xref: /linux/mm/mm_init.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include "internal.h"
34 #include "slab.h"
35 #include "shuffle.h"
36 
37 #include <asm/setup.h>
38 
39 #ifdef CONFIG_DEBUG_MEMORY_INIT
40 int __meminitdata mminit_loglevel;
41 
42 /* The zonelists are simply reported, validation is manual. */
43 void __init mminit_verify_zonelist(void)
44 {
45 	int nid;
46 
47 	if (mminit_loglevel < MMINIT_VERIFY)
48 		return;
49 
50 	for_each_online_node(nid) {
51 		pg_data_t *pgdat = NODE_DATA(nid);
52 		struct zone *zone;
53 		struct zoneref *z;
54 		struct zonelist *zonelist;
55 		int i, listid, zoneid;
56 
57 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58 
59 			/* Identify the zone and nodelist */
60 			zoneid = i % MAX_NR_ZONES;
61 			listid = i / MAX_NR_ZONES;
62 			zonelist = &pgdat->node_zonelists[listid];
63 			zone = &pgdat->node_zones[zoneid];
64 			if (!populated_zone(zone))
65 				continue;
66 
67 			/* Print information about the zonelist */
68 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 				listid > 0 ? "thisnode" : "general", nid,
70 				zone->name);
71 
72 			/* Iterate the zonelist */
73 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 			pr_cont("\n");
76 		}
77 	}
78 }
79 
80 void __init mminit_verify_pageflags_layout(void)
81 {
82 	int shift, width;
83 	unsigned long or_mask, add_mask;
84 
85 	shift = BITS_PER_LONG;
86 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90 		SECTIONS_WIDTH,
91 		NODES_WIDTH,
92 		ZONES_WIDTH,
93 		LAST_CPUPID_WIDTH,
94 		KASAN_TAG_WIDTH,
95 		LRU_GEN_WIDTH,
96 		LRU_REFS_WIDTH,
97 		NR_PAGEFLAGS);
98 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100 		SECTIONS_SHIFT,
101 		NODES_SHIFT,
102 		ZONES_SHIFT,
103 		LAST_CPUPID_SHIFT,
104 		KASAN_TAG_WIDTH);
105 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107 		(unsigned long)SECTIONS_PGSHIFT,
108 		(unsigned long)NODES_PGSHIFT,
109 		(unsigned long)ZONES_PGSHIFT,
110 		(unsigned long)LAST_CPUPID_PGSHIFT,
111 		(unsigned long)KASAN_TAG_PGSHIFT);
112 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113 		"Node/Zone ID: %lu -> %lu\n",
114 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115 		(unsigned long)ZONEID_PGOFF);
116 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119 #ifdef NODE_NOT_IN_PAGE_FLAGS
120 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121 		"Node not in page flags");
122 #endif
123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125 		"Last cpupid not in page flags");
126 #endif
127 
128 	if (SECTIONS_WIDTH) {
129 		shift -= SECTIONS_WIDTH;
130 		BUG_ON(shift != SECTIONS_PGSHIFT);
131 	}
132 	if (NODES_WIDTH) {
133 		shift -= NODES_WIDTH;
134 		BUG_ON(shift != NODES_PGSHIFT);
135 	}
136 	if (ZONES_WIDTH) {
137 		shift -= ZONES_WIDTH;
138 		BUG_ON(shift != ZONES_PGSHIFT);
139 	}
140 
141 	/* Check for bitmask overlaps */
142 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143 			(NODES_MASK << NODES_PGSHIFT) |
144 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
145 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146 			(NODES_MASK << NODES_PGSHIFT) +
147 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
148 	BUG_ON(or_mask != add_mask);
149 }
150 
151 static __init int set_mminit_loglevel(char *str)
152 {
153 	get_option(&str, &mminit_loglevel);
154 	return 0;
155 }
156 early_param("mminit_loglevel", set_mminit_loglevel);
157 #endif /* CONFIG_DEBUG_MEMORY_INIT */
158 
159 struct kobject *mm_kobj;
160 
161 #ifdef CONFIG_SMP
162 s32 vm_committed_as_batch = 32;
163 
164 void mm_compute_batch(int overcommit_policy)
165 {
166 	u64 memsized_batch;
167 	s32 nr = num_present_cpus();
168 	s32 batch = max_t(s32, nr*2, 32);
169 	unsigned long ram_pages = totalram_pages();
170 
171 	/*
172 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173 	 * (total memory/#cpus), and lift it to 25% for other policies
174 	 * to easy the possible lock contention for percpu_counter
175 	 * vm_committed_as, while the max limit is INT_MAX
176 	 */
177 	if (overcommit_policy == OVERCOMMIT_NEVER)
178 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179 	else
180 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181 
182 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183 }
184 
185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186 					unsigned long action, void *arg)
187 {
188 	switch (action) {
189 	case MEM_ONLINE:
190 	case MEM_OFFLINE:
191 		mm_compute_batch(sysctl_overcommit_memory);
192 		break;
193 	default:
194 		break;
195 	}
196 	return NOTIFY_OK;
197 }
198 
199 static int __init mm_compute_batch_init(void)
200 {
201 	mm_compute_batch(sysctl_overcommit_memory);
202 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203 	return 0;
204 }
205 
206 __initcall(mm_compute_batch_init);
207 
208 #endif
209 
210 static int __init mm_sysfs_init(void)
211 {
212 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213 	if (!mm_kobj)
214 		return -ENOMEM;
215 
216 	return 0;
217 }
218 postcore_initcall(mm_sysfs_init);
219 
220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223 
224 static unsigned long required_kernelcore __initdata;
225 static unsigned long required_kernelcore_percent __initdata;
226 static unsigned long required_movablecore __initdata;
227 static unsigned long required_movablecore_percent __initdata;
228 
229 static unsigned long nr_kernel_pages __initdata;
230 static unsigned long nr_all_pages __initdata;
231 
232 static bool deferred_struct_pages __meminitdata;
233 
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235 
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237 				     unsigned long *percent)
238 {
239 	unsigned long long coremem;
240 	char *endptr;
241 
242 	if (!p)
243 		return -EINVAL;
244 
245 	/* Value may be a percentage of total memory, otherwise bytes */
246 	coremem = simple_strtoull(p, &endptr, 0);
247 	if (*endptr == '%') {
248 		/* Paranoid check for percent values greater than 100 */
249 		WARN_ON(coremem > 100);
250 
251 		*percent = coremem;
252 	} else {
253 		coremem = memparse(p, &p);
254 		/* Paranoid check that UL is enough for the coremem value */
255 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256 
257 		*core = coremem >> PAGE_SHIFT;
258 		*percent = 0UL;
259 	}
260 	return 0;
261 }
262 
263 bool mirrored_kernelcore __initdata_memblock;
264 
265 /*
266  * kernelcore=size sets the amount of memory for use for allocations that
267  * cannot be reclaimed or migrated.
268  */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271 	/* parse kernelcore=mirror */
272 	if (parse_option_str(p, "mirror")) {
273 		mirrored_kernelcore = true;
274 		return 0;
275 	}
276 
277 	return cmdline_parse_core(p, &required_kernelcore,
278 				  &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281 
282 /*
283  * movablecore=size sets the amount of memory for use for allocations that
284  * can be reclaimed or migrated.
285  */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288 	return cmdline_parse_core(p, &required_movablecore,
289 				  &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292 
293 /*
294  * early_calculate_totalpages()
295  * Sum pages in active regions for movable zone.
296  * Populate N_MEMORY for calculating usable_nodes.
297  */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300 	unsigned long totalpages = 0;
301 	unsigned long start_pfn, end_pfn;
302 	int i, nid;
303 
304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 		unsigned long pages = end_pfn - start_pfn;
306 
307 		totalpages += pages;
308 		if (pages)
309 			node_set_state(nid, N_MEMORY);
310 	}
311 	return totalpages;
312 }
313 
314 /*
315  * This finds a zone that can be used for ZONE_MOVABLE pages. The
316  * assumption is made that zones within a node are ordered in monotonic
317  * increasing memory addresses so that the "highest" populated zone is used
318  */
319 static void __init find_usable_zone_for_movable(void)
320 {
321 	int zone_index;
322 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 		if (zone_index == ZONE_MOVABLE)
324 			continue;
325 
326 		if (arch_zone_highest_possible_pfn[zone_index] >
327 				arch_zone_lowest_possible_pfn[zone_index])
328 			break;
329 	}
330 
331 	VM_BUG_ON(zone_index == -1);
332 	movable_zone = zone_index;
333 }
334 
335 /*
336  * Find the PFN the Movable zone begins in each node. Kernel memory
337  * is spread evenly between nodes as long as the nodes have enough
338  * memory. When they don't, some nodes will have more kernelcore than
339  * others
340  */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343 	int i, nid;
344 	unsigned long usable_startpfn;
345 	unsigned long kernelcore_node, kernelcore_remaining;
346 	/* save the state before borrow the nodemask */
347 	nodemask_t saved_node_state = node_states[N_MEMORY];
348 	unsigned long totalpages = early_calculate_totalpages();
349 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 	struct memblock_region *r;
351 
352 	/* Need to find movable_zone earlier when movable_node is specified. */
353 	find_usable_zone_for_movable();
354 
355 	/*
356 	 * If movable_node is specified, ignore kernelcore and movablecore
357 	 * options.
358 	 */
359 	if (movable_node_is_enabled()) {
360 		for_each_mem_region(r) {
361 			if (!memblock_is_hotpluggable(r))
362 				continue;
363 
364 			nid = memblock_get_region_node(r);
365 
366 			usable_startpfn = memblock_region_memory_base_pfn(r);
367 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 				min(usable_startpfn, zone_movable_pfn[nid]) :
369 				usable_startpfn;
370 		}
371 
372 		goto out2;
373 	}
374 
375 	/*
376 	 * If kernelcore=mirror is specified, ignore movablecore option
377 	 */
378 	if (mirrored_kernelcore) {
379 		bool mem_below_4gb_not_mirrored = false;
380 
381 		if (!memblock_has_mirror()) {
382 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 			goto out;
384 		}
385 
386 		if (is_kdump_kernel()) {
387 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 			goto out;
389 		}
390 
391 		for_each_mem_region(r) {
392 			if (memblock_is_mirror(r))
393 				continue;
394 
395 			nid = memblock_get_region_node(r);
396 
397 			usable_startpfn = memblock_region_memory_base_pfn(r);
398 
399 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 				mem_below_4gb_not_mirrored = true;
401 				continue;
402 			}
403 
404 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 				min(usable_startpfn, zone_movable_pfn[nid]) :
406 				usable_startpfn;
407 		}
408 
409 		if (mem_below_4gb_not_mirrored)
410 			pr_warn("This configuration results in unmirrored kernel memory.\n");
411 
412 		goto out2;
413 	}
414 
415 	/*
416 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 	 * amount of necessary memory.
