1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/stackdepot.h> 28 #include <linux/swap.h> 29 #include <linux/cma.h> 30 #include <linux/crash_dump.h> 31 #include <linux/execmem.h> 32 #include "internal.h" 33 #include "slab.h" 34 #include "shuffle.h" 35 36 #include <asm/setup.h> 37 38 #ifdef CONFIG_DEBUG_MEMORY_INIT 39 int __meminitdata mminit_loglevel; 40 41 /* The zonelists are simply reported, validation is manual. */ 42 void __init mminit_verify_zonelist(void) 43 { 44 int nid; 45 46 if (mminit_loglevel < MMINIT_VERIFY) 47 return; 48 49 for_each_online_node(nid) { 50 pg_data_t *pgdat = NODE_DATA(nid); 51 struct zone *zone; 52 struct zoneref *z; 53 struct zonelist *zonelist; 54 int i, listid, zoneid; 55 56 BUILD_BUG_ON(MAX_ZONELISTS > 2); 57 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 58 59 /* Identify the zone and nodelist */ 60 zoneid = i % MAX_NR_ZONES; 61 listid = i / MAX_NR_ZONES; 62 zonelist = &pgdat->node_zonelists[listid]; 63 zone = &pgdat->node_zones[zoneid]; 64 if (!populated_zone(zone)) 65 continue; 66 67 /* Print information about the zonelist */ 68 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 69 listid > 0 ? "thisnode" : "general", nid, 70 zone->name); 71 72 /* Iterate the zonelist */ 73 for_each_zone_zonelist(zone, z, zonelist, zoneid) 74 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 75 pr_cont("\n"); 76 } 77 } 78 } 79 80 void __init mminit_verify_pageflags_layout(void) 81 { 82 int shift, width; 83 unsigned long or_mask, add_mask; 84 85 shift = BITS_PER_LONG; 86 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 87 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 88 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 89 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 90 SECTIONS_WIDTH, 91 NODES_WIDTH, 92 ZONES_WIDTH, 93 LAST_CPUPID_WIDTH, 94 KASAN_TAG_WIDTH, 95 LRU_GEN_WIDTH, 96 LRU_REFS_WIDTH, 97 NR_PAGEFLAGS); 98 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 99 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 100 SECTIONS_SHIFT, 101 NODES_SHIFT, 102 ZONES_SHIFT, 103 LAST_CPUPID_SHIFT, 104 KASAN_TAG_WIDTH); 105 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 106 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 107 (unsigned long)SECTIONS_PGSHIFT, 108 (unsigned long)NODES_PGSHIFT, 109 (unsigned long)ZONES_PGSHIFT, 110 (unsigned long)LAST_CPUPID_PGSHIFT, 111 (unsigned long)KASAN_TAG_PGSHIFT); 112 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 113 "Node/Zone ID: %lu -> %lu\n", 114 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 115 (unsigned long)ZONEID_PGOFF); 116 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 117 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 118 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 119 #ifdef NODE_NOT_IN_PAGE_FLAGS 120 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 121 "Node not in page flags"); 122 #endif 123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 124 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 125 "Last cpupid not in page flags"); 126 #endif 127 128 if (SECTIONS_WIDTH) { 129 shift -= SECTIONS_WIDTH; 130 BUG_ON(shift != SECTIONS_PGSHIFT); 131 } 132 if (NODES_WIDTH) { 133 shift -= NODES_WIDTH; 134 BUG_ON(shift != NODES_PGSHIFT); 135 } 136 if (ZONES_WIDTH) { 137 shift -= ZONES_WIDTH; 138 BUG_ON(shift != ZONES_PGSHIFT); 139 } 140 141 /* Check for bitmask overlaps */ 142 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 143 (NODES_MASK << NODES_PGSHIFT) | 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 146 (NODES_MASK << NODES_PGSHIFT) + 147 (SECTIONS_MASK << SECTIONS_PGSHIFT); 148 BUG_ON(or_mask != add_mask); 149 } 150 151 static __init int set_mminit_loglevel(char *str) 152 { 153 get_option(&str, &mminit_loglevel); 154 return 0; 155 } 156 early_param("mminit_loglevel", set_mminit_loglevel); 157 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 158 159 struct kobject *mm_kobj; 160 161 #ifdef CONFIG_SMP 162 s32 vm_committed_as_batch = 32; 163 164 void mm_compute_batch(int overcommit_policy) 165 { 166 u64 memsized_batch; 167 s32 nr = num_present_cpus(); 168 s32 batch = max_t(s32, nr*2, 32); 169 unsigned long ram_pages = totalram_pages(); 170 171 /* 172 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 173 * (total memory/#cpus), and lift it to 25% for other policies 174 * to easy the possible lock contention for percpu_counter 175 * vm_committed_as, while the max limit is INT_MAX 176 */ 177 if (overcommit_policy == OVERCOMMIT_NEVER) 178 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 179 else 180 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 181 182 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 183 } 184 185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 186 unsigned long action, void *arg) 187 { 188 switch (action) { 189 case MEM_ONLINE: 190 case MEM_OFFLINE: 191 mm_compute_batch(sysctl_overcommit_memory); 192 break; 193 default: 194 break; 195 } 196 return NOTIFY_OK; 197 } 198 199 static int __init mm_compute_batch_init(void) 200 { 201 mm_compute_batch(sysctl_overcommit_memory); 202 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 203 return 0; 204 } 205 206 __initcall(mm_compute_batch_init); 207 208 #endif 209 210 static int __init mm_sysfs_init(void) 211 { 212 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 213 if (!mm_kobj) 214 return -ENOMEM; 215 216 return 0; 217 } 218 postcore_initcall(mm_sysfs_init); 219 220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 223 224 static unsigned long required_kernelcore __initdata; 225 static unsigned long required_kernelcore_percent __initdata; 226 static unsigned long required_movablecore __initdata; 227 static unsigned long required_movablecore_percent __initdata; 228 229 static unsigned long nr_kernel_pages __initdata; 230 static unsigned long nr_all_pages __initdata; 231 232 static bool deferred_struct_pages __meminitdata; 233 234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 235 236 static int __init cmdline_parse_core(char *p, unsigned long *core, 237 unsigned long *percent) 238 { 239 unsigned long long coremem; 240 char *endptr; 241 242 if (!p) 243 return -EINVAL; 244 245 /* Value may be a percentage of total memory, otherwise bytes */ 246 coremem = simple_strtoull(p, &endptr, 0); 247 if (*endptr == '%') { 248 /* Paranoid check for percent values greater than 100 */ 249 WARN_ON(coremem > 100); 250 251 *percent = coremem; 252 } else { 253 coremem = memparse(p, &p); 254 /* Paranoid check that UL is enough for the coremem value */ 255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 256 257 *core = coremem >> PAGE_SHIFT; 258 *percent = 0UL; 259 } 260 return 0; 261 } 262 263 bool mirrored_kernelcore __initdata_memblock; 264 265 /* 266 * kernelcore=size sets the amount of memory for use for allocations that 267 * cannot be reclaimed or migrated. 268 */ 269 static int __init cmdline_parse_kernelcore(char *p) 270 { 271 /* parse kernelcore=mirror */ 272 if (parse_option_str(p, "mirror")) { 273 mirrored_kernelcore = true; 274 return 0; 275 } 276 277 return cmdline_parse_core(p, &required_kernelcore, 278 &required_kernelcore_percent); 279 } 280 early_param("kernelcore", cmdline_parse_kernelcore); 281 282 /* 283 * movablecore=size sets the amount of memory for use for allocations that 284 * can be reclaimed or migrated. 285 */ 286 static int __init cmdline_parse_movablecore(char *p) 287 { 288 return cmdline_parse_core(p, &required_movablecore, 289 &required_movablecore_percent); 290 } 291 early_param("movablecore", cmdline_parse_movablecore); 292 293 /* 294 * early_calculate_totalpages() 295 * Sum pages in active regions for movable zone. 296 * Populate N_MEMORY for calculating usable_nodes. 297 */ 298 static unsigned long __init early_calculate_totalpages(void) 299 { 300 unsigned long totalpages = 0; 301 unsigned long start_pfn, end_pfn; 302 int i, nid; 303 304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 305 unsigned long pages = end_pfn - start_pfn; 306 307 totalpages += pages; 308 if (pages) 309 node_set_state(nid, N_MEMORY); 310 } 311 return totalpages; 312 } 313 314 /* 315 * This finds a zone that can be used for ZONE_MOVABLE pages. The 316 * assumption is made that zones within a node are ordered in monotonic 317 * increasing memory addresses so that the "highest" populated zone is used 318 */ 319 static void __init find_usable_zone_for_movable(void) 320 { 321 int zone_index; 322 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 323 if (zone_index == ZONE_MOVABLE) 324 continue; 325 326 if (arch_zone_highest_possible_pfn[zone_index] > 327 arch_zone_lowest_possible_pfn[zone_index]) 328 break; 329 } 330 331 VM_BUG_ON(zone_index == -1); 332 movable_zone = zone_index; 333 } 334 335 /* 336 * Find the PFN the Movable zone begins in each node. Kernel memory 337 * is spread evenly between nodes as long as the nodes have enough 338 * memory. When they don't, some nodes will have more kernelcore than 339 * others 340 */ 341 static void __init find_zone_movable_pfns_for_nodes(void) 342 { 343 int i, nid; 344 unsigned long usable_startpfn; 345 unsigned long kernelcore_node, kernelcore_remaining; 346 /* save the state before borrow the nodemask */ 347 nodemask_t saved_node_state = node_states[N_MEMORY]; 348 unsigned long totalpages = early_calculate_totalpages(); 349 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 350 struct memblock_region *r; 351 352 /* Need to find movable_zone earlier when movable_node is specified. */ 353 find_usable_zone_for_movable(); 354 355 /* 356 * If movable_node is specified, ignore kernelcore and movablecore 357 * options. 358 */ 359 if (movable_node_is_enabled()) { 360 for_each_mem_region(r) { 361 if (!memblock_is_hotpluggable(r)) 362 continue; 363 364 nid = memblock_get_region_node(r); 365 366 usable_startpfn = PFN_DOWN(r->base); 367 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 368 min(usable_startpfn, zone_movable_pfn[nid]) : 369 usable_startpfn; 370 } 371 372 goto out2; 373 } 374 375 /* 376 * If kernelcore=mirror is specified, ignore movablecore option 377 */ 378 if (mirrored_kernelcore) { 379 bool mem_below_4gb_not_mirrored = false; 380 381 if (!memblock_has_mirror()) { 382 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); 383 goto out; 384 } 385 386 if (is_kdump_kernel()) { 387 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); 388 goto out; 389 } 390 391 for_each_mem_region(r) { 392 if (memblock_is_mirror(r)) 393 continue; 394 395 nid = memblock_get_region_node(r); 396 397 usable_startpfn = memblock_region_memory_base_pfn(r); 398 399 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 400 mem_below_4gb_not_mirrored = true; 401 continue; 402 } 403 404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 405 min(usable_startpfn, zone_movable_pfn[nid]) : 406 usable_startpfn; 407 } 408 409 if (mem_below_4gb_not_mirrored) 410 pr_warn("This configuration results in unmirrored kernel memory.