xref: /linux/mm/mm_init.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/hugetlb.h>
34 #include "internal.h"
35 #include "slab.h"
36 #include "shuffle.h"
37 
38 #include <asm/setup.h>
39 
40 #ifndef CONFIG_NUMA
41 unsigned long max_mapnr;
42 EXPORT_SYMBOL(max_mapnr);
43 
44 struct page *mem_map;
45 EXPORT_SYMBOL(mem_map);
46 #endif
47 
48 /*
49  * high_memory defines the upper bound on direct map memory, then end
50  * of ZONE_NORMAL.
51  */
52 void *high_memory;
53 EXPORT_SYMBOL(high_memory);
54 
55 #ifdef CONFIG_DEBUG_MEMORY_INIT
56 int __meminitdata mminit_loglevel;
57 
58 /* The zonelists are simply reported, validation is manual. */
59 void __init mminit_verify_zonelist(void)
60 {
61 	int nid;
62 
63 	if (mminit_loglevel < MMINIT_VERIFY)
64 		return;
65 
66 	for_each_online_node(nid) {
67 		pg_data_t *pgdat = NODE_DATA(nid);
68 		struct zone *zone;
69 		struct zoneref *z;
70 		struct zonelist *zonelist;
71 		int i, listid, zoneid;
72 
73 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
74 
75 			/* Identify the zone and nodelist */
76 			zoneid = i % MAX_NR_ZONES;
77 			listid = i / MAX_NR_ZONES;
78 			zonelist = &pgdat->node_zonelists[listid];
79 			zone = &pgdat->node_zones[zoneid];
80 			if (!populated_zone(zone))
81 				continue;
82 
83 			/* Print information about the zonelist */
84 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
85 				listid > 0 ? "thisnode" : "general", nid,
86 				zone->name);
87 
88 			/* Iterate the zonelist */
89 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
90 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
91 			pr_cont("\n");
92 		}
93 	}
94 }
95 
96 void __init mminit_verify_pageflags_layout(void)
97 {
98 	int shift, width;
99 	unsigned long or_mask, add_mask;
100 
101 	shift = BITS_PER_LONG;
102 	width = shift - NR_NON_PAGEFLAG_BITS;
103 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
104 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
105 		SECTIONS_WIDTH,
106 		NODES_WIDTH,
107 		ZONES_WIDTH,
108 		LAST_CPUPID_WIDTH,
109 		KASAN_TAG_WIDTH,
110 		LRU_GEN_WIDTH,
111 		LRU_REFS_WIDTH,
112 		NR_PAGEFLAGS);
113 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
114 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
115 		SECTIONS_SHIFT,
116 		NODES_SHIFT,
117 		ZONES_SHIFT,
118 		LAST_CPUPID_SHIFT,
119 		KASAN_TAG_WIDTH);
120 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
121 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
122 		(unsigned long)SECTIONS_PGSHIFT,
123 		(unsigned long)NODES_PGSHIFT,
124 		(unsigned long)ZONES_PGSHIFT,
125 		(unsigned long)LAST_CPUPID_PGSHIFT,
126 		(unsigned long)KASAN_TAG_PGSHIFT);
127 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
128 		"Node/Zone ID: %lu -> %lu\n",
129 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
130 		(unsigned long)ZONEID_PGOFF);
131 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
132 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
133 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
134 #ifdef NODE_NOT_IN_PAGE_FLAGS
135 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
136 		"Node not in page flags");
137 #endif
138 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
139 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
140 		"Last cpupid not in page flags");
141 #endif
142 
143 	if (SECTIONS_WIDTH) {
144 		shift -= SECTIONS_WIDTH;
145 		BUG_ON(shift != SECTIONS_PGSHIFT);
146 	}
147 	if (NODES_WIDTH) {
148 		shift -= NODES_WIDTH;
149 		BUG_ON(shift != NODES_PGSHIFT);
150 	}
151 	if (ZONES_WIDTH) {
152 		shift -= ZONES_WIDTH;
153 		BUG_ON(shift != ZONES_PGSHIFT);
154 	}
155 
156 	/* Check for bitmask overlaps */
157 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
158 			(NODES_MASK << NODES_PGSHIFT) |
159 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
160 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
161 			(NODES_MASK << NODES_PGSHIFT) +
162 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
163 	BUG_ON(or_mask != add_mask);
164 }
165 
166 static __init int set_mminit_loglevel(char *str)
167 {
168 	get_option(&str, &mminit_loglevel);
169 	return 0;
170 }
171 early_param("mminit_loglevel", set_mminit_loglevel);
172 #endif /* CONFIG_DEBUG_MEMORY_INIT */
173 
174 struct kobject *mm_kobj;
175 
176 #ifdef CONFIG_SMP
177 s32 vm_committed_as_batch = 32;
178 
179 void mm_compute_batch(int overcommit_policy)
180 {
181 	u64 memsized_batch;
182 	s32 nr = num_present_cpus();
183 	s32 batch = max_t(s32, nr*2, 32);
184 	unsigned long ram_pages = totalram_pages();
185 
186 	/*
187 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
188 	 * (total memory/#cpus), and lift it to 25% for other policies
189 	 * to easy the possible lock contention for percpu_counter
190 	 * vm_committed_as, while the max limit is INT_MAX
191 	 */
192 	if (overcommit_policy == OVERCOMMIT_NEVER)
193 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
194 	else
195 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
196 
197 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
198 }
199 
200 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
201 					unsigned long action, void *arg)
202 {
203 	switch (action) {
204 	case MEM_ONLINE:
205 	case MEM_OFFLINE:
206 		mm_compute_batch(sysctl_overcommit_memory);
207 		break;
208 	default:
209 		break;
210 	}
211 	return NOTIFY_OK;
212 }
213 
214 static int __init mm_compute_batch_init(void)
215 {
216 	mm_compute_batch(sysctl_overcommit_memory);
217 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
218 	return 0;
219 }
220 
221 __initcall(mm_compute_batch_init);
222 
223 #endif
224 
225 static int __init mm_sysfs_init(void)
226 {
227 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
228 	if (!mm_kobj)
229 		return -ENOMEM;
230 
231 	return 0;
232 }
233 postcore_initcall(mm_sysfs_init);
234 
235 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
236 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
238 
239 static unsigned long required_kernelcore __initdata;
240 static unsigned long required_kernelcore_percent __initdata;
241 static unsigned long required_movablecore __initdata;
242 static unsigned long required_movablecore_percent __initdata;
243 
244 static unsigned long nr_kernel_pages __initdata;
245 static unsigned long nr_all_pages __initdata;
246 
247 static bool deferred_struct_pages __meminitdata;
248 
249 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
250 
251 static int __init cmdline_parse_core(char *p, unsigned long *core,
252 				     unsigned long *percent)
253 {
254 	unsigned long long coremem;
255 	char *endptr;
256 
257 	if (!p)
258 		return -EINVAL;
259 
260 	/* Value may be a percentage of total memory, otherwise bytes */
261 	coremem = simple_strtoull(p, &endptr, 0);
262 	if (*endptr == '%') {
263 		/* Paranoid check for percent values greater than 100 */
264 		WARN_ON(coremem > 100);
265 
266 		*percent = coremem;
267 	} else {
268 		coremem = memparse(p, &p);
269 		/* Paranoid check that UL is enough for the coremem value */
270 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
271 
272 		*core = coremem >> PAGE_SHIFT;
273 		*percent = 0UL;
274 	}
275 	return 0;
276 }
277 
278 bool mirrored_kernelcore __initdata_memblock;
279 
280 /*
281  * kernelcore=size sets the amount of memory for use for allocations that
282  * cannot be reclaimed or migrated.
283  */
284 static int __init cmdline_parse_kernelcore(char *p)
285 {
286 	/* parse kernelcore=mirror */
287 	if (parse_option_str(p, "mirror")) {
288 		mirrored_kernelcore = true;
289 		return 0;
290 	}
291 
292 	return cmdline_parse_core(p, &required_kernelcore,
293 				  &required_kernelcore_percent);
294 }
295 early_param("kernelcore", cmdline_parse_kernelcore);
296 
297 /*
298  * movablecore=size sets the amount of memory for use for allocations that
299  * can be reclaimed or migrated.
300  */
301 static int __init cmdline_parse_movablecore(char *p)
302 {
303 	return cmdline_parse_core(p, &required_movablecore,
304 				  &required_movablecore_percent);
305 }
306 early_param("movablecore", cmdline_parse_movablecore);
307 
308 /*
309  * early_calculate_totalpages()
310  * Sum pages in active regions for movable zone.
311  * Populate N_MEMORY for calculating usable_nodes.
312  */
313 static unsigned long __init early_calculate_totalpages(void)
314 {
315 	unsigned long totalpages = 0;
316 	unsigned long start_pfn, end_pfn;
317 	int i, nid;
318 
319 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
320 		unsigned long pages = end_pfn - start_pfn;
321 
322 		totalpages += pages;
323 		if (pages)
324 			node_set_state(nid, N_MEMORY);
325 	}
326 	return totalpages;
327 }
328 
329 /*
330  * This finds a zone that can be used for ZONE_MOVABLE pages. The
331  * assumption is made that zones within a node are ordered in monotonic
332  * increasing memory addresses so that the "highest" populated zone is used
333  */
334 static void __init find_usable_zone_for_movable(void)
335 {
336 	int zone_index;
337 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
338 		if (zone_index == ZONE_MOVABLE)
339 			continue;
340 
341 		if (arch_zone_highest_possible_pfn[zone_index] >
342 				arch_zone_lowest_possible_pfn[zone_index])
343 			break;
344 	}
345 
346 	VM_BUG_ON(zone_index == -1);
347 	movable_zone = zone_index;
348 }
349 
350 /*
351  * Find the PFN the Movable zone begins in each node. Kernel memory
352  * is spread evenly between nodes as long as the nodes have enough
353  * memory. When they don't, some nodes will have more kernelcore than
354  * others
355  */
356 static void __init find_zone_movable_pfns_for_nodes(void)
357 {
358 	int i, nid;
359 	unsigned long usable_startpfn;
360 	unsigned long kernelcore_node, kernelcore_remaining;
361 	/* save the state before borrow the nodemask */
362 	nodemask_t saved_node_state = node_states[N_MEMORY];
363 	unsigned long totalpages = early_calculate_totalpages();
364 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
365 	struct memblock_region *r;
366 
367 	/* Need to find movable_zone earlier when movable_node is specified. */
368 	find_usable_zone_for_movable();
369 
370 	/*
371 	 * If movable_node is specified, ignore kernelcore and movablecore
372 	 * options.
