xref: /linux/mm/mm_init.c (revision 2c9b3512402ed192d1f43f4531fb5da947e72bd0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include "internal.h"
33 #include "slab.h"
34 #include "shuffle.h"
35 
36 #include <asm/setup.h>
37 
38 #ifdef CONFIG_DEBUG_MEMORY_INIT
39 int __meminitdata mminit_loglevel;
40 
41 /* The zonelists are simply reported, validation is manual. */
42 void __init mminit_verify_zonelist(void)
43 {
44 	int nid;
45 
46 	if (mminit_loglevel < MMINIT_VERIFY)
47 		return;
48 
49 	for_each_online_node(nid) {
50 		pg_data_t *pgdat = NODE_DATA(nid);
51 		struct zone *zone;
52 		struct zoneref *z;
53 		struct zonelist *zonelist;
54 		int i, listid, zoneid;
55 
56 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
57 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58 
59 			/* Identify the zone and nodelist */
60 			zoneid = i % MAX_NR_ZONES;
61 			listid = i / MAX_NR_ZONES;
62 			zonelist = &pgdat->node_zonelists[listid];
63 			zone = &pgdat->node_zones[zoneid];
64 			if (!populated_zone(zone))
65 				continue;
66 
67 			/* Print information about the zonelist */
68 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 				listid > 0 ? "thisnode" : "general", nid,
70 				zone->name);
71 
72 			/* Iterate the zonelist */
73 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 			pr_cont("\n");
76 		}
77 	}
78 }
79 
80 void __init mminit_verify_pageflags_layout(void)
81 {
82 	int shift, width;
83 	unsigned long or_mask, add_mask;
84 
85 	shift = BITS_PER_LONG;
86 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90 		SECTIONS_WIDTH,
91 		NODES_WIDTH,
92 		ZONES_WIDTH,
93 		LAST_CPUPID_WIDTH,
94 		KASAN_TAG_WIDTH,
95 		LRU_GEN_WIDTH,
96 		LRU_REFS_WIDTH,
97 		NR_PAGEFLAGS);
98 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100 		SECTIONS_SHIFT,
101 		NODES_SHIFT,
102 		ZONES_SHIFT,
103 		LAST_CPUPID_SHIFT,
104 		KASAN_TAG_WIDTH);
105 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107 		(unsigned long)SECTIONS_PGSHIFT,
108 		(unsigned long)NODES_PGSHIFT,
109 		(unsigned long)ZONES_PGSHIFT,
110 		(unsigned long)LAST_CPUPID_PGSHIFT,
111 		(unsigned long)KASAN_TAG_PGSHIFT);
112 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113 		"Node/Zone ID: %lu -> %lu\n",
114 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115 		(unsigned long)ZONEID_PGOFF);
116 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119 #ifdef NODE_NOT_IN_PAGE_FLAGS
120 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121 		"Node not in page flags");
122 #endif
123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125 		"Last cpupid not in page flags");
126 #endif
127 
128 	if (SECTIONS_WIDTH) {
129 		shift -= SECTIONS_WIDTH;
130 		BUG_ON(shift != SECTIONS_PGSHIFT);
131 	}
132 	if (NODES_WIDTH) {
133 		shift -= NODES_WIDTH;
134 		BUG_ON(shift != NODES_PGSHIFT);
135 	}
136 	if (ZONES_WIDTH) {
137 		shift -= ZONES_WIDTH;
138 		BUG_ON(shift != ZONES_PGSHIFT);
139 	}
140 
141 	/* Check for bitmask overlaps */
142 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143 			(NODES_MASK << NODES_PGSHIFT) |
144 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
145 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146 			(NODES_MASK << NODES_PGSHIFT) +
147 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
148 	BUG_ON(or_mask != add_mask);
149 }
150 
151 static __init int set_mminit_loglevel(char *str)
152 {
153 	get_option(&str, &mminit_loglevel);
154 	return 0;
155 }
156 early_param("mminit_loglevel", set_mminit_loglevel);
157 #endif /* CONFIG_DEBUG_MEMORY_INIT */
158 
159 struct kobject *mm_kobj;
160 
161 #ifdef CONFIG_SMP
162 s32 vm_committed_as_batch = 32;
163 
164 void mm_compute_batch(int overcommit_policy)
165 {
166 	u64 memsized_batch;
167 	s32 nr = num_present_cpus();
168 	s32 batch = max_t(s32, nr*2, 32);
169 	unsigned long ram_pages = totalram_pages();
170 
171 	/*
172 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173 	 * (total memory/#cpus), and lift it to 25% for other policies
174 	 * to easy the possible lock contention for percpu_counter
175 	 * vm_committed_as, while the max limit is INT_MAX
176 	 */
177 	if (overcommit_policy == OVERCOMMIT_NEVER)
178 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179 	else
180 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181 
182 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183 }
184 
185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186 					unsigned long action, void *arg)
187 {
188 	switch (action) {
189 	case MEM_ONLINE:
190 	case MEM_OFFLINE:
191 		mm_compute_batch(sysctl_overcommit_memory);
192 		break;
193 	default:
194 		break;
195 	}
196 	return NOTIFY_OK;
197 }
198 
199 static int __init mm_compute_batch_init(void)
200 {
201 	mm_compute_batch(sysctl_overcommit_memory);
202 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203 	return 0;
204 }
205 
206 __initcall(mm_compute_batch_init);
207 
208 #endif
209 
210 static int __init mm_sysfs_init(void)
211 {
212 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213 	if (!mm_kobj)
214 		return -ENOMEM;
215 
216 	return 0;
217 }
218 postcore_initcall(mm_sysfs_init);
219 
220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223 
224 static unsigned long required_kernelcore __initdata;
225 static unsigned long required_kernelcore_percent __initdata;
226 static unsigned long required_movablecore __initdata;
227 static unsigned long required_movablecore_percent __initdata;
228 
229 static unsigned long nr_kernel_pages __initdata;
230 static unsigned long nr_all_pages __initdata;
231 
232 static bool deferred_struct_pages __meminitdata;
233 
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235 
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237 				     unsigned long *percent)
238 {
239 	unsigned long long coremem;
240 	char *endptr;
241 
242 	if (!p)
243 		return -EINVAL;
244 
245 	/* Value may be a percentage of total memory, otherwise bytes */
246 	coremem = simple_strtoull(p, &endptr, 0);
247 	if (*endptr == '%') {
248 		/* Paranoid check for percent values greater than 100 */
249 		WARN_ON(coremem > 100);
250 
251 		*percent = coremem;
252 	} else {
253 		coremem = memparse(p, &p);
254 		/* Paranoid check that UL is enough for the coremem value */
255 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256 
257 		*core = coremem >> PAGE_SHIFT;
258 		*percent = 0UL;
259 	}
260 	return 0;
261 }
262 
263 bool mirrored_kernelcore __initdata_memblock;
264 
265 /*
266  * kernelcore=size sets the amount of memory for use for allocations that
267  * cannot be reclaimed or migrated.
268  */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271 	/* parse kernelcore=mirror */
272 	if (parse_option_str(p, "mirror")) {
273 		mirrored_kernelcore = true;
274 		return 0;
275 	}
276 
277 	return cmdline_parse_core(p, &required_kernelcore,
278 				  &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281 
282 /*
283  * movablecore=size sets the amount of memory for use for allocations that
284  * can be reclaimed or migrated.
285  */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288 	return cmdline_parse_core(p, &required_movablecore,
289 				  &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292 
293 /*
294  * early_calculate_totalpages()
295  * Sum pages in active regions for movable zone.
296  * Populate N_MEMORY for calculating usable_nodes.
297  */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300 	unsigned long totalpages = 0;
301 	unsigned long start_pfn, end_pfn;
302 	int i, nid;
303 
304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 		unsigned long pages = end_pfn - start_pfn;
306 
307 		totalpages += pages;
308 		if (pages)
309 			node_set_state(nid, N_MEMORY);
310 	}
311 	return totalpages;
312 }
313 
314 /*
315  * This finds a zone that can be used for ZONE_MOVABLE pages. The
316  * assumption is made that zones within a node are ordered in monotonic
317  * increasing memory addresses so that the "highest" populated zone is used
318  */
319 static void __init find_usable_zone_for_movable(void)
320 {
321 	int zone_index;
322 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 		if (zone_index == ZONE_MOVABLE)
324 			continue;
325 
326 		if (arch_zone_highest_possible_pfn[zone_index] >
327 				arch_zone_lowest_possible_pfn[zone_index])
328 			break;
329 	}
330 
331 	VM_BUG_ON(zone_index == -1);
332 	movable_zone = zone_index;
333 }
334 
335 /*
336  * Find the PFN the Movable zone begins in each node. Kernel memory
337  * is spread evenly between nodes as long as the nodes have enough
338  * memory. When they don't, some nodes will have more kernelcore than
339  * others
340  */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343 	int i, nid;
344 	unsigned long usable_startpfn;
345 	unsigned long kernelcore_node, kernelcore_remaining;
346 	/* save the state before borrow the nodemask */
347 	nodemask_t saved_node_state = node_states[N_MEMORY];
348 	unsigned long totalpages = early_calculate_totalpages();
349 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 	struct memblock_region *r;
351 
352 	/* Need to find movable_zone earlier when movable_node is specified. */
353 	find_usable_zone_for_movable();
354 
355 	/*
356 	 * If movable_node is specified, ignore kernelcore and movablecore
357 	 * options.
358 	 */
359 	if (movable_node_is_enabled()) {
360 		for_each_mem_region(r) {
361 			if (!memblock_is_hotpluggable(r))
362 				continue;
363 
364 			nid = memblock_get_region_node(r);
365 
366 			usable_startpfn = memblock_region_memory_base_pfn(r);
367 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 				min(usable_startpfn, zone_movable_pfn[nid]) :
369 				usable_startpfn;
370 		}
371 
372 		goto out2;
373 	}
374 
375 	/*
376 	 * If kernelcore=mirror is specified, ignore movablecore option
377 	 */
378 	if (mirrored_kernelcore) {
379 		bool mem_below_4gb_not_mirrored = false;
380 
381 		if (!memblock_has_mirror()) {
382 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 			goto out;
384 		}
385 
386 		if (is_kdump_kernel()) {
387 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 			goto out;
389 		}
390 
391 		for_each_mem_region(r) {
392 			if (memblock_is_mirror(r))
393 				continue;
394 
395 			nid = memblock_get_region_node(r);
396 
397 			usable_startpfn = memblock_region_memory_base_pfn(r);
398 
399 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 				mem_below_4gb_not_mirrored = true;
401 				continue;
402 			}
403 
404 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 				min(usable_startpfn, zone_movable_pfn[nid]) :
406 				usable_startpfn;
407 		}
408 
409 		if (mem_below_4gb_not_mirrored)
410 			pr_warn("This configuration results in unmirrored kernel memory.\n");
411 
412 		goto out2;
413 	}
414 
415 	/*
416 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 	 * amount of necessary memory.
