xref: /linux/mm/mlock.c (revision fbc90c042cd1dc7258ebfebe6d226017e5b5ac8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagewalk.h>
18 #include <linux/mempolicy.h>
19 #include <linux/syscalls.h>
20 #include <linux/sched.h>
21 #include <linux/export.h>
22 #include <linux/rmap.h>
23 #include <linux/mmzone.h>
24 #include <linux/hugetlb.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 #include <linux/secretmem.h>
28 
29 #include "internal.h"
30 
31 struct mlock_fbatch {
32 	local_lock_t lock;
33 	struct folio_batch fbatch;
34 };
35 
36 static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = {
37 	.lock = INIT_LOCAL_LOCK(lock),
38 };
39 
40 bool can_do_mlock(void)
41 {
42 	if (rlimit(RLIMIT_MEMLOCK) != 0)
43 		return true;
44 	if (capable(CAP_IPC_LOCK))
45 		return true;
46 	return false;
47 }
48 EXPORT_SYMBOL(can_do_mlock);
49 
50 /*
51  * Mlocked folios are marked with the PG_mlocked flag for efficient testing
52  * in vmscan and, possibly, the fault path; and to support semi-accurate
53  * statistics.
54  *
55  * An mlocked folio [folio_test_mlocked(folio)] is unevictable.  As such, it
56  * will be ostensibly placed on the LRU "unevictable" list (actually no such
57  * list exists), rather than the [in]active lists. PG_unevictable is set to
58  * indicate the unevictable state.
59  */
60 
61 static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec)
62 {
63 	/* There is nothing more we can do while it's off LRU */
64 	if (!folio_test_clear_lru(folio))
65 		return lruvec;
66 
67 	lruvec = folio_lruvec_relock_irq(folio, lruvec);
68 
69 	if (unlikely(folio_evictable(folio))) {
70 		/*
71 		 * This is a little surprising, but quite possible: PG_mlocked
72 		 * must have got cleared already by another CPU.  Could this
73 		 * folio be unevictable?  I'm not sure, but move it now if so.
74 		 */
75 		if (folio_test_unevictable(folio)) {
76 			lruvec_del_folio(lruvec, folio);
77 			folio_clear_unevictable(folio);
78 			lruvec_add_folio(lruvec, folio);
79 
80 			__count_vm_events(UNEVICTABLE_PGRESCUED,
81 					  folio_nr_pages(folio));
82 		}
83 		goto out;
84 	}
85 
86 	if (folio_test_unevictable(folio)) {
87 		if (folio_test_mlocked(folio))
88 			folio->mlock_count++;
89 		goto out;
90 	}
91 
92 	lruvec_del_folio(lruvec, folio);
93 	folio_clear_active(folio);
94 	folio_set_unevictable(folio);
95 	folio->mlock_count = !!folio_test_mlocked(folio);
96 	lruvec_add_folio(lruvec, folio);
97 	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
98 out:
99 	folio_set_lru(folio);
100 	return lruvec;
101 }
102 
103 static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec)
104 {
105 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
106 
107 	lruvec = folio_lruvec_relock_irq(folio, lruvec);
108 
109 	/* As above, this is a little surprising, but possible */
110 	if (unlikely(folio_evictable(folio)))
111 		goto out;
112 
113 	folio_set_unevictable(folio);
114 	folio->mlock_count = !!folio_test_mlocked(folio);
115 	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
116 out:
117 	lruvec_add_folio(lruvec, folio);
118 	folio_set_lru(folio);
119 	return lruvec;
120 }
121 
122 static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec)
123 {
124 	int nr_pages = folio_nr_pages(folio);
125 	bool isolated = false;
126 
127 	if (!folio_test_clear_lru(folio))
128 		goto munlock;
129 
130 	isolated = true;
131 	lruvec = folio_lruvec_relock_irq(folio, lruvec);
132 
133 	if (folio_test_unevictable(folio)) {
134 		/* Then mlock_count is maintained, but might undercount */
135 		if (folio->mlock_count)
136 			folio->mlock_count--;
137 		if (folio->mlock_count)
138 			goto out;
139 	}
140 	/* else assume that was the last mlock: reclaim will fix it if not */
141 
142 munlock:
143 	if (folio_test_clear_mlocked(folio)) {
144 		__zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
145 		if (isolated || !folio_test_unevictable(folio))
146 			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147 		else
148 			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149 	}
150 
151 	/* folio_evictable() has to be checked *after* clearing Mlocked */
152 	if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) {
153 		lruvec_del_folio(lruvec, folio);
154 		folio_clear_unevictable(folio);
155 		lruvec_add_folio(lruvec, folio);
156 		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157 	}
158 out:
159 	if (isolated)
160 		folio_set_lru(folio);
161 	return lruvec;
162 }
163 
164 /*
165  * Flags held in the low bits of a struct folio pointer on the mlock_fbatch.