373 	 */
374 	if (movable_node_is_enabled()) {
375 		for_each_mem_region(r) {
376 			if (!memblock_is_hotpluggable(r))
377 				continue;
378 
379 			nid = memblock_get_region_node(r);
380 
381 			usable_startpfn = memblock_region_memory_base_pfn(r);
382 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
383 				min(usable_startpfn, zone_movable_pfn[nid]) :
384 				usable_startpfn;
385 		}
386 
387 		goto out2;
388 	}
389 
390 	/*
391 	 * If kernelcore=mirror is specified, ignore movablecore option
392 	 */
393 	if (mirrored_kernelcore) {
394 		bool mem_below_4gb_not_mirrored = false;
395 
396 		if (!memblock_has_mirror()) {
397 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
398 			goto out;
399 		}
400 
401 		if (is_kdump_kernel()) {
402 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
403 			goto out;
404 		}
405 
406 		for_each_mem_region(r) {
407 			if (memblock_is_mirror(r))
408 				continue;
409 
410 			nid = memblock_get_region_node(r);
411 
412 			usable_startpfn = memblock_region_memory_base_pfn(r);
413 
414 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
415 				mem_below_4gb_not_mirrored = true;
416 				continue;
417 			}
418 
419 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
420 				min(usable_startpfn, zone_movable_pfn[nid]) :
421 				usable_startpfn;
422 		}
423 
424 		if (mem_below_4gb_not_mirrored)
425 			pr_warn("This configuration results in unmirrored kernel memory.\n");
426 
427 		goto out2;
428 	}
429 
430 	/*
431 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
432 	 * amount of necessary memory.
433 	 */
434 	if (required_kernelcore_percent)
435 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
436 				       10000UL;
437 	if (required_movablecore_percent)
438 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
439 					10000UL;
440 
441 	/*
442 	 * If movablecore= was specified, calculate what size of
443 	 * kernelcore that corresponds so that memory usable for
444 	 * any allocation type is evenly spread. If both kernelcore
445 	 * and movablecore are specified, then the value of kernelcore
446 	 * will be used for required_kernelcore if it's greater than
447 	 * what movablecore would have allowed.
448 	 */
449 	if (required_movablecore) {
450 		unsigned long corepages;
451 
452 		/*
453 		 * Round-up so that ZONE_MOVABLE is at least as large as what
454 		 * was requested by the user
455 		 */
456 		required_movablecore =
457 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
458 		required_movablecore = min(totalpages, required_movablecore);
459 		corepages = totalpages - required_movablecore;
460 
461 		required_kernelcore = max(required_kernelcore, corepages);
462 	}
463 
464 	/*
465 	 * If kernelcore was not specified or kernelcore size is larger
466 	 * than totalpages, there is no ZONE_MOVABLE.
467 	 */
468 	if (!required_kernelcore || required_kernelcore >= totalpages)
469 		goto out;
470 
471 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
472 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
473 
474 restart:
475 	/* Spread kernelcore memory as evenly as possible throughout nodes */
476 	kernelcore_node = required_kernelcore / usable_nodes;
477 	for_each_node_state(nid, N_MEMORY) {
478 		unsigned long start_pfn, end_pfn;
479 
480 		/*
481 		 * Recalculate kernelcore_node if the division per node
482 		 * now exceeds what is necessary to satisfy the requested
483 		 * amount of memory for the kernel
484 		 */
485 		if (required_kernelcore < kernelcore_node)
486 			kernelcore_node = required_kernelcore / usable_nodes;
487 
488 		/*
489 		 * As the map is walked, we track how much memory is usable
490 		 * by the kernel using kernelcore_remaining. When it is
491 		 * 0, the rest of the node is usable by ZONE_MOVABLE
492 		 */
493 		kernelcore_remaining = kernelcore_node;
494 
495 		/* Go through each range of PFNs within this node */
496 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
497 			unsigned long size_pages;
498 
499 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
500 			if (start_pfn >= end_pfn)
501 				continue;
502 
503 			/* Account for what is only usable for kernelcore */
504 			if (start_pfn < usable_startpfn) {
505 				unsigned long kernel_pages;
506 				kernel_pages = min(end_pfn, usable_startpfn)
507 								- start_pfn;
508 
509 				kernelcore_remaining -= min(kernel_pages,
510 							kernelcore_remaining);
511 				required_kernelcore -= min(kernel_pages,
512 							required_kernelcore);
513 
514 				/* Continue if range is now fully accounted */
515 				if (end_pfn <= usable_startpfn) {
516 
517 					/*
518 					 * Push zone_movable_pfn to the end so
519 					 * that if we have to rebalance
520 					 * kernelcore across nodes, we will
521 					 * not double account here
522 					 */
523 					zone_movable_pfn[nid] = end_pfn;
524 					continue;
525 				}
526 				start_pfn = usable_startpfn;
527 			}
528 
529 			/*
530 			 * The usable PFN range for ZONE_MOVABLE is from
531 			 * start_pfn->end_pfn. Calculate size_pages as the
532 			 * number of pages used as kernelcore
533 			 */
534 			size_pages = end_pfn - start_pfn;
535 			if (size_pages > kernelcore_remaining)
536 				size_pages = kernelcore_remaining;
537 			zone_movable_pfn[nid] = start_pfn + size_pages;
538 
539 			/*
540 			 * Some kernelcore has been met, update counts and
541 			 * break if the kernelcore for this node has been
542 			 * satisfied
543 			 */
544 			required_kernelcore -= min(required_kernelcore,
545 								size_pages);
546 			kernelcore_remaining -= size_pages;
547 			if (!kernelcore_remaining)
548 				break;
549 		}
550 	}
551 
552 	/*
553 	 * If there is still required_kernelcore, we do another pass with one
554 	 * less node in the count. This will push zone_movable_pfn[nid] further
555 	 * along on the nodes that still have memory until kernelcore is
556 	 * satisfied
557 	 */
558 	usable_nodes--;
559 	if (usable_nodes && required_kernelcore > usable_nodes)
560 		goto restart;
561 
562 out2:
563 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
564 	for_each_node_state(nid, N_MEMORY) {
565 		unsigned long start_pfn, end_pfn;
566 
567 		zone_movable_pfn[nid] =
568 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
569 
570 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
571 		if (zone_movable_pfn[nid] >= end_pfn)
572 			zone_movable_pfn[nid] = 0;
573 	}
574 
575 out:
576 	/* restore the node_state */
577 	node_states[N_MEMORY] = saved_node_state;
578 }
579 
580 void __meminit __init_single_page(struct page *page, unsigned long pfn,
581 				unsigned long zone, int nid)
582 {
583 	mm_zero_struct_page(page);
584 	set_page_links(page, zone, nid, pfn);
585 	init_page_count(page);
586 	atomic_set(&page->_mapcount, -1);
587 	page_cpupid_reset_last(page);
588 	page_kasan_tag_reset(page);
589 
590 	INIT_LIST_HEAD(&page->lru);
591 #ifdef WANT_PAGE_VIRTUAL
592 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
593 	if (!is_highmem_idx(zone))
594 		set_page_address(page, __va(pfn << PAGE_SHIFT));
595 #endif
596 }
597 
598 #ifdef CONFIG_NUMA
599 /*
600  * During memory init memblocks map pfns to nids. The search is expensive and
601  * this caches recent lookups. The implementation of __early_pfn_to_nid
602  * treats start/end as pfns.
603  */
604 struct mminit_pfnnid_cache {
605 	unsigned long last_start;
606 	unsigned long last_end;
607 	int last_nid;
608 };
609 
610 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
611 
612 /*
613  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
614  */
615 static int __meminit __early_pfn_to_nid(unsigned long pfn,
616 					struct mminit_pfnnid_cache *state)
617 {
618 	unsigned long start_pfn, end_pfn;
619 	int nid;
620 
621 	if (state->last_start <= pfn && pfn < state->last_end)
622 		return state->last_nid;
623 
624 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
625 	if (nid != NUMA_NO_NODE) {
626 		state->last_start = start_pfn;
627 		state->last_end = end_pfn;
628 		state->last_nid = nid;
629 	}
630 
631 	return nid;
632 }
633 
634 int __meminit early_pfn_to_nid(unsigned long pfn)
635 {
636 	static DEFINE_SPINLOCK(early_pfn_lock);
637 	int nid;
638 
639 	spin_lock(&early_pfn_lock);
640 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
641 	if (nid < 0)
642 		nid = first_online_node;
643 	spin_unlock(&early_pfn_lock);
644 
645 	return nid;
646 }
647 
648 int hashdist = HASHDIST_DEFAULT;
649 
650 static int __init set_hashdist(char *str)
651 {
652 	if (!str)
653 		return 0;
654 	hashdist = simple_strtoul(str, &str, 0);
655 	return 1;
656 }
657 __setup("hashdist=", set_hashdist);
658 
659 static inline void fixup_hashdist(void)
660 {
661 	if (num_node_state(N_MEMORY) == 1)
662 		hashdist = 0;
663 }
664 #else
665 static inline void fixup_hashdist(void) {}
666 #endif /* CONFIG_NUMA */
667 
668 /*
669  * Initialize a reserved page unconditionally, finding its zone first.
670  */
671 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
672 {
673 	pg_data_t *pgdat;
674 	int zid;
675 
676 	pgdat = NODE_DATA(nid);
677 
678 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
679 		struct zone *zone = &pgdat->node_zones[zid];
680 
681 		if (zone_spans_pfn(zone, pfn))
682 			break;
683 	}
684 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
685 
686 	if (pageblock_aligned(pfn))
687 		set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE);
688 }
689 
690 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
691 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
692 {
693 	pgdat->first_deferred_pfn = ULONG_MAX;
694 }
695 
696 /* Returns true if the struct page for the pfn is initialised */
697 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
698 {
699 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
700 		return false;
701 
702 	return true;
703 }
704 
705 /*
706  * Returns true when the remaining initialisation should be deferred until
707  * later in the boot cycle when it can be parallelised.
708  */
709 static bool __meminit
710 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
711 {
712 	static unsigned long prev_end_pfn, nr_initialised;
713 
714 	if (early_page_ext_enabled())
715 		return false;
716 
717 	/* Always populate low zones for address-constrained allocations */
718 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
719 		return false;
720 
721 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
722 		return true;
723 
724 	/*
725 	 * prev_end_pfn static that contains the end of previous zone
726 	 * No need to protect because called very early in boot before smp_init.
727 	 */
728 	if (prev_end_pfn != end_pfn) {
729 		prev_end_pfn = end_pfn;
730 		nr_initialised = 0;
731 	}
732 
733 	/*
734 	 * We start only with one section of pages, more pages are added as
735 	 * needed until the rest of deferred pages are initialized.