418 	 */
419 	if (required_kernelcore_percent)
420 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 				       10000UL;
422 	if (required_movablecore_percent)
423 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 					10000UL;
425 
426 	/*
427 	 * If movablecore= was specified, calculate what size of
428 	 * kernelcore that corresponds so that memory usable for
429 	 * any allocation type is evenly spread. If both kernelcore
430 	 * and movablecore are specified, then the value of kernelcore
431 	 * will be used for required_kernelcore if it's greater than
432 	 * what movablecore would have allowed.
433 	 */
434 	if (required_movablecore) {
435 		unsigned long corepages;
436 
437 		/*
438 		 * Round-up so that ZONE_MOVABLE is at least as large as what
439 		 * was requested by the user
440 		 */
441 		required_movablecore =
442 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 		required_movablecore = min(totalpages, required_movablecore);
444 		corepages = totalpages - required_movablecore;
445 
446 		required_kernelcore = max(required_kernelcore, corepages);
447 	}
448 
449 	/*
450 	 * If kernelcore was not specified or kernelcore size is larger
451 	 * than totalpages, there is no ZONE_MOVABLE.
452 	 */
453 	if (!required_kernelcore || required_kernelcore >= totalpages)
454 		goto out;
455 
456 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458 
459 restart:
460 	/* Spread kernelcore memory as evenly as possible throughout nodes */
461 	kernelcore_node = required_kernelcore / usable_nodes;
462 	for_each_node_state(nid, N_MEMORY) {
463 		unsigned long start_pfn, end_pfn;
464 
465 		/*
466 		 * Recalculate kernelcore_node if the division per node
467 		 * now exceeds what is necessary to satisfy the requested
468 		 * amount of memory for the kernel
469 		 */
470 		if (required_kernelcore < kernelcore_node)
471 			kernelcore_node = required_kernelcore / usable_nodes;
472 
473 		/*
474 		 * As the map is walked, we track how much memory is usable
475 		 * by the kernel using kernelcore_remaining. When it is
476 		 * 0, the rest of the node is usable by ZONE_MOVABLE
477 		 */
478 		kernelcore_remaining = kernelcore_node;
479 
480 		/* Go through each range of PFNs within this node */
481 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 			unsigned long size_pages;
483 
484 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 			if (start_pfn >= end_pfn)
486 				continue;
487 
488 			/* Account for what is only usable for kernelcore */
489 			if (start_pfn < usable_startpfn) {
490 				unsigned long kernel_pages;
491 				kernel_pages = min(end_pfn, usable_startpfn)
492 								- start_pfn;
493 
494 				kernelcore_remaining -= min(kernel_pages,
495 							kernelcore_remaining);
496 				required_kernelcore -= min(kernel_pages,
497 							required_kernelcore);
498 
499 				/* Continue if range is now fully accounted */
500 				if (end_pfn <= usable_startpfn) {
501 
502 					/*
503 					 * Push zone_movable_pfn to the end so
504 					 * that if we have to rebalance
505 					 * kernelcore across nodes, we will
506 					 * not double account here
507 					 */
508 					zone_movable_pfn[nid] = end_pfn;
509 					continue;
510 				}
511 				start_pfn = usable_startpfn;
512 			}
513 
514 			/*
515 			 * The usable PFN range for ZONE_MOVABLE is from
516 			 * start_pfn->end_pfn. Calculate size_pages as the
517 			 * number of pages used as kernelcore
518 			 */
519 			size_pages = end_pfn - start_pfn;
520 			if (size_pages > kernelcore_remaining)
521 				size_pages = kernelcore_remaining;
522 			zone_movable_pfn[nid] = start_pfn + size_pages;
523 
524 			/*
525 			 * Some kernelcore has been met, update counts and
526 			 * break if the kernelcore for this node has been
527 			 * satisfied
528 			 */
529 			required_kernelcore -= min(required_kernelcore,
530 								size_pages);
531 			kernelcore_remaining -= size_pages;
532 			if (!kernelcore_remaining)
533 				break;
534 		}
535 	}
536 
537 	/*
538 	 * If there is still required_kernelcore, we do another pass with one
539 	 * less node in the count. This will push zone_movable_pfn[nid] further
540 	 * along on the nodes that still have memory until kernelcore is
541 	 * satisfied
542 	 */
543 	usable_nodes--;
544 	if (usable_nodes && required_kernelcore > usable_nodes)
545 		goto restart;
546 
547 out2:
548 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 		unsigned long start_pfn, end_pfn;
551 
552 		zone_movable_pfn[nid] =
553 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554 
555 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 		if (zone_movable_pfn[nid] >= end_pfn)
557 			zone_movable_pfn[nid] = 0;
558 	}
559 
560 out:
561 	/* restore the node_state */
562 	node_states[N_MEMORY] = saved_node_state;
563 }
564 
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 				unsigned long zone, int nid)
567 {
568 	mm_zero_struct_page(page);
569 	set_page_links(page, zone, nid, pfn);
570 	init_page_count(page);
571 	page_mapcount_reset(page);
572 	page_cpupid_reset_last(page);
573 	page_kasan_tag_reset(page);
574 
575 	INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 	if (!is_highmem_idx(zone))
579 		set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582 
583 #ifdef CONFIG_NUMA
584 /*
585  * During memory init memblocks map pfns to nids. The search is expensive and
586  * this caches recent lookups. The implementation of __early_pfn_to_nid
587  * treats start/end as pfns.
588  */
589 struct mminit_pfnnid_cache {
590 	unsigned long last_start;
591 	unsigned long last_end;
592 	int last_nid;
593 };
594 
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596 
597 /*
598  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599  */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 					struct mminit_pfnnid_cache *state)
602 {
603 	unsigned long start_pfn, end_pfn;
604 	int nid;
605 
606 	if (state->last_start <= pfn && pfn < state->last_end)
607 		return state->last_nid;
608 
609 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 	if (nid != NUMA_NO_NODE) {
611 		state->last_start = start_pfn;
612 		state->last_end = end_pfn;
613 		state->last_nid = nid;
614 	}
615 
616 	return nid;
617 }
618 
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621 	static DEFINE_SPINLOCK(early_pfn_lock);
622 	int nid;
623 
624 	spin_lock(&early_pfn_lock);
625 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 	if (nid < 0)
627 		nid = first_online_node;
628 	spin_unlock(&early_pfn_lock);
629 
630 	return nid;
631 }
632 
633 int hashdist = HASHDIST_DEFAULT;
634 
635 static int __init set_hashdist(char *str)
636 {
637 	if (!str)
638 		return 0;
639 	hashdist = simple_strtoul(str, &str, 0);
640 	return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643 
644 static inline void fixup_hashdist(void)
645 {
646 	if (num_node_state(N_MEMORY) == 1)
647 		hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652 
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656 	pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658 
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 		return false;
664 
665 	return true;
666 }
667 
668 /*
669  * Returns true when the remaining initialisation should be deferred until
670  * later in the boot cycle when it can be parallelised.
671  */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675 	static unsigned long prev_end_pfn, nr_initialised;
676 
677 	if (early_page_ext_enabled())
678 		return false;
679 
680 	/* Always populate low zones for address-constrained allocations */
681 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
682 		return false;
683 
684 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
685 		return true;
686 
687 	/*
688 	 * prev_end_pfn static that contains the end of previous zone
689 	 * No need to protect because called very early in boot before smp_init.
690 	 */
691 	if (prev_end_pfn != end_pfn) {
692 		prev_end_pfn = end_pfn;
693 		nr_initialised = 0;
694 	}
695 
696 	/*
697 	 * We start only with one section of pages, more pages are added as
698 	 * needed until the rest of deferred pages are initialized.
699 	 */
700 	nr_initialised++;
701 	if ((nr_initialised > PAGES_PER_SECTION) &&
702 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
703 		NODE_DATA(nid)->first_deferred_pfn = pfn;
704 		return true;
705 	}
706 	return false;
707 }
708 
709 static void __meminit init_reserved_page(unsigned long pfn, int nid)
710 {
711 	pg_data_t *pgdat;
712 	int zid;
713 
714 	if (early_page_initialised(pfn, nid))
715 		return;
716 
717 	pgdat = NODE_DATA(nid);
718 
719 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
720 		struct zone *zone = &pgdat->node_zones[zid];
721 
722 		if (zone_spans_pfn(zone, pfn))
723 			break;
724 	}
725 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
726 }
727 #else
728 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
729 
730 static inline bool early_page_initialised(unsigned long pfn, int nid)
731 {
732 	return true;
733 }
734 
735 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
736 {
737 	return false;
738 }
739 
740 static inline void init_reserved_page(unsigned long pfn, int nid)
741 {
742 }
743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
744 
745 /*
746  * Initialised pages do not have PageReserved set. This function is
747  * called for each range allocated by the bootmem allocator and
748  * marks the pages PageReserved. The remaining valid pages are later
749  * sent to the buddy page allocator.
750  */
751 void __meminit reserve_bootmem_region(phys_addr_t start,
752 				      phys_addr_t end, int nid)
753 {
754 	unsigned long start_pfn = PFN_DOWN(start);
755 	unsigned long end_pfn = PFN_UP(end);
756 
757 	for (; start_pfn < end_pfn; start_pfn++) {
758 		if (pfn_valid(start_pfn)) {
759 			struct page *page = pfn_to_page(start_pfn);
760 
761 			init_reserved_page(start_pfn, nid);
762 
763 			/*
764 			 * no need for atomic set_bit because the struct
765 			 * page is not visible yet so nobody should
766 			 * access it yet.