166  */
167 #define LRU_FOLIO 0x1
168 #define NEW_FOLIO 0x2
169 static inline struct folio *mlock_lru(struct folio *folio)
170 {
171 	return (struct folio *)((unsigned long)folio + LRU_FOLIO);
172 }
173 
174 static inline struct folio *mlock_new(struct folio *folio)
175 {
176 	return (struct folio *)((unsigned long)folio + NEW_FOLIO);
177 }
178 
179 /*
180  * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can
181  * make use of such folio pointer flags in future, but for now just keep it for
182  * mlock.  We could use three separate folio batches instead, but one feels
183  * better (munlocking a full folio batch does not need to drain mlocking folio
184  * batches first).
185  */
186 static void mlock_folio_batch(struct folio_batch *fbatch)
187 {
188 	struct lruvec *lruvec = NULL;
189 	unsigned long mlock;
190 	struct folio *folio;
191 	int i;
192 
193 	for (i = 0; i < folio_batch_count(fbatch); i++) {
194 		folio = fbatch->folios[i];
195 		mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO);
196 		folio = (struct folio *)((unsigned long)folio - mlock);
197 		fbatch->folios[i] = folio;
198 
199 		if (mlock & LRU_FOLIO)
200 			lruvec = __mlock_folio(folio, lruvec);
201 		else if (mlock & NEW_FOLIO)
202 			lruvec = __mlock_new_folio(folio, lruvec);
203 		else
204 			lruvec = __munlock_folio(folio, lruvec);
205 	}
206 
207 	if (lruvec)
208 		unlock_page_lruvec_irq(lruvec);
209 	folios_put(fbatch);
210 }
211 
212 void mlock_drain_local(void)
213 {
214 	struct folio_batch *fbatch;
215 
216 	local_lock(&mlock_fbatch.lock);
217 	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
218 	if (folio_batch_count(fbatch))
219 		mlock_folio_batch(fbatch);
220 	local_unlock(&mlock_fbatch.lock);
221 }
222 
223 void mlock_drain_remote(int cpu)
224 {
225 	struct folio_batch *fbatch;
226 
227 	WARN_ON_ONCE(cpu_online(cpu));
228 	fbatch = &per_cpu(mlock_fbatch.fbatch, cpu);
229 	if (folio_batch_count(fbatch))
230 		mlock_folio_batch(fbatch);
231 }
232 
233 bool need_mlock_drain(int cpu)
234 {
235 	return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu));
236 }
237 
238 /**
239  * mlock_folio - mlock a folio already on (or temporarily off) LRU
240  * @folio: folio to be mlocked.
241  */
242 void mlock_folio(struct folio *folio)
243 {
244 	struct folio_batch *fbatch;
245 
246 	local_lock(&mlock_fbatch.lock);
247 	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
248 
249 	if (!folio_test_set_mlocked(folio)) {
250 		int nr_pages = folio_nr_pages(folio);
251 
252 		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
253 		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
254 	}
255 
256 	folio_get(folio);
257 	if (!folio_batch_add(fbatch, mlock_lru(folio)) ||
258 	    folio_test_large(folio) || lru_cache_disabled())
259 		mlock_folio_batch(fbatch);
260 	local_unlock(&mlock_fbatch.lock);
261 }
262 
263 /**
264  * mlock_new_folio - mlock a newly allocated folio not yet on LRU
265  * @folio: folio to be mlocked, either normal or a THP head.