736 	 */
737 	nr_initialised++;
738 	if ((nr_initialised > PAGES_PER_SECTION) &&
739 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
740 		NODE_DATA(nid)->first_deferred_pfn = pfn;
741 		return true;
742 	}
743 	return false;
744 }
745 
746 static void __meminit init_deferred_page(unsigned long pfn, int nid)
747 {
748 	if (early_page_initialised(pfn, nid))
749 		return;
750 
751 	__init_page_from_nid(pfn, nid);
752 }
753 #else
754 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
755 
756 static inline bool early_page_initialised(unsigned long pfn, int nid)
757 {
758 	return true;
759 }
760 
761 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
762 {
763 	return false;
764 }
765 
766 static inline void init_deferred_page(unsigned long pfn, int nid)
767 {
768 }
769 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
770 
771 /*
772  * Initialised pages do not have PageReserved set. This function is
773  * called for each range allocated by the bootmem allocator and
774  * marks the pages PageReserved. The remaining valid pages are later
775  * sent to the buddy page allocator.
776  */
777 void __meminit reserve_bootmem_region(phys_addr_t start,
778 				      phys_addr_t end, int nid)
779 {
780 	unsigned long start_pfn = PFN_DOWN(start);
781 	unsigned long end_pfn = PFN_UP(end);
782 
783 	for (; start_pfn < end_pfn; start_pfn++) {
784 		if (pfn_valid(start_pfn)) {
785 			struct page *page = pfn_to_page(start_pfn);
786 
787 			init_deferred_page(start_pfn, nid);
788 
789 			/*
790 			 * no need for atomic set_bit because the struct
791 			 * page is not visible yet so nobody should
792 			 * access it yet.
793 			 */
794 			__SetPageReserved(page);
795 		}
796 	}
797 }
798 
799 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
800 static bool __meminit
801 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
802 {
803 	static struct memblock_region *r;
804 
805 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
806 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
807 			for_each_mem_region(r) {
808 				if (*pfn < memblock_region_memory_end_pfn(r))
809 					break;
810 			}
811 		}
812 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
813 		    memblock_is_mirror(r)) {
814 			*pfn = memblock_region_memory_end_pfn(r);
815 			return true;
816 		}
817 	}
818 	return false;
819 }
820 
821 /*
822  * Only struct pages that correspond to ranges defined by memblock.memory
823  * are zeroed and initialized by going through __init_single_page() during
824  * memmap_init_zone_range().
825  *
826  * But, there could be struct pages that correspond to holes in
827  * memblock.memory. This can happen because of the following reasons:
828  * - physical memory bank size is not necessarily the exact multiple of the
829  *   arbitrary section size
830  * - early reserved memory may not be listed in memblock.memory
831  * - non-memory regions covered by the contigious flatmem mapping
832  * - memory layouts defined with memmap= kernel parameter may not align
833  *   nicely with memmap sections
834  *
835  * Explicitly initialize those struct pages so that:
836  * - PG_Reserved is set
837  * - zone and node links point to zone and node that span the page if the
838  *   hole is in the middle of a zone
839  * - zone and node links point to adjacent zone/node if the hole falls on
840  *   the zone boundary; the pages in such holes will be prepended to the
841  *   zone/node above the hole except for the trailing pages in the last
842  *   section that will be appended to the zone/node below.
843  */
844 static void __init init_unavailable_range(unsigned long spfn,
845 					  unsigned long epfn,
846 					  int zone, int node)
847 {
848 	unsigned long pfn;
849 	u64 pgcnt = 0;
850 
851 	for (pfn = spfn; pfn < epfn; pfn++) {
852 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
853 			pfn = pageblock_end_pfn(pfn) - 1;
854 			continue;
855 		}
856 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
857 		__SetPageReserved(pfn_to_page(pfn));
858 		pgcnt++;
859 	}
860 
861 	if (pgcnt)
862 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
863 			node, zone_names[zone], pgcnt);
864 }
865 
866 /*
867  * Initially all pages are reserved - free ones are freed
868  * up by memblock_free_all() once the early boot process is
869  * done. Non-atomic initialization, single-pass.
870  *
871  * All aligned pageblocks are initialized to the specified migratetype
872  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
873  * zone stats (e.g., nr_isolate_pageblock) are touched.
874  */
875 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
876 		unsigned long start_pfn, unsigned long zone_end_pfn,
877 		enum meminit_context context,
878 		struct vmem_altmap *altmap, int migratetype)
879 {
880 	unsigned long pfn, end_pfn = start_pfn + size;
881 	struct page *page;
882 
883 	if (highest_memmap_pfn < end_pfn - 1)
884 		highest_memmap_pfn = end_pfn - 1;
885 
886 #ifdef CONFIG_ZONE_DEVICE
887 	/*
888 	 * Honor reservation requested by the driver for this ZONE_DEVICE
889 	 * memory. We limit the total number of pages to initialize to just
890 	 * those that might contain the memory mapping. We will defer the
891 	 * ZONE_DEVICE page initialization until after we have released
892 	 * the hotplug lock.
893 	 */
894 	if (zone == ZONE_DEVICE) {
895 		if (!altmap)
896 			return;
897 
898 		if (start_pfn == altmap->base_pfn)
899 			start_pfn += altmap->reserve;
900 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
901 	}
902 #endif
903 
904 	for (pfn = start_pfn; pfn < end_pfn; ) {
905 		/*
906 		 * There can be holes in boot-time mem_map[]s handed to this
907 		 * function.  They do not exist on hotplugged memory.
908 		 */
909 		if (context == MEMINIT_EARLY) {
910 			if (overlap_memmap_init(zone, &pfn))
911 				continue;
912 			if (defer_init(nid, pfn, zone_end_pfn)) {
913 				deferred_struct_pages = true;
914 				break;
915 			}
916 		}
917 
918 		page = pfn_to_page(pfn);
919 		__init_single_page(page, pfn, zone, nid);
920 		if (context == MEMINIT_HOTPLUG) {
921 #ifdef CONFIG_ZONE_DEVICE
922 			if (zone == ZONE_DEVICE)
923 				__SetPageReserved(page);
924 			else
925 #endif
926 				__SetPageOffline(page);
927 		}
928 
929 		/*
930 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
931 		 * such that unmovable allocations won't be scattered all
932 		 * over the place during system boot.
933 		 */
934 		if (pageblock_aligned(pfn)) {
935 			set_pageblock_migratetype(page, migratetype);
936 			cond_resched();
937 		}
938 		pfn++;
939 	}
940 }
941 
942 static void __init memmap_init_zone_range(struct zone *zone,
943 					  unsigned long start_pfn,
944 					  unsigned long end_pfn,
945 					  unsigned long *hole_pfn)
946 {
947 	unsigned long zone_start_pfn = zone->zone_start_pfn;
948 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
949 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
950 
951 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
952 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
953 
954 	if (start_pfn >= end_pfn)
955 		return;
956 
957 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
958 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
959 
960 	if (*hole_pfn < start_pfn)
961 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
962 
963 	*hole_pfn = end_pfn;
964 }
965 
966 static void __init memmap_init(void)
967 {
968 	unsigned long start_pfn, end_pfn;
969 	unsigned long hole_pfn = 0;
970 	int i, j, zone_id = 0, nid;
971 
972 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
973 		struct pglist_data *node = NODE_DATA(nid);
974 
975 		for (j = 0; j < MAX_NR_ZONES; j++) {
976 			struct zone *zone = node->node_zones + j;
977 
978 			if (!populated_zone(zone))
979 				continue;
980 
981 			memmap_init_zone_range(zone, start_pfn, end_pfn,
982 					       &hole_pfn);
983 			zone_id = j;
984 		}
985 	}
986 
987 	/*
988 	 * Initialize the memory map for hole in the range [memory_end,
989 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
990 	 * for FLATMEM.
991 	 * Append the pages in this hole to the highest zone in the last
992 	 * node.
993 	 */
994 #ifdef CONFIG_SPARSEMEM
995 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
996 #else
997 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
998 #endif
999 	if (hole_pfn < end_pfn)
1000 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1001 }
1002 
1003 #ifdef CONFIG_ZONE_DEVICE
1004 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1005 					  unsigned long zone_idx, int nid,
1006 					  struct dev_pagemap *pgmap)
1007 {
1008 
1009 	__init_single_page(page, pfn, zone_idx, nid);
1010 
1011 	/*
1012 	 * Mark page reserved as it will need to wait for onlining
1013 	 * phase for it to be fully associated with a zone.
1014 	 *
1015 	 * We can use the non-atomic __set_bit operation for setting
1016 	 * the flag as we are still initializing the pages.
1017 	 */
1018 	__SetPageReserved(page);
1019 
1020 	/*
1021 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1022 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1023 	 * ever freed or placed on a driver-private list.
1024 	 */
1025 	page_folio(page)->pgmap = pgmap;
1026 	page->zone_device_data = NULL;
1027 
1028 	/*
1029 	 * Mark the block movable so that blocks are reserved for
1030 	 * movable at startup. This will force kernel allocations
1031 	 * to reserve their blocks rather than leaking throughout
1032 	 * the address space during boot when many long-lived
1033 	 * kernel allocations are made.
1034 	 *
1035 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1036 	 * because this is done early in section_activate()
1037 	 */
1038 	if (pageblock_aligned(pfn)) {
1039 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1040 		cond_resched();
1041 	}
1042 
1043 	/*
1044 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1045 	 * directly to the driver page allocator which will set the page count
1046 	 * to 1 when allocating the page.
1047 	 *
1048 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1049 	 * their refcount reset to one whenever they are freed (ie. after
1050 	 * their refcount drops to 0).
1051 	 */
1052 	switch (pgmap->type) {
1053 	case MEMORY_DEVICE_FS_DAX:
1054 	case MEMORY_DEVICE_PRIVATE:
1055 	case MEMORY_DEVICE_COHERENT:
1056 	case MEMORY_DEVICE_PCI_P2PDMA:
1057 		set_page_count(page, 0);
1058 		break;
1059 
1060 	case MEMORY_DEVICE_GENERIC:
1061 		break;
1062 	}
1063 }
1064 
1065 /*
1066  * With compound page geometry and when struct pages are stored in ram most
1067  * tail pages are reused. Consequently, the amount of unique struct pages to
1068  * initialize is a lot smaller that the total amount of struct pages being
1069  * mapped. This is a paired / mild layering violation with explicit knowledge
1070  * of how the sparse_vmemmap internals handle compound pages in the lack
1071  * of an altmap. See vmemmap_populate_compound_pages().