\n"); 411 412 goto out2; 413 } 414 415 /* 416 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 417 * amount of necessary memory. 418 */ 419 if (required_kernelcore_percent) 420 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 421 10000UL; 422 if (required_movablecore_percent) 423 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 424 10000UL; 425 426 /* 427 * If movablecore= was specified, calculate what size of 428 * kernelcore that corresponds so that memory usable for 429 * any allocation type is evenly spread. If both kernelcore 430 * and movablecore are specified, then the value of kernelcore 431 * will be used for required_kernelcore if it's greater than 432 * what movablecore would have allowed. 433 */ 434 if (required_movablecore) { 435 unsigned long corepages; 436 437 /* 438 * Round-up so that ZONE_MOVABLE is at least as large as what 439 * was requested by the user 440 */ 441 required_movablecore = 442 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 443 required_movablecore = min(totalpages, required_movablecore); 444 corepages = totalpages - required_movablecore; 445 446 required_kernelcore = max(required_kernelcore, corepages); 447 } 448 449 /* 450 * If kernelcore was not specified or kernelcore size is larger 451 * than totalpages, there is no ZONE_MOVABLE. 452 */ 453 if (!required_kernelcore || required_kernelcore >= totalpages) 454 goto out; 455 456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 458 459 restart: 460 /* Spread kernelcore memory as evenly as possible throughout nodes */ 461 kernelcore_node = required_kernelcore / usable_nodes; 462 for_each_node_state(nid, N_MEMORY) { 463 unsigned long start_pfn, end_pfn; 464 465 /* 466 * Recalculate kernelcore_node if the division per node 467 * now exceeds what is necessary to satisfy the requested 468 * amount of memory for the kernel 469 */ 470 if (required_kernelcore < kernelcore_node) 471 kernelcore_node = required_kernelcore / usable_nodes; 472 473 /* 474 * As the map is walked, we track how much memory is usable 475 * by the kernel using kernelcore_remaining. When it is 476 * 0, the rest of the node is usable by ZONE_MOVABLE 477 */ 478 kernelcore_remaining = kernelcore_node; 479 480 /* Go through each range of PFNs within this node */ 481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 482 unsigned long size_pages; 483 484 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 485 if (start_pfn >= end_pfn) 486 continue; 487 488 /* Account for what is only usable for kernelcore */ 489 if (start_pfn < usable_startpfn) { 490 unsigned long kernel_pages; 491 kernel_pages = min(end_pfn, usable_startpfn) 492 - start_pfn; 493 494 kernelcore_remaining -= min(kernel_pages, 495 kernelcore_remaining); 496 required_kernelcore -= min(kernel_pages, 497 required_kernelcore); 498 499 /* Continue if range is now fully accounted */ 500 if (end_pfn <= usable_startpfn) { 501 502 /* 503 * Push zone_movable_pfn to the end so 504 * that if we have to rebalance 505 * kernelcore across nodes, we will 506 * not double account here 507 */ 508 zone_movable_pfn[nid] = end_pfn; 509 continue; 510 } 511 start_pfn = usable_startpfn; 512 } 513 514 /* 515 * The usable PFN range for ZONE_MOVABLE is from 516 * start_pfn->end_pfn. Calculate size_pages as the 517 * number of pages used as kernelcore 518 */ 519 size_pages = end_pfn - start_pfn; 520 if (size_pages > kernelcore_remaining) 521 size_pages = kernelcore_remaining; 522 zone_movable_pfn[nid] = start_pfn + size_pages; 523 524 /* 525 * Some kernelcore has been met, update counts and 526 * break if the kernelcore for this node has been 527 * satisfied 528 */ 529 required_kernelcore -= min(required_kernelcore, 530 size_pages); 531 kernelcore_remaining -= size_pages; 532 if (!kernelcore_remaining) 533 break; 534 } 535 } 536 537 /* 538 * If there is still required_kernelcore, we do another pass with one 539 * less node in the count. This will push zone_movable_pfn[nid] further 540 * along on the nodes that still have memory until kernelcore is 541 * satisfied 542 */ 543 usable_nodes--; 544 if (usable_nodes && required_kernelcore > usable_nodes) 545 goto restart; 546 547 out2: 548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 549 for (nid = 0; nid < MAX_NUMNODES; nid++) { 550 unsigned long start_pfn, end_pfn; 551 552 zone_movable_pfn[nid] = 553 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 554 555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 556 if (zone_movable_pfn[nid] >= end_pfn) 557 zone_movable_pfn[nid] = 0; 558 } 559 560 out: 561 /* restore the node_state */ 562 node_states[N_MEMORY] = saved_node_state; 563 } 564 565 void __meminit __init_single_page(struct page *page, unsigned long pfn, 566 unsigned long zone, int nid) 567 { 568 mm_zero_struct_page(page); 569 set_page_links(page, zone, nid, pfn); 570 init_page_count(page); 571 page_mapcount_reset(page); 572 page_cpupid_reset_last(page); 573 page_kasan_tag_reset(page); 574 575 INIT_LIST_HEAD(&page->lru); 576 #ifdef WANT_PAGE_VIRTUAL 577 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 578 if (!is_highmem_idx(zone)) 579 set_page_address(page, __va(pfn << PAGE_SHIFT)); 580 #endif 581 } 582 583 #ifdef CONFIG_NUMA 584 /* 585 * During memory init memblocks map pfns to nids. The search is expensive and 586 * this caches recent lookups. The implementation of __early_pfn_to_nid 587 * treats start/end as pfns. 588 */ 589 struct mminit_pfnnid_cache { 590 unsigned long last_start; 591 unsigned long last_end; 592 int last_nid; 593 }; 594 595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 596 597 /* 598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 599 */ 600 static int __meminit __early_pfn_to_nid(unsigned long pfn, 601 struct mminit_pfnnid_cache *state) 602 { 603 unsigned long start_pfn, end_pfn; 604 int nid; 605 606 if (state->last_start <= pfn && pfn < state->last_end) 607 return state->last_nid; 608 609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 610 if (nid != NUMA_NO_NODE) { 611 state->last_start = start_pfn; 612 state->last_end = end_pfn; 613 state->last_nid = nid; 614 } 615 616 return nid; 617 } 618 619 int __meminit early_pfn_to_nid(unsigned long pfn) 620 { 621 static DEFINE_SPINLOCK(early_pfn_lock); 622 int nid; 623 624 spin_lock(&early_pfn_lock); 625 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 626 if (nid < 0) 627 nid = first_online_node; 628 spin_unlock(&early_pfn_lock); 629 630 return nid; 631 } 632 633 int hashdist = HASHDIST_DEFAULT; 634 635 static int __init set_hashdist(char *str) 636 { 637 if (!str) 638 return 0; 639 hashdist = simple_strtoul(str, &str, 0); 640 return 1; 641 } 642 __setup("hashdist=", set_hashdist); 643 644 static inline void fixup_hashdist(void) 645 { 646 if (num_node_state(N_MEMORY) == 1) 647 hashdist = 0; 648 } 649 #else 650 static inline void fixup_hashdist(void) {} 651 #endif /* CONFIG_NUMA */ 652 653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 655 { 656 pgdat->first_deferred_pfn = ULONG_MAX; 657 } 658 659 /* Returns true if the struct page for the pfn is initialised */ 660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 661 { 662 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 663 return false; 664 665 return true; 666 } 667 668 /* 669 * Returns true when the remaining initialisation should be deferred until 670 * later in the boot cycle when it can be parallelised. 671 */ 672 static bool __meminit 673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 674 { 675 static unsigned long prev_end_pfn, nr_initialised; 676 677 if (early_page_ext_enabled()) 678 return false; 679 /* 680 * prev_end_pfn static that contains the end of previous zone 681 * No need to protect because called very early in boot before smp_init. 682 */ 683 if (prev_end_pfn != end_pfn) { 684 prev_end_pfn = end_pfn; 685 nr_initialised = 0; 686 } 687 688 /* Always populate low zones for address-constrained allocations */ 689 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 690 return false; 691 692 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 693 return true; 694 /* 695 * We start only with one section of pages, more pages are added as 696 * needed until the rest of deferred pages are initialized. 697 */ 698 nr_initialised++; 699 if ((nr_initialised > PAGES_PER_SECTION) && 700 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 701 NODE_DATA(nid)->first_deferred_pfn = pfn; 702 return true; 703 } 704 return false; 705 } 706 707 static void __meminit init_reserved_page(unsigned long pfn, int nid) 708 { 709 pg_data_t *pgdat; 710 int zid; 711 712 if (early_page_initialised(pfn, nid)) 713 return; 714 715 pgdat = NODE_DATA(nid); 716 717 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 718 struct zone *zone = &pgdat->node_zones[zid]; 719 720 if (zone_spans_pfn(zone, pfn)) 721 break; 722 } 723 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 724 } 725 #else 726 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 727 728 static inline bool early_page_initialised(unsigned long pfn, int nid) 729 { 730 return true; 731 } 732 733 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 734 { 735 return false; 736 } 737 738 static inline void init_reserved_page(unsigned long pfn, int nid) 739 { 740 } 741 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 742 743 /* 744 * Initialised pages do not have PageReserved set. This function is 745 * called for each range allocated by the bootmem allocator and 746 * marks the pages PageReserved. The remaining valid pages are later 747 * sent to the buddy page allocator. 