266  */
267 void mlock_new_folio(struct folio *folio)
268 {
269 	struct folio_batch *fbatch;
270 	int nr_pages = folio_nr_pages(folio);
271 
272 	local_lock(&mlock_fbatch.lock);
273 	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
274 	folio_set_mlocked(folio);
275 
276 	zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
277 	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
278 
279 	folio_get(folio);
280 	if (!folio_batch_add(fbatch, mlock_new(folio)) ||
281 	    folio_test_large(folio) || lru_cache_disabled())
282 		mlock_folio_batch(fbatch);
283 	local_unlock(&mlock_fbatch.lock);
284 }
285 
286 /**
287  * munlock_folio - munlock a folio
288  * @folio: folio to be munlocked, either normal or a THP head.
289  */
290 void munlock_folio(struct folio *folio)
291 {
292 	struct folio_batch *fbatch;
293 
294 	local_lock(&mlock_fbatch.lock);
295 	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
296 	/*
297 	 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(),
298 	 * which will check whether the folio is multiply mlocked.
299 	 */
300 	folio_get(folio);
301 	if (!folio_batch_add(fbatch, folio) ||
302 	    folio_test_large(folio) || lru_cache_disabled())
303 		mlock_folio_batch(fbatch);
304 	local_unlock(&mlock_fbatch.lock);
305 }
306 
307 static inline unsigned int folio_mlock_step(struct folio *folio,
308 		pte_t *pte, unsigned long addr, unsigned long end)
309 {
310 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
311 	unsigned int count = (end - addr) >> PAGE_SHIFT;
312 	pte_t ptent = ptep_get(pte);
313 
314 	if (!folio_test_large(folio))
315 		return 1;
316 
317 	return folio_pte_batch(folio, addr, pte, ptent, count, fpb_flags, NULL,
318 			       NULL, NULL);
319 }
320 
321 static inline bool allow_mlock_munlock(struct folio *folio,
322 		struct vm_area_struct *vma, unsigned long start,
323 		unsigned long end, unsigned int step)
324 {
325 	/*
326 	 * For unlock, allow munlock large folio which is partially
327 	 * mapped to VMA. As it's possible that large folio is
328 	 * mlocked and VMA is split later.
329 	 *
330 	 * During memory pressure, such kind of large folio can
331 	 * be split. And the pages are not in VM_LOCKed VMA
332 	 * can be reclaimed.
333 	 */
334 	if (!(vma->vm_flags & VM_LOCKED))
335 		return true;
336 
337 	/* folio_within_range() cannot take KSM, but any small folio is OK */
338 	if (!folio_test_large(folio))
339 		return true;
340 
341 	/* folio not in range [start, end), skip mlock */
342 	if (!folio_within_range(folio, vma, start, end))
343 		return false;
344 
345 	/* folio is not fully mapped, skip mlock */
346 	if (step != folio_nr_pages(folio))
347 		return false;
348 
349 	return true;
350 }
351 
352 static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
353 			   unsigned long end, struct mm_walk *walk)
354 
355 {
356 	struct vm_area_struct *vma = walk->vma;
357 	spinlock_t *ptl;
358 	pte_t *start_pte, *pte;
359 	pte_t ptent;
360 	struct folio *folio;
361 	unsigned int step = 1;
362 	unsigned long start = addr;
363 
364 	ptl = pmd_trans_huge_lock(pmd, vma);
365 	if (ptl) {
366 		if (!pmd_present(*pmd))
367 			goto out;
368 		if (is_huge_zero_pmd(*pmd))
369 			goto out;
370 		folio = pmd_folio(*pmd);
371 		if (vma->vm_flags & VM_LOCKED)
372 			mlock_folio(folio);
373 		else
374 			munlock_folio(folio);
375 		goto out;
376 	}
377 
378 	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
379 	if (!start_pte) {
380 		walk->action = ACTION_AGAIN;
381 		return 0;
382 	}
383 
384 	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
385 		ptent = ptep_get(pte);
386 		if (!pte_present(ptent))
387 			continue;
388 		folio = vm_normal_folio(vma, addr, ptent);
389 		if (!folio || folio_is_zone_device(folio))
390 			continue;
391 
392 		step = folio_mlock_step(folio, pte, addr, end);
393 		if (!allow_mlock_munlock(folio, vma, start, end, step))
394 			goto next_entry;
395 
396 		if (vma->vm_flags & VM_LOCKED)
397 			mlock_folio(folio);
398 		else
399 			munlock_folio(folio);
400 
401 next_entry:
402 		pte += step - 1;
403 		addr += (step - 1) << PAGE_SHIFT;
404 	}
405 	pte_unmap(start_pte);
406 out:
407 	spin_unlock(ptl);
408 	cond_resched();
409 	return 0;
410 }
411 
412 /*
413  * mlock_vma_pages_range() - mlock any pages already in the range,
414  *                           or munlock all pages in the range.