1072  */
1073 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1074 					      struct dev_pagemap *pgmap)
1075 {
1076 	if (!vmemmap_can_optimize(altmap, pgmap))
1077 		return pgmap_vmemmap_nr(pgmap);
1078 
1079 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1080 }
1081 
1082 static void __ref memmap_init_compound(struct page *head,
1083 				       unsigned long head_pfn,
1084 				       unsigned long zone_idx, int nid,
1085 				       struct dev_pagemap *pgmap,
1086 				       unsigned long nr_pages)
1087 {
1088 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1089 	unsigned int order = pgmap->vmemmap_shift;
1090 
1091 	__SetPageHead(head);
1092 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1093 		struct page *page = pfn_to_page(pfn);
1094 
1095 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1096 		prep_compound_tail(head, pfn - head_pfn);
1097 		set_page_count(page, 0);
1098 
1099 		/*
1100 		 * The first tail page stores important compound page info.
1101 		 * Call prep_compound_head() after the first tail page has
1102 		 * been initialized, to not have the data overwritten.
1103 		 */
1104 		if (pfn == head_pfn + 1)
1105 			prep_compound_head(head, order);
1106 	}
1107 }
1108 
1109 void __ref memmap_init_zone_device(struct zone *zone,
1110 				   unsigned long start_pfn,
1111 				   unsigned long nr_pages,
1112 				   struct dev_pagemap *pgmap)
1113 {
1114 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1115 	struct pglist_data *pgdat = zone->zone_pgdat;
1116 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1117 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1118 	unsigned long zone_idx = zone_idx(zone);
1119 	unsigned long start = jiffies;
1120 	int nid = pgdat->node_id;
1121 
1122 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1123 		return;
1124 
1125 	/*
1126 	 * The call to memmap_init should have already taken care
1127 	 * of the pages reserved for the memmap, so we can just jump to
1128 	 * the end of that region and start processing the device pages.
1129 	 */
1130 	if (altmap) {
1131 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1132 		nr_pages = end_pfn - start_pfn;
1133 	}
1134 
1135 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1136 		struct page *page = pfn_to_page(pfn);
1137 
1138 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1139 
1140 		if (pfns_per_compound == 1)
1141 			continue;
1142 
1143 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1144 				     compound_nr_pages(altmap, pgmap));
1145 	}
1146 
1147 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1148 		nr_pages, jiffies_to_msecs(jiffies - start));
1149 }
1150 #endif
1151 
1152 /*
1153  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1154  * because it is sized independent of architecture. Unlike the other zones,
1155  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1156  * in each node depending on the size of each node and how evenly kernelcore
1157  * is distributed. This helper function adjusts the zone ranges
1158  * provided by the architecture for a given node by using the end of the
1159  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1160  * zones within a node are in order of monotonic increases memory addresses
1161  */
1162 static void __init adjust_zone_range_for_zone_movable(int nid,
1163 					unsigned long zone_type,
1164 					unsigned long node_end_pfn,
1165 					unsigned long *zone_start_pfn,
1166 					unsigned long *zone_end_pfn)
1167 {
1168 	/* Only adjust if ZONE_MOVABLE is on this node */
1169 	if (zone_movable_pfn[nid]) {
1170 		/* Size ZONE_MOVABLE */
1171 		if (zone_type == ZONE_MOVABLE) {
1172 			*zone_start_pfn = zone_movable_pfn[nid];
1173 			*zone_end_pfn = min(node_end_pfn,
1174 				arch_zone_highest_possible_pfn[movable_zone]);
1175 
1176 		/* Adjust for ZONE_MOVABLE starting within this range */
1177 		} else if (!mirrored_kernelcore &&
1178 			*zone_start_pfn < zone_movable_pfn[nid] &&
1179 			*zone_end_pfn > zone_movable_pfn[nid]) {
1180 			*zone_end_pfn = zone_movable_pfn[nid];
1181 
1182 		/* Check if this whole range is within ZONE_MOVABLE */
1183 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1184 			*zone_start_pfn = *zone_end_pfn;
1185 	}
1186 }
1187 
1188 /*
1189  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1190  * then all holes in the requested range will be accounted for.
1191  */
1192 static unsigned long __init __absent_pages_in_range(int nid,
1193 				unsigned long range_start_pfn,
1194 				unsigned long range_end_pfn)
1195 {
1196 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1197 	unsigned long start_pfn, end_pfn;
1198 	int i;
1199 
1200 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1201 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1202 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1203 		nr_absent -= end_pfn - start_pfn;
1204 	}
1205 	return nr_absent;
1206 }
1207 
1208 /**
1209  * absent_pages_in_range - Return number of page frames in holes within a range
1210  * @start_pfn: The start PFN to start searching for holes
1211  * @end_pfn: The end PFN to stop searching for holes
1212  *
1213  * Return: the number of pages frames in memory holes within a range.
1214  */
1215 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1216 							unsigned long end_pfn)
1217 {
1218 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1219 }
1220 
1221 /* Return the number of page frames in holes in a zone on a node */
1222 static unsigned long __init zone_absent_pages_in_node(int nid,
1223 					unsigned long zone_type,
1224 					unsigned long zone_start_pfn,
1225 					unsigned long zone_end_pfn)
1226 {
1227 	unsigned long nr_absent;
1228 
1229 	/* zone is empty, we don't have any absent pages */
1230 	if (zone_start_pfn == zone_end_pfn)
1231 		return 0;
1232 
1233 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1234 
1235 	/*
1236 	 * ZONE_MOVABLE handling.
1237 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1238 	 * and vice versa.
1239 	 */
1240 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1241 		unsigned long start_pfn, end_pfn;
1242 		struct memblock_region *r;
1243 
1244 		for_each_mem_region(r) {
1245 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1246 					  zone_start_pfn, zone_end_pfn);
1247 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1248 					zone_start_pfn, zone_end_pfn);
1249 
1250 			if (zone_type == ZONE_MOVABLE &&
1251 			    memblock_is_mirror(r))
1252 				nr_absent += end_pfn - start_pfn;
1253 
1254 			if (zone_type == ZONE_NORMAL &&
1255 			    !memblock_is_mirror(r))
1256 				nr_absent += end_pfn - start_pfn;
1257 		}
1258 	}
1259 
1260 	return nr_absent;
1261 }
1262 
1263 /*
1264  * Return the number of pages a zone spans in a node, including holes
1265  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1266  */
1267 static unsigned long __init zone_spanned_pages_in_node(int nid,
1268 					unsigned long zone_type,
1269 					unsigned long node_start_pfn,
1270 					unsigned long node_end_pfn,
1271 					unsigned long *zone_start_pfn,
1272 					unsigned long *zone_end_pfn)
1273 {
1274 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1275 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1276 
1277 	/* Get the start and end of the zone */
1278 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1279 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1280 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1281 					   zone_start_pfn, zone_end_pfn);
1282 
1283 	/* Check that this node has pages within the zone's required range */
1284 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1285 		return 0;
1286 
1287 	/* Move the zone boundaries inside the node if necessary */
1288 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1289 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1290 
1291 	/* Return the spanned pages */
1292 	return *zone_end_pfn - *zone_start_pfn;
1293 }
1294 
1295 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1296 {
1297 	struct zone *z;
1298 
1299 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1300 		z->zone_start_pfn = 0;
1301 		z->spanned_pages = 0;
1302 		z->present_pages = 0;
1303 #if defined(CONFIG_MEMORY_HOTPLUG)
1304 		z->present_early_pages = 0;
1305 #endif
1306 	}
1307 
1308 	pgdat->node_spanned_pages = 0;
1309 	pgdat->node_present_pages = 0;
1310 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1311 }
1312 
1313 static void __init calc_nr_kernel_pages(void)
1314 {
1315 	unsigned long start_pfn, end_pfn;
1316 	phys_addr_t start_addr, end_addr;
1317 	u64 u;
1318 #ifdef CONFIG_HIGHMEM
1319 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1320 #endif
1321 
1322 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1323 		start_pfn = PFN_UP(start_addr);
1324 		end_pfn   = PFN_DOWN(end_addr);
1325 
1326 		if (start_pfn < end_pfn) {
1327 			nr_all_pages += end_pfn - start_pfn;
1328 #ifdef CONFIG_HIGHMEM
1329 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1330 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1331 #endif
1332 			nr_kernel_pages += end_pfn - start_pfn;
1333 		}
1334 	}
1335 }
1336 
1337 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1338 						unsigned long node_start_pfn,
1339 						unsigned long node_end_pfn)
1340 {
1341 	unsigned long realtotalpages = 0, totalpages = 0;
1342 	enum zone_type i;
1343 
1344 	for (i = 0; i < MAX_NR_ZONES; i++) {
1345 		struct zone *zone = pgdat->node_zones + i;
1346 		unsigned long zone_start_pfn, zone_end_pfn;
1347 		unsigned long spanned, absent;
1348 		unsigned long real_size;
1349 
1350 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1351 						     node_start_pfn,
1352 						     node_end_pfn,
1353 						     &zone_start_pfn,
1354 						     &zone_end_pfn);
1355 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1356 						   zone_start_pfn,
1357 						   zone_end_pfn);
1358 
1359 		real_size = spanned - absent;
1360 
1361 		if (spanned)
1362 			zone->zone_start_pfn = zone_start_pfn;
1363 		else
1364 			zone->zone_start_pfn = 0;
1365 		zone->spanned_pages = spanned;
1366 		zone->present_pages = real_size;
1367 #if defined(CONFIG_MEMORY_HOTPLUG)
1368 		zone->present_early_pages = real_size;
1369 #endif
1370 
1371 		totalpages += spanned;
1372 		realtotalpages += real_size;
1373 	}
1374 
1375 	pgdat->node_spanned_pages = totalpages;
1376 	pgdat->node_present_pages = realtotalpages;
1377 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1378 }
1379 
1380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1381 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1382 {
1383 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1384 
1385 	spin_lock_init(&ds_queue->split_queue_lock);
1386 	INIT_LIST_HEAD(&ds_queue->split_queue);
1387 	ds_queue->split_queue_len = 0;
1388 }
1389 #else
1390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1391 #endif
1392 
1393 #ifdef CONFIG_COMPACTION
1394 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1395 {
1396 	init_waitqueue_head(&pgdat->kcompactd_wait);
1397 }
1398 #else
1399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1400 #endif
1401 
1402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1403 {
1404 	int i;
1405 
1406 	pgdat_resize_init(pgdat);
1407 	pgdat_kswapd_lock_init(pgdat);
1408 
1409 	pgdat_init_split_queue(pgdat);
1410 	pgdat_init_kcompactd(pgdat);
1411 
1412 	init_waitqueue_head(&pgdat->kswapd_wait);
1413 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1414 
1415 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1416 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1417 
1418 	pgdat_page_ext_init(pgdat);
1419 	lruvec_init(&pgdat->__lruvec);
1420 }
1421 
1422 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1423 							unsigned long remaining_pages)
1424 {
1425 	atomic_long_set(&zone->managed_pages, remaining_pages);
1426 	zone_set_nid(zone, nid);
1427 	zone->name = zone_names[idx];
1428 	zone->zone_pgdat = NODE_DATA(nid);
1429 	spin_lock_init(&zone->lock);
1430 	zone_seqlock_init(zone);
1431 	zone_pcp_init(zone);
1432 }
1433 
1434 static void __meminit zone_init_free_lists(struct zone *zone)
1435 {
1436 	unsigned int order, t;
1437 	for_each_migratetype_order(order, t) {
1438 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1439 		zone->free_area[order].nr_free = 0;
1440 	}
1441 
1442 #ifdef CONFIG_UNACCEPTED_MEMORY
1443 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1444 	INIT_WORK(&zone->unaccepted_cleanup, unaccepted_cleanup_work);
1445 #endif
1446 }
1447 
1448 void __meminit init_currently_empty_zone(struct zone *zone,
1449 					unsigned long zone_start_pfn,
1450 					unsigned long size)
1451 {
1452 	struct pglist_data *pgdat = zone->zone_pgdat;
1453 	int zone_idx = zone_idx(zone) + 1;
1454 
1455 	if (zone_idx > pgdat->nr_zones)
1456 		pgdat->nr_zones = zone_idx;
1457 
1458 	zone->zone_start_pfn = zone_start_pfn;
1459 
1460 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1461 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1462 			pgdat->node_id,
1463 			(unsigned long)zone_idx(zone),
1464 			zone_start_pfn, (zone_start_pfn + size));
1465 
1466 	zone_init_free_lists(zone);
1467 	zone->initialized = 1;
1468 }
1469 
1470 #ifndef CONFIG_SPARSEMEM
1471 /*
1472  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1473  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1474  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1475  * round what is now in bits to nearest long in bits, then return it in
1476  * bytes.
