1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/pagewalk.h> 18 #include <linux/mempolicy.h> 19 #include <linux/syscalls.h> 20 #include <linux/sched.h> 21 #include <linux/export.h> 22 #include <linux/rmap.h> 23 #include <linux/mmzone.h> 24 #include <linux/hugetlb.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/secretmem.h> 28 29 #include "internal.h" 30 31 struct mlock_fbatch { 32 local_lock_t lock; 33 struct folio_batch fbatch; 34 }; 35 36 static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = { 37 .lock = INIT_LOCAL_LOCK(lock), 38 }; 39 40 bool can_do_mlock(void) 41 { 42 if (rlimit(RLIMIT_MEMLOCK) != 0) 43 return true; 44 if (capable(CAP_IPC_LOCK)) 45 return true; 46 return false; 47 } 48 EXPORT_SYMBOL(can_do_mlock); 49 50 /* 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing 52 * in vmscan and, possibly, the fault path; and to support semi-accurate 53 * statistics. 54 * 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such 57 * list exists), rather than the [in]active lists. PG_unevictable is set to 58 * indicate the unevictable state. 59 */ 60 61 static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec) 62 { 63 /* There is nothing more we can do while it's off LRU */ 64 if (!folio_test_clear_lru(folio)) 65 return lruvec; 66 67 lruvec = folio_lruvec_relock_irq(folio, lruvec); 68 69 if (unlikely(folio_evictable(folio))) { 70 /* 71 * This is a little surprising, but quite possible: PG_mlocked 72 * must have got cleared already by another CPU. Could this 73 * folio be unevictable? I'm not sure, but move it now if so. 74 */ 75 if (folio_test_unevictable(folio)) { 76 lruvec_del_folio(lruvec, folio); 77 folio_clear_unevictable(folio); 78 lruvec_add_folio(lruvec, folio); 79 80 __count_vm_events(UNEVICTABLE_PGRESCUED, 81 folio_nr_pages(folio)); 82 } 83 goto out; 84 } 85 86 if (folio_test_unevictable(folio)) { 87 if (folio_test_mlocked(folio)) 88 folio->mlock_count++; 89 goto out; 90 } 91 92 lruvec_del_folio(lruvec, folio); 93 folio_clear_active(folio); 94 folio_set_unevictable(folio); 95 folio->mlock_count = !!folio_test_mlocked(folio); 96 lruvec_add_folio(lruvec, folio); 97 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 98 out: 99 folio_set_lru(folio); 100 return lruvec; 101 } 102 103 static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec) 104 { 105 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 106 107 lruvec = folio_lruvec_relock_irq(folio, lruvec); 108 109 /* As above, this is a little surprising, but possible */ 110 if (unlikely(folio_evictable(folio))) 111 goto out; 112 113 folio_set_unevictable(folio); 114 folio->mlock_count = !!folio_test_mlocked(folio); 115 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 116 out: 117 lruvec_add_folio(lruvec, folio); 118 folio_set_lru(folio); 119 return lruvec; 120 } 121 122 static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec) 123 { 124 int nr_pages = folio_nr_pages(folio); 125 bool isolated = false; 126 127 if (!folio_test_clear_lru(folio)) 128 goto munlock; 129 130 isolated = true; 131 lruvec = folio_lruvec_relock_irq(folio, lruvec); 132 133 if (folio_test_unevictable(folio)) { 134 /* Then mlock_count is maintained, but might undercount */ 135 if (folio->mlock_count) 136 folio->mlock_count--; 137 if (folio->mlock_count) 138 goto out; 139 } 140 /* else assume that was the last mlock: reclaim will fix it if not */ 141 142 munlock: 143 if (folio_test_clear_mlocked(folio)) { 144 __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 145 if (isolated || !folio_test_unevictable(folio)) 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 else 148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 149 } 150 151 /* folio_evictable() has to be checked *after* clearing Mlocked */ 152 if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) { 153 lruvec_del_folio(lruvec, folio); 