748 */ 749 void __meminit reserve_bootmem_region(phys_addr_t start, 750 phys_addr_t end, int nid) 751 { 752 unsigned long start_pfn = PFN_DOWN(start); 753 unsigned long end_pfn = PFN_UP(end); 754 755 for (; start_pfn < end_pfn; start_pfn++) { 756 if (pfn_valid(start_pfn)) { 757 struct page *page = pfn_to_page(start_pfn); 758 759 init_reserved_page(start_pfn, nid); 760 761 /* Avoid false-positive PageTail() */ 762 INIT_LIST_HEAD(&page->lru); 763 764 /* 765 * no need for atomic set_bit because the struct 766 * page is not visible yet so nobody should 767 * access it yet. 768 */ 769 __SetPageReserved(page); 770 } 771 } 772 } 773 774 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 775 static bool __meminit 776 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 777 { 778 static struct memblock_region *r; 779 780 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 781 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 782 for_each_mem_region(r) { 783 if (*pfn < memblock_region_memory_end_pfn(r)) 784 break; 785 } 786 } 787 if (*pfn >= memblock_region_memory_base_pfn(r) && 788 memblock_is_mirror(r)) { 789 *pfn = memblock_region_memory_end_pfn(r); 790 return true; 791 } 792 } 793 return false; 794 } 795 796 /* 797 * Only struct pages that correspond to ranges defined by memblock.memory 798 * are zeroed and initialized by going through __init_single_page() during 799 * memmap_init_zone_range(). 800 * 801 * But, there could be struct pages that correspond to holes in 802 * memblock.memory. This can happen because of the following reasons: 803 * - physical memory bank size is not necessarily the exact multiple of the 804 * arbitrary section size 805 * - early reserved memory may not be listed in memblock.memory 806 * - non-memory regions covered by the contigious flatmem mapping 807 * - memory layouts defined with memmap= kernel parameter may not align 808 * nicely with memmap sections 809 * 810 * Explicitly initialize those struct pages so that: 811 * - PG_Reserved is set 812 * - zone and node links point to zone and node that span the page if the 813 * hole is in the middle of a zone 814 * - zone and node links point to adjacent zone/node if the hole falls on 815 * the zone boundary; the pages in such holes will be prepended to the 816 * zone/node above the hole except for the trailing pages in the last 817 * section that will be appended to the zone/node below. 818 */ 819 static void __init init_unavailable_range(unsigned long spfn, 820 unsigned long epfn, 821 int zone, int node) 822 { 823 unsigned long pfn; 824 u64 pgcnt = 0; 825 826 for (pfn = spfn; pfn < epfn; pfn++) { 827 if (!pfn_valid(pageblock_start_pfn(pfn))) { 828 pfn = pageblock_end_pfn(pfn) - 1; 829 continue; 830 } 831 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 832 __SetPageReserved(pfn_to_page(pfn)); 833 pgcnt++; 834 } 835 836 if (pgcnt) 837 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", 838 node, zone_names[zone], pgcnt); 839 } 840 841 /* 842 * Initially all pages are reserved - free ones are freed 843 * up by memblock_free_all() once the early boot process is 844 * done. Non-atomic initialization, single-pass. 845 * 846 * All aligned pageblocks are initialized to the specified migratetype 847 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 848 * zone stats (e.g., nr_isolate_pageblock) are touched. 849 */ 850 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 851 unsigned long start_pfn, unsigned long zone_end_pfn, 852 enum meminit_context context, 853 struct vmem_altmap *altmap, int migratetype) 854 { 855 unsigned long pfn, end_pfn = start_pfn + size; 856 struct page *page; 857 858 if (highest_memmap_pfn < end_pfn - 1) 859 highest_memmap_pfn = end_pfn - 1; 860 861 #ifdef CONFIG_ZONE_DEVICE 862 /* 863 * Honor reservation requested by the driver for this ZONE_DEVICE 864 * memory. We limit the total number of pages to initialize to just 865 * those that might contain the memory mapping. We will defer the 866 * ZONE_DEVICE page initialization until after we have released 867 * the hotplug lock. 868 */ 869 if (zone == ZONE_DEVICE) { 870 if (!altmap) 871 return; 872 873 if (start_pfn == altmap->base_pfn) 874 start_pfn += altmap->reserve; 875 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 876 } 877 #endif 878 879 for (pfn = start_pfn; pfn < end_pfn; ) { 880 /* 881 * There can be holes in boot-time mem_map[]s handed to this 882 * function. They do not exist on hotplugged memory. 883 */ 884 if (context == MEMINIT_EARLY) { 885 if (overlap_memmap_init(zone, &pfn)) 886 continue; 887 if (defer_init(nid, pfn, zone_end_pfn)) { 888 deferred_struct_pages = true; 889 break; 890 } 891 } 892 893 page = pfn_to_page(pfn); 894 __init_single_page(page, pfn, zone, nid); 895 if (context == MEMINIT_HOTPLUG) 896 __SetPageReserved(page); 897 898 /* 899 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 900 * such that unmovable allocations won't be scattered all 901 * over the place during system boot. 902 */ 903 if (pageblock_aligned(pfn)) { 904 set_pageblock_migratetype(page, migratetype); 905 cond_resched(); 906 } 907 pfn++; 908 } 909 } 910 911 static void __init memmap_init_zone_range(struct zone *zone, 912 unsigned long start_pfn, 913 unsigned long end_pfn, 914 unsigned long *hole_pfn) 915 { 916 unsigned long zone_start_pfn = zone->zone_start_pfn; 917 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 918 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 919 920 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 921 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 922 923 if (start_pfn >= end_pfn) 924 return; 925 926 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 927 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 928 929 if (*hole_pfn < start_pfn) 930 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 931 932 *hole_pfn = end_pfn; 933 } 934 935 static void __init memmap_init(void) 936 { 937 unsigned long start_pfn, end_pfn; 938 unsigned long hole_pfn = 0; 939 int i, j, zone_id = 0, nid; 940 941 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 942 struct pglist_data *node = NODE_DATA(nid); 943 944 for (j = 0; j < MAX_NR_ZONES; j++) { 945 struct zone *zone = node->node_zones + j; 946 947 if (!populated_zone(zone)) 948 continue; 949 950 memmap_init_zone_range(zone, start_pfn, end_pfn, 951 &hole_pfn); 952 zone_id = j; 953 } 954 } 955 956 #ifdef CONFIG_SPARSEMEM 957 /* 958 * Initialize the memory map for hole in the range [memory_end, 959 * section_end]. 960 * Append the pages in this hole to the highest zone in the last 961 * node. 962 * The call to init_unavailable_range() is outside the ifdef to 963 * silence the compiler warining about zone_id set but not used; 964 * for FLATMEM it is a nop anyway 965 */ 966 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 967 if (hole_pfn < end_pfn) 968 #endif 969 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 970 } 971 972 #ifdef CONFIG_ZONE_DEVICE 973 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 974 unsigned long zone_idx, int nid, 975 struct dev_pagemap *pgmap) 976 { 977 978 __init_single_page(page, pfn, zone_idx, nid); 979 980 /* 981 * Mark page reserved as it will need to wait for onlining 982 * phase for it to be fully associated with a zone. 983 * 984 * We can use the non-atomic __set_bit operation for setting 985 * the flag as we are still initializing the pages. 986 */ 987 __SetPageReserved(page); 988 989 /* 990 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 991 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 992 * ever freed or placed on a driver-private list. 993 */ 994 page->pgmap = pgmap; 995 page->zone_device_data = NULL; 996 997 /* 998 * Mark the block movable so that blocks are reserved for 999 * movable at startup. This will force kernel allocations 1000 * to reserve their blocks rather than leaking throughout 1001 * the address space during boot when many long-lived 1002 * kernel allocations are made. 1003 * 1004 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 1005 * because this is done early in section_activate() 1006 */ 1007 if (pageblock_aligned(pfn)) { 1008 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1009 cond_resched(); 1010 } 1011 1012 /* 1013 * ZONE_DEVICE pages are released directly to the driver page allocator 1014 * which will set the page count to 1 when allocating the page. 1015 */ 1016 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1017 pgmap->type == MEMORY_DEVICE_COHERENT) 1018 set_page_count(page, 0); 1019 } 1020 1021 /* 1022 * With compound page geometry and when struct pages are stored in ram most 1023 * tail pages are reused. Consequently, the amount of unique struct pages to 1024 * initialize is a lot smaller that the total amount of struct pages being 1025 * mapped. This is a paired / mild layering violation with explicit knowledge 1026 * of how the sparse_vmemmap internals handle compound pages in the lack 1027 * of an altmap. See vmemmap_populate_compound_pages(). 1028 */ 1029 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1030 struct dev_pagemap *pgmap) 1031 { 1032 if (!vmemmap_can_optimize(altmap, pgmap)) 1033 return pgmap_vmemmap_nr(pgmap); 1034 1035 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1036 } 1037 1038 static void __ref memmap_init_compound(struct page *head, 1039 unsigned long head_pfn, 1040 unsigned long zone_idx, int nid, 1041 struct dev_pagemap *pgmap, 1042 unsigned long nr_pages) 1043 { 1044 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1045 unsigned int order = pgmap->vmemmap_shift; 1046 1047 __SetPageHead(head); 1048 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1049 struct page *page = pfn_to_page(pfn); 1050 1051 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1052 prep_compound_tail(head, pfn - head_pfn); 1053 set_page_count(page, 0); 1054 1055 /* 1056 * The first tail page stores important compound page info. 1057 * Call prep_compound_head() after the first tail page has 1058 * been initialized, to not have the data overwritten. 1059 */ 1060 if (pfn == head_pfn + 1) 1061 prep_compound_head(head, order); 1062 } 1063 } 1064 1065 void __ref memmap_init_zone_device(struct zone *zone, 1066 unsigned long start_pfn, 1067 unsigned long nr_pages, 1068 struct dev_pagemap *pgmap) 1069 { 1070 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1071 struct pglist_data *pgdat = zone->zone_pgdat; 1072 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1073 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1074 unsigned long zone_idx = zone_idx(zone); 1075 unsigned long start = jiffies; 1076 int nid = pgdat->node_id; 1077 1078 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1079 return; 1080 1081 /* 1082 * The call to memmap_init should have already taken care 1083 * of the pages reserved for the memmap, so we can just jump to 1084 * the end of that region and start processing the device pages. 