767 			 */
768 			__SetPageReserved(page);
769 		}
770 	}
771 }
772 
773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774 static bool __meminit
775 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776 {
777 	static struct memblock_region *r;
778 
779 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781 			for_each_mem_region(r) {
782 				if (*pfn < memblock_region_memory_end_pfn(r))
783 					break;
784 			}
785 		}
786 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
787 		    memblock_is_mirror(r)) {
788 			*pfn = memblock_region_memory_end_pfn(r);
789 			return true;
790 		}
791 	}
792 	return false;
793 }
794 
795 /*
796  * Only struct pages that correspond to ranges defined by memblock.memory
797  * are zeroed and initialized by going through __init_single_page() during
798  * memmap_init_zone_range().
799  *
800  * But, there could be struct pages that correspond to holes in
801  * memblock.memory. This can happen because of the following reasons:
802  * - physical memory bank size is not necessarily the exact multiple of the
803  *   arbitrary section size
804  * - early reserved memory may not be listed in memblock.memory
805  * - non-memory regions covered by the contigious flatmem mapping
806  * - memory layouts defined with memmap= kernel parameter may not align
807  *   nicely with memmap sections
808  *
809  * Explicitly initialize those struct pages so that:
810  * - PG_Reserved is set
811  * - zone and node links point to zone and node that span the page if the
812  *   hole is in the middle of a zone
813  * - zone and node links point to adjacent zone/node if the hole falls on
814  *   the zone boundary; the pages in such holes will be prepended to the
815  *   zone/node above the hole except for the trailing pages in the last
816  *   section that will be appended to the zone/node below.
817  */
818 static void __init init_unavailable_range(unsigned long spfn,
819 					  unsigned long epfn,
820 					  int zone, int node)
821 {
822 	unsigned long pfn;
823 	u64 pgcnt = 0;
824 
825 	for (pfn = spfn; pfn < epfn; pfn++) {
826 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
827 			pfn = pageblock_end_pfn(pfn) - 1;
828 			continue;
829 		}
830 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
831 		__SetPageReserved(pfn_to_page(pfn));
832 		pgcnt++;
833 	}
834 
835 	if (pgcnt)
836 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
837 			node, zone_names[zone], pgcnt);
838 }
839 
840 /*
841  * Initially all pages are reserved - free ones are freed
842  * up by memblock_free_all() once the early boot process is
843  * done. Non-atomic initialization, single-pass.
844  *
845  * All aligned pageblocks are initialized to the specified migratetype
846  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
847  * zone stats (e.g., nr_isolate_pageblock) are touched.
848  */
849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
850 		unsigned long start_pfn, unsigned long zone_end_pfn,
851 		enum meminit_context context,
852 		struct vmem_altmap *altmap, int migratetype)
853 {
854 	unsigned long pfn, end_pfn = start_pfn + size;
855 	struct page *page;
856 
857 	if (highest_memmap_pfn < end_pfn - 1)
858 		highest_memmap_pfn = end_pfn - 1;
859 
860 #ifdef CONFIG_ZONE_DEVICE
861 	/*
862 	 * Honor reservation requested by the driver for this ZONE_DEVICE
863 	 * memory. We limit the total number of pages to initialize to just
864 	 * those that might contain the memory mapping. We will defer the
865 	 * ZONE_DEVICE page initialization until after we have released
866 	 * the hotplug lock.
867 	 */
868 	if (zone == ZONE_DEVICE) {
869 		if (!altmap)
870 			return;
871 
872 		if (start_pfn == altmap->base_pfn)
873 			start_pfn += altmap->reserve;
874 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
875 	}
876 #endif
877 
878 	for (pfn = start_pfn; pfn < end_pfn; ) {
879 		/*
880 		 * There can be holes in boot-time mem_map[]s handed to this
881 		 * function.  They do not exist on hotplugged memory.
882 		 */
883 		if (context == MEMINIT_EARLY) {
884 			if (overlap_memmap_init(zone, &pfn))
885 				continue;
886 			if (defer_init(nid, pfn, zone_end_pfn)) {
887 				deferred_struct_pages = true;
888 				break;
889 			}
890 		}
891 
892 		page = pfn_to_page(pfn);
893 		__init_single_page(page, pfn, zone, nid);
894 		if (context == MEMINIT_HOTPLUG)
895 			__SetPageReserved(page);
896 
897 		/*
898 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
899 		 * such that unmovable allocations won't be scattered all
900 		 * over the place during system boot.
901 		 */
902 		if (pageblock_aligned(pfn)) {
903 			set_pageblock_migratetype(page, migratetype);
904 			cond_resched();
905 		}
906 		pfn++;
907 	}
908 }
909 
910 static void __init memmap_init_zone_range(struct zone *zone,
911 					  unsigned long start_pfn,
912 					  unsigned long end_pfn,
913 					  unsigned long *hole_pfn)
914 {
915 	unsigned long zone_start_pfn = zone->zone_start_pfn;
916 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
917 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
918 
919 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
920 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
921 
922 	if (start_pfn >= end_pfn)
923 		return;
924 
925 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
926 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
927 
928 	if (*hole_pfn < start_pfn)
929 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
930 
931 	*hole_pfn = end_pfn;
932 }
933 
934 static void __init memmap_init(void)
935 {
936 	unsigned long start_pfn, end_pfn;
937 	unsigned long hole_pfn = 0;
938 	int i, j, zone_id = 0, nid;
939 
940 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
941 		struct pglist_data *node = NODE_DATA(nid);
942 
943 		for (j = 0; j < MAX_NR_ZONES; j++) {
944 			struct zone *zone = node->node_zones + j;
945 
946 			if (!populated_zone(zone))
947 				continue;
948 
949 			memmap_init_zone_range(zone, start_pfn, end_pfn,
950 					       &hole_pfn);
951 			zone_id = j;
952 		}
953 	}
954 
955 #ifdef CONFIG_SPARSEMEM
956 	/*
957 	 * Initialize the memory map for hole in the range [memory_end,
958 	 * section_end].
959 	 * Append the pages in this hole to the highest zone in the last
960 	 * node.
961 	 * The call to init_unavailable_range() is outside the ifdef to
962 	 * silence the compiler warining about zone_id set but not used;
963 	 * for FLATMEM it is a nop anyway
964 	 */
965 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
966 	if (hole_pfn < end_pfn)
967 #endif
968 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
969 }
970 
971 #ifdef CONFIG_ZONE_DEVICE
972 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
973 					  unsigned long zone_idx, int nid,
974 					  struct dev_pagemap *pgmap)
975 {
976 
977 	__init_single_page(page, pfn, zone_idx, nid);
978 
979 	/*
980 	 * Mark page reserved as it will need to wait for onlining
981 	 * phase for it to be fully associated with a zone.
982 	 *
983 	 * We can use the non-atomic __set_bit operation for setting
984 	 * the flag as we are still initializing the pages.
985 	 */
986 	__SetPageReserved(page);
987 
988 	/*
989 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
990 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
991 	 * ever freed or placed on a driver-private list.
992 	 */
993 	page->pgmap = pgmap;
994 	page->zone_device_data = NULL;
995 
996 	/*
997 	 * Mark the block movable so that blocks are reserved for
998 	 * movable at startup. This will force kernel allocations
999 	 * to reserve their blocks rather than leaking throughout
1000 	 * the address space during boot when many long-lived
1001 	 * kernel allocations are made.
1002 	 *
1003 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1004 	 * because this is done early in section_activate()
1005 	 */
1006 	if (pageblock_aligned(pfn)) {
1007 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1008 		cond_resched();
1009 	}
1010 
1011 	/*
1012 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1013 	 * which will set the page count to 1 when allocating the page.
1014 	 */
1015 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1016 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1017 		set_page_count(page, 0);
1018 }
1019 
1020 /*
1021  * With compound page geometry and when struct pages are stored in ram most
1022  * tail pages are reused. Consequently, the amount of unique struct pages to
1023  * initialize is a lot smaller that the total amount of struct pages being
1024  * mapped. This is a paired / mild layering violation with explicit knowledge
1025  * of how the sparse_vmemmap internals handle compound pages in the lack
1026  * of an altmap. See vmemmap_populate_compound_pages().
1027  */
1028 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1029 					      struct dev_pagemap *pgmap)
1030 {
1031 	if (!vmemmap_can_optimize(altmap, pgmap))
1032 		return pgmap_vmemmap_nr(pgmap);
1033 
1034 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1035 }
1036 
1037 static void __ref memmap_init_compound(struct page *head,
1038 				       unsigned long head_pfn,
1039 				       unsigned long zone_idx, int nid,
1040 				       struct dev_pagemap *pgmap,
1041 				       unsigned long nr_pages)
1042 {
1043 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1044 	unsigned int order = pgmap->vmemmap_shift;
1045 
1046 	__SetPageHead(head);
1047 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1048 		struct page *page = pfn_to_page(pfn);
1049 
1050 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1051 		prep_compound_tail(head, pfn - head_pfn);
1052 		set_page_count(page, 0);
1053 
1054 		/*
1055 		 * The first tail page stores important compound page info.
1056 		 * Call prep_compound_head() after the first tail page has
1057 		 * been initialized, to not have the data overwritten.
1058 		 */
1059 		if (pfn == head_pfn + 1)
1060 			prep_compound_head(head, order);
1061 	}
1062 }
1063 
1064 void __ref memmap_init_zone_device(struct zone *zone,
1065 				   unsigned long start_pfn,
1066 				   unsigned long nr_pages,
1067 				   struct dev_pagemap *pgmap)
1068 {
1069 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1070 	struct pglist_data *pgdat = zone->zone_pgdat;
1071 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1072 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1073 	unsigned long zone_idx = zone_idx(zone);
1074 	unsigned long start = jiffies;
1075 	int nid = pgdat->node_id;
1076 
1077 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1078 		return;
1079 
1080 	/*
1081 	 * The call to memmap_init should have already taken care
1082 	 * of the pages reserved for the memmap, so we can just jump to
1083 	 * the end of that region and start processing the device pages.