415  * @vma - vma containing range to be mlock()ed or munlock()ed
416  * @start - start address in @vma of the range
417  * @end - end of range in @vma
418  * @newflags - the new set of flags for @vma.
419  *
420  * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
421  * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
422  */
423 static void mlock_vma_pages_range(struct vm_area_struct *vma,
424 	unsigned long start, unsigned long end, vm_flags_t newflags)
425 {
426 	static const struct mm_walk_ops mlock_walk_ops = {
427 		.pmd_entry = mlock_pte_range,
428 		.walk_lock = PGWALK_WRLOCK_VERIFY,
429 	};
430 
431 	/*
432 	 * There is a slight chance that concurrent page migration,
433 	 * or page reclaim finding a page of this now-VM_LOCKED vma,
434 	 * will call mlock_vma_folio() and raise page's mlock_count:
435 	 * double counting, leaving the page unevictable indefinitely.
436 	 * Communicate this danger to mlock_vma_folio() with VM_IO,
437 	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
438 	 * mmap_lock is held in write mode here, so this weird
439 	 * combination should not be visible to other mmap_lock users;
440 	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
441 	 */
442 	if (newflags & VM_LOCKED)
443 		newflags |= VM_IO;
444 	vma_start_write(vma);
445 	vm_flags_reset_once(vma, newflags);
446 
447 	lru_add_drain();
448 	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
449 	lru_add_drain();
450 
451 	if (newflags & VM_IO) {
452 		newflags &= ~VM_IO;
453 		vm_flags_reset_once(vma, newflags);
454 	}
455 }
456 
457 /*
458  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
459  *
460  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
461  * munlock is a no-op.  However, for some special vmas, we go ahead and
462  * populate the ptes.
463  *
464  * For vmas that pass the filters, merge/split as appropriate.
465  */
466 static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma,
467 	       struct vm_area_struct **prev, unsigned long start,
468 	       unsigned long end, vm_flags_t newflags)
469 {
470 	struct mm_struct *mm = vma->vm_mm;
471 	int nr_pages;
472 	int ret = 0;
473 	vm_flags_t oldflags = vma->vm_flags;
474 
475 	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
476 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
477 	    vma_is_dax(vma) || vma_is_secretmem(vma))
478 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
479 		goto out;
480 
481 	vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags);
482 	if (IS_ERR(vma)) {
483 		ret = PTR_ERR(vma);
484 		goto out;
485 	}
486 
487 	/*
488 	 * Keep track of amount of locked VM.
489 	 */
490 	nr_pages = (end - start) >> PAGE_SHIFT;
491 	if (!(newflags & VM_LOCKED))
492 		nr_pages = -nr_pages;
493 	else if (oldflags & VM_LOCKED)
494 		nr_pages = 0;
495 	mm->locked_vm += nr_pages;
496 
497 	/*
498 	 * vm_flags is protected by the mmap_lock held in write mode.
499 	 * It's okay if try_to_unmap_one unmaps a page just after we
500 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
501 	 */
502 	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
503 		/* No work to do, and mlocking twice would be wrong */
504 		vma_start_write(vma);
505 		vm_flags_reset(vma, newflags);
506 	} else {
507 		mlock_vma_pages_range(vma, start, end, newflags);
508 	}
509 out:
510 	*prev = vma;
511 	return ret;
512 }
513 
514 static int apply_vma_lock_flags(unsigned long start, size_t len,
515 				vm_flags_t flags)
516 {
517 	unsigned long nstart, end, tmp;
518 	struct vm_area_struct *vma, *prev;
519 	VMA_ITERATOR(vmi, current->mm, start);
520 
521 	VM_BUG_ON(offset_in_page(start));
522 	VM_BUG_ON(len != PAGE_ALIGN(len));
523 	end = start + len;
524 	if (end < start)
525 		return -EINVAL;
526 	if (end == start)
527 		return 0;
528 	vma = vma_iter_load(&vmi);
529 	if (!vma)
530 		return -ENOMEM;
531 
532 	prev = vma_prev(&vmi);
533 	if (start > vma->vm_start)
534 		prev = vma;
535 
536 	nstart = start;
537 	tmp = vma->vm_start;
538 	for_each_vma_range(vmi, vma, end) {
539 		int error;
540 		vm_flags_t newflags;
541 
542 		if (vma->vm_start != tmp)
543 			return -ENOMEM;
544 
545 		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
546 		newflags |= flags;
547 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
548 		tmp = vma->vm_end;
549 		if (tmp > end)
550 			tmp = end;
551 		error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags);
552 		if (error)
553 			return error;
554 		tmp = vma_iter_end(&vmi);
555 		nstart = tmp;
556 	}
557 
558 	if (tmp < end)
559 		return -ENOMEM;
560 
561 	return 0;
562 }
563 
564 /*
565  * Go through vma areas and sum size of mlocked
566  * vma pages, as return value.