1085 */ 1086 if (altmap) { 1087 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1088 nr_pages = end_pfn - start_pfn; 1089 } 1090 1091 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1092 struct page *page = pfn_to_page(pfn); 1093 1094 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1095 1096 if (pfns_per_compound == 1) 1097 continue; 1098 1099 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1100 compound_nr_pages(altmap, pgmap)); 1101 } 1102 1103 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1104 nr_pages, jiffies_to_msecs(jiffies - start)); 1105 } 1106 #endif 1107 1108 /* 1109 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1110 * because it is sized independent of architecture. Unlike the other zones, 1111 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1112 * in each node depending on the size of each node and how evenly kernelcore 1113 * is distributed. This helper function adjusts the zone ranges 1114 * provided by the architecture for a given node by using the end of the 1115 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1116 * zones within a node are in order of monotonic increases memory addresses 1117 */ 1118 static void __init adjust_zone_range_for_zone_movable(int nid, 1119 unsigned long zone_type, 1120 unsigned long node_end_pfn, 1121 unsigned long *zone_start_pfn, 1122 unsigned long *zone_end_pfn) 1123 { 1124 /* Only adjust if ZONE_MOVABLE is on this node */ 1125 if (zone_movable_pfn[nid]) { 1126 /* Size ZONE_MOVABLE */ 1127 if (zone_type == ZONE_MOVABLE) { 1128 *zone_start_pfn = zone_movable_pfn[nid]; 1129 *zone_end_pfn = min(node_end_pfn, 1130 arch_zone_highest_possible_pfn[movable_zone]); 1131 1132 /* Adjust for ZONE_MOVABLE starting within this range */ 1133 } else if (!mirrored_kernelcore && 1134 *zone_start_pfn < zone_movable_pfn[nid] && 1135 *zone_end_pfn > zone_movable_pfn[nid]) { 1136 *zone_end_pfn = zone_movable_pfn[nid]; 1137 1138 /* Check if this whole range is within ZONE_MOVABLE */ 1139 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1140 *zone_start_pfn = *zone_end_pfn; 1141 } 1142 } 1143 1144 /* 1145 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1146 * then all holes in the requested range will be accounted for. 1147 */ 1148 static unsigned long __init __absent_pages_in_range(int nid, 1149 unsigned long range_start_pfn, 1150 unsigned long range_end_pfn) 1151 { 1152 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1153 unsigned long start_pfn, end_pfn; 1154 int i; 1155 1156 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1157 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1158 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1159 nr_absent -= end_pfn - start_pfn; 1160 } 1161 return nr_absent; 1162 } 1163 1164 /** 1165 * absent_pages_in_range - Return number of page frames in holes within a range 1166 * @start_pfn: The start PFN to start searching for holes 1167 * @end_pfn: The end PFN to stop searching for holes 1168 * 1169 * Return: the number of pages frames in memory holes within a range. 1170 */ 1171 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1172 unsigned long end_pfn) 1173 { 1174 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1175 } 1176 1177 /* Return the number of page frames in holes in a zone on a node */ 1178 static unsigned long __init zone_absent_pages_in_node(int nid, 1179 unsigned long zone_type, 1180 unsigned long zone_start_pfn, 1181 unsigned long zone_end_pfn) 1182 { 1183 unsigned long nr_absent; 1184 1185 /* zone is empty, we don't have any absent pages */ 1186 if (zone_start_pfn == zone_end_pfn) 1187 return 0; 1188 1189 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1190 1191 /* 1192 * ZONE_MOVABLE handling. 1193 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1194 * and vice versa. 1195 */ 1196 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1197 unsigned long start_pfn, end_pfn; 1198 struct memblock_region *r; 1199 1200 for_each_mem_region(r) { 1201 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1202 zone_start_pfn, zone_end_pfn); 1203 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1204 zone_start_pfn, zone_end_pfn); 1205 1206 if (zone_type == ZONE_MOVABLE && 1207 memblock_is_mirror(r)) 1208 nr_absent += end_pfn - start_pfn; 1209 1210 if (zone_type == ZONE_NORMAL && 1211 !memblock_is_mirror(r)) 1212 nr_absent += end_pfn - start_pfn; 1213 } 1214 } 1215 1216 return nr_absent; 1217 } 1218 1219 /* 1220 * Return the number of pages a zone spans in a node, including holes 1221 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1222 */ 1223 static unsigned long __init zone_spanned_pages_in_node(int nid, 1224 unsigned long zone_type, 1225 unsigned long node_start_pfn, 1226 unsigned long node_end_pfn, 1227 unsigned long *zone_start_pfn, 1228 unsigned long *zone_end_pfn) 1229 { 1230 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1231 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1232 1233 /* Get the start and end of the zone */ 1234 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1235 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1236 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1237 zone_start_pfn, zone_end_pfn); 1238 1239 /* Check that this node has pages within the zone's required range */ 1240 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1241 return 0; 1242 1243 /* Move the zone boundaries inside the node if necessary */ 1244 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1245 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1246 1247 /* Return the spanned pages */ 1248 return *zone_end_pfn - *zone_start_pfn; 1249 } 1250 1251 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1252 { 1253 struct zone *z; 1254 1255 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1256 z->zone_start_pfn = 0; 1257 z->spanned_pages = 0; 1258 z->present_pages = 0; 1259 #if defined(CONFIG_MEMORY_HOTPLUG) 1260 z->present_early_pages = 0; 1261 #endif 1262 } 1263 1264 pgdat->node_spanned_pages = 0; 1265 pgdat->node_present_pages = 0; 1266 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1267 } 1268 1269 static void __init calc_nr_kernel_pages(void) 1270 { 1271 unsigned long start_pfn, end_pfn; 1272 phys_addr_t start_addr, end_addr; 1273 u64 u; 1274 #ifdef CONFIG_HIGHMEM 1275 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; 1276 #endif 1277 1278 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1279 start_pfn = PFN_UP(start_addr); 1280 end_pfn = PFN_DOWN(end_addr); 1281 1282 if (start_pfn < end_pfn) { 1283 nr_all_pages += end_pfn - start_pfn; 1284 #ifdef CONFIG_HIGHMEM 1285 start_pfn = clamp(start_pfn, 0, high_zone_low); 1286 end_pfn = clamp(end_pfn, 0, high_zone_low); 1287 #endif 1288 nr_kernel_pages += end_pfn - start_pfn; 1289 } 1290 } 1291 } 1292 1293 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1294 unsigned long node_start_pfn, 1295 unsigned long node_end_pfn) 1296 { 1297 unsigned long realtotalpages = 0, totalpages = 0; 1298 enum zone_type i; 1299 1300 for (i = 0; i < MAX_NR_ZONES; i++) { 1301 struct zone *zone = pgdat->node_zones + i; 1302 unsigned long zone_start_pfn, zone_end_pfn; 1303 unsigned long spanned, absent; 1304 unsigned long real_size; 1305 1306 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1307 node_start_pfn, 1308 node_end_pfn, 1309 &zone_start_pfn, 1310 &zone_end_pfn); 1311 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1312 zone_start_pfn, 1313 zone_end_pfn); 1314 1315 real_size = spanned - absent; 1316 1317 if (spanned) 1318 zone->zone_start_pfn = zone_start_pfn; 1319 else 1320 zone->zone_start_pfn = 0; 1321 zone->spanned_pages = spanned; 1322 zone->present_pages = real_size; 1323 #if defined(CONFIG_MEMORY_HOTPLUG) 1324 zone->present_early_pages = real_size; 1325 #endif 1326 1327 totalpages += spanned; 1328 realtotalpages += real_size; 1329 } 1330 1331 pgdat->node_spanned_pages = totalpages; 1332 pgdat->node_present_pages = realtotalpages; 1333 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1334 } 1335 1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1337 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1338 { 1339 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1340 1341 spin_lock_init(&ds_queue->split_queue_lock); 1342 INIT_LIST_HEAD(&ds_queue->split_queue); 1343 ds_queue->split_queue_len = 0; 1344 } 1345 #else 1346 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1347 #endif 1348 1349 #ifdef CONFIG_COMPACTION 1350 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1351 { 1352 init_waitqueue_head(&pgdat->kcompactd_wait); 1353 } 1354 #else 1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1356 #endif 1357 1358 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1359 { 1360 int i; 1361 1362 pgdat_resize_init(pgdat); 1363 pgdat_kswapd_lock_init(pgdat); 1364 1365 pgdat_init_split_queue(pgdat); 1366 pgdat_init_kcompactd(pgdat); 1367 1368 init_waitqueue_head(&pgdat->kswapd_wait); 1369 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1370 1371 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1372 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1373 1374 pgdat_page_ext_init(pgdat); 1375 lruvec_init(&pgdat->__lruvec); 1376 } 1377 1378 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1379 unsigned long remaining_pages) 1380 { 1381 atomic_long_set(&zone->managed_pages, remaining_pages); 1382 zone_set_nid(zone, nid); 1383 zone->name = zone_names[idx]; 1384 zone->zone_pgdat = NODE_DATA(nid); 1385 spin_lock_init(&zone->lock); 1386 zone_seqlock_init(zone); 1387 zone_pcp_init(zone); 1388 } 1389 1390 static void __meminit zone_init_free_lists(struct zone *zone) 1391 { 1392 unsigned int order, t; 1393 for_each_migratetype_order(order, t) { 1394 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1395 zone->free_area[order].nr_free = 0; 1396 } 1397 1398 #ifdef CONFIG_UNACCEPTED_MEMORY 1399 INIT_LIST_HEAD(&zone->unaccepted_pages); 1400 #endif 1401 } 1402 1403 void __meminit init_currently_empty_zone(struct zone *zone, 1404 unsigned long zone_start_pfn, 1405 unsigned long size) 1406 { 1407 struct pglist_data *pgdat = zone->zone_pgdat; 1408 int zone_idx = zone_idx(zone) + 1; 1409 1410 if (zone_idx > pgdat->nr_zones) 1411 pgdat->nr_zones = zone_idx; 1412 1413 zone->zone_start_pfn = zone_start_pfn; 1414 1415 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1416 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1417 pgdat->node_id, 1418 (unsigned long)zone_idx(zone), 1419 zone_start_pfn, (zone_start_pfn + size)); 1420 1421 zone_init_free_lists(zone); 1422 zone->initialized = 1; 1423 } 1424 1425 #ifndef CONFIG_SPARSEMEM 1426 /* 1427 * Calculate the size of the zone->blockflags rounded to an unsigned long 1428 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1429 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1430 * round what is now in bits to nearest long in bits, then return it in 1431 * bytes. 