1477  */
1478 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1479 {
1480 	unsigned long usemapsize;
1481 
1482 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1483 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1484 	usemapsize = usemapsize >> pageblock_order;
1485 	usemapsize *= NR_PAGEBLOCK_BITS;
1486 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1487 
1488 	return usemapsize / BITS_PER_BYTE;
1489 }
1490 
1491 static void __ref setup_usemap(struct zone *zone)
1492 {
1493 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1494 					       zone->spanned_pages);
1495 	zone->pageblock_flags = NULL;
1496 	if (usemapsize) {
1497 		zone->pageblock_flags =
1498 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1499 					    zone_to_nid(zone));
1500 		if (!zone->pageblock_flags)
1501 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1502 			      usemapsize, zone->name, zone_to_nid(zone));
1503 	}
1504 }
1505 #else
1506 static inline void setup_usemap(struct zone *zone) {}
1507 #endif /* CONFIG_SPARSEMEM */
1508 
1509 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1510 
1511 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1512 void __init set_pageblock_order(void)
1513 {
1514 	unsigned int order = MAX_PAGE_ORDER;
1515 
1516 	/* Check that pageblock_nr_pages has not already been setup */
1517 	if (pageblock_order)
1518 		return;
1519 
1520 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1521 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1522 		order = HUGETLB_PAGE_ORDER;
1523 
1524 	/*
1525 	 * Assume the largest contiguous order of interest is a huge page.
1526 	 * This value may be variable depending on boot parameters on powerpc.
1527 	 */
1528 	pageblock_order = order;
1529 }
1530 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1531 
1532 /*
1533  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1534  * is unused as pageblock_order is set at compile-time. See
1535  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1536  * the kernel config
1537  */
1538 void __init set_pageblock_order(void)
1539 {
1540 }
1541 
1542 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1543 
1544 /*
1545  * Set up the zone data structures
1546  * - init pgdat internals
1547  * - init all zones belonging to this node
1548  *
1549  * NOTE: this function is only called during memory hotplug
1550  */
1551 #ifdef CONFIG_MEMORY_HOTPLUG
1552 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1553 {
1554 	int nid = pgdat->node_id;
1555 	enum zone_type z;
1556 	int cpu;
1557 
1558 	pgdat_init_internals(pgdat);
1559 
1560 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1561 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1562 
1563 	/*
1564 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1565 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1566 	 * when it starts in the near future.
1567 	 */
1568 	pgdat->nr_zones = 0;
1569 	pgdat->kswapd_order = 0;
1570 	pgdat->kswapd_highest_zoneidx = 0;
1571 	pgdat->node_start_pfn = 0;
1572 	pgdat->node_present_pages = 0;
1573 
1574 	for_each_online_cpu(cpu) {
1575 		struct per_cpu_nodestat *p;
1576 
1577 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1578 		memset(p, 0, sizeof(*p));
1579 	}
1580 
1581 	/*
1582 	 * When memory is hot-added, all the memory is in offline state. So
1583 	 * clear all zones' present_pages and managed_pages because they will
1584 	 * be updated in online_pages() and offline_pages().
1585 	 */
1586 	for (z = 0; z < MAX_NR_ZONES; z++) {
1587 		struct zone *zone = pgdat->node_zones + z;
1588 
1589 		zone->present_pages = 0;
1590 		zone_init_internals(zone, z, nid, 0);
1591 	}
1592 }
1593 #endif
1594 
1595 static void __init free_area_init_core(struct pglist_data *pgdat)
1596 {
1597 	enum zone_type j;
1598 	int nid = pgdat->node_id;
1599 
1600 	pgdat_init_internals(pgdat);
1601 	pgdat->per_cpu_nodestats = &boot_nodestats;
1602 
1603 	for (j = 0; j < MAX_NR_ZONES; j++) {
1604 		struct zone *zone = pgdat->node_zones + j;
1605 		unsigned long size = zone->spanned_pages;
1606 
1607 		/*
1608 		 * Initialize zone->managed_pages as 0 , it will be reset
1609 		 * when memblock allocator frees pages into buddy system.
1610 		 */
1611 		zone_init_internals(zone, j, nid, zone->present_pages);
1612 
1613 		if (!size)
1614 			continue;
1615 
1616 		setup_usemap(zone);
1617 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1618 	}
1619 }
1620 
1621 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1622 			  phys_addr_t min_addr, int nid, bool exact_nid)
1623 {
1624 	void *ptr;
1625 
1626 	/*
1627 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1628 	 * `struct *page`,so memblock does not need to be added to the scan list.
1629 	 */
1630 	if (exact_nid)
1631 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1632 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1633 						   nid);
1634 	else
1635 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1636 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1637 						 nid);
1638 
1639 	if (ptr && size > 0)
1640 		page_init_poison(ptr, size);
1641 
1642 	return ptr;
1643 }
1644 
1645 #ifdef CONFIG_FLATMEM
1646 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1647 {
1648 	unsigned long start, offset, size, end;
1649 	struct page *map;
1650 
1651 	/* Skip empty nodes */
1652 	if (!pgdat->node_spanned_pages)
1653 		return;
1654 
1655 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1656 	offset = pgdat->node_start_pfn - start;
1657 	/*
1658 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1659 	 * aligned but the node_mem_map endpoints must be in order
1660 	 * for the buddy allocator to function correctly.
1661 	 */
1662 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1663 	size =  (end - start) * sizeof(struct page);
1664 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1665 			   pgdat->node_id, false);
1666 	if (!map)
1667 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1668 		      size, pgdat->node_id);
1669 	pgdat->node_mem_map = map + offset;
1670 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1671 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1672 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1673 		 (unsigned long)pgdat->node_mem_map);
1674 
1675 	/* the global mem_map is just set as node 0's */
1676 	WARN_ON(pgdat != NODE_DATA(0));
1677 
1678 	mem_map = pgdat->node_mem_map;
1679 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1680 		mem_map -= offset;
1681 
1682 	max_mapnr = end - start;
1683 }
1684 #else
1685 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1686 #endif /* CONFIG_FLATMEM */
1687 
1688 /**
1689  * get_pfn_range_for_nid - Return the start and end page frames for a node
1690  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1691  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1692  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1693  *
1694  * It returns the start and end page frame of a node based on information
1695  * provided by memblock_set_node(). If called for a node
1696  * with no available memory, the start and end PFNs will be 0.
1697  */
1698 void __init get_pfn_range_for_nid(unsigned int nid,
1699 			unsigned long *start_pfn, unsigned long *end_pfn)
1700 {
1701 	unsigned long this_start_pfn, this_end_pfn;
1702 	int i;
1703 
1704 	*start_pfn = -1UL;
1705 	*end_pfn = 0;
1706 
1707 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1708 		*start_pfn = min(*start_pfn, this_start_pfn);
1709 		*end_pfn = max(*end_pfn, this_end_pfn);
1710 	}
1711 
1712 	if (*start_pfn == -1UL)
1713 		*start_pfn = 0;
1714 }
1715 
1716 static void __init free_area_init_node(int nid)
1717 {
1718 	pg_data_t *pgdat = NODE_DATA(nid);
1719 	unsigned long start_pfn = 0;
1720 	unsigned long end_pfn = 0;
1721 
1722 	/* pg_data_t should be reset to zero when it's allocated */
1723 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1724 
1725 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1726 
1727 	pgdat->node_id = nid;
1728 	pgdat->node_start_pfn = start_pfn;
1729 	pgdat->per_cpu_nodestats = NULL;
1730 
1731 	if (start_pfn != end_pfn) {
1732 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1733 			(u64)start_pfn << PAGE_SHIFT,
1734 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1735 
1736 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1737 	} else {
1738 		pr_info("Initmem setup node %d as memoryless\n", nid);
1739 
1740 		reset_memoryless_node_totalpages(pgdat);
1741 	}
1742 
1743 	alloc_node_mem_map(pgdat);
1744 	pgdat_set_deferred_range(pgdat);
1745 
1746 	free_area_init_core(pgdat);
1747 	lru_gen_init_pgdat(pgdat);
1748 }
1749 
1750 /* Any regular or high memory on that node ? */
1751 static void __init check_for_memory(pg_data_t *pgdat)
1752 {
1753 	enum zone_type zone_type;
1754 
1755 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1756 		struct zone *zone = &pgdat->node_zones[zone_type];
1757 		if (populated_zone(zone)) {
1758 			if (IS_ENABLED(CONFIG_HIGHMEM))
1759 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1760 			if (zone_type <= ZONE_NORMAL)
1761 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1762 			break;
1763 		}
1764 	}
1765 }
1766 
1767 #if MAX_NUMNODES > 1
1768 /*
1769  * Figure out the number of possible node ids.