418 	 */
419 	if (required_kernelcore_percent)
420 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 				       10000UL;
422 	if (required_movablecore_percent)
423 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 					10000UL;
425 
426 	/*
427 	 * If movablecore= was specified, calculate what size of
428 	 * kernelcore that corresponds so that memory usable for
429 	 * any allocation type is evenly spread. If both kernelcore
430 	 * and movablecore are specified, then the value of kernelcore
431 	 * will be used for required_kernelcore if it's greater than
432 	 * what movablecore would have allowed.
433 	 */
434 	if (required_movablecore) {
435 		unsigned long corepages;
436 
437 		/*
438 		 * Round-up so that ZONE_MOVABLE is at least as large as what
439 		 * was requested by the user
440 		 */
441 		required_movablecore =
442 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 		required_movablecore = min(totalpages, required_movablecore);
444 		corepages = totalpages - required_movablecore;
445 
446 		required_kernelcore = max(required_kernelcore, corepages);
447 	}
448 
449 	/*
450 	 * If kernelcore was not specified or kernelcore size is larger
451 	 * than totalpages, there is no ZONE_MOVABLE.
452 	 */
453 	if (!required_kernelcore || required_kernelcore >= totalpages)
454 		goto out;
455 
456 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458 
459 restart:
460 	/* Spread kernelcore memory as evenly as possible throughout nodes */
461 	kernelcore_node = required_kernelcore / usable_nodes;
462 	for_each_node_state(nid, N_MEMORY) {
463 		unsigned long start_pfn, end_pfn;
464 
465 		/*
466 		 * Recalculate kernelcore_node if the division per node
467 		 * now exceeds what is necessary to satisfy the requested
468 		 * amount of memory for the kernel
469 		 */
470 		if (required_kernelcore < kernelcore_node)
471 			kernelcore_node = required_kernelcore / usable_nodes;
472 
473 		/*
474 		 * As the map is walked, we track how much memory is usable
475 		 * by the kernel using kernelcore_remaining. When it is
476 		 * 0, the rest of the node is usable by ZONE_MOVABLE
477 		 */
478 		kernelcore_remaining = kernelcore_node;
479 
480 		/* Go through each range of PFNs within this node */
481 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 			unsigned long size_pages;
483 
484 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 			if (start_pfn >= end_pfn)
486 				continue;
487 
488 			/* Account for what is only usable for kernelcore */
489 			if (start_pfn < usable_startpfn) {
490 				unsigned long kernel_pages;
491 				kernel_pages = min(end_pfn, usable_startpfn)
492 								- start_pfn;
493 
494 				kernelcore_remaining -= min(kernel_pages,
495 							kernelcore_remaining);
496 				required_kernelcore -= min(kernel_pages,
497 							required_kernelcore);
498 
499 				/* Continue if range is now fully accounted */
500 				if (end_pfn <= usable_startpfn) {
501 
502 					/*
503 					 * Push zone_movable_pfn to the end so
504 					 * that if we have to rebalance
505 					 * kernelcore across nodes, we will
506 					 * not double account here
507 					 */
508 					zone_movable_pfn[nid] = end_pfn;
509 					continue;
510 				}
511 				start_pfn = usable_startpfn;
512 			}
513 
514 			/*
515 			 * The usable PFN range for ZONE_MOVABLE is from
516 			 * start_pfn->end_pfn. Calculate size_pages as the
517 			 * number of pages used as kernelcore
518 			 */
519 			size_pages = end_pfn - start_pfn;
520 			if (size_pages > kernelcore_remaining)
521 				size_pages = kernelcore_remaining;
522 			zone_movable_pfn[nid] = start_pfn + size_pages;
523 
524 			/*
525 			 * Some kernelcore has been met, update counts and
526 			 * break if the kernelcore for this node has been
527 			 * satisfied
528 			 */
529 			required_kernelcore -= min(required_kernelcore,
530 								size_pages);
531 			kernelcore_remaining -= size_pages;
532 			if (!kernelcore_remaining)
533 				break;
534 		}
535 	}
536 
537 	/*
538 	 * If there is still required_kernelcore, we do another pass with one
539 	 * less node in the count. This will push zone_movable_pfn[nid] further
540 	 * along on the nodes that still have memory until kernelcore is
541 	 * satisfied
542 	 */
543 	usable_nodes--;
544 	if (usable_nodes && required_kernelcore > usable_nodes)
545 		goto restart;
546 
547 out2:
548 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 		unsigned long start_pfn, end_pfn;
551 
552 		zone_movable_pfn[nid] =
553 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554 
555 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 		if (zone_movable_pfn[nid] >= end_pfn)
557 			zone_movable_pfn[nid] = 0;
558 	}
559 
560 out:
561 	/* restore the node_state */
562 	node_states[N_MEMORY] = saved_node_state;
563 }
564 
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 				unsigned long zone, int nid)
567 {
568 	mm_zero_struct_page(page);
569 	set_page_links(page, zone, nid, pfn);
570 	init_page_count(page);
571 	atomic_set(&page->_mapcount, -1);
572 	page_cpupid_reset_last(page);
573 	page_kasan_tag_reset(page);
574 
575 	INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 	if (!is_highmem_idx(zone))
579 		set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582 
583 #ifdef CONFIG_NUMA
584 /*
585  * During memory init memblocks map pfns to nids. The search is expensive and
586  * this caches recent lookups. The implementation of __early_pfn_to_nid
587  * treats start/end as pfns.
588  */
589 struct mminit_pfnnid_cache {
590 	unsigned long last_start;
591 	unsigned long last_end;
592 	int last_nid;
593 };
594 
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596 
597 /*
598  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599  */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 					struct mminit_pfnnid_cache *state)
602 {
603 	unsigned long start_pfn, end_pfn;
604 	int nid;
605 
606 	if (state->last_start <= pfn && pfn < state->last_end)
607 		return state->last_nid;
608 
609 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 	if (nid != NUMA_NO_NODE) {
611 		state->last_start = start_pfn;
612 		state->last_end = end_pfn;
613 		state->last_nid = nid;
614 	}
615 
616 	return nid;
617 }
618 
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621 	static DEFINE_SPINLOCK(early_pfn_lock);
622 	int nid;
623 
624 	spin_lock(&early_pfn_lock);
625 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 	if (nid < 0)
627 		nid = first_online_node;
628 	spin_unlock(&early_pfn_lock);
629 
630 	return nid;
631 }
632 
633 int hashdist = HASHDIST_DEFAULT;
634 
635 static int __init set_hashdist(char *str)
636 {
637 	if (!str)
638 		return 0;
639 	hashdist = simple_strtoul(str, &str, 0);
640 	return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643 
644 static inline void fixup_hashdist(void)
645 {
646 	if (num_node_state(N_MEMORY) == 1)
647 		hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652 
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656 	pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658 
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 		return false;
664 
665 	return true;
666 }
667 
668 /*
669  * Returns true when the remaining initialisation should be deferred until
670  * later in the boot cycle when it can be parallelised.
671  */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675 	static unsigned long prev_end_pfn, nr_initialised;
676 
677 	if (early_page_ext_enabled())
678 		return false;
679 
680 	/* Always populate low zones for address-constrained allocations */
681 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
682 		return false;
683 
684 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
685 		return true;
686 
687 	/*
688 	 * prev_end_pfn static that contains the end of previous zone
689 	 * No need to protect because called very early in boot before smp_init.
690 	 */
691 	if (prev_end_pfn != end_pfn) {
692 		prev_end_pfn = end_pfn;
693 		nr_initialised = 0;
694 	}
695 
696 	/*
697 	 * We start only with one section of pages, more pages are added as
698 	 * needed until the rest of deferred pages are initialized.
699 	 */
700 	nr_initialised++;
701 	if ((nr_initialised > PAGES_PER_SECTION) &&
702 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
703 		NODE_DATA(nid)->first_deferred_pfn = pfn;
704 		return true;
705 	}
706 	return false;
707 }
708 
709 static void __meminit init_reserved_page(unsigned long pfn, int nid)
710 {
711 	pg_data_t *pgdat;
712 	int zid;
713 
714 	if (early_page_initialised(pfn, nid))
715 		return;
716 
717 	pgdat = NODE_DATA(nid);
718 
719 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
720 		struct zone *zone = &pgdat->node_zones[zid];
721 
722 		if (zone_spans_pfn(zone, pfn))
723 			break;
724 	}
725 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
726 }
727 #else
728 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
729 
730 static inline bool early_page_initialised(unsigned long pfn, int nid)
731 {
732 	return true;
733 }
734 
735 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
736 {
737 	return false;
738 }
739 
740 static inline void init_reserved_page(unsigned long pfn, int nid)
741 {
742 }
743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
744 
745 /*
746  * Initialised pages do not have PageReserved set. This function is
747  * called for each range allocated by the bootmem allocator and
748  * marks the pages PageReserved. The remaining valid pages are later
749  * sent to the buddy page allocator.
750  */
751 void __meminit reserve_bootmem_region(phys_addr_t start,
752 				      phys_addr_t end, int nid)
753 {
754 	unsigned long start_pfn = PFN_DOWN(start);
755 	unsigned long end_pfn = PFN_UP(end);
756 
757 	for (; start_pfn < end_pfn; start_pfn++) {
758 		if (pfn_valid(start_pfn)) {
759 			struct page *page = pfn_to_page(start_pfn);
760 
761 			init_reserved_page(start_pfn, nid);
762 
763 			/*
764 			 * no need for atomic set_bit because the struct
765 			 * page is not visible yet so nobody should
766 			 * access it yet.