1432 */ 1433 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1434 { 1435 unsigned long usemapsize; 1436 1437 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1438 usemapsize = roundup(zonesize, pageblock_nr_pages); 1439 usemapsize = usemapsize >> pageblock_order; 1440 usemapsize *= NR_PAGEBLOCK_BITS; 1441 usemapsize = roundup(usemapsize, BITS_PER_LONG); 1442 1443 return usemapsize / BITS_PER_BYTE; 1444 } 1445 1446 static void __ref setup_usemap(struct zone *zone) 1447 { 1448 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1449 zone->spanned_pages); 1450 zone->pageblock_flags = NULL; 1451 if (usemapsize) { 1452 zone->pageblock_flags = 1453 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1454 zone_to_nid(zone)); 1455 if (!zone->pageblock_flags) 1456 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1457 usemapsize, zone->name, zone_to_nid(zone)); 1458 } 1459 } 1460 #else 1461 static inline void setup_usemap(struct zone *zone) {} 1462 #endif /* CONFIG_SPARSEMEM */ 1463 1464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1465 1466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1467 void __init set_pageblock_order(void) 1468 { 1469 unsigned int order = MAX_PAGE_ORDER; 1470 1471 /* Check that pageblock_nr_pages has not already been setup */ 1472 if (pageblock_order) 1473 return; 1474 1475 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1476 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1477 order = HUGETLB_PAGE_ORDER; 1478 1479 /* 1480 * Assume the largest contiguous order of interest is a huge page. 1481 * This value may be variable depending on boot parameters on powerpc. 1482 */ 1483 pageblock_order = order; 1484 } 1485 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1486 1487 /* 1488 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1489 * is unused as pageblock_order is set at compile-time. See 1490 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1491 * the kernel config 1492 */ 1493 void __init set_pageblock_order(void) 1494 { 1495 } 1496 1497 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1498 1499 /* 1500 * Set up the zone data structures 1501 * - init pgdat internals 1502 * - init all zones belonging to this node 1503 * 1504 * NOTE: this function is only called during memory hotplug 1505 */ 1506 #ifdef CONFIG_MEMORY_HOTPLUG 1507 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1508 { 1509 int nid = pgdat->node_id; 1510 enum zone_type z; 1511 int cpu; 1512 1513 pgdat_init_internals(pgdat); 1514 1515 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1516 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1517 1518 /* 1519 * Reset the nr_zones, order and highest_zoneidx before reuse. 1520 * Note that kswapd will init kswapd_highest_zoneidx properly 1521 * when it starts in the near future. 1522 */ 1523 pgdat->nr_zones = 0; 1524 pgdat->kswapd_order = 0; 1525 pgdat->kswapd_highest_zoneidx = 0; 1526 pgdat->node_start_pfn = 0; 1527 pgdat->node_present_pages = 0; 1528 1529 for_each_online_cpu(cpu) { 1530 struct per_cpu_nodestat *p; 1531 1532 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1533 memset(p, 0, sizeof(*p)); 1534 } 1535 1536 /* 1537 * When memory is hot-added, all the memory is in offline state. So 1538 * clear all zones' present_pages and managed_pages because they will 1539 * be updated in online_pages() and offline_pages(). 1540 */ 1541 for (z = 0; z < MAX_NR_ZONES; z++) { 1542 struct zone *zone = pgdat->node_zones + z; 1543 1544 zone->present_pages = 0; 1545 zone_init_internals(zone, z, nid, 0); 1546 } 1547 } 1548 #endif 1549 1550 static void __init free_area_init_core(struct pglist_data *pgdat) 1551 { 1552 enum zone_type j; 1553 int nid = pgdat->node_id; 1554 1555 pgdat_init_internals(pgdat); 1556 pgdat->per_cpu_nodestats = &boot_nodestats; 1557 1558 for (j = 0; j < MAX_NR_ZONES; j++) { 1559 struct zone *zone = pgdat->node_zones + j; 1560 unsigned long size = zone->spanned_pages; 1561 1562 /* 1563 * Initialize zone->managed_pages as 0 , it will be reset 1564 * when memblock allocator frees pages into buddy system. 1565 */ 1566 zone_init_internals(zone, j, nid, zone->present_pages); 1567 1568 if (!size) 1569 continue; 1570 1571 setup_usemap(zone); 1572 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1573 } 1574 } 1575 1576 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1577 phys_addr_t min_addr, int nid, bool exact_nid) 1578 { 1579 void *ptr; 1580 1581 if (exact_nid) 1582 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1583 MEMBLOCK_ALLOC_ACCESSIBLE, 1584 nid); 1585 else 1586 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1587 MEMBLOCK_ALLOC_ACCESSIBLE, 1588 nid); 1589 1590 if (ptr && size > 0) 1591 page_init_poison(ptr, size); 1592 1593 return ptr; 1594 } 1595 1596 #ifdef CONFIG_FLATMEM 1597 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1598 { 1599 unsigned long start, offset, size, end; 1600 struct page *map; 1601 1602 /* Skip empty nodes */ 1603 if (!pgdat->node_spanned_pages) 1604 return; 1605 1606 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1607 offset = pgdat->node_start_pfn - start; 1608 /* 1609 * The zone's endpoints aren't required to be MAX_PAGE_ORDER 1610 * aligned but the node_mem_map endpoints must be in order 1611 * for the buddy allocator to function correctly. 1612 */ 1613 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); 1614 size = (end - start) * sizeof(struct page); 1615 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1616 pgdat->node_id, false); 1617 if (!map) 1618 panic("Failed to allocate %ld bytes for node %d memory map\n", 1619 size, pgdat->node_id); 1620 pgdat->node_mem_map = map + offset; 1621 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1622 __func__, pgdat->node_id, (unsigned long)pgdat, 1623 (unsigned long)pgdat->node_mem_map); 1624 #ifndef CONFIG_NUMA 1625 /* the global mem_map is just set as node 0's */ 1626 if (pgdat == NODE_DATA(0)) { 1627 mem_map = NODE_DATA(0)->node_mem_map; 1628 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1629 mem_map -= offset; 1630 } 1631 #endif 1632 } 1633 #else 1634 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1635 #endif /* CONFIG_FLATMEM */ 1636 1637 /** 1638 * get_pfn_range_for_nid - Return the start and end page frames for a node 1639 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1640 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1641 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1642 * 1643 * It returns the start and end page frame of a node based on information 1644 * provided by memblock_set_node(). If called for a node 1645 * with no available memory, the start and end PFNs will be 0. 1646 */ 1647 void __init get_pfn_range_for_nid(unsigned int nid, 1648 unsigned long *start_pfn, unsigned long *end_pfn) 1649 { 1650 unsigned long this_start_pfn, this_end_pfn; 1651 int i; 1652 1653 *start_pfn = -1UL; 1654 *end_pfn = 0; 1655 1656 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1657 *start_pfn = min(*start_pfn, this_start_pfn); 1658 *end_pfn = max(*end_pfn, this_end_pfn); 1659 } 1660 1661 if (*start_pfn == -1UL) 1662 *start_pfn = 0; 1663 } 1664 1665 static void __init free_area_init_node(int nid) 1666 { 1667 pg_data_t *pgdat = NODE_DATA(nid); 1668 unsigned long start_pfn = 0; 1669 unsigned long end_pfn = 0; 1670 1671 /* pg_data_t should be reset to zero when it's allocated */ 1672 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1673 1674 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1675 1676 pgdat->node_id = nid; 1677 pgdat->node_start_pfn = start_pfn; 1678 pgdat->per_cpu_nodestats = NULL; 1679 1680 if (start_pfn != end_pfn) { 1681 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1682 (u64)start_pfn << PAGE_SHIFT, 1683 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1684 1685 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1686 } else { 1687 pr_info("Initmem setup node %d as memoryless\n", nid); 1688 1689 reset_memoryless_node_totalpages(pgdat); 1690 } 1691 1692 alloc_node_mem_map(pgdat); 1693 pgdat_set_deferred_range(pgdat); 1694 1695 free_area_init_core(pgdat); 1696 lru_gen_init_pgdat(pgdat); 1697 } 1698 1699 /* Any regular or high memory on that node ? */ 1700 static void __init check_for_memory(pg_data_t *pgdat) 1701 { 1702 enum zone_type zone_type; 1703 1704 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1705 struct zone *zone = &pgdat->node_zones[zone_type]; 1706 if (populated_zone(zone)) { 1707 if (IS_ENABLED(CONFIG_HIGHMEM)) 1708 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1709 if (zone_type <= ZONE_NORMAL) 1710 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1711 break; 1712 } 1713 } 1714 } 1715 1716 #if MAX_NUMNODES > 1 1717 /* 1718 * Figure out the number of possible node ids. 1719 */ 1720 void __init setup_nr_node_ids(void) 1721 { 1722 unsigned int highest; 1723 1724 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1725 nr_node_ids = highest + 1; 1726 } 1727 #endif 1728 1729 /* 1730 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1731 * such cases we allow max_zone_pfn sorted in the descending order 1732 */ 1733 static bool arch_has_descending_max_zone_pfns(void) 1734 { 1735 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1736 } 1737 1738 /** 1739 * free_area_init - Initialise all pg_data_t and zone data 1740 * @max_zone_pfn: an array of max PFNs for each zone 1741 * 1742 * This will call free_area_init_node() for each active node in the system. 1743 * Using the page ranges provided by memblock_set_node(), the size of each 1744 * zone in each node and their holes is calculated. If the maximum PFN 1745 * between two adjacent zones match, it is assumed that the zone is empty. 