567  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
568  * is also counted.
569  * Return value: previously mlocked page counts
570  */
571 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
572 		unsigned long start, size_t len)
573 {
574 	struct vm_area_struct *vma;
575 	unsigned long count = 0;
576 	unsigned long end;
577 	VMA_ITERATOR(vmi, mm, start);
578 
579 	/* Don't overflow past ULONG_MAX */
580 	if (unlikely(ULONG_MAX - len < start))
581 		end = ULONG_MAX;
582 	else
583 		end = start + len;
584 
585 	for_each_vma_range(vmi, vma, end) {
586 		if (vma->vm_flags & VM_LOCKED) {
587 			if (start > vma->vm_start)
588 				count -= (start - vma->vm_start);
589 			if (end < vma->vm_end) {
590 				count += end - vma->vm_start;
591 				break;
592 			}
593 			count += vma->vm_end - vma->vm_start;
594 		}
595 	}
596 
597 	return count >> PAGE_SHIFT;
598 }
599 
600 /*
601  * convert get_user_pages() return value to posix mlock() error
602  */
603 static int __mlock_posix_error_return(long retval)
604 {
605 	if (retval == -EFAULT)
606 		retval = -ENOMEM;
607 	else if (retval == -ENOMEM)
608 		retval = -EAGAIN;
609 	return retval;
610 }
611 
612 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
613 {
614 	unsigned long locked;
615 	unsigned long lock_limit;
616 	int error = -ENOMEM;
617 
618 	start = untagged_addr(start);
619 
620 	if (!can_do_mlock())
621 		return -EPERM;
622 
623 	len = PAGE_ALIGN(len + (offset_in_page(start)));
624 	start &= PAGE_MASK;
625 
626 	lock_limit = rlimit(RLIMIT_MEMLOCK);
627 	lock_limit >>= PAGE_SHIFT;
628 	locked = len >> PAGE_SHIFT;
629 
630 	if (mmap_write_lock_killable(current->mm))
631 		return -EINTR;
632 
633 	locked += current->mm->locked_vm;
634 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
635 		/*
636 		 * It is possible that the regions requested intersect with
637 		 * previously mlocked areas, that part area in "mm->locked_vm"
638 		 * should not be counted to new mlock increment count. So check
639 		 * and adjust locked count if necessary.
640 		 */
641 		locked -= count_mm_mlocked_page_nr(current->mm,
642 				start, len);
643 	}
644 
645 	/* check against resource limits */
646 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
647 		error = apply_vma_lock_flags(start, len, flags);
648 
649 	mmap_write_unlock(current->mm);
650 	if (error)
651 		return error;
652 
653 	error = __mm_populate(start, len, 0);
654 	if (error)
655 		return __mlock_posix_error_return(error);
656 	return 0;
657 }
658 
659 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
660 {
661 	return do_mlock(start, len, VM_LOCKED);
662 }
663 
664 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
665 {
666 	vm_flags_t vm_flags = VM_LOCKED;
667 
668 	if (flags & ~MLOCK_ONFAULT)
669 		return -EINVAL;
670 
671 	if (flags & MLOCK_ONFAULT)
672 		vm_flags |= VM_LOCKONFAULT;
673 
674 	return do_mlock(start, len, vm_flags);
675 }
676 
677 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
678 {
679 	int ret;
680 
681 	start = untagged_addr(start);
682 
683 	len = PAGE_ALIGN(len + (offset_in_page(start)));
684 	start &= PAGE_MASK;
685 
686 	if (mmap_write_lock_killable(current->mm))
687 		return -EINTR;
688 	ret = apply_vma_lock_flags(start, len, 0);
689 	mmap_write_unlock(current->mm);
690 
691 	return ret;
692 }
693 
694 /*
695  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
696  * and translate into the appropriate modifications to mm->def_flags and/or the
697  * flags for all current VMAs.