1770  */
1771 void __init setup_nr_node_ids(void)
1772 {
1773 	unsigned int highest;
1774 
1775 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1776 	nr_node_ids = highest + 1;
1777 }
1778 #endif
1779 
1780 /*
1781  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1782  * such cases we allow max_zone_pfn sorted in the descending order
1783  */
1784 static bool arch_has_descending_max_zone_pfns(void)
1785 {
1786 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1787 }
1788 
1789 static void __init set_high_memory(void)
1790 {
1791 	phys_addr_t highmem = memblock_end_of_DRAM();
1792 
1793 	/*
1794 	 * Some architectures (e.g. ARM) set high_memory very early and
1795 	 * use it in arch setup code.
1796 	 * If an architecture already set high_memory don't overwrite it
1797 	 */
1798 	if (high_memory)
1799 		return;
1800 
1801 #ifdef CONFIG_HIGHMEM
1802 	if (arch_has_descending_max_zone_pfns() ||
1803 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1804 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1805 #endif
1806 
1807 	high_memory = phys_to_virt(highmem - 1) + 1;
1808 }
1809 
1810 /**
1811  * free_area_init - Initialise all pg_data_t and zone data
1812  * @max_zone_pfn: an array of max PFNs for each zone
1813  *
1814  * This will call free_area_init_node() for each active node in the system.
1815  * Using the page ranges provided by memblock_set_node(), the size of each
1816  * zone in each node and their holes is calculated. If the maximum PFN
1817  * between two adjacent zones match, it is assumed that the zone is empty.
1818  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1819  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1820  * starts where the previous one ended. For example, ZONE_DMA32 starts
1821  * at arch_max_dma_pfn.
1822  */
1823 void __init free_area_init(unsigned long *max_zone_pfn)
1824 {
1825 	unsigned long start_pfn, end_pfn;
1826 	int i, nid, zone;
1827 	bool descending;
1828 
1829 	/* Record where the zone boundaries are */
1830 	memset(arch_zone_lowest_possible_pfn, 0,
1831 				sizeof(arch_zone_lowest_possible_pfn));
1832 	memset(arch_zone_highest_possible_pfn, 0,
1833 				sizeof(arch_zone_highest_possible_pfn));
1834 
1835 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1836 	descending = arch_has_descending_max_zone_pfns();
1837 
1838 	for (i = 0; i < MAX_NR_ZONES; i++) {
1839 		if (descending)
1840 			zone = MAX_NR_ZONES - i - 1;
1841 		else
1842 			zone = i;
1843 
1844 		if (zone == ZONE_MOVABLE)
1845 			continue;
1846 
1847 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1848 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1849 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1850 
1851 		start_pfn = end_pfn;
1852 	}
1853 
1854 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1855 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1856 	find_zone_movable_pfns_for_nodes();
1857 
1858 	/* Print out the zone ranges */
1859 	pr_info("Zone ranges:\n");
1860 	for (i = 0; i < MAX_NR_ZONES; i++) {
1861 		if (i == ZONE_MOVABLE)
1862 			continue;
1863 		pr_info("  %-8s ", zone_names[i]);
1864 		if (arch_zone_lowest_possible_pfn[i] ==
1865 				arch_zone_highest_possible_pfn[i])
1866 			pr_cont("empty\n");
1867 		else
1868 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1869 				(u64)arch_zone_lowest_possible_pfn[i]
1870 					<< PAGE_SHIFT,
1871 				((u64)arch_zone_highest_possible_pfn[i]
1872 					<< PAGE_SHIFT) - 1);
1873 	}
1874 
1875 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1876 	pr_info("Movable zone start for each node\n");
1877 	for (i = 0; i < MAX_NUMNODES; i++) {
1878 		if (zone_movable_pfn[i])
1879 			pr_info("  Node %d: %#018Lx\n", i,
1880 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1881 	}
1882 
1883 	/*
1884 	 * Print out the early node map, and initialize the
1885 	 * subsection-map relative to active online memory ranges to
1886 	 * enable future "sub-section" extensions of the memory map.
1887 	 */
1888 	pr_info("Early memory node ranges\n");
1889 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1890 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1891 			(u64)start_pfn << PAGE_SHIFT,
1892 			((u64)end_pfn << PAGE_SHIFT) - 1);
1893 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1894 	}
1895 
1896 	/* Initialise every node */
1897 	mminit_verify_pageflags_layout();
1898 	setup_nr_node_ids();
1899 	set_pageblock_order();
1900 
1901 	for_each_node(nid) {
1902 		pg_data_t *pgdat;
1903 
1904 		if (!node_online(nid))
1905 			alloc_offline_node_data(nid);
1906 
1907 		pgdat = NODE_DATA(nid);
1908 		free_area_init_node(nid);
1909 
1910 		/*
1911 		 * No sysfs hierarcy will be created via register_one_node()
1912 		 *for memory-less node because here it's not marked as N_MEMORY
1913 		 *and won't be set online later. The benefit is userspace
1914 		 *program won't be confused by sysfs files/directories of
1915 		 *memory-less node. The pgdat will get fully initialized by
1916 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1917 		 */
1918 		if (pgdat->node_present_pages) {
1919 			node_set_state(nid, N_MEMORY);
1920 			check_for_memory(pgdat);
1921 		}
1922 	}
1923 
1924 	for_each_node_state(nid, N_MEMORY)
1925 		sparse_vmemmap_init_nid_late(nid);
1926 
1927 	calc_nr_kernel_pages();
1928 	memmap_init();
1929 
1930 	/* disable hash distribution for systems with a single node */
1931 	fixup_hashdist();
1932 
1933 	set_high_memory();
1934 }
1935 
1936 /**
1937  * node_map_pfn_alignment - determine the maximum internode alignment
1938  *
1939  * This function should be called after node map is populated and sorted.
1940  * It calculates the maximum power of two alignment which can distinguish
1941  * all the nodes.
1942  *
1943  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1944  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1945  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1946  * shifted, 1GiB is enough and this function will indicate so.
1947  *
1948  * This is used to test whether pfn -> nid mapping of the chosen memory
1949  * model has fine enough granularity to avoid incorrect mapping for the
1950  * populated node map.
1951  *
1952  * Return: the determined alignment in pfn's.  0 if there is no alignment
1953  * requirement (single node).
1954  */
1955 unsigned long __init node_map_pfn_alignment(void)
1956 {
1957 	unsigned long accl_mask = 0, last_end = 0;
1958 	unsigned long start, end, mask;
1959 	int last_nid = NUMA_NO_NODE;
1960 	int i, nid;
1961 
1962 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1963 		if (!start || last_nid < 0 || last_nid == nid) {
1964 			last_nid = nid;
1965 			last_end = end;
1966 			continue;
1967 		}
1968 
1969 		/*
1970 		 * Start with a mask granular enough to pin-point to the
1971 		 * start pfn and tick off bits one-by-one until it becomes
1972 		 * too coarse to separate the current node from the last.
1973 		 */
1974 		mask = ~((1 << __ffs(start)) - 1);
1975 		while (mask && last_end <= (start & (mask << 1)))
1976 			mask <<= 1;
1977 
1978 		/* accumulate all internode masks */
1979 		accl_mask |= mask;
1980 	}
1981 
1982 	/* convert mask to number of pages */
1983 	return ~accl_mask + 1;
1984 }
1985 
1986 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1987 static void __init deferred_free_pages(unsigned long pfn,
1988 		unsigned long nr_pages)
1989 {
1990 	struct page *page;
1991 	unsigned long i;
1992 
1993 	if (!nr_pages)
1994 		return;
1995 
1996 	page = pfn_to_page(pfn);
1997 
1998 	/* Free a large naturally-aligned chunk if possible */
1999 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
2000 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
2001 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
2002 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2003 		return;
2004 	}
2005 
2006 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2007 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2008 
2009 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2010 		if (pageblock_aligned(pfn))
2011 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2012 		__free_pages_core(page, 0, MEMINIT_EARLY);
2013 	}
2014 }
2015 
2016 /* Completion tracking for deferred_init_memmap() threads */
2017 static atomic_t pgdat_init_n_undone __initdata;
2018 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2019 
2020 static inline void __init pgdat_init_report_one_done(void)
2021 {
2022 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2023 		complete(&pgdat_init_all_done_comp);
2024 }
2025 
2026 /*
2027  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2028  * by performing it only once every MAX_ORDER_NR_PAGES.
2029  * Return number of pages initialized.
2030  */
2031 static unsigned long __init deferred_init_pages(struct zone *zone,
2032 		unsigned long pfn, unsigned long end_pfn)
2033 {
2034 	int nid = zone_to_nid(zone);
2035 	unsigned long nr_pages = end_pfn - pfn;
2036 	int zid = zone_idx(zone);
2037 	struct page *page = pfn_to_page(pfn);
2038 
2039 	for (; pfn < end_pfn; pfn++, page++)
2040 		__init_single_page(page, pfn, zid, nid);
2041 	return nr_pages;
2042 }
2043 
2044 /*
2045  * This function is meant to pre-load the iterator for the zone init from
2046  * a given point.
2047  * Specifically it walks through the ranges starting with initial index
2048  * passed to it until we are caught up to the first_init_pfn value and
2049  * exits there. If we never encounter the value we return false indicating
2050  * there are no valid ranges left.
2051  */
2052 static bool __init
2053 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2054 				    unsigned long *spfn, unsigned long *epfn,
2055 				    unsigned long first_init_pfn)
2056 {
2057 	u64 j = *i;
2058 
2059 	if (j == 0)
2060 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2061 
2062 	/*
2063 	 * Start out by walking through the ranges in this zone that have
2064 	 * already been initialized. We don't need to do anything with them
2065 	 * so we just need to flush them out of the system.
2066 	 */
2067 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2068 		if (*epfn <= first_init_pfn)
2069 			continue;
2070 		if (*spfn < first_init_pfn)
2071 			*spfn = first_init_pfn;
2072 		*i = j;
2073 		return true;
2074 	}
2075 
2076 	return false;
2077 }
2078 
2079 /*
2080  * Initialize and free pages. We do it in two loops: first we initialize
2081  * struct page, then free to buddy allocator, because while we are
2082  * freeing pages we can access pages that are ahead (computing buddy
2083  * page in __free_one_page()).
2084  *
2085  * In order to try and keep some memory in the cache we have the loop
2086  * broken along max page order boundaries. This way we will not cause
2087  * any issues with the buddy page computation.