154 folio_clear_unevictable(folio); 155 lruvec_add_folio(lruvec, folio); 156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 157 } 158 out: 159 if (isolated) 160 folio_set_lru(folio); 161 return lruvec; 162 } 163 164 /* 165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch. 166 */ 167 #define LRU_FOLIO 0x1 168 #define NEW_FOLIO 0x2 169 static inline struct folio *mlock_lru(struct folio *folio) 170 { 171 return (struct folio *)((unsigned long)folio + LRU_FOLIO); 172 } 173 174 static inline struct folio *mlock_new(struct folio *folio) 175 { 176 return (struct folio *)((unsigned long)folio + NEW_FOLIO); 177 } 178 179 /* 180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can 181 * make use of such folio pointer flags in future, but for now just keep it for 182 * mlock. We could use three separate folio batches instead, but one feels 183 * better (munlocking a full folio batch does not need to drain mlocking folio 184 * batches first). 185 */ 186 static void mlock_folio_batch(struct folio_batch *fbatch) 187 { 188 struct lruvec *lruvec = NULL; 189 unsigned long mlock; 190 struct folio *folio; 191 int i; 192 193 for (i = 0; i < folio_batch_count(fbatch); i++) { 194 folio = fbatch->folios[i]; 195 mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO); 196 folio = (struct folio *)((unsigned long)folio - mlock); 197 fbatch->folios[i] = folio; 198 199 if (mlock & LRU_FOLIO) 200 lruvec = __mlock_folio(folio, lruvec); 201 else if (mlock & NEW_FOLIO) 202 lruvec = __mlock_new_folio(folio, lruvec); 203 else 204 lruvec = __munlock_folio(folio, lruvec); 205 } 206 207 if (lruvec) 208 unlock_page_lruvec_irq(lruvec); 209 folios_put(fbatch->folios, folio_batch_count(fbatch)); 210 folio_batch_reinit(fbatch); 211 } 212 213 void mlock_drain_local(void) 214 { 215 struct folio_batch *fbatch; 216 217 local_lock(&mlock_fbatch.lock); 218 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 219 if (folio_batch_count(fbatch)) 220 mlock_folio_batch(fbatch); 221 local_unlock(&mlock_fbatch.lock); 222 } 223 224 void mlock_drain_remote(int cpu) 225 { 226 struct folio_batch *fbatch; 227 228 WARN_ON_ONCE(cpu_online(cpu)); 229 fbatch = &per_cpu(mlock_fbatch.fbatch, cpu); 230 if (folio_batch_count(fbatch)) 231 mlock_folio_batch(fbatch); 232 } 233 234 bool need_mlock_drain(int cpu) 235 { 236 return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu)); 237 } 238 239 /** 240 * mlock_folio - mlock a folio already on (or temporarily off) LRU 241 * @folio: folio to be mlocked. 242 */ 243 void mlock_folio(struct folio *folio) 244 { 245 struct folio_batch *fbatch; 246 247 local_lock(&mlock_fbatch.lock); 248 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 249 250 if (!folio_test_set_mlocked(folio)) { 251 int nr_pages = folio_nr_pages(folio); 252 253 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 254 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 255 } 256 257 folio_get(folio); 258 if (!folio_batch_add(fbatch, mlock_lru(folio)) || 259 folio_test_large(folio) || lru_cache_disabled()) 260 mlock_folio_batch(fbatch); 261 local_unlock(&mlock_fbatch.lock); 262 } 263 264 /** 265 * mlock_new_folio - mlock a newly allocated folio not yet on LRU 266 * @folio: folio to be mlocked, either normal or a THP head. 267 */ 268 void mlock_new_folio(struct folio *folio) 269 { 270 struct folio_batch *fbatch; 271 int nr_pages = folio_nr_pages(folio); 272 273 local_lock(&mlock_fbatch.lock); 274 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 275 folio_set_mlocked(folio); 276 277 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 278 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 279 280 folio_get(folio); 281 if (!folio_batch_add(fbatch, mlock_new(folio)) || 282 folio_test_large(folio) || lru_cache_disabled()) 283 mlock_folio_batch(fbatch); 284 local_unlock(&mlock_fbatch.lock); 285 } 286 287 /** 288 * munlock_folio - munlock a folio 289 * @folio: folio to be munlocked, either normal or a THP head. 290 */ 291 void munlock_folio(struct folio *folio) 292 { 293 struct folio_batch *fbatch; 294 295 local_lock(&mlock_fbatch.lock); 296 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 297 /* 298 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(), 299 * which will check whether the folio is multiply mlocked. 