767 			 */
768 			__SetPageReserved(page);
769 		}
770 	}
771 }
772 
773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774 static bool __meminit
775 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776 {
777 	static struct memblock_region *r;
778 
779 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781 			for_each_mem_region(r) {
782 				if (*pfn < memblock_region_memory_end_pfn(r))
783 					break;
784 			}
785 		}
786 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
787 		    memblock_is_mirror(r)) {
788 			*pfn = memblock_region_memory_end_pfn(r);
789 			return true;
790 		}
791 	}
792 	return false;
793 }
794 
795 /*
796  * Only struct pages that correspond to ranges defined by memblock.memory
797  * are zeroed and initialized by going through __init_single_page() during
798  * memmap_init_zone_range().
799  *
800  * But, there could be struct pages that correspond to holes in
801  * memblock.memory. This can happen because of the following reasons:
802  * - physical memory bank size is not necessarily the exact multiple of the
803  *   arbitrary section size
804  * - early reserved memory may not be listed in memblock.memory
805  * - non-memory regions covered by the contigious flatmem mapping
806  * - memory layouts defined with memmap= kernel parameter may not align
807  *   nicely with memmap sections
808  *
809  * Explicitly initialize those struct pages so that:
810  * - PG_Reserved is set
811  * - zone and node links point to zone and node that span the page if the
812  *   hole is in the middle of a zone
813  * - zone and node links point to adjacent zone/node if the hole falls on
814  *   the zone boundary; the pages in such holes will be prepended to the
815  *   zone/node above the hole except for the trailing pages in the last
816  *   section that will be appended to the zone/node below.
817  */
818 static void __init init_unavailable_range(unsigned long spfn,
819 					  unsigned long epfn,
820 					  int zone, int node)
821 {
822 	unsigned long pfn;
823 	u64 pgcnt = 0;
824 
825 	for (pfn = spfn; pfn < epfn; pfn++) {
826 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
827 			pfn = pageblock_end_pfn(pfn) - 1;
828 			continue;
829 		}
830 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
831 		__SetPageReserved(pfn_to_page(pfn));
832 		pgcnt++;
833 	}
834 
835 	if (pgcnt)
836 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
837 			node, zone_names[zone], pgcnt);
838 }
839 
840 /*
841  * Initially all pages are reserved - free ones are freed
842  * up by memblock_free_all() once the early boot process is
843  * done. Non-atomic initialization, single-pass.
844  *
845  * All aligned pageblocks are initialized to the specified migratetype
846  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
847  * zone stats (e.g., nr_isolate_pageblock) are touched.
848  */
849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
850 		unsigned long start_pfn, unsigned long zone_end_pfn,
851 		enum meminit_context context,
852 		struct vmem_altmap *altmap, int migratetype)
853 {
854 	unsigned long pfn, end_pfn = start_pfn + size;
855 	struct page *page;
856 
857 	if (highest_memmap_pfn < end_pfn - 1)
858 		highest_memmap_pfn = end_pfn - 1;
859 
860 #ifdef CONFIG_ZONE_DEVICE
861 	/*
862 	 * Honor reservation requested by the driver for this ZONE_DEVICE
863 	 * memory. We limit the total number of pages to initialize to just
864 	 * those that might contain the memory mapping. We will defer the
865 	 * ZONE_DEVICE page initialization until after we have released
866 	 * the hotplug lock.
867 	 */
868 	if (zone == ZONE_DEVICE) {
869 		if (!altmap)
870 			return;
871 
872 		if (start_pfn == altmap->base_pfn)
873 			start_pfn += altmap->reserve;
874 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
875 	}
876 #endif
877 
878 	for (pfn = start_pfn; pfn < end_pfn; ) {
879 		/*
880 		 * There can be holes in boot-time mem_map[]s handed to this
881 		 * function.  They do not exist on hotplugged memory.
882 		 */
883 		if (context == MEMINIT_EARLY) {
884 			if (overlap_memmap_init(zone, &pfn))
885 				continue;
886 			if (defer_init(nid, pfn, zone_end_pfn)) {
887 				deferred_struct_pages = true;
888 				break;
889 			}
890 		}
891 
892 		page = pfn_to_page(pfn);
893 		__init_single_page(page, pfn, zone, nid);
894 		if (context == MEMINIT_HOTPLUG) {
895 #ifdef CONFIG_ZONE_DEVICE
896 			if (zone == ZONE_DEVICE)
897 				__SetPageReserved(page);
898 			else
899 #endif
900 				__SetPageOffline(page);
901 		}
902 
903 		/*
904 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
905 		 * such that unmovable allocations won't be scattered all
906 		 * over the place during system boot.
907 		 */
908 		if (pageblock_aligned(pfn)) {
909 			set_pageblock_migratetype(page, migratetype);
910 			cond_resched();
911 		}
912 		pfn++;
913 	}
914 }
915 
916 static void __init memmap_init_zone_range(struct zone *zone,
917 					  unsigned long start_pfn,
918 					  unsigned long end_pfn,
919 					  unsigned long *hole_pfn)
920 {
921 	unsigned long zone_start_pfn = zone->zone_start_pfn;
922 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
923 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
924 
925 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
926 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
927 
928 	if (start_pfn >= end_pfn)
929 		return;
930 
931 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
932 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
933 
934 	if (*hole_pfn < start_pfn)
935 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
936 
937 	*hole_pfn = end_pfn;
938 }
939 
940 static void __init memmap_init(void)
941 {
942 	unsigned long start_pfn, end_pfn;
943 	unsigned long hole_pfn = 0;
944 	int i, j, zone_id = 0, nid;
945 
946 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
947 		struct pglist_data *node = NODE_DATA(nid);
948 
949 		for (j = 0; j < MAX_NR_ZONES; j++) {
950 			struct zone *zone = node->node_zones + j;
951 
952 			if (!populated_zone(zone))
953 				continue;
954 
955 			memmap_init_zone_range(zone, start_pfn, end_pfn,
956 					       &hole_pfn);
957 			zone_id = j;
958 		}
959 	}
960 
961 #ifdef CONFIG_SPARSEMEM
962 	/*
963 	 * Initialize the memory map for hole in the range [memory_end,
964 	 * section_end].
965 	 * Append the pages in this hole to the highest zone in the last
966 	 * node.
967 	 * The call to init_unavailable_range() is outside the ifdef to
968 	 * silence the compiler warining about zone_id set but not used;
969 	 * for FLATMEM it is a nop anyway
970 	 */
971 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
972 	if (hole_pfn < end_pfn)
973 #endif
974 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
975 }
976 
977 #ifdef CONFIG_ZONE_DEVICE
978 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
979 					  unsigned long zone_idx, int nid,
980 					  struct dev_pagemap *pgmap)
981 {
982 
983 	__init_single_page(page, pfn, zone_idx, nid);
984 
985 	/*
986 	 * Mark page reserved as it will need to wait for onlining
987 	 * phase for it to be fully associated with a zone.
988 	 *
989 	 * We can use the non-atomic __set_bit operation for setting
990 	 * the flag as we are still initializing the pages.
991 	 */
992 	__SetPageReserved(page);
993 
994 	/*
995 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
996 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
997 	 * ever freed or placed on a driver-private list.
998 	 */
999 	page->pgmap = pgmap;
1000 	page->zone_device_data = NULL;
1001 
1002 	/*
1003 	 * Mark the block movable so that blocks are reserved for
1004 	 * movable at startup. This will force kernel allocations
1005 	 * to reserve their blocks rather than leaking throughout
1006 	 * the address space during boot when many long-lived
1007 	 * kernel allocations are made.
1008 	 *
1009 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1010 	 * because this is done early in section_activate()
1011 	 */
1012 	if (pageblock_aligned(pfn)) {
1013 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1014 		cond_resched();
1015 	}
1016 
1017 	/*
1018 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1019 	 * which will set the page count to 1 when allocating the page.
1020 	 */
1021 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1022 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1023 		set_page_count(page, 0);
1024 }
1025 
1026 /*
1027  * With compound page geometry and when struct pages are stored in ram most
1028  * tail pages are reused. Consequently, the amount of unique struct pages to
1029  * initialize is a lot smaller that the total amount of struct pages being
1030  * mapped. This is a paired / mild layering violation with explicit knowledge
1031  * of how the sparse_vmemmap internals handle compound pages in the lack
1032  * of an altmap. See vmemmap_populate_compound_pages().
1033  */
1034 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1035 					      struct dev_pagemap *pgmap)
1036 {
1037 	if (!vmemmap_can_optimize(altmap, pgmap))
1038 		return pgmap_vmemmap_nr(pgmap);
1039 
1040 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1041 }
1042 
1043 static void __ref memmap_init_compound(struct page *head,
1044 				       unsigned long head_pfn,
1045 				       unsigned long zone_idx, int nid,
1046 				       struct dev_pagemap *pgmap,
1047 				       unsigned long nr_pages)
1048 {
1049 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1050 	unsigned int order = pgmap->vmemmap_shift;
1051 
1052 	__SetPageHead(head);
1053 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1054 		struct page *page = pfn_to_page(pfn);
1055 
1056 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1057 		prep_compound_tail(head, pfn - head_pfn);
1058 		set_page_count(page, 0);
1059 
1060 		/*
1061 		 * The first tail page stores important compound page info.
1062 		 * Call prep_compound_head() after the first tail page has
1063 		 * been initialized, to not have the data overwritten.
1064 		 */
1065 		if (pfn == head_pfn + 1)
1066 			prep_compound_head(head, order);
1067 	}
1068 }
1069 
1070 void __ref memmap_init_zone_device(struct zone *zone,
1071 				   unsigned long start_pfn,
1072 				   unsigned long nr_pages,
1073 				   struct dev_pagemap *pgmap)
1074 {
1075 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1076 	struct pglist_data *pgdat = zone->zone_pgdat;
1077 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1078 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1079 	unsigned long zone_idx = zone_idx(zone);
1080 	unsigned long start = jiffies;
1081 	int nid = pgdat->node_id;
1082 
1083 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1084 		return;
1085 
1086 	/*
1087 	 * The call to memmap_init should have already taken care
1088 	 * of the pages reserved for the memmap, so we can just jump to
1089 	 * the end of that region and start processing the device pages.