1746 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1747 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1748 * starts where the previous one ended. For example, ZONE_DMA32 starts 1749 * at arch_max_dma_pfn. 1750 */ 1751 void __init free_area_init(unsigned long *max_zone_pfn) 1752 { 1753 unsigned long start_pfn, end_pfn; 1754 int i, nid, zone; 1755 bool descending; 1756 1757 /* Record where the zone boundaries are */ 1758 memset(arch_zone_lowest_possible_pfn, 0, 1759 sizeof(arch_zone_lowest_possible_pfn)); 1760 memset(arch_zone_highest_possible_pfn, 0, 1761 sizeof(arch_zone_highest_possible_pfn)); 1762 1763 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1764 descending = arch_has_descending_max_zone_pfns(); 1765 1766 for (i = 0; i < MAX_NR_ZONES; i++) { 1767 if (descending) 1768 zone = MAX_NR_ZONES - i - 1; 1769 else 1770 zone = i; 1771 1772 if (zone == ZONE_MOVABLE) 1773 continue; 1774 1775 end_pfn = max(max_zone_pfn[zone], start_pfn); 1776 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1777 arch_zone_highest_possible_pfn[zone] = end_pfn; 1778 1779 start_pfn = end_pfn; 1780 } 1781 1782 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1783 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1784 find_zone_movable_pfns_for_nodes(); 1785 1786 /* Print out the zone ranges */ 1787 pr_info("Zone ranges:\n"); 1788 for (i = 0; i < MAX_NR_ZONES; i++) { 1789 if (i == ZONE_MOVABLE) 1790 continue; 1791 pr_info(" %-8s ", zone_names[i]); 1792 if (arch_zone_lowest_possible_pfn[i] == 1793 arch_zone_highest_possible_pfn[i]) 1794 pr_cont("empty\n"); 1795 else 1796 pr_cont("[mem %#018Lx-%#018Lx]\n", 1797 (u64)arch_zone_lowest_possible_pfn[i] 1798 << PAGE_SHIFT, 1799 ((u64)arch_zone_highest_possible_pfn[i] 1800 << PAGE_SHIFT) - 1); 1801 } 1802 1803 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1804 pr_info("Movable zone start for each node\n"); 1805 for (i = 0; i < MAX_NUMNODES; i++) { 1806 if (zone_movable_pfn[i]) 1807 pr_info(" Node %d: %#018Lx\n", i, 1808 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1809 } 1810 1811 /* 1812 * Print out the early node map, and initialize the 1813 * subsection-map relative to active online memory ranges to 1814 * enable future "sub-section" extensions of the memory map. 1815 */ 1816 pr_info("Early memory node ranges\n"); 1817 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1818 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1819 (u64)start_pfn << PAGE_SHIFT, 1820 ((u64)end_pfn << PAGE_SHIFT) - 1); 1821 subsection_map_init(start_pfn, end_pfn - start_pfn); 1822 } 1823 1824 /* Initialise every node */ 1825 mminit_verify_pageflags_layout(); 1826 setup_nr_node_ids(); 1827 set_pageblock_order(); 1828 1829 for_each_node(nid) { 1830 pg_data_t *pgdat; 1831 1832 if (!node_online(nid)) { 1833 /* Allocator not initialized yet */ 1834 pgdat = arch_alloc_nodedata(nid); 1835 if (!pgdat) 1836 panic("Cannot allocate %zuB for node %d.\n", 1837 sizeof(*pgdat), nid); 1838 arch_refresh_nodedata(nid, pgdat); 1839 } 1840 1841 pgdat = NODE_DATA(nid); 1842 free_area_init_node(nid); 1843 1844 /* 1845 * No sysfs hierarcy will be created via register_one_node() 1846 *for memory-less node because here it's not marked as N_MEMORY 1847 *and won't be set online later. The benefit is userspace 1848 *program won't be confused by sysfs files/directories of 1849 *memory-less node. The pgdat will get fully initialized by 1850 *hotadd_init_pgdat() when memory is hotplugged into this node. 1851 */ 1852 if (pgdat->node_present_pages) { 1853 node_set_state(nid, N_MEMORY); 1854 check_for_memory(pgdat); 1855 } 1856 } 1857 1858 calc_nr_kernel_pages(); 1859 memmap_init(); 1860 1861 /* disable hash distribution for systems with a single node */ 1862 fixup_hashdist(); 1863 } 1864 1865 /** 1866 * node_map_pfn_alignment - determine the maximum internode alignment 1867 * 1868 * This function should be called after node map is populated and sorted. 1869 * It calculates the maximum power of two alignment which can distinguish 1870 * all the nodes. 1871 * 1872 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1873 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1874 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1875 * shifted, 1GiB is enough and this function will indicate so. 1876 * 1877 * This is used to test whether pfn -> nid mapping of the chosen memory 1878 * model has fine enough granularity to avoid incorrect mapping for the 1879 * populated node map. 1880 * 1881 * Return: the determined alignment in pfn's. 0 if there is no alignment 1882 * requirement (single node). 1883 */ 1884 unsigned long __init node_map_pfn_alignment(void) 1885 { 1886 unsigned long accl_mask = 0, last_end = 0; 1887 unsigned long start, end, mask; 1888 int last_nid = NUMA_NO_NODE; 1889 int i, nid; 1890 1891 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1892 if (!start || last_nid < 0 || last_nid == nid) { 1893 last_nid = nid; 1894 last_end = end; 1895 continue; 1896 } 1897 1898 /* 1899 * Start with a mask granular enough to pin-point to the 1900 * start pfn and tick off bits one-by-one until it becomes 1901 * too coarse to separate the current node from the last. 1902 */ 1903 mask = ~((1 << __ffs(start)) - 1); 1904 while (mask && last_end <= (start & (mask << 1))) 1905 mask <<= 1; 1906 1907 /* accumulate all internode masks */ 1908 accl_mask |= mask; 1909 } 1910 1911 /* convert mask to number of pages */ 1912 return ~accl_mask + 1; 1913 } 1914 1915 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1916 static void __init deferred_free_range(unsigned long pfn, 1917 unsigned long nr_pages) 1918 { 1919 struct page *page; 1920 unsigned long i; 1921 1922 if (!nr_pages) 1923 return; 1924 1925 page = pfn_to_page(pfn); 1926 1927 /* Free a large naturally-aligned chunk if possible */ 1928 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1929 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1930 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1931 __free_pages_core(page, MAX_PAGE_ORDER); 1932 return; 1933 } 1934 1935 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ 1936 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); 1937 1938 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1939 if (pageblock_aligned(pfn)) 1940 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1941 __free_pages_core(page, 0); 1942 } 1943 } 1944 1945 /* Completion tracking for deferred_init_memmap() threads */ 1946 static atomic_t pgdat_init_n_undone __initdata; 1947 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1948 1949 static inline void __init pgdat_init_report_one_done(void) 1950 { 1951 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1952 complete(&pgdat_init_all_done_comp); 1953 } 1954 1955 /* 1956 * Returns true if page needs to be initialized or freed to buddy allocator. 1957 * 1958 * We check if a current MAX_PAGE_ORDER block is valid by only checking the 1959 * validity of the head pfn. 1960 */ 1961 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1962 { 1963 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) 1964 return false; 1965 return true; 1966 } 1967 1968 /* 1969 * Free pages to buddy allocator. Try to free aligned pages in 1970 * MAX_ORDER_NR_PAGES sizes. 1971 */ 1972 static void __init deferred_free_pages(unsigned long pfn, 1973 unsigned long end_pfn) 1974 { 1975 unsigned long nr_free = 0; 1976 1977 for (; pfn < end_pfn; pfn++) { 1978 if (!deferred_pfn_valid(pfn)) { 1979 deferred_free_range(pfn - nr_free, nr_free); 1980 nr_free = 0; 1981 } else if (IS_MAX_ORDER_ALIGNED(pfn)) { 1982 deferred_free_range(pfn - nr_free, nr_free); 1983 nr_free = 1; 1984 } else { 1985 nr_free++; 1986 } 1987 } 1988 /* Free the last block of pages to allocator */ 1989 deferred_free_range(pfn - nr_free, nr_free); 1990 } 1991 1992 /* 1993 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1994 * by performing it only once every MAX_ORDER_NR_PAGES. 1995 * Return number of pages initialized. 1996 */ 1997 static unsigned long __init deferred_init_pages(struct zone *zone, 1998 unsigned long pfn, 1999 unsigned long end_pfn) 2000 { 2001 int nid = zone_to_nid(zone); 2002 unsigned long nr_pages = 0; 2003 int zid = zone_idx(zone); 2004 struct page *page = NULL; 2005 2006 for (; pfn < end_pfn; pfn++) { 2007 if (!deferred_pfn_valid(pfn)) { 2008 page = NULL; 2009 continue; 2010 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { 2011 page = pfn_to_page(pfn); 2012 } else { 2013 page++; 2014 } 2015 __init_single_page(page, pfn, zid, nid); 2016 nr_pages++; 2017 } 2018 return nr_pages; 2019 } 2020 2021 /* 2022 * This function is meant to pre-load the iterator for the zone init. 2023 * Specifically it walks through the ranges until we are caught up to the 2024 * first_init_pfn value and exits there. If we never encounter the value we 2025 * return false indicating there are no valid ranges left. 2026 */ 2027 static bool __init 2028 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2029 unsigned long *spfn, unsigned long *epfn, 2030 unsigned long first_init_pfn) 2031 { 2032 u64 j; 2033 2034 /* 2035 * Start out by walking through the ranges in this zone that have 2036 * already been initialized. We don't need to do anything with them 2037 * so we just need to flush them out of the system. 2038 */ 2039 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2040 if (*epfn <= first_init_pfn) 2041 continue; 2042 if (*spfn < first_init_pfn) 2043 *spfn = first_init_pfn; 2044 *i = j; 2045 return true; 2046 } 2047 2048 return false; 2049 } 2050 2051 /* 2052 * Initialize and free pages. We do it in two loops: first we initialize 2053 * struct page, then free to buddy allocator, because while we are 2054 * freeing pages we can access pages that are ahead (computing buddy 2055 * page in __free_one_page()). 2056 * 2057 * In order to try and keep some memory in the cache we have the loop 2058 * broken along max page order boundaries. This way we will not cause 2059 * any issues with the buddy page computation. 2060 */ 2061 static unsigned long __init 2062 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2063 unsigned long *end_pfn) 2064 { 2065 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2066 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2067 unsigned long nr_pages = 0; 2068 u64 j = *i; 2069 2070 /* First we loop through and initialize the page values */ 2071 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2072 unsigned long t; 2073 2074 if (mo_pfn <= *start_pfn) 2075 break; 2076 2077 t = min(mo_pfn, *end_pfn); 2078 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2079 2080 if (mo_pfn < *end_pfn) { 2081 *start_pfn = mo_pfn; 2082 break; 2083 } 2084 } 2085 2086 /* Reset values and now loop through freeing pages as needed */ 2087 swap(j, *i); 2088 2089 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2090 unsigned long t; 2091 2092 if (mo_pfn <= spfn) 2093 break; 2094 2095 t = min(mo_pfn, epfn); 2096 deferred_free_pages(spfn, t); 2097 2098 if (mo_pfn <= epfn) 2099 break; 2100 } 2101 2102 return nr_pages; 2103 } 2104 2105 static void __init 2106 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2107 void *arg) 2108 { 2109 unsigned long spfn, epfn; 2110 struct zone *zone = arg; 2111 u64 i; 2112 2113 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2114 2115 /* 2116 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that 2117 * we can avoid introducing any issues with the buddy allocator. 