2088  */
2089 static unsigned long __init
2090 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2091 		       unsigned long *end_pfn)
2092 {
2093 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2094 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2095 	unsigned long nr_pages = 0;
2096 	u64 j = *i;
2097 
2098 	/* First we loop through and initialize the page values */
2099 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2100 		unsigned long t;
2101 
2102 		if (mo_pfn <= *start_pfn)
2103 			break;
2104 
2105 		t = min(mo_pfn, *end_pfn);
2106 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2107 
2108 		if (mo_pfn < *end_pfn) {
2109 			*start_pfn = mo_pfn;
2110 			break;
2111 		}
2112 	}
2113 
2114 	/* Reset values and now loop through freeing pages as needed */
2115 	swap(j, *i);
2116 
2117 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2118 		unsigned long t;
2119 
2120 		if (mo_pfn <= spfn)
2121 			break;
2122 
2123 		t = min(mo_pfn, epfn);
2124 		deferred_free_pages(spfn, t - spfn);
2125 
2126 		if (mo_pfn <= epfn)
2127 			break;
2128 	}
2129 
2130 	return nr_pages;
2131 }
2132 
2133 static void __init
2134 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2135 			   void *arg)
2136 {
2137 	unsigned long spfn, epfn;
2138 	struct zone *zone = arg;
2139 	u64 i = 0;
2140 
2141 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2142 
2143 	/*
2144 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2145 	 * we can avoid introducing any issues with the buddy allocator.
2146 	 */
2147 	while (spfn < end_pfn) {
2148 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2149 		cond_resched();
2150 	}
2151 }
2152 
2153 static unsigned int __init
2154 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2155 {
2156 	return max(cpumask_weight(node_cpumask), 1U);
2157 }
2158 
2159 /* Initialise remaining memory on a node */
2160 static int __init deferred_init_memmap(void *data)
2161 {
2162 	pg_data_t *pgdat = data;
2163 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2164 	unsigned long spfn = 0, epfn = 0;
2165 	unsigned long first_init_pfn, flags;
2166 	unsigned long start = jiffies;
2167 	struct zone *zone;
2168 	int max_threads;
2169 	u64 i = 0;
2170 
2171 	/* Bind memory initialisation thread to a local node if possible */
2172 	if (!cpumask_empty(cpumask))
2173 		set_cpus_allowed_ptr(current, cpumask);
2174 
2175 	pgdat_resize_lock(pgdat, &flags);
2176 	first_init_pfn = pgdat->first_deferred_pfn;
2177 	if (first_init_pfn == ULONG_MAX) {
2178 		pgdat_resize_unlock(pgdat, &flags);
2179 		pgdat_init_report_one_done();
2180 		return 0;
2181 	}
2182 
2183 	/* Sanity check boundaries */
2184 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2185 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2186 	pgdat->first_deferred_pfn = ULONG_MAX;
2187 
2188 	/*
2189 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2190 	 * interrupt thread must allocate this early in boot, zone must be
2191 	 * pre-grown prior to start of deferred page initialization.
2192 	 */
2193 	pgdat_resize_unlock(pgdat, &flags);
2194 
2195 	/* Only the highest zone is deferred */
2196 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2197 
2198 	max_threads = deferred_page_init_max_threads(cpumask);
2199 
2200 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2201 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2202 		struct padata_mt_job job = {
2203 			.thread_fn   = deferred_init_memmap_chunk,
2204 			.fn_arg      = zone,
2205 			.start       = spfn,
2206 			.size        = first_init_pfn - spfn,
2207 			.align       = PAGES_PER_SECTION,
2208 			.min_chunk   = PAGES_PER_SECTION,
2209 			.max_threads = max_threads,
2210 			.numa_aware  = false,
2211 		};
2212 
2213 		padata_do_multithreaded(&job);
2214 	}
2215 
2216 	/* Sanity check that the next zone really is unpopulated */
2217 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2218 
2219 	pr_info("node %d deferred pages initialised in %ums\n",
2220 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2221 
2222 	pgdat_init_report_one_done();
2223 	return 0;
2224 }
2225 
2226 /*
2227  * If this zone has deferred pages, try to grow it by initializing enough
2228  * deferred pages to satisfy the allocation specified by order, rounded up to
2229  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2230  * of SECTION_SIZE bytes by initializing struct pages in increments of
2231  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2232  *
2233  * Return true when zone was grown, otherwise return false. We return true even
2234  * when we grow less than requested, to let the caller decide if there are
2235  * enough pages to satisfy the allocation.
2236  */
2237 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2238 {
2239 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2240 	pg_data_t *pgdat = zone->zone_pgdat;
2241 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2242 	unsigned long spfn, epfn, flags;
2243 	unsigned long nr_pages = 0;
2244 	u64 i = 0;
2245 
2246 	/* Only the last zone may have deferred pages */
2247 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2248 		return false;
2249 
2250 	pgdat_resize_lock(pgdat, &flags);
2251 
2252 	/*
2253 	 * If someone grew this zone while we were waiting for spinlock, return
2254 	 * true, as there might be enough pages already.
2255 	 */
2256 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2257 		pgdat_resize_unlock(pgdat, &flags);
2258 		return true;
2259 	}
2260 
2261 	/* If the zone is empty somebody else may have cleared out the zone */
2262 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2263 						 first_deferred_pfn)) {
2264 		pgdat->first_deferred_pfn = ULONG_MAX;
2265 		pgdat_resize_unlock(pgdat, &flags);
2266 		/* Retry only once. */
2267 		return first_deferred_pfn != ULONG_MAX;
2268 	}
2269 
2270 	/*
2271 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2272 	 * that we can avoid introducing any issues with the buddy
2273 	 * allocator.
2274 	 */
2275 	while (spfn < epfn) {
2276 		/* update our first deferred PFN for this section */
2277 		first_deferred_pfn = spfn;
2278 
2279 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2280 		touch_nmi_watchdog();
2281 
2282 		/* We should only stop along section boundaries */
2283 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2284 			continue;
2285 
2286 		/* If our quota has been met we can stop here */
2287 		if (nr_pages >= nr_pages_needed)
2288 			break;
2289 	}
2290 
2291 	pgdat->first_deferred_pfn = spfn;
2292 	pgdat_resize_unlock(pgdat, &flags);
2293 
2294 	return nr_pages > 0;
2295 }
2296 
2297 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2298 
2299 #ifdef CONFIG_CMA
2300 void __init init_cma_reserved_pageblock(struct page *page)
2301 {
2302 	unsigned i = pageblock_nr_pages;
2303 	struct page *p = page;
2304 
2305 	do {
2306 		__ClearPageReserved(p);
2307 		set_page_count(p, 0);
2308 	} while (++p, --i);
2309 
2310 	set_pageblock_migratetype(page, MIGRATE_CMA);
2311 	set_page_refcounted(page);
2312 	/* pages were reserved and not allocated */
2313 	clear_page_tag_ref(page);
2314 	__free_pages(page, pageblock_order);
2315 
2316 	adjust_managed_page_count(page, pageblock_nr_pages);
2317 	page_zone(page)->cma_pages += pageblock_nr_pages;
2318 }
2319 /*
2320  * Similar to above, but only set the migrate type and stats.
2321  */
2322 void __init init_cma_pageblock(struct page *page)
2323 {
2324 	set_pageblock_migratetype(page, MIGRATE_CMA);
2325 	adjust_managed_page_count(page, pageblock_nr_pages);
2326 	page_zone(page)->cma_pages += pageblock_nr_pages;
2327 }
2328 #endif
2329 
2330 void set_zone_contiguous(struct zone *zone)
2331 {
2332 	unsigned long block_start_pfn = zone->zone_start_pfn;
2333 	unsigned long block_end_pfn;
2334 
2335 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2336 	for (; block_start_pfn < zone_end_pfn(zone);
2337 			block_start_pfn = block_end_pfn,
2338 			 block_end_pfn += pageblock_nr_pages) {
2339 
2340 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2341 
2342 		if (!__pageblock_pfn_to_page(block_start_pfn,
2343 					     block_end_pfn, zone))
2344 			return;
2345 		cond_resched();
2346 	}
2347 
2348 	/* We confirm that there is no hole */
2349 	zone->contiguous = true;
2350 }
2351 
2352 /*
2353  * Check if a PFN range intersects multiple zones on one or more
2354  * NUMA nodes. Specify the @nid argument if it is known that this
2355  * PFN range is on one node, NUMA_NO_NODE otherwise.
2356  */
2357 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2358 			   unsigned long nr_pages)
2359 {
2360 	struct zone *zone, *izone = NULL;
2361 
2362 	for_each_zone(zone) {
2363 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2364 			continue;
2365 
2366 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2367 			if (izone != NULL)
2368 				return true;
2369 			izone = zone;
2370 		}
2371 
2372 	}
2373 
2374 	return false;
2375 }
2376 
2377 static void __init mem_init_print_info(void);
2378 void __init page_alloc_init_late(void)
2379 {
2380 	struct zone *zone;
2381 	int nid;
2382 
2383 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2384 
2385 	/* There will be num_node_state(N_MEMORY) threads */
2386 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2387 	for_each_node_state(nid, N_MEMORY) {
2388 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2389 	}
2390 
2391 	/* Block until all are initialised */
2392 	wait_for_completion(&pgdat_init_all_done_comp);
2393 
2394 	/*
2395 	 * We initialized the rest of the deferred pages.  Permanently disable
2396 	 * on-demand struct page initialization.
2397 	 */
2398 	static_branch_disable(&deferred_pages);
2399 
2400 	/* Reinit limits that are based on free pages after the kernel is up */
2401 	files_maxfiles_init();
2402 #endif
2403 
2404 	/* Accounting of total+free memory is stable at this point. */
2405 	mem_init_print_info();
2406 	buffer_init();
2407 
2408 	/* Discard memblock private memory */
2409 	memblock_discard();
2410 
2411 	for_each_node_state(nid, N_MEMORY)
2412 		shuffle_free_memory(NODE_DATA(nid));
2413 
2414 	for_each_populated_zone(zone)
2415 		set_zone_contiguous(zone);
2416 
2417 	/* Initialize page ext after all struct pages are initialized. */
2418 	if (deferred_struct_pages)
2419 		page_ext_init();
2420 
2421 	page_alloc_sysctl_init();
2422 }
2423 
2424 /*
2425  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2426  * machines. As memory size is increased the scale is also increased but at
2427  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2428  * quadruples the scale is increased by one, which means the size of hash table
2429  * only doubles, instead of quadrupling as well.
2430  * Because 32-bit systems cannot have large physical memory, where this scaling
2431  * makes sense, it is disabled on such platforms.
