()) { 2592 want_check_pages = true; 2593 static_branch_enable(&_debug_pagealloc_enabled); 2594 2595 if (debug_guardpage_minorder()) 2596 static_branch_enable(&_debug_guardpage_enabled); 2597 } 2598 #endif 2599 2600 /* 2601 * Any page debugging or hardening option also enables sanity checking 2602 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2603 * enabled already. 2604 */ 2605 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2606 static_branch_enable(&check_pages_enabled); 2607 } 2608 2609 /* Report memory auto-initialization states for this boot. */ 2610 static void __init report_meminit(void) 2611 { 2612 const char *stack; 2613 2614 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2615 stack = "all(pattern)"; 2616 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2617 stack = "all(zero)"; 2618 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2619 stack = "byref_all(zero)"; 2620 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2621 stack = "byref(zero)"; 2622 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2623 stack = "__user(zero)"; 2624 else 2625 stack = "off"; 2626 2627 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2628 stack, str_on_off(want_init_on_alloc(GFP_KERNEL)), 2629 str_on_off(want_init_on_free())); 2630 if (want_init_on_free()) 2631 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2632 } 2633 2634 static void __init mem_init_print_info(void) 2635 { 2636 unsigned long physpages, codesize, datasize, rosize, bss_size; 2637 unsigned long init_code_size, init_data_size; 2638 2639 physpages = get_num_physpages(); 2640 codesize = _etext - _stext; 2641 datasize = _edata - _sdata; 2642 rosize = __end_rodata - __start_rodata; 2643 bss_size = __bss_stop - __bss_start; 2644 init_data_size = __init_end - __init_begin; 2645 init_code_size = _einittext - _sinittext; 2646 2647 /* 2648 * Detect special cases and adjust section sizes accordingly: 2649 * 1) .init.* may be embedded into .data sections 2650 * 2) .init.text.* may be out of [__init_begin, __init_end], 2651 * please refer to arch/tile/kernel/vmlinux.lds.S. 2652 * 3) .rodata.* may be embedded into .text or .data sections. 2653 */ 2654 #define adj_init_size(start, end, size, pos, adj) \ 2655 do { \ 2656 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2657 size -= adj; \ 2658 } while (0) 2659 2660 adj_init_size(__init_begin, __init_end, init_data_size, 2661 _sinittext, init_code_size); 2662 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2663 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2664 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2665 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2666 2667 #undef adj_init_size 2668 2669 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2670 #ifdef CONFIG_HIGHMEM 2671 ", %luK highmem" 2672 #endif 2673 ")\n", 2674 K(nr_free_pages()), K(physpages), 2675 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2676 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2677 K(physpages - totalram_pages() - totalcma_pages), 2678 K(totalcma_pages) 2679 #ifdef CONFIG_HIGHMEM 2680 , K(totalhigh_pages()) 2681 #endif 2682 ); 2683 } 2684 2685 /* 2686 * Set up kernel memory allocators 2687 */ 2688 void __init mm_core_init(void) 2689 { 2690 hugetlb_bootmem_alloc(); 2691 2692 /* Initializations relying on SMP setup */ 2693 BUILD_BUG_ON(MAX_ZONELISTS > 2); 2694 build_all_zonelists(NULL); 2695 page_alloc_init_cpuhp(); 2696 alloc_tag_sec_init(); 2697 /* 2698 * page_ext requires contiguous pages, 2699 * bigger than MAX_PAGE_ORDER unless SPARSEMEM. 2700 */ 2701 page_ext_init_flatmem(); 2702 mem_debugging_and_hardening_init(); 2703 kfence_alloc_pool_and_metadata(); 2704 report_meminit(); 2705 kmsan_init_shadow(); 2706 stack_depot_early_init(); 2707 mem_init(); 2708 kmem_cache_init(); 2709 /* 2710 * page_owner must be initialized after buddy is ready, and also after 2711 * slab is ready so that stack_depot_init() works properly 2712 */ 2713 page_ext_init_flatmem_late(); 2714 kmemleak_init(); 2715 ptlock_cache_init(); 2716 pgtable_cache_init(); 2717 debug_objects_mem_init(); 2718 vmalloc_init(); 2719 /* If no deferred init page_ext now, as vmap is fully initialized */ 2720 if (!deferred_struct_pages) 2721 page_ext_init(); 2722 /* Should be run before the first non-init thread is created */ 2723 init_espfix_bsp(); 2724 /* Should be run after espfix64 is set up. */ 2725 pti_init(); 2726 kmsan_init_runtime(); 2727 mm_cache_init(); 2728 execmem_init(); 2729 } 2730