2118 */ 2119 while (spfn < end_pfn) { 2120 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2121 cond_resched(); 2122 } 2123 } 2124 2125 /* An arch may override for more concurrency. */ 2126 __weak int __init 2127 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2128 { 2129 return 1; 2130 } 2131 2132 /* Initialise remaining memory on a node */ 2133 static int __init deferred_init_memmap(void *data) 2134 { 2135 pg_data_t *pgdat = data; 2136 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2137 unsigned long spfn = 0, epfn = 0; 2138 unsigned long first_init_pfn, flags; 2139 unsigned long start = jiffies; 2140 struct zone *zone; 2141 int zid, max_threads; 2142 u64 i; 2143 2144 /* Bind memory initialisation thread to a local node if possible */ 2145 if (!cpumask_empty(cpumask)) 2146 set_cpus_allowed_ptr(current, cpumask); 2147 2148 pgdat_resize_lock(pgdat, &flags); 2149 first_init_pfn = pgdat->first_deferred_pfn; 2150 if (first_init_pfn == ULONG_MAX) { 2151 pgdat_resize_unlock(pgdat, &flags); 2152 pgdat_init_report_one_done(); 2153 return 0; 2154 } 2155 2156 /* Sanity check boundaries */ 2157 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2158 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2159 pgdat->first_deferred_pfn = ULONG_MAX; 2160 2161 /* 2162 * Once we unlock here, the zone cannot be grown anymore, thus if an 2163 * interrupt thread must allocate this early in boot, zone must be 2164 * pre-grown prior to start of deferred page initialization. 2165 */ 2166 pgdat_resize_unlock(pgdat, &flags); 2167 2168 /* Only the highest zone is deferred so find it */ 2169 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2170 zone = pgdat->node_zones + zid; 2171 if (first_init_pfn < zone_end_pfn(zone)) 2172 break; 2173 } 2174 2175 /* If the zone is empty somebody else may have cleared out the zone */ 2176 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2177 first_init_pfn)) 2178 goto zone_empty; 2179 2180 max_threads = deferred_page_init_max_threads(cpumask); 2181 2182 while (spfn < epfn) { 2183 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2184 struct padata_mt_job job = { 2185 .thread_fn = deferred_init_memmap_chunk, 2186 .fn_arg = zone, 2187 .start = spfn, 2188 .size = epfn_align - spfn, 2189 .align = PAGES_PER_SECTION, 2190 .min_chunk = PAGES_PER_SECTION, 2191 .max_threads = max_threads, 2192 .numa_aware = false, 2193 }; 2194 2195 padata_do_multithreaded(&job); 2196 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2197 epfn_align); 2198 } 2199 zone_empty: 2200 /* Sanity check that the next zone really is unpopulated */ 2201 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2202 2203 pr_info("node %d deferred pages initialised in %ums\n", 2204 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2205 2206 pgdat_init_report_one_done(); 2207 return 0; 2208 } 2209 2210 /* 2211 * If this zone has deferred pages, try to grow it by initializing enough 2212 * deferred pages to satisfy the allocation specified by order, rounded up to 2213 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2214 * of SECTION_SIZE bytes by initializing struct pages in increments of 2215 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2216 * 2217 * Return true when zone was grown, otherwise return false. We return true even 2218 * when we grow less than requested, to let the caller decide if there are 2219 * enough pages to satisfy the allocation. 2220 */ 2221 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2222 { 2223 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2224 pg_data_t *pgdat = zone->zone_pgdat; 2225 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2226 unsigned long spfn, epfn, flags; 2227 unsigned long nr_pages = 0; 2228 u64 i; 2229 2230 /* Only the last zone may have deferred pages */ 2231 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2232 return false; 2233 2234 pgdat_resize_lock(pgdat, &flags); 2235 2236 /* 2237 * If someone grew this zone while we were waiting for spinlock, return 2238 * true, as there might be enough pages already. 2239 */ 2240 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2241 pgdat_resize_unlock(pgdat, &flags); 2242 return true; 2243 } 2244 2245 /* If the zone is empty somebody else may have cleared out the zone */ 2246 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2247 first_deferred_pfn)) { 2248 pgdat->first_deferred_pfn = ULONG_MAX; 2249 pgdat_resize_unlock(pgdat, &flags); 2250 /* Retry only once. */ 2251 return first_deferred_pfn != ULONG_MAX; 2252 } 2253 2254 /* 2255 * Initialize and free pages in MAX_PAGE_ORDER sized increments so 2256 * that we can avoid introducing any issues with the buddy 2257 * allocator. 2258 */ 2259 while (spfn < epfn) { 2260 /* update our first deferred PFN for this section */ 2261 first_deferred_pfn = spfn; 2262 2263 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2264 touch_nmi_watchdog(); 2265 2266 /* We should only stop along section boundaries */ 2267 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2268 continue; 2269 2270 /* If our quota has been met we can stop here */ 2271 if (nr_pages >= nr_pages_needed) 2272 break; 2273 } 2274 2275 pgdat->first_deferred_pfn = spfn; 2276 pgdat_resize_unlock(pgdat, &flags); 2277 2278 return nr_pages > 0; 2279 } 2280 2281 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2282 2283 #ifdef CONFIG_CMA 2284 void __init init_cma_reserved_pageblock(struct page *page) 2285 { 2286 unsigned i = pageblock_nr_pages; 2287 struct page *p = page; 2288 2289 do { 2290 __ClearPageReserved(p); 2291 set_page_count(p, 0); 2292 } while (++p, --i); 2293 2294 set_pageblock_migratetype(page, MIGRATE_CMA); 2295 set_page_refcounted(page); 2296 __free_pages(page, pageblock_order); 2297 2298 adjust_managed_page_count(page, pageblock_nr_pages); 2299 page_zone(page)->cma_pages += pageblock_nr_pages; 2300 } 2301 #endif 2302 2303 void set_zone_contiguous(struct zone *zone) 2304 { 2305 unsigned long block_start_pfn = zone->zone_start_pfn; 2306 unsigned long block_end_pfn; 2307 2308 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2309 for (; block_start_pfn < zone_end_pfn(zone); 2310 block_start_pfn = block_end_pfn, 2311 block_end_pfn += pageblock_nr_pages) { 2312 2313 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2314 2315 if (!__pageblock_pfn_to_page(block_start_pfn, 2316 block_end_pfn, zone)) 2317 return; 2318 cond_resched(); 2319 } 2320 2321 /* We confirm that there is no hole */ 2322 zone->contiguous = true; 2323 } 2324 2325 void __init page_alloc_init_late(void) 2326 { 2327 struct zone *zone; 2328 int nid; 2329 2330 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2331 2332 /* There will be num_node_state(N_MEMORY) threads */ 2333 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2334 for_each_node_state(nid, N_MEMORY) { 2335 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2336 } 2337 2338 /* Block until all are initialised */ 2339 wait_for_completion(&pgdat_init_all_done_comp); 2340 2341 /* 2342 * We initialized the rest of the deferred pages. Permanently disable 2343 * on-demand struct page initialization. 2344 */ 2345 static_branch_disable(&deferred_pages); 2346 2347 /* Reinit limits that are based on free pages after the kernel is up */ 2348 files_maxfiles_init(); 2349 #endif 2350 2351 buffer_init(); 2352 2353 /* Discard memblock private memory */ 2354 memblock_discard(); 2355 2356 for_each_node_state(nid, N_MEMORY) 2357 shuffle_free_memory(NODE_DATA(nid)); 2358 2359 for_each_populated_zone(zone) 2360 set_zone_contiguous(zone); 2361 2362 /* Initialize page ext after all struct pages are initialized. */ 2363 if (deferred_struct_pages) 2364 page_ext_init(); 2365 2366 page_alloc_sysctl_init(); 2367 } 2368 2369 /* 2370 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2371 * machines. As memory size is increased the scale is also increased but at 2372 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2373 * quadruples the scale is increased by one, which means the size of hash table 2374 * only doubles, instead of quadrupling as well. 2375 * Because 32-bit systems cannot have large physical memory, where this scaling 2376 * makes sense, it is disabled on such platforms. 2377 */ 2378 #if __BITS_PER_LONG > 32 2379 #define ADAPT_SCALE_BASE (64ul << 30) 2380 #define ADAPT_SCALE_SHIFT 2 2381 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2382 #endif 2383 2384 /* 2385 * allocate a large system hash table from bootmem 2386 * - it is assumed that the hash table must contain an exact power-of-2 2387 * quantity of entries 2388 * - limit is the number of hash buckets, not the total allocation size 2389 */ 2390 void *__init alloc_large_system_hash(const char *tablename, 2391 unsigned long bucketsize, 2392 unsigned long numentries, 2393 int scale, 2394 int flags, 2395 unsigned int *_hash_shift, 2396 unsigned int *_hash_mask, 2397 unsigned long low_limit, 2398 unsigned long high_limit) 2399 { 2400 unsigned long long max = high_limit; 2401 unsigned long log2qty, size; 2402 void *table; 2403 gfp_t gfp_flags; 2404 bool virt; 2405 bool huge; 2406 2407 /* allow the kernel cmdline to have a say */ 2408 if (!numentries) { 2409 /* round applicable memory size up to nearest megabyte */ 2410 numentries = nr_kernel_pages; 2411 2412 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2413 if (PAGE_SIZE < SZ_1M) 2414 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2415 2416 #if __BITS_PER_LONG > 32 2417 if (!high_limit) { 2418 unsigned long adapt; 2419 2420 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2421 adapt <<= ADAPT_SCALE_SHIFT) 2422 scale++; 2423 } 2424 #endif 2425 2426 /* limit to 1 bucket per 2^scale bytes of low memory */ 2427 if (scale > PAGE_SHIFT) 2428 numentries >>= (scale - PAGE_SHIFT); 2429 else 2430 numentries <<= (PAGE_SHIFT - scale); 2431 2432 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2433 numentries = PAGE_SIZE / bucketsize; 2434 } 2435 numentries = roundup_pow_of_two(numentries); 2436 2437 /* limit allocation size to 1/16 total memory by default */ 2438 if (max == 0) { 2439 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2440 do_div(max, bucketsize); 2441 } 