1090 	 */
1091 	if (altmap) {
1092 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1093 		nr_pages = end_pfn - start_pfn;
1094 	}
1095 
1096 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1097 		struct page *page = pfn_to_page(pfn);
1098 
1099 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1100 
1101 		if (pfns_per_compound == 1)
1102 			continue;
1103 
1104 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1105 				     compound_nr_pages(altmap, pgmap));
1106 	}
1107 
1108 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1109 		nr_pages, jiffies_to_msecs(jiffies - start));
1110 }
1111 #endif
1112 
1113 /*
1114  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1115  * because it is sized independent of architecture. Unlike the other zones,
1116  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1117  * in each node depending on the size of each node and how evenly kernelcore
1118  * is distributed. This helper function adjusts the zone ranges
1119  * provided by the architecture for a given node by using the end of the
1120  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1121  * zones within a node are in order of monotonic increases memory addresses
1122  */
1123 static void __init adjust_zone_range_for_zone_movable(int nid,
1124 					unsigned long zone_type,
1125 					unsigned long node_end_pfn,
1126 					unsigned long *zone_start_pfn,
1127 					unsigned long *zone_end_pfn)
1128 {
1129 	/* Only adjust if ZONE_MOVABLE is on this node */
1130 	if (zone_movable_pfn[nid]) {
1131 		/* Size ZONE_MOVABLE */
1132 		if (zone_type == ZONE_MOVABLE) {
1133 			*zone_start_pfn = zone_movable_pfn[nid];
1134 			*zone_end_pfn = min(node_end_pfn,
1135 				arch_zone_highest_possible_pfn[movable_zone]);
1136 
1137 		/* Adjust for ZONE_MOVABLE starting within this range */
1138 		} else if (!mirrored_kernelcore &&
1139 			*zone_start_pfn < zone_movable_pfn[nid] &&
1140 			*zone_end_pfn > zone_movable_pfn[nid]) {
1141 			*zone_end_pfn = zone_movable_pfn[nid];
1142 
1143 		/* Check if this whole range is within ZONE_MOVABLE */
1144 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1145 			*zone_start_pfn = *zone_end_pfn;
1146 	}
1147 }
1148 
1149 /*
1150  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1151  * then all holes in the requested range will be accounted for.
1152  */
1153 static unsigned long __init __absent_pages_in_range(int nid,
1154 				unsigned long range_start_pfn,
1155 				unsigned long range_end_pfn)
1156 {
1157 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1158 	unsigned long start_pfn, end_pfn;
1159 	int i;
1160 
1161 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1162 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1163 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1164 		nr_absent -= end_pfn - start_pfn;
1165 	}
1166 	return nr_absent;
1167 }
1168 
1169 /**
1170  * absent_pages_in_range - Return number of page frames in holes within a range
1171  * @start_pfn: The start PFN to start searching for holes
1172  * @end_pfn: The end PFN to stop searching for holes
1173  *
1174  * Return: the number of pages frames in memory holes within a range.
1175  */
1176 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1177 							unsigned long end_pfn)
1178 {
1179 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1180 }
1181 
1182 /* Return the number of page frames in holes in a zone on a node */
1183 static unsigned long __init zone_absent_pages_in_node(int nid,
1184 					unsigned long zone_type,
1185 					unsigned long zone_start_pfn,
1186 					unsigned long zone_end_pfn)
1187 {
1188 	unsigned long nr_absent;
1189 
1190 	/* zone is empty, we don't have any absent pages */
1191 	if (zone_start_pfn == zone_end_pfn)
1192 		return 0;
1193 
1194 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1195 
1196 	/*
1197 	 * ZONE_MOVABLE handling.
1198 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1199 	 * and vice versa.
1200 	 */
1201 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1202 		unsigned long start_pfn, end_pfn;
1203 		struct memblock_region *r;
1204 
1205 		for_each_mem_region(r) {
1206 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1207 					  zone_start_pfn, zone_end_pfn);
1208 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1209 					zone_start_pfn, zone_end_pfn);
1210 
1211 			if (zone_type == ZONE_MOVABLE &&
1212 			    memblock_is_mirror(r))
1213 				nr_absent += end_pfn - start_pfn;
1214 
1215 			if (zone_type == ZONE_NORMAL &&
1216 			    !memblock_is_mirror(r))
1217 				nr_absent += end_pfn - start_pfn;
1218 		}
1219 	}
1220 
1221 	return nr_absent;
1222 }
1223 
1224 /*
1225  * Return the number of pages a zone spans in a node, including holes
1226  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1227  */
1228 static unsigned long __init zone_spanned_pages_in_node(int nid,
1229 					unsigned long zone_type,
1230 					unsigned long node_start_pfn,
1231 					unsigned long node_end_pfn,
1232 					unsigned long *zone_start_pfn,
1233 					unsigned long *zone_end_pfn)
1234 {
1235 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1236 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1237 
1238 	/* Get the start and end of the zone */
1239 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1240 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1241 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1242 					   zone_start_pfn, zone_end_pfn);
1243 
1244 	/* Check that this node has pages within the zone's required range */
1245 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1246 		return 0;
1247 
1248 	/* Move the zone boundaries inside the node if necessary */
1249 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1250 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1251 
1252 	/* Return the spanned pages */
1253 	return *zone_end_pfn - *zone_start_pfn;
1254 }
1255 
1256 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1257 {
1258 	struct zone *z;
1259 
1260 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1261 		z->zone_start_pfn = 0;
1262 		z->spanned_pages = 0;
1263 		z->present_pages = 0;
1264 #if defined(CONFIG_MEMORY_HOTPLUG)
1265 		z->present_early_pages = 0;
1266 #endif
1267 	}
1268 
1269 	pgdat->node_spanned_pages = 0;
1270 	pgdat->node_present_pages = 0;
1271 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1272 }
1273 
1274 static void __init calc_nr_kernel_pages(void)
1275 {
1276 	unsigned long start_pfn, end_pfn;
1277 	phys_addr_t start_addr, end_addr;
1278 	u64 u;
1279 #ifdef CONFIG_HIGHMEM
1280 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1281 #endif
1282 
1283 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1284 		start_pfn = PFN_UP(start_addr);
1285 		end_pfn   = PFN_DOWN(end_addr);
1286 
1287 		if (start_pfn < end_pfn) {
1288 			nr_all_pages += end_pfn - start_pfn;
1289 #ifdef CONFIG_HIGHMEM
1290 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1291 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1292 #endif
1293 			nr_kernel_pages += end_pfn - start_pfn;
1294 		}
1295 	}
1296 }
1297 
1298 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1299 						unsigned long node_start_pfn,
1300 						unsigned long node_end_pfn)
1301 {
1302 	unsigned long realtotalpages = 0, totalpages = 0;
1303 	enum zone_type i;
1304 
1305 	for (i = 0; i < MAX_NR_ZONES; i++) {
1306 		struct zone *zone = pgdat->node_zones + i;
1307 		unsigned long zone_start_pfn, zone_end_pfn;
1308 		unsigned long spanned, absent;
1309 		unsigned long real_size;
1310 
1311 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1312 						     node_start_pfn,
1313 						     node_end_pfn,
1314 						     &zone_start_pfn,
1315 						     &zone_end_pfn);
1316 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1317 						   zone_start_pfn,
1318 						   zone_end_pfn);
1319 
1320 		real_size = spanned - absent;
1321 
1322 		if (spanned)
1323 			zone->zone_start_pfn = zone_start_pfn;
1324 		else
1325 			zone->zone_start_pfn = 0;
1326 		zone->spanned_pages = spanned;
1327 		zone->present_pages = real_size;
1328 #if defined(CONFIG_MEMORY_HOTPLUG)
1329 		zone->present_early_pages = real_size;
1330 #endif
1331 
1332 		totalpages += spanned;
1333 		realtotalpages += real_size;
1334 	}
1335 
1336 	pgdat->node_spanned_pages = totalpages;
1337 	pgdat->node_present_pages = realtotalpages;
1338 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1339 }
1340 
1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1342 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1343 {
1344 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1345 
1346 	spin_lock_init(&ds_queue->split_queue_lock);
1347 	INIT_LIST_HEAD(&ds_queue->split_queue);
1348 	ds_queue->split_queue_len = 0;
1349 }
1350 #else
1351 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1352 #endif
1353 
1354 #ifdef CONFIG_COMPACTION
1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1356 {
1357 	init_waitqueue_head(&pgdat->kcompactd_wait);
1358 }
1359 #else
1360 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1361 #endif
1362 
1363 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1364 {
1365 	int i;
1366 
1367 	pgdat_resize_init(pgdat);
1368 	pgdat_kswapd_lock_init(pgdat);
1369 
1370 	pgdat_init_split_queue(pgdat);
1371 	pgdat_init_kcompactd(pgdat);
1372 
1373 	init_waitqueue_head(&pgdat->kswapd_wait);
1374 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1375 
1376 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1377 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1378 
1379 	pgdat_page_ext_init(pgdat);
1380 	lruvec_init(&pgdat->__lruvec);
1381 }
1382 
1383 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1384 							unsigned long remaining_pages)
1385 {
1386 	atomic_long_set(&zone->managed_pages, remaining_pages);
1387 	zone_set_nid(zone, nid);
1388 	zone->name = zone_names[idx];
1389 	zone->zone_pgdat = NODE_DATA(nid);
1390 	spin_lock_init(&zone->lock);
1391 	zone_seqlock_init(zone);
1392 	zone_pcp_init(zone);
1393 }
1394 
1395 static void __meminit zone_init_free_lists(struct zone *zone)
1396 {
1397 	unsigned int order, t;
1398 	for_each_migratetype_order(order, t) {
1399 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1400 		zone->free_area[order].nr_free = 0;
1401 	}
1402 
1403 #ifdef CONFIG_UNACCEPTED_MEMORY
1404 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1405 #endif
1406 }
1407 
1408 void __meminit init_currently_empty_zone(struct zone *zone,
1409 					unsigned long zone_start_pfn,
1410 					unsigned long size)
1411 {
1412 	struct pglist_data *pgdat = zone->zone_pgdat;
1413 	int zone_idx = zone_idx(zone) + 1;
1414 
1415 	if (zone_idx > pgdat->nr_zones)
1416 		pgdat->nr_zones = zone_idx;
1417 
1418 	zone->zone_start_pfn = zone_start_pfn;
1419 
1420 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1421 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1422 			pgdat->node_id,
1423 			(unsigned long)zone_idx(zone),
1424 			zone_start_pfn, (zone_start_pfn + size));
1425 
1426 	zone_init_free_lists(zone);
1427 	zone->initialized = 1;
1428 }
1429 
1430 #ifndef CONFIG_SPARSEMEM
1431 /*
1432  * Calculate the size of the zone->blockflags rounded to an unsigned long
1433  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1434  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1435  * round what is now in bits to nearest long in bits, then return it in
1436  * bytes.