300 */ 301 folio_get(folio); 302 if (!folio_batch_add(fbatch, folio) || 303 folio_test_large(folio) || lru_cache_disabled()) 304 mlock_folio_batch(fbatch); 305 local_unlock(&mlock_fbatch.lock); 306 } 307 308 static int mlock_pte_range(pmd_t *pmd, unsigned long addr, 309 unsigned long end, struct mm_walk *walk) 310 311 { 312 struct vm_area_struct *vma = walk->vma; 313 spinlock_t *ptl; 314 pte_t *start_pte, *pte; 315 pte_t ptent; 316 struct folio *folio; 317 318 ptl = pmd_trans_huge_lock(pmd, vma); 319 if (ptl) { 320 if (!pmd_present(*pmd)) 321 goto out; 322 if (is_huge_zero_pmd(*pmd)) 323 goto out; 324 folio = page_folio(pmd_page(*pmd)); 325 if (vma->vm_flags & VM_LOCKED) 326 mlock_folio(folio); 327 else 328 munlock_folio(folio); 329 goto out; 330 } 331 332 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 333 if (!start_pte) { 334 walk->action = ACTION_AGAIN; 335 return 0; 336 } 337 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) { 338 ptent = ptep_get(pte); 339 if (!pte_present(ptent)) 340 continue; 341 folio = vm_normal_folio(vma, addr, ptent); 342 if (!folio || folio_is_zone_device(folio)) 343 continue; 344 if (folio_test_large(folio)) 345 continue; 346 if (vma->vm_flags & VM_LOCKED) 347 mlock_folio(folio); 348 else 349 munlock_folio(folio); 350 } 351 pte_unmap(start_pte); 352 out: 353 spin_unlock(ptl); 354 cond_resched(); 355 return 0; 356 } 357 358 /* 359 * mlock_vma_pages_range() - mlock any pages already in the range, 360 * or munlock all pages in the range. 361 * @vma - vma containing range to be mlock()ed or munlock()ed 362 * @start - start address in @vma of the range 363 * @end - end of range in @vma 364 * @newflags - the new set of flags for @vma. 365 * 366 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED; 367 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma. 368 */ 369 static void mlock_vma_pages_range(struct vm_area_struct *vma, 370 unsigned long start, unsigned long end, vm_flags_t newflags) 371 { 372 static const struct mm_walk_ops mlock_walk_ops = { 373 .pmd_entry = mlock_pte_range, 374 .walk_lock = PGWALK_WRLOCK_VERIFY, 375 }; 376 377 /* 378 * There is a slight chance that concurrent page migration, 379 * or page reclaim finding a page of this now-VM_LOCKED vma, 380 * will call mlock_vma_folio() and raise page's mlock_count: 381 * double counting, leaving the page unevictable indefinitely. 382 * Communicate this danger to mlock_vma_folio() with VM_IO, 383 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. 384 * mmap_lock is held in write mode here, so this weird 385 * combination should not be visible to other mmap_lock users; 386 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED. 387 */ 388 if (newflags & VM_LOCKED) 389 newflags |= VM_IO; 390 vma_start_write(vma); 391 vm_flags_reset_once(vma, newflags); 392 393 lru_add_drain(); 394 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL); 395 lru_add_drain(); 396 397 if (newflags & VM_IO) { 398 newflags &= ~VM_IO; 399 vm_flags_reset_once(vma, newflags); 400 } 401 } 402 403 /* 404 * mlock_fixup - handle mlock[all]/munlock[all] requests. 405 * 406 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 407 * munlock is a no-op. However, for some special vmas, we go ahead and 408 * populate the ptes. 409 * 410 * For vmas that pass the filters, merge/split as appropriate. 