1084 	 */
1085 	if (altmap) {
1086 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1087 		nr_pages = end_pfn - start_pfn;
1088 	}
1089 
1090 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1091 		struct page *page = pfn_to_page(pfn);
1092 
1093 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1094 
1095 		if (pfns_per_compound == 1)
1096 			continue;
1097 
1098 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1099 				     compound_nr_pages(altmap, pgmap));
1100 	}
1101 
1102 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1103 		nr_pages, jiffies_to_msecs(jiffies - start));
1104 }
1105 #endif
1106 
1107 /*
1108  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1109  * because it is sized independent of architecture. Unlike the other zones,
1110  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1111  * in each node depending on the size of each node and how evenly kernelcore
1112  * is distributed. This helper function adjusts the zone ranges
1113  * provided by the architecture for a given node by using the end of the
1114  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1115  * zones within a node are in order of monotonic increases memory addresses
1116  */
1117 static void __init adjust_zone_range_for_zone_movable(int nid,
1118 					unsigned long zone_type,
1119 					unsigned long node_end_pfn,
1120 					unsigned long *zone_start_pfn,
1121 					unsigned long *zone_end_pfn)
1122 {
1123 	/* Only adjust if ZONE_MOVABLE is on this node */
1124 	if (zone_movable_pfn[nid]) {
1125 		/* Size ZONE_MOVABLE */
1126 		if (zone_type == ZONE_MOVABLE) {
1127 			*zone_start_pfn = zone_movable_pfn[nid];
1128 			*zone_end_pfn = min(node_end_pfn,
1129 				arch_zone_highest_possible_pfn[movable_zone]);
1130 
1131 		/* Adjust for ZONE_MOVABLE starting within this range */
1132 		} else if (!mirrored_kernelcore &&
1133 			*zone_start_pfn < zone_movable_pfn[nid] &&
1134 			*zone_end_pfn > zone_movable_pfn[nid]) {
1135 			*zone_end_pfn = zone_movable_pfn[nid];
1136 
1137 		/* Check if this whole range is within ZONE_MOVABLE */
1138 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1139 			*zone_start_pfn = *zone_end_pfn;
1140 	}
1141 }
1142 
1143 /*
1144  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1145  * then all holes in the requested range will be accounted for.
1146  */
1147 static unsigned long __init __absent_pages_in_range(int nid,
1148 				unsigned long range_start_pfn,
1149 				unsigned long range_end_pfn)
1150 {
1151 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1152 	unsigned long start_pfn, end_pfn;
1153 	int i;
1154 
1155 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1156 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1157 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1158 		nr_absent -= end_pfn - start_pfn;
1159 	}
1160 	return nr_absent;
1161 }
1162 
1163 /**
1164  * absent_pages_in_range - Return number of page frames in holes within a range
1165  * @start_pfn: The start PFN to start searching for holes
1166  * @end_pfn: The end PFN to stop searching for holes
1167  *
1168  * Return: the number of pages frames in memory holes within a range.
1169  */
1170 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1171 							unsigned long end_pfn)
1172 {
1173 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1174 }
1175 
1176 /* Return the number of page frames in holes in a zone on a node */
1177 static unsigned long __init zone_absent_pages_in_node(int nid,
1178 					unsigned long zone_type,
1179 					unsigned long zone_start_pfn,
1180 					unsigned long zone_end_pfn)
1181 {
1182 	unsigned long nr_absent;
1183 
1184 	/* zone is empty, we don't have any absent pages */
1185 	if (zone_start_pfn == zone_end_pfn)
1186 		return 0;
1187 
1188 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1189 
1190 	/*
1191 	 * ZONE_MOVABLE handling.
1192 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1193 	 * and vice versa.
1194 	 */
1195 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1196 		unsigned long start_pfn, end_pfn;
1197 		struct memblock_region *r;
1198 
1199 		for_each_mem_region(r) {
1200 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1201 					  zone_start_pfn, zone_end_pfn);
1202 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1203 					zone_start_pfn, zone_end_pfn);
1204 
1205 			if (zone_type == ZONE_MOVABLE &&
1206 			    memblock_is_mirror(r))
1207 				nr_absent += end_pfn - start_pfn;
1208 
1209 			if (zone_type == ZONE_NORMAL &&
1210 			    !memblock_is_mirror(r))
1211 				nr_absent += end_pfn - start_pfn;
1212 		}
1213 	}
1214 
1215 	return nr_absent;
1216 }
1217 
1218 /*
1219  * Return the number of pages a zone spans in a node, including holes
1220  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1221  */
1222 static unsigned long __init zone_spanned_pages_in_node(int nid,
1223 					unsigned long zone_type,
1224 					unsigned long node_start_pfn,
1225 					unsigned long node_end_pfn,
1226 					unsigned long *zone_start_pfn,
1227 					unsigned long *zone_end_pfn)
1228 {
1229 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1230 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1231 
1232 	/* Get the start and end of the zone */
1233 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1234 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1235 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1236 					   zone_start_pfn, zone_end_pfn);
1237 
1238 	/* Check that this node has pages within the zone's required range */
1239 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1240 		return 0;
1241 
1242 	/* Move the zone boundaries inside the node if necessary */
1243 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1244 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1245 
1246 	/* Return the spanned pages */
1247 	return *zone_end_pfn - *zone_start_pfn;
1248 }
1249 
1250 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1251 {
1252 	struct zone *z;
1253 
1254 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1255 		z->zone_start_pfn = 0;
1256 		z->spanned_pages = 0;
1257 		z->present_pages = 0;
1258 #if defined(CONFIG_MEMORY_HOTPLUG)
1259 		z->present_early_pages = 0;
1260 #endif
1261 	}
1262 
1263 	pgdat->node_spanned_pages = 0;
1264 	pgdat->node_present_pages = 0;
1265 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1266 }
1267 
1268 static void __init calc_nr_kernel_pages(void)
1269 {
1270 	unsigned long start_pfn, end_pfn;
1271 	phys_addr_t start_addr, end_addr;
1272 	u64 u;
1273 #ifdef CONFIG_HIGHMEM
1274 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1275 #endif
1276 
1277 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1278 		start_pfn = PFN_UP(start_addr);
1279 		end_pfn   = PFN_DOWN(end_addr);
1280 
1281 		if (start_pfn < end_pfn) {
1282 			nr_all_pages += end_pfn - start_pfn;
1283 #ifdef CONFIG_HIGHMEM
1284 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1285 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1286 #endif
1287 			nr_kernel_pages += end_pfn - start_pfn;
1288 		}
1289 	}
1290 }
1291 
1292 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1293 						unsigned long node_start_pfn,
1294 						unsigned long node_end_pfn)
1295 {
1296 	unsigned long realtotalpages = 0, totalpages = 0;
1297 	enum zone_type i;
1298 
1299 	for (i = 0; i < MAX_NR_ZONES; i++) {
1300 		struct zone *zone = pgdat->node_zones + i;
1301 		unsigned long zone_start_pfn, zone_end_pfn;
1302 		unsigned long spanned, absent;
1303 		unsigned long real_size;
1304 
1305 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1306 						     node_start_pfn,
1307 						     node_end_pfn,
1308 						     &zone_start_pfn,
1309 						     &zone_end_pfn);
1310 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1311 						   zone_start_pfn,
1312 						   zone_end_pfn);
1313 
1314 		real_size = spanned - absent;
1315 
1316 		if (spanned)
1317 			zone->zone_start_pfn = zone_start_pfn;
1318 		else
1319 			zone->zone_start_pfn = 0;
1320 		zone->spanned_pages = spanned;
1321 		zone->present_pages = real_size;
1322 #if defined(CONFIG_MEMORY_HOTPLUG)
1323 		zone->present_early_pages = real_size;
1324 #endif
1325 
1326 		totalpages += spanned;
1327 		realtotalpages += real_size;
1328 	}
1329 
1330 	pgdat->node_spanned_pages = totalpages;
1331 	pgdat->node_present_pages = realtotalpages;
1332 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1333 }
1334 
1335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1336 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1337 {
1338 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1339 
1340 	spin_lock_init(&ds_queue->split_queue_lock);
1341 	INIT_LIST_HEAD(&ds_queue->split_queue);
1342 	ds_queue->split_queue_len = 0;
1343 }
1344 #else
1345 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1346 #endif
1347 
1348 #ifdef CONFIG_COMPACTION
1349 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1350 {
1351 	init_waitqueue_head(&pgdat->kcompactd_wait);
1352 }
1353 #else
1354 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1355 #endif
1356 
1357 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1358 {
1359 	int i;
1360 
1361 	pgdat_resize_init(pgdat);
1362 	pgdat_kswapd_lock_init(pgdat);
1363 
1364 	pgdat_init_split_queue(pgdat);
1365 	pgdat_init_kcompactd(pgdat);
1366 
1367 	init_waitqueue_head(&pgdat->kswapd_wait);
1368 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1369 
1370 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1371 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1372 
1373 	pgdat_page_ext_init(pgdat);
1374 	lruvec_init(&pgdat->__lruvec);
1375 }
1376 
1377 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1378 							unsigned long remaining_pages)
1379 {
1380 	atomic_long_set(&zone->managed_pages, remaining_pages);
1381 	zone_set_nid(zone, nid);
1382 	zone->name = zone_names[idx];
1383 	zone->zone_pgdat = NODE_DATA(nid);
1384 	spin_lock_init(&zone->lock);
1385 	zone_seqlock_init(zone);
1386 	zone_pcp_init(zone);
1387 }
1388 
1389 static void __meminit zone_init_free_lists(struct zone *zone)
1390 {
1391 	unsigned int order, t;
1392 	for_each_migratetype_order(order, t) {
1393 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1394 		zone->free_area[order].nr_free = 0;
1395 	}
1396 
1397 #ifdef CONFIG_UNACCEPTED_MEMORY
1398 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1399 #endif
1400 }
1401 
1402 void __meminit init_currently_empty_zone(struct zone *zone,
1403 					unsigned long zone_start_pfn,
1404 					unsigned long size)
1405 {
1406 	struct pglist_data *pgdat = zone->zone_pgdat;
1407 	int zone_idx = zone_idx(zone) + 1;
1408 
1409 	if (zone_idx > pgdat->nr_zones)
1410 		pgdat->nr_zones = zone_idx;
1411 
1412 	zone->zone_start_pfn = zone_start_pfn;
1413 
1414 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1415 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1416 			pgdat->node_id,
1417 			(unsigned long)zone_idx(zone),
1418 			zone_start_pfn, (zone_start_pfn + size));
1419 
1420 	zone_init_free_lists(zone);
1421 	zone->initialized = 1;
1422 }
1423 
1424 #ifndef CONFIG_SPARSEMEM
1425 /*
1426  * Calculate the size of the zone->blockflags rounded to an unsigned long
1427  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1428  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1429  * round what is now in bits to nearest long in bits, then return it in
1430  * bytes.