1437  */
1438 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1439 {
1440 	unsigned long usemapsize;
1441 
1442 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1443 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1444 	usemapsize = usemapsize >> pageblock_order;
1445 	usemapsize *= NR_PAGEBLOCK_BITS;
1446 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1447 
1448 	return usemapsize / BITS_PER_BYTE;
1449 }
1450 
1451 static void __ref setup_usemap(struct zone *zone)
1452 {
1453 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1454 					       zone->spanned_pages);
1455 	zone->pageblock_flags = NULL;
1456 	if (usemapsize) {
1457 		zone->pageblock_flags =
1458 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1459 					    zone_to_nid(zone));
1460 		if (!zone->pageblock_flags)
1461 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1462 			      usemapsize, zone->name, zone_to_nid(zone));
1463 	}
1464 }
1465 #else
1466 static inline void setup_usemap(struct zone *zone) {}
1467 #endif /* CONFIG_SPARSEMEM */
1468 
1469 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1470 
1471 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1472 void __init set_pageblock_order(void)
1473 {
1474 	unsigned int order = MAX_PAGE_ORDER;
1475 
1476 	/* Check that pageblock_nr_pages has not already been setup */
1477 	if (pageblock_order)
1478 		return;
1479 
1480 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1481 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1482 		order = HUGETLB_PAGE_ORDER;
1483 
1484 	/*
1485 	 * Assume the largest contiguous order of interest is a huge page.
1486 	 * This value may be variable depending on boot parameters on powerpc.
1487 	 */
1488 	pageblock_order = order;
1489 }
1490 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1491 
1492 /*
1493  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1494  * is unused as pageblock_order is set at compile-time. See
1495  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1496  * the kernel config
1497  */
1498 void __init set_pageblock_order(void)
1499 {
1500 }
1501 
1502 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1503 
1504 /*
1505  * Set up the zone data structures
1506  * - init pgdat internals
1507  * - init all zones belonging to this node
1508  *
1509  * NOTE: this function is only called during memory hotplug
1510  */
1511 #ifdef CONFIG_MEMORY_HOTPLUG
1512 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1513 {
1514 	int nid = pgdat->node_id;
1515 	enum zone_type z;
1516 	int cpu;
1517 
1518 	pgdat_init_internals(pgdat);
1519 
1520 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1521 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1522 
1523 	/*
1524 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1525 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1526 	 * when it starts in the near future.
1527 	 */
1528 	pgdat->nr_zones = 0;
1529 	pgdat->kswapd_order = 0;
1530 	pgdat->kswapd_highest_zoneidx = 0;
1531 	pgdat->node_start_pfn = 0;
1532 	pgdat->node_present_pages = 0;
1533 
1534 	for_each_online_cpu(cpu) {
1535 		struct per_cpu_nodestat *p;
1536 
1537 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1538 		memset(p, 0, sizeof(*p));
1539 	}
1540 
1541 	/*
1542 	 * When memory is hot-added, all the memory is in offline state. So
1543 	 * clear all zones' present_pages and managed_pages because they will
1544 	 * be updated in online_pages() and offline_pages().
1545 	 */
1546 	for (z = 0; z < MAX_NR_ZONES; z++) {
1547 		struct zone *zone = pgdat->node_zones + z;
1548 
1549 		zone->present_pages = 0;
1550 		zone_init_internals(zone, z, nid, 0);
1551 	}
1552 }
1553 #endif
1554 
1555 static void __init free_area_init_core(struct pglist_data *pgdat)
1556 {
1557 	enum zone_type j;
1558 	int nid = pgdat->node_id;
1559 
1560 	pgdat_init_internals(pgdat);
1561 	pgdat->per_cpu_nodestats = &boot_nodestats;
1562 
1563 	for (j = 0; j < MAX_NR_ZONES; j++) {
1564 		struct zone *zone = pgdat->node_zones + j;
1565 		unsigned long size = zone->spanned_pages;
1566 
1567 		/*
1568 		 * Initialize zone->managed_pages as 0 , it will be reset
1569 		 * when memblock allocator frees pages into buddy system.
1570 		 */
1571 		zone_init_internals(zone, j, nid, zone->present_pages);
1572 
1573 		if (!size)
1574 			continue;
1575 
1576 		setup_usemap(zone);
1577 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1578 	}
1579 }
1580 
1581 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1582 			  phys_addr_t min_addr, int nid, bool exact_nid)
1583 {
1584 	void *ptr;
1585 
1586 	if (exact_nid)
1587 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1588 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1589 						   nid);
1590 	else
1591 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1592 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1593 						 nid);
1594 
1595 	if (ptr && size > 0)
1596 		page_init_poison(ptr, size);
1597 
1598 	return ptr;
1599 }
1600 
1601 #ifdef CONFIG_FLATMEM
1602 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1603 {
1604 	unsigned long start, offset, size, end;
1605 	struct page *map;
1606 
1607 	/* Skip empty nodes */
1608 	if (!pgdat->node_spanned_pages)
1609 		return;
1610 
1611 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1612 	offset = pgdat->node_start_pfn - start;
1613 	/*
1614 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1615 	 * aligned but the node_mem_map endpoints must be in order
1616 	 * for the buddy allocator to function correctly.
1617 	 */
1618 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1619 	size =  (end - start) * sizeof(struct page);
1620 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1621 			   pgdat->node_id, false);
1622 	if (!map)
1623 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1624 		      size, pgdat->node_id);
1625 	pgdat->node_mem_map = map + offset;
1626 	mod_node_early_perpage_metadata(pgdat->node_id,
1627 					DIV_ROUND_UP(size, PAGE_SIZE));
1628 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1629 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1630 		 (unsigned long)pgdat->node_mem_map);
1631 #ifndef CONFIG_NUMA
1632 	/* the global mem_map is just set as node 0's */
1633 	if (pgdat == NODE_DATA(0)) {
1634 		mem_map = NODE_DATA(0)->node_mem_map;
1635 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1636 			mem_map -= offset;
1637 	}
1638 #endif
1639 }
1640 #else
1641 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1642 #endif /* CONFIG_FLATMEM */
1643 
1644 /**
1645  * get_pfn_range_for_nid - Return the start and end page frames for a node
1646  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1647  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1648  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1649  *
1650  * It returns the start and end page frame of a node based on information
1651  * provided by memblock_set_node(). If called for a node
1652  * with no available memory, the start and end PFNs will be 0.
1653  */
1654 void __init get_pfn_range_for_nid(unsigned int nid,
1655 			unsigned long *start_pfn, unsigned long *end_pfn)
1656 {
1657 	unsigned long this_start_pfn, this_end_pfn;
1658 	int i;
1659 
1660 	*start_pfn = -1UL;
1661 	*end_pfn = 0;
1662 
1663 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1664 		*start_pfn = min(*start_pfn, this_start_pfn);
1665 		*end_pfn = max(*end_pfn, this_end_pfn);
1666 	}
1667 
1668 	if (*start_pfn == -1UL)
1669 		*start_pfn = 0;
1670 }
1671 
1672 static void __init free_area_init_node(int nid)
1673 {
1674 	pg_data_t *pgdat = NODE_DATA(nid);
1675 	unsigned long start_pfn = 0;
1676 	unsigned long end_pfn = 0;
1677 
1678 	/* pg_data_t should be reset to zero when it's allocated */
1679 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1680 
1681 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1682 
1683 	pgdat->node_id = nid;
1684 	pgdat->node_start_pfn = start_pfn;
1685 	pgdat->per_cpu_nodestats = NULL;
1686 
1687 	if (start_pfn != end_pfn) {
1688 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1689 			(u64)start_pfn << PAGE_SHIFT,
1690 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1691 
1692 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1693 	} else {
1694 		pr_info("Initmem setup node %d as memoryless\n", nid);
1695 
1696 		reset_memoryless_node_totalpages(pgdat);
1697 	}
1698 
1699 	alloc_node_mem_map(pgdat);
1700 	pgdat_set_deferred_range(pgdat);
1701 
1702 	free_area_init_core(pgdat);
1703 	lru_gen_init_pgdat(pgdat);
1704 }
1705 
1706 /* Any regular or high memory on that node ? */
1707 static void __init check_for_memory(pg_data_t *pgdat)
1708 {
1709 	enum zone_type zone_type;
1710 
1711 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1712 		struct zone *zone = &pgdat->node_zones[zone_type];
1713 		if (populated_zone(zone)) {
1714 			if (IS_ENABLED(CONFIG_HIGHMEM))
1715 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1716 			if (zone_type <= ZONE_NORMAL)
1717 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1718 			break;
1719 		}
1720 	}
1721 }
1722 
1723 #if MAX_NUMNODES > 1
1724 /*
1725  * Figure out the number of possible node ids.
1726  */
1727 void __init setup_nr_node_ids(void)
1728 {
1729 	unsigned int highest;
1730 
1731 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1732 	nr_node_ids = highest + 1;
1733 }
1734 #endif
1735 
1736 /*
1737  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1738  * such cases we allow max_zone_pfn sorted in the descending order
1739  */
1740 static bool arch_has_descending_max_zone_pfns(void)
1741 {
1742 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1743 }
1744 
1745 /**
1746  * free_area_init - Initialise all pg_data_t and zone data
1747  * @max_zone_pfn: an array of max PFNs for each zone
1748  *
1749  * This will call free_area_init_node() for each active node in the system.