2442 max = min(max, 0x80000000ULL); 2443 2444 if (numentries < low_limit) 2445 numentries = low_limit; 2446 if (numentries > max) 2447 numentries = max; 2448 2449 log2qty = ilog2(numentries); 2450 2451 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2452 do { 2453 virt = false; 2454 size = bucketsize << log2qty; 2455 if (flags & HASH_EARLY) { 2456 if (flags & HASH_ZERO) 2457 table = memblock_alloc(size, SMP_CACHE_BYTES); 2458 else 2459 table = memblock_alloc_raw(size, 2460 SMP_CACHE_BYTES); 2461 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { 2462 table = vmalloc_huge(size, gfp_flags); 2463 virt = true; 2464 if (table) 2465 huge = is_vm_area_hugepages(table); 2466 } else { 2467 /* 2468 * If bucketsize is not a power-of-two, we may free 2469 * some pages at the end of hash table which 2470 * alloc_pages_exact() automatically does 2471 */ 2472 table = alloc_pages_exact(size, gfp_flags); 2473 kmemleak_alloc(table, size, 1, gfp_flags); 2474 } 2475 } while (!table && size > PAGE_SIZE && --log2qty); 2476 2477 if (!table) 2478 panic("Failed to allocate %s hash table\n", tablename); 2479 2480 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2481 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2482 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2483 2484 if (_hash_shift) 2485 *_hash_shift = log2qty; 2486 if (_hash_mask) 2487 *_hash_mask = (1 << log2qty) - 1; 2488 2489 return table; 2490 } 2491 2492 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2493 unsigned int order) 2494 { 2495 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2496 int nid = early_pfn_to_nid(pfn); 2497 2498 if (!early_page_initialised(pfn, nid)) 2499 return; 2500 } 2501 2502 if (!kmsan_memblock_free_pages(page, order)) { 2503 /* KMSAN will take care of these pages. */ 2504 return; 2505 } 2506 2507 /* pages were reserved and not allocated */ 2508 if (mem_alloc_profiling_enabled()) { 2509 union codetag_ref *ref = get_page_tag_ref(page); 2510 2511 if (ref) { 2512 set_codetag_empty(ref); 2513 put_page_tag_ref(ref); 2514 } 2515 } 2516 2517 __free_pages_core(page, order); 2518 } 2519 2520 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2521 EXPORT_SYMBOL(init_on_alloc); 2522 2523 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2524 EXPORT_SYMBOL(init_on_free); 2525 2526 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON, init_mlocked_on_free); 2527 EXPORT_SYMBOL(init_mlocked_on_free); 2528 2529 static bool _init_on_alloc_enabled_early __read_mostly 2530 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2531 static int __init early_init_on_alloc(char *buf) 2532 { 2533 2534 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2535 } 2536 early_param("init_on_alloc", early_init_on_alloc); 2537 2538 static bool _init_on_free_enabled_early __read_mostly 2539 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2540 static int __init early_init_on_free(char *buf) 2541 { 2542 return kstrtobool(buf, &_init_on_free_enabled_early); 2543 } 2544 early_param("init_on_free", early_init_on_free); 2545 2546 static bool _init_mlocked_on_free_enabled_early __read_mostly 2547 = IS_ENABLED(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON); 2548 static int __init early_init_mlocked_on_free(char *buf) 2549 { 2550 return kstrtobool(buf, &_init_mlocked_on_free_enabled_early); 2551 } 2552 early_param("init_mlocked_on_free", early_init_mlocked_on_free); 2553 2554 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2555 2556 /* 2557 * Enable static keys related to various memory debugging and hardening options. 2558 * Some override others, and depend on early params that are evaluated in the 2559 * order of appearance. So we need to first gather the full picture of what was 2560 * enabled, and then make decisions. 2561 */ 2562 static void __init mem_debugging_and_hardening_init(void) 2563 { 2564 bool page_poisoning_requested = false; 2565 bool want_check_pages = false; 2566 2567 #ifdef CONFIG_PAGE_POISONING 2568 /* 2569 * Page poisoning is debug page alloc for some arches. If 2570 * either of those options are enabled, enable poisoning. 2571 */ 2572 if (page_poisoning_enabled() || 2573 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2574 debug_pagealloc_enabled())) { 2575 static_branch_enable(&_page_poisoning_enabled); 2576 page_poisoning_requested = true; 2577 want_check_pages = true; 2578 } 2579 #endif 2580 2581 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early || 2582 _init_mlocked_on_free_enabled_early) && 2583 page_poisoning_requested) { 2584 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2585 "will take precedence over init_on_alloc, init_on_free " 2586 "and init_mlocked_on_free\n"); 2587 _init_on_alloc_enabled_early = false; 2588 _init_on_free_enabled_early = false; 2589 _init_mlocked_on_free_enabled_early = false; 2590 } 2591 2592 if (_init_mlocked_on_free_enabled_early && _init_on_free_enabled_early) { 2593 pr_info("mem auto-init: init_on_free is on, " 2594 "will take precedence over init_mlocked_on_free\n"); 2595 _init_mlocked_on_free_enabled_early = false; 2596 } 2597 2598 if (_init_on_alloc_enabled_early) { 2599 want_check_pages = true; 2600 static_branch_enable(&init_on_alloc); 2601 } else { 2602 static_branch_disable(&init_on_alloc); 2603 } 2604 2605 if (_init_on_free_enabled_early) { 2606 want_check_pages = true; 2607 static_branch_enable(&init_on_free); 2608 } else { 2609 static_branch_disable(&init_on_free); 2610 } 2611 2612 if (_init_mlocked_on_free_enabled_early) { 2613 want_check_pages = true; 2614 static_branch_enable(&init_mlocked_on_free); 2615 } else { 2616 static_branch_disable(&init_mlocked_on_free); 2617 } 2618 2619 if (IS_ENABLED(CONFIG_KMSAN) && (_init_on_alloc_enabled_early || 2620 _init_on_free_enabled_early || _init_mlocked_on_free_enabled_early)) 2621 pr_info("mem auto-init: please make sure init_on_alloc, init_on_free and " 2622 "init_mlocked_on_free are disabled when running KMSAN\n"); 2623 2624 #ifdef CONFIG_DEBUG_PAGEALLOC 2625 if (debug_pagealloc_enabled()) { 2626 want_check_pages = true; 2627 static_branch_enable(&_debug_pagealloc_enabled); 2628 2629 if (debug_guardpage_minorder()) 2630 static_branch_enable(&_debug_guardpage_enabled); 2631 } 2632 #endif 2633 2634 /* 2635 * Any page debugging or hardening option also enables sanity checking 2636 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2637 * enabled already. 2638 */ 2639 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2640 static_branch_enable(&check_pages_enabled); 2641 } 2642 2643 /* Report memory auto-initialization states for this boot. */ 2644 static void __init report_meminit(void) 2645 { 2646 const char *stack; 2647 2648 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2649 stack = "all(pattern)"; 2650 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2651 stack = "all(zero)"; 2652 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2653 stack = "byref_all(zero)"; 2654 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2655 stack = "byref(zero)"; 2656 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2657 stack = "__user(zero)"; 2658 else 2659 stack = "off"; 2660 2661 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s, mlocked free:%s\n", 2662 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2663 want_init_on_free() ? "on" : "off", 2664 want_init_mlocked_on_free() ? "on" : "off"); 2665 if (want_init_on_free()) 2666 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2667 } 2668 2669 static void __init mem_init_print_info(void) 2670 { 2671 unsigned long physpages, codesize, datasize, rosize, bss_size; 2672 unsigned long init_code_size, init_data_size; 2673 2674 physpages = get_num_physpages(); 2675 codesize = _etext - _stext; 2676 datasize = _edata - _sdata; 2677 rosize = __end_rodata - __start_rodata; 2678 bss_size = __bss_stop - __bss_start; 2679 init_data_size = __init_end - __init_begin; 2680 init_code_size = _einittext - _sinittext; 2681 2682 /* 2683 * Detect special cases and adjust section sizes accordingly: 2684 * 1) .init.* may be embedded into .data sections 2685 * 2) .init.text.* may be out of [__init_begin, __init_end], 2686 * please refer to arch/tile/kernel/vmlinux.lds.S. 2687 * 3) .rodata.* may be embedded into .text or .data sections. 2688 */ 2689 #define adj_init_size(start, end, size, pos, adj) \ 2690 do { \ 2691 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2692 size -= adj; \ 2693 } while (0) 2694 2695 adj_init_size(__init_begin, __init_end, init_data_size, 2696 _sinittext, init_code_size); 2697 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2698 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2699 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2700 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2701 2702 #undef adj_init_size 2703 2704 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2705 #ifdef CONFIG_HIGHMEM 2706 ", %luK highmem" 2707 #endif 2708 ")\n", 2709 K(nr_free_pages()), K(physpages), 2710 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2711 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2712 K(physpages - totalram_pages() - totalcma_pages), 2713 K(totalcma_pages) 2714 #ifdef CONFIG_HIGHMEM 2715 , K(totalhigh_pages()) 2716 #endif 2717 ); 2718 } 2719 2720 /* 2721 * Set up kernel memory allocators 2722 */ 2723 void __init mm_core_init(void) 2724 { 2725 /* Initializations relying on SMP setup */ 2726 build_all_zonelists(NULL); 2727 page_alloc_init_cpuhp(); 2728 2729 /* 2730 * page_ext requires contiguous pages, 2731 * bigger than MAX_PAGE_ORDER unless SPARSEMEM. 2732 */ 2733 page_ext_init_flatmem(); 2734 mem_debugging_and_hardening_init(); 2735 kfence_alloc_pool_and_metadata(); 2736 report_meminit(); 2737 kmsan_init_shadow(); 2738 stack_depot_early_init(); 2739 mem_init(); 2740 mem_init_print_info(); 2741 kmem_cache_init(); 2742 /* 2743 * page_owner must be initialized after buddy is ready, and also after 2744 * slab is ready so that stack_depot_init() works properly 2745 */ 2746 page_ext_init_flatmem_late(); 2747 kmemleak_init(); 2748 ptlock_cache_init(); 2749 pgtable_cache_init(); 2750 debug_objects_mem_init(); 2751 vmalloc_init(); 2752 /* If no deferred init page_ext now, as vmap is fully initialized */ 2753 if (!deferred_struct_pages) 2754 page_ext_init(); 2755 /* Should be run before the first non-init thread is created */ 2756 init_espfix_bsp(); 2757 /* Should be run after espfix64 is set up. */ 2758 pti_init(); 2759 kmsan_init_runtime(); 2760 mm_cache_init(); 2761 execmem_init(); 2762 } 2763