1431  */
1432 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1433 {
1434 	unsigned long usemapsize;
1435 
1436 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1437 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1438 	usemapsize = usemapsize >> pageblock_order;
1439 	usemapsize *= NR_PAGEBLOCK_BITS;
1440 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1441 
1442 	return usemapsize / BITS_PER_BYTE;
1443 }
1444 
1445 static void __ref setup_usemap(struct zone *zone)
1446 {
1447 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1448 					       zone->spanned_pages);
1449 	zone->pageblock_flags = NULL;
1450 	if (usemapsize) {
1451 		zone->pageblock_flags =
1452 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1453 					    zone_to_nid(zone));
1454 		if (!zone->pageblock_flags)
1455 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1456 			      usemapsize, zone->name, zone_to_nid(zone));
1457 	}
1458 }
1459 #else
1460 static inline void setup_usemap(struct zone *zone) {}
1461 #endif /* CONFIG_SPARSEMEM */
1462 
1463 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1464 
1465 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1466 void __init set_pageblock_order(void)
1467 {
1468 	unsigned int order = MAX_PAGE_ORDER;
1469 
1470 	/* Check that pageblock_nr_pages has not already been setup */
1471 	if (pageblock_order)
1472 		return;
1473 
1474 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1475 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1476 		order = HUGETLB_PAGE_ORDER;
1477 
1478 	/*
1479 	 * Assume the largest contiguous order of interest is a huge page.
1480 	 * This value may be variable depending on boot parameters on powerpc.
1481 	 */
1482 	pageblock_order = order;
1483 }
1484 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1485 
1486 /*
1487  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1488  * is unused as pageblock_order is set at compile-time. See
1489  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1490  * the kernel config
1491  */
1492 void __init set_pageblock_order(void)
1493 {
1494 }
1495 
1496 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1497 
1498 /*
1499  * Set up the zone data structures
1500  * - init pgdat internals
1501  * - init all zones belonging to this node
1502  *
1503  * NOTE: this function is only called during memory hotplug
1504  */
1505 #ifdef CONFIG_MEMORY_HOTPLUG
1506 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1507 {
1508 	int nid = pgdat->node_id;
1509 	enum zone_type z;
1510 	int cpu;
1511 
1512 	pgdat_init_internals(pgdat);
1513 
1514 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1515 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1516 
1517 	/*
1518 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1519 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1520 	 * when it starts in the near future.
1521 	 */
1522 	pgdat->nr_zones = 0;
1523 	pgdat->kswapd_order = 0;
1524 	pgdat->kswapd_highest_zoneidx = 0;
1525 	pgdat->node_start_pfn = 0;
1526 	pgdat->node_present_pages = 0;
1527 
1528 	for_each_online_cpu(cpu) {
1529 		struct per_cpu_nodestat *p;
1530 
1531 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1532 		memset(p, 0, sizeof(*p));
1533 	}
1534 
1535 	/*
1536 	 * When memory is hot-added, all the memory is in offline state. So
1537 	 * clear all zones' present_pages and managed_pages because they will
1538 	 * be updated in online_pages() and offline_pages().
1539 	 */
1540 	for (z = 0; z < MAX_NR_ZONES; z++) {
1541 		struct zone *zone = pgdat->node_zones + z;
1542 
1543 		zone->present_pages = 0;
1544 		zone_init_internals(zone, z, nid, 0);
1545 	}
1546 }
1547 #endif
1548 
1549 static void __init free_area_init_core(struct pglist_data *pgdat)
1550 {
1551 	enum zone_type j;
1552 	int nid = pgdat->node_id;
1553 
1554 	pgdat_init_internals(pgdat);
1555 	pgdat->per_cpu_nodestats = &boot_nodestats;
1556 
1557 	for (j = 0; j < MAX_NR_ZONES; j++) {
1558 		struct zone *zone = pgdat->node_zones + j;
1559 		unsigned long size = zone->spanned_pages;
1560 
1561 		/*
1562 		 * Initialize zone->managed_pages as 0 , it will be reset
1563 		 * when memblock allocator frees pages into buddy system.
1564 		 */
1565 		zone_init_internals(zone, j, nid, zone->present_pages);
1566 
1567 		if (!size)
1568 			continue;
1569 
1570 		setup_usemap(zone);
1571 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1572 	}
1573 }
1574 
1575 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1576 			  phys_addr_t min_addr, int nid, bool exact_nid)
1577 {
1578 	void *ptr;
1579 
1580 	if (exact_nid)
1581 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1582 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1583 						   nid);
1584 	else
1585 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1586 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1587 						 nid);
1588 
1589 	if (ptr && size > 0)
1590 		page_init_poison(ptr, size);
1591 
1592 	return ptr;
1593 }
1594 
1595 #ifdef CONFIG_FLATMEM
1596 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1597 {
1598 	unsigned long start, offset, size, end;
1599 	struct page *map;
1600 
1601 	/* Skip empty nodes */
1602 	if (!pgdat->node_spanned_pages)
1603 		return;
1604 
1605 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1606 	offset = pgdat->node_start_pfn - start;
1607 	/*
1608 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1609 	 * aligned but the node_mem_map endpoints must be in order
1610 	 * for the buddy allocator to function correctly.
1611 	 */
1612 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1613 	size =  (end - start) * sizeof(struct page);
1614 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1615 			   pgdat->node_id, false);
1616 	if (!map)
1617 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1618 		      size, pgdat->node_id);
1619 	pgdat->node_mem_map = map + offset;
1620 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1621 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1622 		 (unsigned long)pgdat->node_mem_map);
1623 #ifndef CONFIG_NUMA
1624 	/* the global mem_map is just set as node 0's */
1625 	if (pgdat == NODE_DATA(0)) {
1626 		mem_map = NODE_DATA(0)->node_mem_map;
1627 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1628 			mem_map -= offset;
1629 	}
1630 #endif
1631 }
1632 #else
1633 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1634 #endif /* CONFIG_FLATMEM */
1635 
1636 /**
1637  * get_pfn_range_for_nid - Return the start and end page frames for a node
1638  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1639  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1640  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1641  *
1642  * It returns the start and end page frame of a node based on information
1643  * provided by memblock_set_node(). If called for a node
1644  * with no available memory, the start and end PFNs will be 0.
1645  */
1646 void __init get_pfn_range_for_nid(unsigned int nid,
1647 			unsigned long *start_pfn, unsigned long *end_pfn)
1648 {
1649 	unsigned long this_start_pfn, this_end_pfn;
1650 	int i;
1651 
1652 	*start_pfn = -1UL;
1653 	*end_pfn = 0;
1654 
1655 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1656 		*start_pfn = min(*start_pfn, this_start_pfn);
1657 		*end_pfn = max(*end_pfn, this_end_pfn);
1658 	}
1659 
1660 	if (*start_pfn == -1UL)
1661 		*start_pfn = 0;
1662 }
1663 
1664 static void __init free_area_init_node(int nid)
1665 {
1666 	pg_data_t *pgdat = NODE_DATA(nid);
1667 	unsigned long start_pfn = 0;
1668 	unsigned long end_pfn = 0;
1669 
1670 	/* pg_data_t should be reset to zero when it's allocated */
1671 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1672 
1673 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1674 
1675 	pgdat->node_id = nid;
1676 	pgdat->node_start_pfn = start_pfn;
1677 	pgdat->per_cpu_nodestats = NULL;
1678 
1679 	if (start_pfn != end_pfn) {
1680 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1681 			(u64)start_pfn << PAGE_SHIFT,
1682 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1683 
1684 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1685 	} else {
1686 		pr_info("Initmem setup node %d as memoryless\n", nid);
1687 
1688 		reset_memoryless_node_totalpages(pgdat);
1689 	}
1690 
1691 	alloc_node_mem_map(pgdat);
1692 	pgdat_set_deferred_range(pgdat);
1693 
1694 	free_area_init_core(pgdat);
1695 	lru_gen_init_pgdat(pgdat);
1696 }
1697 
1698 /* Any regular or high memory on that node ? */
1699 static void __init check_for_memory(pg_data_t *pgdat)
1700 {
1701 	enum zone_type zone_type;
1702 
1703 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1704 		struct zone *zone = &pgdat->node_zones[zone_type];
1705 		if (populated_zone(zone)) {
1706 			if (IS_ENABLED(CONFIG_HIGHMEM))
1707 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1708 			if (zone_type <= ZONE_NORMAL)
1709 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1710 			break;
1711 		}
1712 	}
1713 }
1714 
1715 #if MAX_NUMNODES > 1
1716 /*
1717  * Figure out the number of possible node ids.
1718  */
1719 void __init setup_nr_node_ids(void)
1720 {
1721 	unsigned int highest;
1722 
1723 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1724 	nr_node_ids = highest + 1;
1725 }
1726 #endif
1727 
1728 /*
1729  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1730  * such cases we allow max_zone_pfn sorted in the descending order
1731  */
1732 static bool arch_has_descending_max_zone_pfns(void)
1733 {
1734 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1735 }
1736 
1737 /**
1738  * free_area_init - Initialise all pg_data_t and zone data
1739  * @max_zone_pfn: an array of max PFNs for each zone
1740  *
1741  * This will call free_area_init_node() for each active node in the system.
1742  * Using the page ranges provided by memblock_set_node(), the size of each
1743  * zone in each node and their holes is calculated. If the maximum PFN
1744  * between two adjacent zones match, it is assumed that the zone is empty.
1745  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1746  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1747  * starts where the previous one ended. For example, ZONE_DMA32 starts
1748  * at arch_max_dma_pfn.