1750  * Using the page ranges provided by memblock_set_node(), the size of each
1751  * zone in each node and their holes is calculated. If the maximum PFN
1752  * between two adjacent zones match, it is assumed that the zone is empty.
1753  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1754  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1755  * starts where the previous one ended. For example, ZONE_DMA32 starts
1756  * at arch_max_dma_pfn.
1757  */
1758 void __init free_area_init(unsigned long *max_zone_pfn)
1759 {
1760 	unsigned long start_pfn, end_pfn;
1761 	int i, nid, zone;
1762 	bool descending;
1763 
1764 	/* Record where the zone boundaries are */
1765 	memset(arch_zone_lowest_possible_pfn, 0,
1766 				sizeof(arch_zone_lowest_possible_pfn));
1767 	memset(arch_zone_highest_possible_pfn, 0,
1768 				sizeof(arch_zone_highest_possible_pfn));
1769 
1770 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1771 	descending = arch_has_descending_max_zone_pfns();
1772 
1773 	for (i = 0; i < MAX_NR_ZONES; i++) {
1774 		if (descending)
1775 			zone = MAX_NR_ZONES - i - 1;
1776 		else
1777 			zone = i;
1778 
1779 		if (zone == ZONE_MOVABLE)
1780 			continue;
1781 
1782 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1783 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1784 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1785 
1786 		start_pfn = end_pfn;
1787 	}
1788 
1789 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1790 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1791 	find_zone_movable_pfns_for_nodes();
1792 
1793 	/* Print out the zone ranges */
1794 	pr_info("Zone ranges:\n");
1795 	for (i = 0; i < MAX_NR_ZONES; i++) {
1796 		if (i == ZONE_MOVABLE)
1797 			continue;
1798 		pr_info("  %-8s ", zone_names[i]);
1799 		if (arch_zone_lowest_possible_pfn[i] ==
1800 				arch_zone_highest_possible_pfn[i])
1801 			pr_cont("empty\n");
1802 		else
1803 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1804 				(u64)arch_zone_lowest_possible_pfn[i]
1805 					<< PAGE_SHIFT,
1806 				((u64)arch_zone_highest_possible_pfn[i]
1807 					<< PAGE_SHIFT) - 1);
1808 	}
1809 
1810 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1811 	pr_info("Movable zone start for each node\n");
1812 	for (i = 0; i < MAX_NUMNODES; i++) {
1813 		if (zone_movable_pfn[i])
1814 			pr_info("  Node %d: %#018Lx\n", i,
1815 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1816 	}
1817 
1818 	/*
1819 	 * Print out the early node map, and initialize the
1820 	 * subsection-map relative to active online memory ranges to
1821 	 * enable future "sub-section" extensions of the memory map.
1822 	 */
1823 	pr_info("Early memory node ranges\n");
1824 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1825 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1826 			(u64)start_pfn << PAGE_SHIFT,
1827 			((u64)end_pfn << PAGE_SHIFT) - 1);
1828 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1829 	}
1830 
1831 	/* Initialise every node */
1832 	mminit_verify_pageflags_layout();
1833 	setup_nr_node_ids();
1834 	set_pageblock_order();
1835 
1836 	for_each_node(nid) {
1837 		pg_data_t *pgdat;
1838 
1839 		if (!node_online(nid)) {
1840 			/* Allocator not initialized yet */
1841 			pgdat = arch_alloc_nodedata(nid);
1842 			if (!pgdat)
1843 				panic("Cannot allocate %zuB for node %d.\n",
1844 				       sizeof(*pgdat), nid);
1845 			arch_refresh_nodedata(nid, pgdat);
1846 		}
1847 
1848 		pgdat = NODE_DATA(nid);
1849 		free_area_init_node(nid);
1850 
1851 		/*
1852 		 * No sysfs hierarcy will be created via register_one_node()
1853 		 *for memory-less node because here it's not marked as N_MEMORY
1854 		 *and won't be set online later. The benefit is userspace
1855 		 *program won't be confused by sysfs files/directories of
1856 		 *memory-less node. The pgdat will get fully initialized by
1857 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1858 		 */
1859 		if (pgdat->node_present_pages) {
1860 			node_set_state(nid, N_MEMORY);
1861 			check_for_memory(pgdat);
1862 		}
1863 	}
1864 
1865 	calc_nr_kernel_pages();
1866 	memmap_init();
1867 
1868 	/* disable hash distribution for systems with a single node */
1869 	fixup_hashdist();
1870 }
1871 
1872 /**
1873  * node_map_pfn_alignment - determine the maximum internode alignment
1874  *
1875  * This function should be called after node map is populated and sorted.
1876  * It calculates the maximum power of two alignment which can distinguish
1877  * all the nodes.
1878  *
1879  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1880  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1881  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1882  * shifted, 1GiB is enough and this function will indicate so.
1883  *
1884  * This is used to test whether pfn -> nid mapping of the chosen memory
1885  * model has fine enough granularity to avoid incorrect mapping for the
1886  * populated node map.
1887  *
1888  * Return: the determined alignment in pfn's.  0 if there is no alignment
1889  * requirement (single node).
1890  */
1891 unsigned long __init node_map_pfn_alignment(void)
1892 {
1893 	unsigned long accl_mask = 0, last_end = 0;
1894 	unsigned long start, end, mask;
1895 	int last_nid = NUMA_NO_NODE;
1896 	int i, nid;
1897 
1898 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1899 		if (!start || last_nid < 0 || last_nid == nid) {
1900 			last_nid = nid;
1901 			last_end = end;
1902 			continue;
1903 		}
1904 
1905 		/*
1906 		 * Start with a mask granular enough to pin-point to the
1907 		 * start pfn and tick off bits one-by-one until it becomes
1908 		 * too coarse to separate the current node from the last.
1909 		 */
1910 		mask = ~((1 << __ffs(start)) - 1);
1911 		while (mask && last_end <= (start & (mask << 1)))
1912 			mask <<= 1;
1913 
1914 		/* accumulate all internode masks */
1915 		accl_mask |= mask;
1916 	}
1917 
1918 	/* convert mask to number of pages */
1919 	return ~accl_mask + 1;
1920 }
1921 
1922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1923 static void __init deferred_free_pages(unsigned long pfn,
1924 		unsigned long nr_pages)
1925 {
1926 	struct page *page;
1927 	unsigned long i;
1928 
1929 	if (!nr_pages)
1930 		return;
1931 
1932 	page = pfn_to_page(pfn);
1933 
1934 	/* Free a large naturally-aligned chunk if possible */
1935 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1936 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1937 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1938 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
1939 		return;
1940 	}
1941 
1942 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1943 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1944 
1945 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1946 		if (pageblock_aligned(pfn))
1947 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1948 		__free_pages_core(page, 0, MEMINIT_EARLY);
1949 	}
1950 }
1951 
1952 /* Completion tracking for deferred_init_memmap() threads */
1953 static atomic_t pgdat_init_n_undone __initdata;
1954 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1955 
1956 static inline void __init pgdat_init_report_one_done(void)
1957 {
1958 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1959 		complete(&pgdat_init_all_done_comp);
1960 }
1961 
1962 /*
1963  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1964  * by performing it only once every MAX_ORDER_NR_PAGES.
1965  * Return number of pages initialized.
1966  */
1967 static unsigned long __init deferred_init_pages(struct zone *zone,
1968 		unsigned long pfn, unsigned long end_pfn)
1969 {
1970 	int nid = zone_to_nid(zone);
1971 	unsigned long nr_pages = end_pfn - pfn;
1972 	int zid = zone_idx(zone);
1973 	struct page *page = pfn_to_page(pfn);
1974 
1975 	for (; pfn < end_pfn; pfn++, page++)
1976 		__init_single_page(page, pfn, zid, nid);
1977 	return nr_pages;
1978 }
1979 
1980 /*
1981  * This function is meant to pre-load the iterator for the zone init from
1982  * a given point.
1983  * Specifically it walks through the ranges starting with initial index
1984  * passed to it until we are caught up to the first_init_pfn value and
1985  * exits there. If we never encounter the value we return false indicating
1986  * there are no valid ranges left.
1987  */
1988 static bool __init
1989 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1990 				    unsigned long *spfn, unsigned long *epfn,
1991 				    unsigned long first_init_pfn)
1992 {
1993 	u64 j = *i;
1994 
1995 	if (j == 0)
1996 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
1997 
1998 	/*
1999 	 * Start out by walking through the ranges in this zone that have
2000 	 * already been initialized. We don't need to do anything with them
2001 	 * so we just need to flush them out of the system.
2002 	 */
2003 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2004 		if (*epfn <= first_init_pfn)
2005 			continue;
2006 		if (*spfn < first_init_pfn)
2007 			*spfn = first_init_pfn;
2008 		*i = j;
2009 		return true;
2010 	}
2011 
2012 	return false;
2013 }
2014 
2015 /*
2016  * Initialize and free pages. We do it in two loops: first we initialize
2017  * struct page, then free to buddy allocator, because while we are
2018  * freeing pages we can access pages that are ahead (computing buddy
2019  * page in __free_one_page()).
2020  *
2021  * In order to try and keep some memory in the cache we have the loop
2022  * broken along max page order boundaries. This way we will not cause
2023  * any issues with the buddy page computation.