698  *
699  * There are a couple of subtleties with this.  If mlockall() is called multiple
700  * times with different flags, the values do not necessarily stack.  If mlockall
701  * is called once including the MCL_FUTURE flag and then a second time without
702  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
703  */
704 static int apply_mlockall_flags(int flags)
705 {
706 	VMA_ITERATOR(vmi, current->mm, 0);
707 	struct vm_area_struct *vma, *prev = NULL;
708 	vm_flags_t to_add = 0;
709 
710 	current->mm->def_flags &= ~VM_LOCKED_MASK;
711 	if (flags & MCL_FUTURE) {
712 		current->mm->def_flags |= VM_LOCKED;
713 
714 		if (flags & MCL_ONFAULT)
715 			current->mm->def_flags |= VM_LOCKONFAULT;
716 
717 		if (!(flags & MCL_CURRENT))
718 			goto out;
719 	}
720 
721 	if (flags & MCL_CURRENT) {
722 		to_add |= VM_LOCKED;
723 		if (flags & MCL_ONFAULT)
724 			to_add |= VM_LOCKONFAULT;
725 	}
726 
727 	for_each_vma(vmi, vma) {
728 		vm_flags_t newflags;
729 
730 		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
731 		newflags |= to_add;
732 
733 		/* Ignore errors */
734 		mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end,
735 			    newflags);
736 		cond_resched();
737 	}
738 out:
739 	return 0;
740 }
741 
742 SYSCALL_DEFINE1(mlockall, int, flags)
743 {
744 	unsigned long lock_limit;
745 	int ret;
746 
747 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
748 	    flags == MCL_ONFAULT)
749 		return -EINVAL;
750 
751 	if (!can_do_mlock())
752 		return -EPERM;
753 
754 	lock_limit = rlimit(RLIMIT_MEMLOCK);
755 	lock_limit >>= PAGE_SHIFT;
756 
757 	if (mmap_write_lock_killable(current->mm))
758 		return -EINTR;
759 
760 	ret = -ENOMEM;
761 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
762 	    capable(CAP_IPC_LOCK))
763 		ret = apply_mlockall_flags(flags);
764 	mmap_write_unlock(current->mm);
765 	if (!ret && (flags & MCL_CURRENT))
766 		mm_populate(0, TASK_SIZE);
767 
768 	return ret;
769 }
770 
771 SYSCALL_DEFINE0(munlockall)
772 {
773 	int ret;
774 
775 	if (mmap_write_lock_killable(current->mm))
776 		return -EINTR;
777 	ret = apply_mlockall_flags(0);
778 	mmap_write_unlock(current->mm);
779 	return ret;
780 }
781 
782 /*
783  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
784  * shm segments) get accounted against the user_struct instead.
785  */
786 static DEFINE_SPINLOCK(shmlock_user_lock);
787 
788 int user_shm_lock(size_t size, struct ucounts *ucounts)
789 {
790 	unsigned long lock_limit, locked;
791 	long memlock;
792 	int allowed = 0;
793 
794 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
795 	lock_limit = rlimit(RLIMIT_MEMLOCK);
796 	if (lock_limit != RLIM_INFINITY)
797 		lock_limit >>= PAGE_SHIFT;
798 	spin_lock(&shmlock_user_lock);
799 	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
800 
801 	if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
802 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
803 		goto out;
804 	}
805 	if (!get_ucounts(ucounts)) {
806 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
807 		allowed = 0;
808 		goto out;
809 	}
810 	allowed = 1;
811 out:
812 	spin_unlock(&shmlock_user_lock);
813 	return allowed;
814 }
815 
816 void user_shm_unlock(size_t size, struct ucounts *ucounts)
817 {
818 	spin_lock(&shmlock_user_lock);
819 	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
820 	spin_unlock(&shmlock_user_lock);
821 	put_ucounts(ucounts);
822 }
823