1749  */
1750 void __init free_area_init(unsigned long *max_zone_pfn)
1751 {
1752 	unsigned long start_pfn, end_pfn;
1753 	int i, nid, zone;
1754 	bool descending;
1755 
1756 	/* Record where the zone boundaries are */
1757 	memset(arch_zone_lowest_possible_pfn, 0,
1758 				sizeof(arch_zone_lowest_possible_pfn));
1759 	memset(arch_zone_highest_possible_pfn, 0,
1760 				sizeof(arch_zone_highest_possible_pfn));
1761 
1762 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1763 	descending = arch_has_descending_max_zone_pfns();
1764 
1765 	for (i = 0; i < MAX_NR_ZONES; i++) {
1766 		if (descending)
1767 			zone = MAX_NR_ZONES - i - 1;
1768 		else
1769 			zone = i;
1770 
1771 		if (zone == ZONE_MOVABLE)
1772 			continue;
1773 
1774 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1775 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1776 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1777 
1778 		start_pfn = end_pfn;
1779 	}
1780 
1781 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1782 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1783 	find_zone_movable_pfns_for_nodes();
1784 
1785 	/* Print out the zone ranges */
1786 	pr_info("Zone ranges:\n");
1787 	for (i = 0; i < MAX_NR_ZONES; i++) {
1788 		if (i == ZONE_MOVABLE)
1789 			continue;
1790 		pr_info("  %-8s ", zone_names[i]);
1791 		if (arch_zone_lowest_possible_pfn[i] ==
1792 				arch_zone_highest_possible_pfn[i])
1793 			pr_cont("empty\n");
1794 		else
1795 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1796 				(u64)arch_zone_lowest_possible_pfn[i]
1797 					<< PAGE_SHIFT,
1798 				((u64)arch_zone_highest_possible_pfn[i]
1799 					<< PAGE_SHIFT) - 1);
1800 	}
1801 
1802 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1803 	pr_info("Movable zone start for each node\n");
1804 	for (i = 0; i < MAX_NUMNODES; i++) {
1805 		if (zone_movable_pfn[i])
1806 			pr_info("  Node %d: %#018Lx\n", i,
1807 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1808 	}
1809 
1810 	/*
1811 	 * Print out the early node map, and initialize the
1812 	 * subsection-map relative to active online memory ranges to
1813 	 * enable future "sub-section" extensions of the memory map.
1814 	 */
1815 	pr_info("Early memory node ranges\n");
1816 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1817 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1818 			(u64)start_pfn << PAGE_SHIFT,
1819 			((u64)end_pfn << PAGE_SHIFT) - 1);
1820 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1821 	}
1822 
1823 	/* Initialise every node */
1824 	mminit_verify_pageflags_layout();
1825 	setup_nr_node_ids();
1826 	set_pageblock_order();
1827 
1828 	for_each_node(nid) {
1829 		pg_data_t *pgdat;
1830 
1831 		if (!node_online(nid)) {
1832 			/* Allocator not initialized yet */
1833 			pgdat = arch_alloc_nodedata(nid);
1834 			if (!pgdat)
1835 				panic("Cannot allocate %zuB for node %d.\n",
1836 				       sizeof(*pgdat), nid);
1837 			arch_refresh_nodedata(nid, pgdat);
1838 		}
1839 
1840 		pgdat = NODE_DATA(nid);
1841 		free_area_init_node(nid);
1842 
1843 		/*
1844 		 * No sysfs hierarcy will be created via register_one_node()
1845 		 *for memory-less node because here it's not marked as N_MEMORY
1846 		 *and won't be set online later. The benefit is userspace
1847 		 *program won't be confused by sysfs files/directories of
1848 		 *memory-less node. The pgdat will get fully initialized by
1849 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1850 		 */
1851 		if (pgdat->node_present_pages) {
1852 			node_set_state(nid, N_MEMORY);
1853 			check_for_memory(pgdat);
1854 		}
1855 	}
1856 
1857 	calc_nr_kernel_pages();
1858 	memmap_init();
1859 
1860 	/* disable hash distribution for systems with a single node */
1861 	fixup_hashdist();
1862 }
1863 
1864 /**
1865  * node_map_pfn_alignment - determine the maximum internode alignment
1866  *
1867  * This function should be called after node map is populated and sorted.
1868  * It calculates the maximum power of two alignment which can distinguish
1869  * all the nodes.
1870  *
1871  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1872  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1873  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1874  * shifted, 1GiB is enough and this function will indicate so.
1875  *
1876  * This is used to test whether pfn -> nid mapping of the chosen memory
1877  * model has fine enough granularity to avoid incorrect mapping for the
1878  * populated node map.
1879  *
1880  * Return: the determined alignment in pfn's.  0 if there is no alignment
1881  * requirement (single node).
1882  */
1883 unsigned long __init node_map_pfn_alignment(void)
1884 {
1885 	unsigned long accl_mask = 0, last_end = 0;
1886 	unsigned long start, end, mask;
1887 	int last_nid = NUMA_NO_NODE;
1888 	int i, nid;
1889 
1890 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1891 		if (!start || last_nid < 0 || last_nid == nid) {
1892 			last_nid = nid;
1893 			last_end = end;
1894 			continue;
1895 		}
1896 
1897 		/*
1898 		 * Start with a mask granular enough to pin-point to the
1899 		 * start pfn and tick off bits one-by-one until it becomes
1900 		 * too coarse to separate the current node from the last.
1901 		 */
1902 		mask = ~((1 << __ffs(start)) - 1);
1903 		while (mask && last_end <= (start & (mask << 1)))
1904 			mask <<= 1;
1905 
1906 		/* accumulate all internode masks */
1907 		accl_mask |= mask;
1908 	}
1909 
1910 	/* convert mask to number of pages */
1911 	return ~accl_mask + 1;
1912 }
1913 
1914 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1915 static void __init deferred_free_range(unsigned long pfn,
1916 				       unsigned long nr_pages)
1917 {
1918 	struct page *page;
1919 	unsigned long i;
1920 
1921 	if (!nr_pages)
1922 		return;
1923 
1924 	page = pfn_to_page(pfn);
1925 
1926 	/* Free a large naturally-aligned chunk if possible */
1927 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1928 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1929 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1930 		__free_pages_core(page, MAX_PAGE_ORDER);
1931 		return;
1932 	}
1933 
1934 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1935 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1936 
1937 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1938 		if (pageblock_aligned(pfn))
1939 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1940 		__free_pages_core(page, 0);
1941 	}
1942 }
1943 
1944 /* Completion tracking for deferred_init_memmap() threads */
1945 static atomic_t pgdat_init_n_undone __initdata;
1946 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1947 
1948 static inline void __init pgdat_init_report_one_done(void)
1949 {
1950 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1951 		complete(&pgdat_init_all_done_comp);
1952 }
1953 
1954 /*
1955  * Returns true if page needs to be initialized or freed to buddy allocator.
1956  *
1957  * We check if a current MAX_PAGE_ORDER block is valid by only checking the
1958  * validity of the head pfn.
1959  */
1960 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1961 {
1962 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
1963 		return false;
1964 	return true;
1965 }
1966 
1967 /*
1968  * Free pages to buddy allocator. Try to free aligned pages in
1969  * MAX_ORDER_NR_PAGES sizes.
1970  */
1971 static void __init deferred_free_pages(unsigned long pfn,
1972 				       unsigned long end_pfn)
1973 {
1974 	unsigned long nr_free = 0;
1975 
1976 	for (; pfn < end_pfn; pfn++) {
1977 		if (!deferred_pfn_valid(pfn)) {
1978 			deferred_free_range(pfn - nr_free, nr_free);
1979 			nr_free = 0;
1980 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
1981 			deferred_free_range(pfn - nr_free, nr_free);
1982 			nr_free = 1;
1983 		} else {
1984 			nr_free++;
1985 		}
1986 	}
1987 	/* Free the last block of pages to allocator */
1988 	deferred_free_range(pfn - nr_free, nr_free);
1989 }
1990 
1991 /*
1992  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1993  * by performing it only once every MAX_ORDER_NR_PAGES.
1994  * Return number of pages initialized.
1995  */
1996 static unsigned long  __init deferred_init_pages(struct zone *zone,
1997 						 unsigned long pfn,
1998 						 unsigned long end_pfn)
1999 {
2000 	int nid = zone_to_nid(zone);
2001 	unsigned long nr_pages = 0;
2002 	int zid = zone_idx(zone);
2003 	struct page *page = NULL;
2004 
2005 	for (; pfn < end_pfn; pfn++) {
2006 		if (!deferred_pfn_valid(pfn)) {
2007 			page = NULL;
2008 			continue;
2009 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2010 			page = pfn_to_page(pfn);
2011 		} else {
2012 			page++;
2013 		}
2014 		__init_single_page(page, pfn, zid, nid);
2015 		nr_pages++;
2016 	}
2017 	return nr_pages;
2018 }
2019 
2020 /*
2021  * This function is meant to pre-load the iterator for the zone init from
2022  * a given point.
2023  * Specifically it walks through the ranges starting with initial index
2024  * passed to it until we are caught up to the first_init_pfn value and
2025  * exits there. If we never encounter the value we return false indicating
2026  * there are no valid ranges left.
2027  */
2028 static bool __init
2029 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2030 				    unsigned long *spfn, unsigned long *epfn,
2031 				    unsigned long first_init_pfn)
2032 {
2033 	u64 j = *i;
2034 
2035 	if (j == 0)
2036 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2037 
2038 	/*
2039 	 * Start out by walking through the ranges in this zone that have
2040 	 * already been initialized. We don't need to do anything with them
2041 	 * so we just need to flush them out of the system.
2042 	 */
2043 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2044 		if (*epfn <= first_init_pfn)
2045 			continue;
2046 		if (*spfn < first_init_pfn)
2047 			*spfn = first_init_pfn;
2048 		*i = j;
2049 		return true;
2050 	}
2051 
2052 	return false;
2053 }
2054 
2055 /*
2056  * Initialize and free pages. We do it in two loops: first we initialize
2057  * struct page, then free to buddy allocator, because while we are
2058  * freeing pages we can access pages that are ahead (computing buddy
2059  * page in __free_one_page()).
2060  *
2061  * In order to try and keep some memory in the cache we have the loop
2062  * broken along max page order boundaries. This way we will not cause
2063  * any issues with the buddy page computation.