2024  */
2025 static unsigned long __init
2026 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2027 		       unsigned long *end_pfn)
2028 {
2029 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2030 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2031 	unsigned long nr_pages = 0;
2032 	u64 j = *i;
2033 
2034 	/* First we loop through and initialize the page values */
2035 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2036 		unsigned long t;
2037 
2038 		if (mo_pfn <= *start_pfn)
2039 			break;
2040 
2041 		t = min(mo_pfn, *end_pfn);
2042 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2043 
2044 		if (mo_pfn < *end_pfn) {
2045 			*start_pfn = mo_pfn;
2046 			break;
2047 		}
2048 	}
2049 
2050 	/* Reset values and now loop through freeing pages as needed */
2051 	swap(j, *i);
2052 
2053 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2054 		unsigned long t;
2055 
2056 		if (mo_pfn <= spfn)
2057 			break;
2058 
2059 		t = min(mo_pfn, epfn);
2060 		deferred_free_pages(spfn, t - spfn);
2061 
2062 		if (mo_pfn <= epfn)
2063 			break;
2064 	}
2065 
2066 	return nr_pages;
2067 }
2068 
2069 static void __init
2070 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2071 			   void *arg)
2072 {
2073 	unsigned long spfn, epfn;
2074 	struct zone *zone = arg;
2075 	u64 i = 0;
2076 
2077 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2078 
2079 	/*
2080 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2081 	 * we can avoid introducing any issues with the buddy allocator.
2082 	 */
2083 	while (spfn < end_pfn) {
2084 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2085 		cond_resched();
2086 	}
2087 }
2088 
2089 static unsigned int __init
2090 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2091 {
2092 	return max(cpumask_weight(node_cpumask), 1U);
2093 }
2094 
2095 /* Initialise remaining memory on a node */
2096 static int __init deferred_init_memmap(void *data)
2097 {
2098 	pg_data_t *pgdat = data;
2099 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2100 	unsigned long spfn = 0, epfn = 0;
2101 	unsigned long first_init_pfn, flags;
2102 	unsigned long start = jiffies;
2103 	struct zone *zone;
2104 	int max_threads;
2105 	u64 i = 0;
2106 
2107 	/* Bind memory initialisation thread to a local node if possible */
2108 	if (!cpumask_empty(cpumask))
2109 		set_cpus_allowed_ptr(current, cpumask);
2110 
2111 	pgdat_resize_lock(pgdat, &flags);
2112 	first_init_pfn = pgdat->first_deferred_pfn;
2113 	if (first_init_pfn == ULONG_MAX) {
2114 		pgdat_resize_unlock(pgdat, &flags);
2115 		pgdat_init_report_one_done();
2116 		return 0;
2117 	}
2118 
2119 	/* Sanity check boundaries */
2120 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2121 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2122 	pgdat->first_deferred_pfn = ULONG_MAX;
2123 
2124 	/*
2125 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2126 	 * interrupt thread must allocate this early in boot, zone must be
2127 	 * pre-grown prior to start of deferred page initialization.
2128 	 */
2129 	pgdat_resize_unlock(pgdat, &flags);
2130 
2131 	/* Only the highest zone is deferred */
2132 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2133 
2134 	max_threads = deferred_page_init_max_threads(cpumask);
2135 
2136 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2137 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2138 		struct padata_mt_job job = {
2139 			.thread_fn   = deferred_init_memmap_chunk,
2140 			.fn_arg      = zone,
2141 			.start       = spfn,
2142 			.size        = first_init_pfn - spfn,
2143 			.align       = PAGES_PER_SECTION,
2144 			.min_chunk   = PAGES_PER_SECTION,
2145 			.max_threads = max_threads,
2146 			.numa_aware  = false,
2147 		};
2148 
2149 		padata_do_multithreaded(&job);
2150 	}
2151 
2152 	/* Sanity check that the next zone really is unpopulated */
2153 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2154 
2155 	pr_info("node %d deferred pages initialised in %ums\n",
2156 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2157 
2158 	pgdat_init_report_one_done();
2159 	return 0;
2160 }
2161 
2162 /*
2163  * If this zone has deferred pages, try to grow it by initializing enough
2164  * deferred pages to satisfy the allocation specified by order, rounded up to
2165  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2166  * of SECTION_SIZE bytes by initializing struct pages in increments of
2167  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2168  *
2169  * Return true when zone was grown, otherwise return false. We return true even
2170  * when we grow less than requested, to let the caller decide if there are
2171  * enough pages to satisfy the allocation.
2172  */
2173 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2174 {
2175 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2176 	pg_data_t *pgdat = zone->zone_pgdat;
2177 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2178 	unsigned long spfn, epfn, flags;
2179 	unsigned long nr_pages = 0;
2180 	u64 i = 0;
2181 
2182 	/* Only the last zone may have deferred pages */
2183 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2184 		return false;
2185 
2186 	pgdat_resize_lock(pgdat, &flags);
2187 
2188 	/*
2189 	 * If someone grew this zone while we were waiting for spinlock, return
2190 	 * true, as there might be enough pages already.
2191 	 */
2192 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2193 		pgdat_resize_unlock(pgdat, &flags);
2194 		return true;
2195 	}
2196 
2197 	/* If the zone is empty somebody else may have cleared out the zone */
2198 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2199 						 first_deferred_pfn)) {
2200 		pgdat->first_deferred_pfn = ULONG_MAX;
2201 		pgdat_resize_unlock(pgdat, &flags);
2202 		/* Retry only once. */
2203 		return first_deferred_pfn != ULONG_MAX;
2204 	}
2205 
2206 	/*
2207 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2208 	 * that we can avoid introducing any issues with the buddy
2209 	 * allocator.
2210 	 */
2211 	while (spfn < epfn) {
2212 		/* update our first deferred PFN for this section */
2213 		first_deferred_pfn = spfn;
2214 
2215 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2216 		touch_nmi_watchdog();
2217 
2218 		/* We should only stop along section boundaries */
2219 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2220 			continue;
2221 
2222 		/* If our quota has been met we can stop here */
2223 		if (nr_pages >= nr_pages_needed)
2224 			break;
2225 	}
2226 
2227 	pgdat->first_deferred_pfn = spfn;
2228 	pgdat_resize_unlock(pgdat, &flags);
2229 
2230 	return nr_pages > 0;
2231 }
2232 
2233 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2234 
2235 #ifdef CONFIG_CMA
2236 void __init init_cma_reserved_pageblock(struct page *page)
2237 {
2238 	unsigned i = pageblock_nr_pages;
2239 	struct page *p = page;
2240 
2241 	do {
2242 		__ClearPageReserved(p);
2243 		set_page_count(p, 0);
2244 	} while (++p, --i);
2245 
2246 	set_pageblock_migratetype(page, MIGRATE_CMA);
2247 	set_page_refcounted(page);
2248 	__free_pages(page, pageblock_order);
2249 
2250 	adjust_managed_page_count(page, pageblock_nr_pages);
2251 	page_zone(page)->cma_pages += pageblock_nr_pages;
2252 }
2253 #endif
2254 
2255 void set_zone_contiguous(struct zone *zone)
2256 {
2257 	unsigned long block_start_pfn = zone->zone_start_pfn;
2258 	unsigned long block_end_pfn;
2259 
2260 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2261 	for (; block_start_pfn < zone_end_pfn(zone);
2262 			block_start_pfn = block_end_pfn,
2263 			 block_end_pfn += pageblock_nr_pages) {
2264 
2265 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2266 
2267 		if (!__pageblock_pfn_to_page(block_start_pfn,
2268 					     block_end_pfn, zone))
2269 			return;
2270 		cond_resched();
2271 	}
2272 
2273 	/* We confirm that there is no hole */
2274 	zone->contiguous = true;
2275 }
2276 
2277 static void __init mem_init_print_info(void);
2278 void __init page_alloc_init_late(void)
2279 {
2280 	struct zone *zone;
2281 	int nid;
2282 
2283 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2284 
2285 	/* There will be num_node_state(N_MEMORY) threads */
2286 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2287 	for_each_node_state(nid, N_MEMORY) {
2288 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2289 	}
2290 
2291 	/* Block until all are initialised */
2292 	wait_for_completion(&pgdat_init_all_done_comp);
2293 
2294 	/*
2295 	 * We initialized the rest of the deferred pages.  Permanently disable
2296 	 * on-demand struct page initialization.
2297 	 */
2298 	static_branch_disable(&deferred_pages);
2299 
2300 	/* Reinit limits that are based on free pages after the kernel is up */
2301 	files_maxfiles_init();
2302 #endif
2303 
2304 	/* Accounting of total+free memory is stable at this point. */
2305 	mem_init_print_info();
2306 	buffer_init();
2307 
2308 	/* Discard memblock private memory */
2309 	memblock_discard();
2310 
2311 	for_each_node_state(nid, N_MEMORY)
2312 		shuffle_free_memory(NODE_DATA(nid));
2313 
2314 	for_each_populated_zone(zone)
2315 		set_zone_contiguous(zone);
2316 
2317 	/* Initialize page ext after all struct pages are initialized. */
2318 	if (deferred_struct_pages)
2319 		page_ext_init();
2320 
2321 	page_alloc_sysctl_init();
2322 }
2323 
2324 /*
2325  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2326  * machines. As memory size is increased the scale is also increased but at
2327  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2328  * quadruples the scale is increased by one, which means the size of hash table
2329  * only doubles, instead of quadrupling as well.
2330  * Because 32-bit systems cannot have large physical memory, where this scaling
2331  * makes sense, it is disabled on such platforms.