2432  */
2433 #if __BITS_PER_LONG > 32
2434 #define ADAPT_SCALE_BASE	(64ul << 30)
2435 #define ADAPT_SCALE_SHIFT	2
2436 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2437 #endif
2438 
2439 /*
2440  * allocate a large system hash table from bootmem
2441  * - it is assumed that the hash table must contain an exact power-of-2
2442  *   quantity of entries
2443  * - limit is the number of hash buckets, not the total allocation size
2444  */
2445 void *__init alloc_large_system_hash(const char *tablename,
2446 				     unsigned long bucketsize,
2447 				     unsigned long numentries,
2448 				     int scale,
2449 				     int flags,
2450 				     unsigned int *_hash_shift,
2451 				     unsigned int *_hash_mask,
2452 				     unsigned long low_limit,
2453 				     unsigned long high_limit)
2454 {
2455 	unsigned long long max = high_limit;
2456 	unsigned long log2qty, size;
2457 	void *table;
2458 	gfp_t gfp_flags;
2459 	bool virt;
2460 	bool huge;
2461 
2462 	/* allow the kernel cmdline to have a say */
2463 	if (!numentries) {
2464 		/* round applicable memory size up to nearest megabyte */
2465 		numentries = nr_kernel_pages;
2466 
2467 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2468 		if (PAGE_SIZE < SZ_1M)
2469 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2470 
2471 #if __BITS_PER_LONG > 32
2472 		if (!high_limit) {
2473 			unsigned long adapt;
2474 
2475 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2476 			     adapt <<= ADAPT_SCALE_SHIFT)
2477 				scale++;
2478 		}
2479 #endif
2480 
2481 		/* limit to 1 bucket per 2^scale bytes of low memory */
2482 		if (scale > PAGE_SHIFT)
2483 			numentries >>= (scale - PAGE_SHIFT);
2484 		else
2485 			numentries <<= (PAGE_SHIFT - scale);
2486 
2487 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2488 			numentries = PAGE_SIZE / bucketsize;
2489 	}
2490 	numentries = roundup_pow_of_two(numentries);
2491 
2492 	/* limit allocation size to 1/16 total memory by default */
2493 	if (max == 0) {
2494 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2495 		do_div(max, bucketsize);
2496 	}
2497 	max = min(max, 0x80000000ULL);
2498 
2499 	if (numentries < low_limit)
2500 		numentries = low_limit;
2501 	if (numentries > max)
2502 		numentries = max;
2503 
2504 	log2qty = ilog2(numentries);
2505 
2506 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2507 	do {
2508 		virt = false;
2509 		size = bucketsize << log2qty;
2510 		if (flags & HASH_EARLY) {
2511 			if (flags & HASH_ZERO)
2512 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2513 			else
2514 				table = memblock_alloc_raw(size,
2515 							   SMP_CACHE_BYTES);
2516 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2517 			table = vmalloc_huge(size, gfp_flags);
2518 			virt = true;
2519 			if (table)
2520 				huge = is_vm_area_hugepages(table);
2521 		} else {
2522 			/*
2523 			 * If bucketsize is not a power-of-two, we may free
2524 			 * some pages at the end of hash table which
2525 			 * alloc_pages_exact() automatically does
2526 			 */
2527 			table = alloc_pages_exact(size, gfp_flags);
2528 			kmemleak_alloc(table, size, 1, gfp_flags);
2529 		}
2530 	} while (!table && size > PAGE_SIZE && --log2qty);
2531 
2532 	if (!table)
2533 		panic("Failed to allocate %s hash table\n", tablename);
2534 
2535 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2536 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2537 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2538 
2539 	if (_hash_shift)
2540 		*_hash_shift = log2qty;
2541 	if (_hash_mask)
2542 		*_hash_mask = (1 << log2qty) - 1;
2543 
2544 	return table;
2545 }
2546 
2547 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2548 							unsigned int order)
2549 {
2550 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2551 		int nid = early_pfn_to_nid(pfn);
2552 
2553 		if (!early_page_initialised(pfn, nid))
2554 			return;
2555 	}
2556 
2557 	if (!kmsan_memblock_free_pages(page, order)) {
2558 		/* KMSAN will take care of these pages. */
2559 		return;
2560 	}
2561 
2562 	/* pages were reserved and not allocated */
2563 	clear_page_tag_ref(page);
2564 	__free_pages_core(page, order, MEMINIT_EARLY);
2565 }
2566 
2567 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2568 EXPORT_SYMBOL(init_on_alloc);
2569 
2570 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2571 EXPORT_SYMBOL(init_on_free);
2572 
2573 static bool _init_on_alloc_enabled_early __read_mostly
2574 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2575 static int __init early_init_on_alloc(char *buf)
2576 {
2577 
2578 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2579 }
2580 early_param("init_on_alloc", early_init_on_alloc);
2581 
2582 static bool _init_on_free_enabled_early __read_mostly
2583 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2584 static int __init early_init_on_free(char *buf)
2585 {
2586 	return kstrtobool(buf, &_init_on_free_enabled_early);
2587 }
2588 early_param("init_on_free", early_init_on_free);
2589 
2590 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2591 
2592 /*
2593  * Enable static keys related to various memory debugging and hardening options.
2594  * Some override others, and depend on early params that are evaluated in the
2595  * order of appearance. So we need to first gather the full picture of what was
2596  * enabled, and then make decisions.
2597  */
2598 static void __init mem_debugging_and_hardening_init(void)
2599 {
2600 	bool page_poisoning_requested = false;
2601 	bool want_check_pages = false;
2602 
2603 #ifdef CONFIG_PAGE_POISONING
2604 	/*
2605 	 * Page poisoning is debug page alloc for some arches. If
2606 	 * either of those options are enabled, enable poisoning.
2607 	 */
2608 	if (page_poisoning_enabled() ||
2609 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2610 	      debug_pagealloc_enabled())) {
2611 		static_branch_enable(&_page_poisoning_enabled);
2612 		page_poisoning_requested = true;
2613 		want_check_pages = true;
2614 	}
2615 #endif
2616 
2617 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2618 	    page_poisoning_requested) {
2619 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2620 			"will take precedence over init_on_alloc and init_on_free\n");
2621 		_init_on_alloc_enabled_early = false;
2622 		_init_on_free_enabled_early = false;
2623 	}
2624 
2625 	if (_init_on_alloc_enabled_early) {
2626 		want_check_pages = true;
2627 		static_branch_enable(&init_on_alloc);
2628 	} else {
2629 		static_branch_disable(&init_on_alloc);
2630 	}
2631 
2632 	if (_init_on_free_enabled_early) {
2633 		want_check_pages = true;
2634 		static_branch_enable(&init_on_free);
2635 	} else {
2636 		static_branch_disable(&init_on_free);
2637 	}
2638 
2639 	if (IS_ENABLED(CONFIG_KMSAN) &&
2640 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2641 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2642 
2643 #ifdef CONFIG_DEBUG_PAGEALLOC
2644 	if (debug_pagealloc_enabled()) {
2645 		want_check_pages = true;
2646 		static_branch_enable(&_debug_pagealloc_enabled);
2647 
2648 		if (debug_guardpage_minorder())
2649 			static_branch_enable(&_debug_guardpage_enabled);
2650 	}
2651 #endif
2652 
2653 	/*
2654 	 * Any page debugging or hardening option also enables sanity checking
2655 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2656 	 * enabled already.
2657 	 */
2658 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2659 		static_branch_enable(&check_pages_enabled);
2660 }
2661 
2662 /* Report memory auto-initialization states for this boot. */
2663 static void __init report_meminit(void)
2664 {
2665 	const char *stack;
2666 
2667 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2668 		stack = "all(pattern)";
2669 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2670 		stack = "all(zero)";
2671 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2672 		stack = "byref_all(zero)";
2673 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2674 		stack = "byref(zero)";
2675 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2676 		stack = "__user(zero)";
2677 	else
2678 		stack = "off";
2679 
2680 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2681 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2682 		str_on_off(want_init_on_free()));
2683 	if (want_init_on_free())
2684 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2685 }
2686 
2687 static void __init mem_init_print_info(void)
2688 {
2689 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2690 	unsigned long init_code_size, init_data_size;
2691 
2692 	physpages = get_num_physpages();
2693 	codesize = _etext - _stext;
2694 	datasize = _edata - _sdata;
2695 	rosize = __end_rodata - __start_rodata;
2696 	bss_size = __bss_stop - __bss_start;
2697 	init_data_size = __init_end - __init_begin;
2698 	init_code_size = _einittext - _sinittext;
2699 
2700 	/*
2701 	 * Detect special cases and adjust section sizes accordingly:
2702 	 * 1) .init.* may be embedded into .data sections
2703 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2704 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2705 	 * 3) .rodata.* may be embedded into .text or .data sections.
2706 	 */
2707 #define adj_init_size(start, end, size, pos, adj) \
2708 	do { \
2709 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2710 			size -= adj; \
2711 	} while (0)
2712 
2713 	adj_init_size(__init_begin, __init_end, init_data_size,
2714 		     _sinittext, init_code_size);
2715 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2716 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2717 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2718 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2719 
2720 #undef	adj_init_size
2721 
2722 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2723 #ifdef	CONFIG_HIGHMEM
2724 		", %luK highmem"
2725 #endif
2726 		")\n",
2727 		K(nr_free_pages()), K(physpages),
2728 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2729 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2730 		K(physpages - totalram_pages() - totalcma_pages),
2731 		K(totalcma_pages)
2732 #ifdef	CONFIG_HIGHMEM
2733 		, K(totalhigh_pages())
2734 #endif
2735 		);
2736 }
2737 
2738 void __init __weak arch_mm_preinit(void)
2739 {
2740 }
2741 
2742 void __init __weak mem_init(void)
2743 {
2744 }
2745 
2746 /*
2747  * Set up kernel memory allocators
2748  */
2749 void __init mm_core_init(void)
2750 {
2751 	arch_mm_preinit();
2752 	hugetlb_bootmem_alloc();
2753 
2754 	/* Initializations relying on SMP setup */
2755 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2756 	build_all_zonelists(NULL);
2757 	page_alloc_init_cpuhp();
2758 	alloc_tag_sec_init();
2759 	/*
2760 	 * page_ext requires contiguous pages,
2761 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2762 	 */
2763 	page_ext_init_flatmem();
2764 	mem_debugging_and_hardening_init();
2765 	kfence_alloc_pool_and_metadata();
2766 	report_meminit();
2767 	kmsan_init_shadow();
2768 	stack_depot_early_init();
2769 	memblock_free_all();
2770 	mem_init();
2771 	kmem_cache_init();
2772 	/*
2773 	 * page_owner must be initialized after buddy is ready, and also after
2774 	 * slab is ready so that stack_depot_init() works properly
2775 	 */
2776 	page_ext_init_flatmem_late();
2777 	kmemleak_init();
2778 	ptlock_cache_init();
2779 	pgtable_cache_init();
2780 	debug_objects_mem_init();
2781 	vmalloc_init();
2782 	/* If no deferred init page_ext now, as vmap is fully initialized */
2783 	if (!deferred_struct_pages)
2784 		page_ext_init();
2785 	/* Should be run before the first non-init thread is created */
2786 	init_espfix_bsp();
2787 	/* Should be run after espfix64 is set up. */
2788 	pti_init();
2789 	kmsan_init_runtime();
2790 	mm_cache_init();
2791 	execmem_init();
2792 }
2793