2064  */
2065 static unsigned long __init
2066 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2067 		       unsigned long *end_pfn)
2068 {
2069 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2070 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2071 	unsigned long nr_pages = 0;
2072 	u64 j = *i;
2073 
2074 	/* First we loop through and initialize the page values */
2075 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2076 		unsigned long t;
2077 
2078 		if (mo_pfn <= *start_pfn)
2079 			break;
2080 
2081 		t = min(mo_pfn, *end_pfn);
2082 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2083 
2084 		if (mo_pfn < *end_pfn) {
2085 			*start_pfn = mo_pfn;
2086 			break;
2087 		}
2088 	}
2089 
2090 	/* Reset values and now loop through freeing pages as needed */
2091 	swap(j, *i);
2092 
2093 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2094 		unsigned long t;
2095 
2096 		if (mo_pfn <= spfn)
2097 			break;
2098 
2099 		t = min(mo_pfn, epfn);
2100 		deferred_free_pages(spfn, t);
2101 
2102 		if (mo_pfn <= epfn)
2103 			break;
2104 	}
2105 
2106 	return nr_pages;
2107 }
2108 
2109 static void __init
2110 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2111 			   void *arg)
2112 {
2113 	unsigned long spfn, epfn;
2114 	struct zone *zone = arg;
2115 	u64 i = 0;
2116 
2117 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2118 
2119 	/*
2120 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2121 	 * we can avoid introducing any issues with the buddy allocator.
2122 	 */
2123 	while (spfn < end_pfn) {
2124 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2125 		cond_resched();
2126 	}
2127 }
2128 
2129 /* An arch may override for more concurrency. */
2130 __weak int __init
2131 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2132 {
2133 	return 1;
2134 }
2135 
2136 /* Initialise remaining memory on a node */
2137 static int __init deferred_init_memmap(void *data)
2138 {
2139 	pg_data_t *pgdat = data;
2140 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2141 	unsigned long spfn = 0, epfn = 0;
2142 	unsigned long first_init_pfn, flags;
2143 	unsigned long start = jiffies;
2144 	struct zone *zone;
2145 	int max_threads;
2146 	u64 i = 0;
2147 
2148 	/* Bind memory initialisation thread to a local node if possible */
2149 	if (!cpumask_empty(cpumask))
2150 		set_cpus_allowed_ptr(current, cpumask);
2151 
2152 	pgdat_resize_lock(pgdat, &flags);
2153 	first_init_pfn = pgdat->first_deferred_pfn;
2154 	if (first_init_pfn == ULONG_MAX) {
2155 		pgdat_resize_unlock(pgdat, &flags);
2156 		pgdat_init_report_one_done();
2157 		return 0;
2158 	}
2159 
2160 	/* Sanity check boundaries */
2161 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2162 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2163 	pgdat->first_deferred_pfn = ULONG_MAX;
2164 
2165 	/*
2166 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2167 	 * interrupt thread must allocate this early in boot, zone must be
2168 	 * pre-grown prior to start of deferred page initialization.
2169 	 */
2170 	pgdat_resize_unlock(pgdat, &flags);
2171 
2172 	/* Only the highest zone is deferred */
2173 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2174 
2175 	max_threads = deferred_page_init_max_threads(cpumask);
2176 
2177 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2178 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2179 		struct padata_mt_job job = {
2180 			.thread_fn   = deferred_init_memmap_chunk,
2181 			.fn_arg      = zone,
2182 			.start       = spfn,
2183 			.size        = first_init_pfn - spfn,
2184 			.align       = PAGES_PER_SECTION,
2185 			.min_chunk   = PAGES_PER_SECTION,
2186 			.max_threads = max_threads,
2187 			.numa_aware  = false,
2188 		};
2189 
2190 		padata_do_multithreaded(&job);
2191 	}
2192 
2193 	/* Sanity check that the next zone really is unpopulated */
2194 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2195 
2196 	pr_info("node %d deferred pages initialised in %ums\n",
2197 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2198 
2199 	pgdat_init_report_one_done();
2200 	return 0;
2201 }
2202 
2203 /*
2204  * If this zone has deferred pages, try to grow it by initializing enough
2205  * deferred pages to satisfy the allocation specified by order, rounded up to
2206  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2207  * of SECTION_SIZE bytes by initializing struct pages in increments of
2208  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2209  *
2210  * Return true when zone was grown, otherwise return false. We return true even
2211  * when we grow less than requested, to let the caller decide if there are
2212  * enough pages to satisfy the allocation.
2213  */
2214 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2215 {
2216 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2217 	pg_data_t *pgdat = zone->zone_pgdat;
2218 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2219 	unsigned long spfn, epfn, flags;
2220 	unsigned long nr_pages = 0;
2221 	u64 i = 0;
2222 
2223 	/* Only the last zone may have deferred pages */
2224 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2225 		return false;
2226 
2227 	pgdat_resize_lock(pgdat, &flags);
2228 
2229 	/*
2230 	 * If someone grew this zone while we were waiting for spinlock, return
2231 	 * true, as there might be enough pages already.
2232 	 */
2233 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2234 		pgdat_resize_unlock(pgdat, &flags);
2235 		return true;
2236 	}
2237 
2238 	/* If the zone is empty somebody else may have cleared out the zone */
2239 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2240 						 first_deferred_pfn)) {
2241 		pgdat->first_deferred_pfn = ULONG_MAX;
2242 		pgdat_resize_unlock(pgdat, &flags);
2243 		/* Retry only once. */
2244 		return first_deferred_pfn != ULONG_MAX;
2245 	}
2246 
2247 	/*
2248 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2249 	 * that we can avoid introducing any issues with the buddy
2250 	 * allocator.
2251 	 */
2252 	while (spfn < epfn) {
2253 		/* update our first deferred PFN for this section */
2254 		first_deferred_pfn = spfn;
2255 
2256 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2257 		touch_nmi_watchdog();
2258 
2259 		/* We should only stop along section boundaries */
2260 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2261 			continue;
2262 
2263 		/* If our quota has been met we can stop here */
2264 		if (nr_pages >= nr_pages_needed)
2265 			break;
2266 	}
2267 
2268 	pgdat->first_deferred_pfn = spfn;
2269 	pgdat_resize_unlock(pgdat, &flags);
2270 
2271 	return nr_pages > 0;
2272 }
2273 
2274 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2275 
2276 #ifdef CONFIG_CMA
2277 void __init init_cma_reserved_pageblock(struct page *page)
2278 {
2279 	unsigned i = pageblock_nr_pages;
2280 	struct page *p = page;
2281 
2282 	do {
2283 		__ClearPageReserved(p);
2284 		set_page_count(p, 0);
2285 	} while (++p, --i);
2286 
2287 	set_pageblock_migratetype(page, MIGRATE_CMA);
2288 	set_page_refcounted(page);
2289 	__free_pages(page, pageblock_order);
2290 
2291 	adjust_managed_page_count(page, pageblock_nr_pages);
2292 	page_zone(page)->cma_pages += pageblock_nr_pages;
2293 }
2294 #endif
2295 
2296 void set_zone_contiguous(struct zone *zone)
2297 {
2298 	unsigned long block_start_pfn = zone->zone_start_pfn;
2299 	unsigned long block_end_pfn;
2300 
2301 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2302 	for (; block_start_pfn < zone_end_pfn(zone);
2303 			block_start_pfn = block_end_pfn,
2304 			 block_end_pfn += pageblock_nr_pages) {
2305 
2306 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2307 
2308 		if (!__pageblock_pfn_to_page(block_start_pfn,
2309 					     block_end_pfn, zone))
2310 			return;
2311 		cond_resched();
2312 	}
2313 
2314 	/* We confirm that there is no hole */
2315 	zone->contiguous = true;
2316 }
2317 
2318 void __init page_alloc_init_late(void)
2319 {
2320 	struct zone *zone;
2321 	int nid;
2322 
2323 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2324 
2325 	/* There will be num_node_state(N_MEMORY) threads */
2326 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2327 	for_each_node_state(nid, N_MEMORY) {
2328 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2329 	}
2330 
2331 	/* Block until all are initialised */
2332 	wait_for_completion(&pgdat_init_all_done_comp);
2333 
2334 	/*
2335 	 * We initialized the rest of the deferred pages.  Permanently disable
2336 	 * on-demand struct page initialization.
2337 	 */
2338 	static_branch_disable(&deferred_pages);
2339 
2340 	/* Reinit limits that are based on free pages after the kernel is up */
2341 	files_maxfiles_init();
2342 #endif
2343 
2344 	buffer_init();
2345 
2346 	/* Discard memblock private memory */
2347 	memblock_discard();
2348 
2349 	for_each_node_state(nid, N_MEMORY)
2350 		shuffle_free_memory(NODE_DATA(nid));
2351 
2352 	for_each_populated_zone(zone)
2353 		set_zone_contiguous(zone);
2354 
2355 	/* Initialize page ext after all struct pages are initialized. */
2356 	if (deferred_struct_pages)
2357 		page_ext_init();
2358 
2359 	page_alloc_sysctl_init();
2360 }
2361 
2362 /*
2363  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2364  * machines. As memory size is increased the scale is also increased but at
2365  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2366  * quadruples the scale is increased by one, which means the size of hash table
2367  * only doubles, instead of quadrupling as well.
2368  * Because 32-bit systems cannot have large physical memory, where this scaling
2369  * makes sense, it is disabled on such platforms.