2332  */
2333 #if __BITS_PER_LONG > 32
2334 #define ADAPT_SCALE_BASE	(64ul << 30)
2335 #define ADAPT_SCALE_SHIFT	2
2336 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2337 #endif
2338 
2339 /*
2340  * allocate a large system hash table from bootmem
2341  * - it is assumed that the hash table must contain an exact power-of-2
2342  *   quantity of entries
2343  * - limit is the number of hash buckets, not the total allocation size
2344  */
2345 void *__init alloc_large_system_hash(const char *tablename,
2346 				     unsigned long bucketsize,
2347 				     unsigned long numentries,
2348 				     int scale,
2349 				     int flags,
2350 				     unsigned int *_hash_shift,
2351 				     unsigned int *_hash_mask,
2352 				     unsigned long low_limit,
2353 				     unsigned long high_limit)
2354 {
2355 	unsigned long long max = high_limit;
2356 	unsigned long log2qty, size;
2357 	void *table;
2358 	gfp_t gfp_flags;
2359 	bool virt;
2360 	bool huge;
2361 
2362 	/* allow the kernel cmdline to have a say */
2363 	if (!numentries) {
2364 		/* round applicable memory size up to nearest megabyte */
2365 		numentries = nr_kernel_pages;
2366 
2367 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2368 		if (PAGE_SIZE < SZ_1M)
2369 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2370 
2371 #if __BITS_PER_LONG > 32
2372 		if (!high_limit) {
2373 			unsigned long adapt;
2374 
2375 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2376 			     adapt <<= ADAPT_SCALE_SHIFT)
2377 				scale++;
2378 		}
2379 #endif
2380 
2381 		/* limit to 1 bucket per 2^scale bytes of low memory */
2382 		if (scale > PAGE_SHIFT)
2383 			numentries >>= (scale - PAGE_SHIFT);
2384 		else
2385 			numentries <<= (PAGE_SHIFT - scale);
2386 
2387 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2388 			numentries = PAGE_SIZE / bucketsize;
2389 	}
2390 	numentries = roundup_pow_of_two(numentries);
2391 
2392 	/* limit allocation size to 1/16 total memory by default */
2393 	if (max == 0) {
2394 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2395 		do_div(max, bucketsize);
2396 	}
2397 	max = min(max, 0x80000000ULL);
2398 
2399 	if (numentries < low_limit)
2400 		numentries = low_limit;
2401 	if (numentries > max)
2402 		numentries = max;
2403 
2404 	log2qty = ilog2(numentries);
2405 
2406 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2407 	do {
2408 		virt = false;
2409 		size = bucketsize << log2qty;
2410 		if (flags & HASH_EARLY) {
2411 			if (flags & HASH_ZERO)
2412 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2413 			else
2414 				table = memblock_alloc_raw(size,
2415 							   SMP_CACHE_BYTES);
2416 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2417 			table = vmalloc_huge(size, gfp_flags);
2418 			virt = true;
2419 			if (table)
2420 				huge = is_vm_area_hugepages(table);
2421 		} else {
2422 			/*
2423 			 * If bucketsize is not a power-of-two, we may free
2424 			 * some pages at the end of hash table which
2425 			 * alloc_pages_exact() automatically does
2426 			 */
2427 			table = alloc_pages_exact(size, gfp_flags);
2428 			kmemleak_alloc(table, size, 1, gfp_flags);
2429 		}
2430 	} while (!table && size > PAGE_SIZE && --log2qty);
2431 
2432 	if (!table)
2433 		panic("Failed to allocate %s hash table\n", tablename);
2434 
2435 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2436 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2437 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2438 
2439 	if (_hash_shift)
2440 		*_hash_shift = log2qty;
2441 	if (_hash_mask)
2442 		*_hash_mask = (1 << log2qty) - 1;
2443 
2444 	return table;
2445 }
2446 
2447 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2448 							unsigned int order)
2449 {
2450 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2451 		int nid = early_pfn_to_nid(pfn);
2452 
2453 		if (!early_page_initialised(pfn, nid))
2454 			return;
2455 	}
2456 
2457 	if (!kmsan_memblock_free_pages(page, order)) {
2458 		/* KMSAN will take care of these pages. */
2459 		return;
2460 	}
2461 
2462 	/* pages were reserved and not allocated */
2463 	if (mem_alloc_profiling_enabled()) {
2464 		union codetag_ref *ref = get_page_tag_ref(page);
2465 
2466 		if (ref) {
2467 			set_codetag_empty(ref);
2468 			put_page_tag_ref(ref);
2469 		}
2470 	}
2471 
2472 	__free_pages_core(page, order, MEMINIT_EARLY);
2473 }
2474 
2475 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2476 EXPORT_SYMBOL(init_on_alloc);
2477 
2478 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2479 EXPORT_SYMBOL(init_on_free);
2480 
2481 static bool _init_on_alloc_enabled_early __read_mostly
2482 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2483 static int __init early_init_on_alloc(char *buf)
2484 {
2485 
2486 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2487 }
2488 early_param("init_on_alloc", early_init_on_alloc);
2489 
2490 static bool _init_on_free_enabled_early __read_mostly
2491 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2492 static int __init early_init_on_free(char *buf)
2493 {
2494 	return kstrtobool(buf, &_init_on_free_enabled_early);
2495 }
2496 early_param("init_on_free", early_init_on_free);
2497 
2498 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2499 
2500 /*
2501  * Enable static keys related to various memory debugging and hardening options.
2502  * Some override others, and depend on early params that are evaluated in the
2503  * order of appearance. So we need to first gather the full picture of what was
2504  * enabled, and then make decisions.
2505  */
2506 static void __init mem_debugging_and_hardening_init(void)
2507 {
2508 	bool page_poisoning_requested = false;
2509 	bool want_check_pages = false;
2510 
2511 #ifdef CONFIG_PAGE_POISONING
2512 	/*
2513 	 * Page poisoning is debug page alloc for some arches. If
2514 	 * either of those options are enabled, enable poisoning.
2515 	 */
2516 	if (page_poisoning_enabled() ||
2517 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2518 	      debug_pagealloc_enabled())) {
2519 		static_branch_enable(&_page_poisoning_enabled);
2520 		page_poisoning_requested = true;
2521 		want_check_pages = true;
2522 	}
2523 #endif
2524 
2525 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2526 	    page_poisoning_requested) {
2527 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2528 			"will take precedence over init_on_alloc and init_on_free\n");
2529 		_init_on_alloc_enabled_early = false;
2530 		_init_on_free_enabled_early = false;
2531 	}
2532 
2533 	if (_init_on_alloc_enabled_early) {
2534 		want_check_pages = true;
2535 		static_branch_enable(&init_on_alloc);
2536 	} else {
2537 		static_branch_disable(&init_on_alloc);
2538 	}
2539 
2540 	if (_init_on_free_enabled_early) {
2541 		want_check_pages = true;
2542 		static_branch_enable(&init_on_free);
2543 	} else {
2544 		static_branch_disable(&init_on_free);
2545 	}
2546 
2547 	if (IS_ENABLED(CONFIG_KMSAN) &&
2548 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2549 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2550 
2551 #ifdef CONFIG_DEBUG_PAGEALLOC
2552 	if (debug_pagealloc_enabled()) {
2553 		want_check_pages = true;
2554 		static_branch_enable(&_debug_pagealloc_enabled);
2555 
2556 		if (debug_guardpage_minorder())
2557 			static_branch_enable(&_debug_guardpage_enabled);
2558 	}
2559 #endif
2560 
2561 	/*
2562 	 * Any page debugging or hardening option also enables sanity checking
2563 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2564 	 * enabled already.
2565 	 */
2566 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2567 		static_branch_enable(&check_pages_enabled);
2568 }
2569 
2570 /* Report memory auto-initialization states for this boot. */
2571 static void __init report_meminit(void)
2572 {
2573 	const char *stack;
2574 
2575 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2576 		stack = "all(pattern)";
2577 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2578 		stack = "all(zero)";
2579 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2580 		stack = "byref_all(zero)";
2581 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2582 		stack = "byref(zero)";
2583 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2584 		stack = "__user(zero)";
2585 	else
2586 		stack = "off";
2587 
2588 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2589 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2590 		want_init_on_free() ? "on" : "off");
2591 	if (want_init_on_free())
2592 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2593 }
2594 
2595 static void __init mem_init_print_info(void)
2596 {
2597 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2598 	unsigned long init_code_size, init_data_size;
2599 
2600 	physpages = get_num_physpages();
2601 	codesize = _etext - _stext;
2602 	datasize = _edata - _sdata;
2603 	rosize = __end_rodata - __start_rodata;
2604 	bss_size = __bss_stop - __bss_start;
2605 	init_data_size = __init_end - __init_begin;
2606 	init_code_size = _einittext - _sinittext;
2607 
2608 	/*
2609 	 * Detect special cases and adjust section sizes accordingly:
2610 	 * 1) .init.* may be embedded into .data sections
2611 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2612 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2613 	 * 3) .rodata.* may be embedded into .text or .data sections.
2614 	 */
2615 #define adj_init_size(start, end, size, pos, adj) \
2616 	do { \
2617 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2618 			size -= adj; \
2619 	} while (0)
2620 
2621 	adj_init_size(__init_begin, __init_end, init_data_size,
2622 		     _sinittext, init_code_size);
2623 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2624 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2625 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2626 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2627 
2628 #undef	adj_init_size
2629 
2630 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2631 #ifdef	CONFIG_HIGHMEM
2632 		", %luK highmem"
2633 #endif
2634 		")\n",
2635 		K(nr_free_pages()), K(physpages),
2636 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2637 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2638 		K(physpages - totalram_pages() - totalcma_pages),
2639 		K(totalcma_pages)
2640 #ifdef	CONFIG_HIGHMEM
2641 		, K(totalhigh_pages())
2642 #endif
2643 		);
2644 }
2645 
2646 /*
2647  * Set up kernel memory allocators
2648  */
2649 void __init mm_core_init(void)
2650 {
2651 	/* Initializations relying on SMP setup */
2652 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2653 	build_all_zonelists(NULL);
2654 	page_alloc_init_cpuhp();
2655 
2656 	/*
2657 	 * page_ext requires contiguous pages,
2658 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2659 	 */
2660 	page_ext_init_flatmem();
2661 	mem_debugging_and_hardening_init();
2662 	kfence_alloc_pool_and_metadata();
2663 	report_meminit();
2664 	kmsan_init_shadow();
2665 	stack_depot_early_init();
2666 	mem_init();
2667 	kmem_cache_init();
2668 	/*
2669 	 * page_owner must be initialized after buddy is ready, and also after
2670 	 * slab is ready so that stack_depot_init() works properly
2671 	 */
2672 	page_ext_init_flatmem_late();
2673 	kmemleak_init();
2674 	ptlock_cache_init();
2675 	pgtable_cache_init();
2676 	debug_objects_mem_init();
2677 	vmalloc_init();
2678 	/* If no deferred init page_ext now, as vmap is fully initialized */
2679 	if (!deferred_struct_pages)
2680 		page_ext_init();
2681 	/* Should be run before the first non-init thread is created */
2682 	init_espfix_bsp();
2683 	/* Should be run after espfix64 is set up. */
2684 	pti_init();
2685 	kmsan_init_runtime();
2686 	mm_cache_init();
2687 	execmem_init();
2688 }
2689