2370  */
2371 #if __BITS_PER_LONG > 32
2372 #define ADAPT_SCALE_BASE	(64ul << 30)
2373 #define ADAPT_SCALE_SHIFT	2
2374 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2375 #endif
2376 
2377 /*
2378  * allocate a large system hash table from bootmem
2379  * - it is assumed that the hash table must contain an exact power-of-2
2380  *   quantity of entries
2381  * - limit is the number of hash buckets, not the total allocation size
2382  */
2383 void *__init alloc_large_system_hash(const char *tablename,
2384 				     unsigned long bucketsize,
2385 				     unsigned long numentries,
2386 				     int scale,
2387 				     int flags,
2388 				     unsigned int *_hash_shift,
2389 				     unsigned int *_hash_mask,
2390 				     unsigned long low_limit,
2391 				     unsigned long high_limit)
2392 {
2393 	unsigned long long max = high_limit;
2394 	unsigned long log2qty, size;
2395 	void *table;
2396 	gfp_t gfp_flags;
2397 	bool virt;
2398 	bool huge;
2399 
2400 	/* allow the kernel cmdline to have a say */
2401 	if (!numentries) {
2402 		/* round applicable memory size up to nearest megabyte */
2403 		numentries = nr_kernel_pages;
2404 
2405 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2406 		if (PAGE_SIZE < SZ_1M)
2407 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2408 
2409 #if __BITS_PER_LONG > 32
2410 		if (!high_limit) {
2411 			unsigned long adapt;
2412 
2413 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2414 			     adapt <<= ADAPT_SCALE_SHIFT)
2415 				scale++;
2416 		}
2417 #endif
2418 
2419 		/* limit to 1 bucket per 2^scale bytes of low memory */
2420 		if (scale > PAGE_SHIFT)
2421 			numentries >>= (scale - PAGE_SHIFT);
2422 		else
2423 			numentries <<= (PAGE_SHIFT - scale);
2424 
2425 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2426 			numentries = PAGE_SIZE / bucketsize;
2427 	}
2428 	numentries = roundup_pow_of_two(numentries);
2429 
2430 	/* limit allocation size to 1/16 total memory by default */
2431 	if (max == 0) {
2432 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2433 		do_div(max, bucketsize);
2434 	}
2435 	max = min(max, 0x80000000ULL);
2436 
2437 	if (numentries < low_limit)
2438 		numentries = low_limit;
2439 	if (numentries > max)
2440 		numentries = max;
2441 
2442 	log2qty = ilog2(numentries);
2443 
2444 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2445 	do {
2446 		virt = false;
2447 		size = bucketsize << log2qty;
2448 		if (flags & HASH_EARLY) {
2449 			if (flags & HASH_ZERO)
2450 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2451 			else
2452 				table = memblock_alloc_raw(size,
2453 							   SMP_CACHE_BYTES);
2454 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2455 			table = vmalloc_huge(size, gfp_flags);
2456 			virt = true;
2457 			if (table)
2458 				huge = is_vm_area_hugepages(table);
2459 		} else {
2460 			/*
2461 			 * If bucketsize is not a power-of-two, we may free
2462 			 * some pages at the end of hash table which
2463 			 * alloc_pages_exact() automatically does
2464 			 */
2465 			table = alloc_pages_exact(size, gfp_flags);
2466 			kmemleak_alloc(table, size, 1, gfp_flags);
2467 		}
2468 	} while (!table && size > PAGE_SIZE && --log2qty);
2469 
2470 	if (!table)
2471 		panic("Failed to allocate %s hash table\n", tablename);
2472 
2473 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2474 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2475 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2476 
2477 	if (_hash_shift)
2478 		*_hash_shift = log2qty;
2479 	if (_hash_mask)
2480 		*_hash_mask = (1 << log2qty) - 1;
2481 
2482 	return table;
2483 }
2484 
2485 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2486 							unsigned int order)
2487 {
2488 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2489 		int nid = early_pfn_to_nid(pfn);
2490 
2491 		if (!early_page_initialised(pfn, nid))
2492 			return;
2493 	}
2494 
2495 	if (!kmsan_memblock_free_pages(page, order)) {
2496 		/* KMSAN will take care of these pages. */
2497 		return;
2498 	}
2499 
2500 	/* pages were reserved and not allocated */
2501 	if (mem_alloc_profiling_enabled()) {
2502 		union codetag_ref *ref = get_page_tag_ref(page);
2503 
2504 		if (ref) {
2505 			set_codetag_empty(ref);
2506 			put_page_tag_ref(ref);
2507 		}
2508 	}
2509 
2510 	__free_pages_core(page, order);
2511 }
2512 
2513 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2514 EXPORT_SYMBOL(init_on_alloc);
2515 
2516 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2517 EXPORT_SYMBOL(init_on_free);
2518 
2519 static bool _init_on_alloc_enabled_early __read_mostly
2520 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2521 static int __init early_init_on_alloc(char *buf)
2522 {
2523 
2524 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2525 }
2526 early_param("init_on_alloc", early_init_on_alloc);
2527 
2528 static bool _init_on_free_enabled_early __read_mostly
2529 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2530 static int __init early_init_on_free(char *buf)
2531 {
2532 	return kstrtobool(buf, &_init_on_free_enabled_early);
2533 }
2534 early_param("init_on_free", early_init_on_free);
2535 
2536 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2537 
2538 /*
2539  * Enable static keys related to various memory debugging and hardening options.
2540  * Some override others, and depend on early params that are evaluated in the
2541  * order of appearance. So we need to first gather the full picture of what was
2542  * enabled, and then make decisions.
2543  */
2544 static void __init mem_debugging_and_hardening_init(void)
2545 {
2546 	bool page_poisoning_requested = false;
2547 	bool want_check_pages = false;
2548 
2549 #ifdef CONFIG_PAGE_POISONING
2550 	/*
2551 	 * Page poisoning is debug page alloc for some arches. If
2552 	 * either of those options are enabled, enable poisoning.
2553 	 */
2554 	if (page_poisoning_enabled() ||
2555 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2556 	      debug_pagealloc_enabled())) {
2557 		static_branch_enable(&_page_poisoning_enabled);
2558 		page_poisoning_requested = true;
2559 		want_check_pages = true;
2560 	}
2561 #endif
2562 
2563 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2564 	    page_poisoning_requested) {
2565 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2566 			"will take precedence over init_on_alloc and init_on_free\n");
2567 		_init_on_alloc_enabled_early = false;
2568 		_init_on_free_enabled_early = false;
2569 	}
2570 
2571 	if (_init_on_alloc_enabled_early) {
2572 		want_check_pages = true;
2573 		static_branch_enable(&init_on_alloc);
2574 	} else {
2575 		static_branch_disable(&init_on_alloc);
2576 	}
2577 
2578 	if (_init_on_free_enabled_early) {
2579 		want_check_pages = true;
2580 		static_branch_enable(&init_on_free);
2581 	} else {
2582 		static_branch_disable(&init_on_free);
2583 	}
2584 
2585 	if (IS_ENABLED(CONFIG_KMSAN) &&
2586 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2587 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2588 
2589 #ifdef CONFIG_DEBUG_PAGEALLOC
2590 	if (debug_pagealloc_enabled()) {
2591 		want_check_pages = true;
2592 		static_branch_enable(&_debug_pagealloc_enabled);
2593 
2594 		if (debug_guardpage_minorder())
2595 			static_branch_enable(&_debug_guardpage_enabled);
2596 	}
2597 #endif
2598 
2599 	/*
2600 	 * Any page debugging or hardening option also enables sanity checking
2601 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2602 	 * enabled already.
2603 	 */
2604 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2605 		static_branch_enable(&check_pages_enabled);
2606 }
2607 
2608 /* Report memory auto-initialization states for this boot. */
2609 static void __init report_meminit(void)
2610 {
2611 	const char *stack;
2612 
2613 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2614 		stack = "all(pattern)";
2615 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2616 		stack = "all(zero)";
2617 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2618 		stack = "byref_all(zero)";
2619 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2620 		stack = "byref(zero)";
2621 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2622 		stack = "__user(zero)";
2623 	else
2624 		stack = "off";
2625 
2626 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2627 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2628 		want_init_on_free() ? "on" : "off");
2629 	if (want_init_on_free())
2630 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2631 }
2632 
2633 static void __init mem_init_print_info(void)
2634 {
2635 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2636 	unsigned long init_code_size, init_data_size;
2637 
2638 	physpages = get_num_physpages();
2639 	codesize = _etext - _stext;
2640 	datasize = _edata - _sdata;
2641 	rosize = __end_rodata - __start_rodata;
2642 	bss_size = __bss_stop - __bss_start;
2643 	init_data_size = __init_end - __init_begin;
2644 	init_code_size = _einittext - _sinittext;
2645 
2646 	/*
2647 	 * Detect special cases and adjust section sizes accordingly:
2648 	 * 1) .init.* may be embedded into .data sections
2649 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2650 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2651 	 * 3) .rodata.* may be embedded into .text or .data sections.
2652 	 */
2653 #define adj_init_size(start, end, size, pos, adj) \
2654 	do { \
2655 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2656 			size -= adj; \
2657 	} while (0)
2658 
2659 	adj_init_size(__init_begin, __init_end, init_data_size,
2660 		     _sinittext, init_code_size);
2661 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2662 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2663 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2664 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2665 
2666 #undef	adj_init_size
2667 
2668 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2669 #ifdef	CONFIG_HIGHMEM
2670 		", %luK highmem"
2671 #endif
2672 		")\n",
2673 		K(nr_free_pages()), K(physpages),
2674 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2675 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2676 		K(physpages - totalram_pages() - totalcma_pages),
2677 		K(totalcma_pages)
2678 #ifdef	CONFIG_HIGHMEM
2679 		, K(totalhigh_pages())
2680 #endif
2681 		);
2682 }
2683 
2684 /*
2685  * Set up kernel memory allocators
2686  */
2687 void __init mm_core_init(void)
2688 {
2689 	/* Initializations relying on SMP setup */
2690 	build_all_zonelists(NULL);
2691 	page_alloc_init_cpuhp();
2692 
2693 	/*
2694 	 * page_ext requires contiguous pages,
2695 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2696 	 */
2697 	page_ext_init_flatmem();
2698 	mem_debugging_and_hardening_init();
2699 	kfence_alloc_pool_and_metadata();
2700 	report_meminit();
2701 	kmsan_init_shadow();
2702 	stack_depot_early_init();
2703 	mem_init();
2704 	mem_init_print_info();
2705 	kmem_cache_init();
2706 	/*
2707 	 * page_owner must be initialized after buddy is ready, and also after
2708 	 * slab is ready so that stack_depot_init() works properly
2709 	 */
2710 	page_ext_init_flatmem_late();
2711 	kmemleak_init();
2712 	ptlock_cache_init();
2713 	pgtable_cache_init();
2714 	debug_objects_mem_init();
2715 	vmalloc_init();
2716 	/* If no deferred init page_ext now, as vmap is fully initialized */
2717 	if (!deferred_struct_pages)
2718 		page_ext_init();
2719 	/* Should be run before the first non-init thread is created */
2720 	init_espfix_bsp();
2721 	/* Should be run after espfix64 is set up. */
2722 	pti_init();
2723 	kmsan_init_runtime();
2724 	mm_cache_init();
2725 	execmem_init();
2726 }
2727