411 */ 412 static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, 413 struct vm_area_struct **prev, unsigned long start, 414 unsigned long end, vm_flags_t newflags) 415 { 416 struct mm_struct *mm = vma->vm_mm; 417 pgoff_t pgoff; 418 int nr_pages; 419 int ret = 0; 420 vm_flags_t oldflags = vma->vm_flags; 421 422 if (newflags == oldflags || (oldflags & VM_SPECIAL) || 423 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 424 vma_is_dax(vma) || vma_is_secretmem(vma)) 425 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 426 goto out; 427 428 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 429 *prev = vma_merge(vmi, mm, *prev, start, end, newflags, 430 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 431 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 432 if (*prev) { 433 vma = *prev; 434 goto success; 435 } 436 437 if (start != vma->vm_start) { 438 ret = split_vma(vmi, vma, start, 1); 439 if (ret) 440 goto out; 441 } 442 443 if (end != vma->vm_end) { 444 ret = split_vma(vmi, vma, end, 0); 445 if (ret) 446 goto out; 447 } 448 449 success: 450 /* 451 * Keep track of amount of locked VM. 452 */ 453 nr_pages = (end - start) >> PAGE_SHIFT; 454 if (!(newflags & VM_LOCKED)) 455 nr_pages = -nr_pages; 456 else if (oldflags & VM_LOCKED) 457 nr_pages = 0; 458 mm->locked_vm += nr_pages; 459 460 /* 461 * vm_flags is protected by the mmap_lock held in write mode. 462 * It's okay if try_to_unmap_one unmaps a page just after we 463 * set VM_LOCKED, populate_vma_page_range will bring it back. 464 */ 465 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) { 466 /* No work to do, and mlocking twice would be wrong */ 467 vma_start_write(vma); 468 vm_flags_reset(vma, newflags); 469 } else { 470 mlock_vma_pages_range(vma, start, end, newflags); 471 } 472 out: 473 *prev = vma; 474 return ret; 475 } 476 477 static int apply_vma_lock_flags(unsigned long start, size_t len, 478 vm_flags_t flags) 479 { 480 unsigned long nstart, end, tmp; 481 struct vm_area_struct *vma, *prev; 482 VMA_ITERATOR(vmi, current->mm, start); 483 484 VM_BUG_ON(offset_in_page(start)); 485 VM_BUG_ON(len != PAGE_ALIGN(len)); 486 end = start + len; 487 if (end < start) 488 return -EINVAL; 489 if (end == start) 490 return 0; 491 vma = vma_iter_load(&vmi); 492 if (!vma) 493 return -ENOMEM; 494 495 prev = vma_prev(&vmi); 496 if (start > vma->vm_start) 497 prev = vma; 498 499 nstart = start; 500 tmp = vma->vm_start; 501 for_each_vma_range(vmi, vma, end) { 502 int error; 503 vm_flags_t newflags; 504 505 if (vma->vm_start != tmp) 506 return -ENOMEM; 507 508 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 509 newflags |= flags; 510 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 511 tmp = vma->vm_end; 512 if (tmp > end) 513 tmp = end; 514 error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags); 515 if (error) 516 return error; 517 tmp = vma_iter_end(&vmi); 518 nstart = tmp; 519 } 520 521 if (tmp < end) 522 return -ENOMEM; 523 524 return 0; 525 } 526 527 /* 528 * Go through vma areas and sum size of mlocked 529 * vma pages, as return value. 530 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 531 * is also counted. 532 * Return value: previously mlocked page counts 533 */ 534 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 535 unsigned long start, size_t len) 536 { 537 struct vm_area_struct *vma; 538 unsigned long count = 0; 539 unsigned long end; 540 VMA_ITERATOR(vmi, mm, start); 541 542 /* Don't overflow past ULONG_MAX */ 543 if (unlikely(ULONG_MAX - len < start)) 544 end = ULONG_MAX; 545 else 546 end = start + len; 547 548 for_each_vma_range(vmi, vma, end) { 549 if (vma->vm_flags & VM_LOCKED) { 550 if (start > vma->vm_start) 551 count -= (start - vma->vm_start); 552 if (end < vma->vm_end) { 553 count += end - vma->vm_start; 554 break; 555 } 556 count += vma->vm_end - vma->vm_start; 557 } 558 } 559 560 return count >> PAGE_SHIFT; 561 } 562 563 /* 564 * convert get_user_pages() return value to posix mlock() error 565 */ 566 static int __mlock_posix_error_return(long retval) 567 { 568 if (retval == -EFAULT) 569 retval = -ENOMEM; 570 else if (retval == -ENOMEM) 571 retval = -EAGAIN; 572 return retval; 573 } 574 575 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 576 { 577 unsigned long locked; 578 unsigned long lock_limit; 579 int error = -ENOMEM; 580 581 start = untagged_addr(start); 582 583 if (!can_do_mlock()) 584 return -EPERM; 585 586 len = PAGE_ALIGN(len + (offset_in_page(start))); 587 start &= PAGE_MASK; 588 589 lock_limit = rlimit(RLIMIT_MEMLOCK); 590 lock_limit >>= PAGE_SHIFT; 591 locked = len >> PAGE_SHIFT; 592 593 if (mmap_write_lock_killable(current->mm)) 594 return -EINTR; 595 596 locked += current->mm->locked_vm; 597 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 598 /* 599 * It is possible that the regions requested intersect with 600 * previously mlocked areas, that part area in "mm->locked_vm" 601 * should not be counted to new mlock increment count. So check 602 * and adjust locked count if necessary. 603 */ 604 locked -= count_mm_mlocked_page_nr(current->mm, 605 start, len); 606 } 607 608 /* check against resource limits */ 609 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 610 error = apply_vma_lock_flags(start, len, flags); 611 612 mmap_write_unlock(current->mm); 613 if (error) 614 return error; 615 616 error = __mm_populate(start, len, 0); 617 if (error) 618 return __mlock_posix_error_return(error); 619 return 0; 620 } 621 622 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 623 { 624 return do_mlock(start, len, VM_LOCKED); 625 } 626 627 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 628 { 629 vm_flags_t vm_flags = VM_LOCKED; 630 631 if (flags & ~MLOCK_ONFAULT) 632 return -EINVAL; 633 634 if (flags & MLOCK_ONFAULT) 635 vm_flags |= VM_LOCKONFAULT; 636 637 return do_mlock(start, len, vm_flags); 638 } 639 640 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 641 { 642 int ret; 643 644 start = untagged_addr(start); 645 646 len = PAGE_ALIGN(len + (offset_in_page(start))); 647 start &= PAGE_MASK; 648 649 if (mmap_write_lock_killable(current->mm)) 650 return -EINTR; 651 ret = apply_vma_lock_flags(start, len, 0); 652 mmap_write_unlock(current->mm); 653 654 return ret; 655 } 656 657 /* 658 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 659 * and translate into the appropriate modifications to mm->def_flags and/or the 660 * flags for all current VMAs. 661 * 662 * There are a couple of subtleties with this. If mlockall() is called multiple 663 * times with different flags, the values do not necessarily stack. If mlockall 664 * is called once including the MCL_FUTURE flag and then a second time without 665 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 666 */ 667 static int apply_mlockall_flags(int flags) 668 { 669 VMA_ITERATOR(vmi, current->mm, 0); 670 struct vm_area_struct *vma, *prev = NULL; 671 vm_flags_t to_add = 0; 672 673 current->mm->def_flags &= ~VM_LOCKED_MASK; 674 if (flags & MCL_FUTURE) { 675 current->mm->def_flags |= VM_LOCKED; 676 677 if (flags & MCL_ONFAULT) 678 current->mm->def_flags |= VM_LOCKONFAULT; 679 680 if (!(flags & MCL_CURRENT)) 681 goto out; 682 } 683 684 if (flags & MCL_CURRENT) { 685 to_add |= VM_LOCKED; 686 if (flags & MCL_ONFAULT) 687 to_add |= VM_LOCKONFAULT; 688 } 689 690 for_each_vma(vmi, vma) { 691 vm_flags_t newflags; 692 693 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 694 newflags |= to_add; 695 696 /* Ignore errors */ 697 mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end, 698 newflags); 699 cond_resched(); 700 } 701 out: 702 return 0; 703 } 704 705 SYSCALL_DEFINE1(mlockall, int, flags) 706 { 707 unsigned long lock_limit; 708 int ret; 709 710 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 711 flags == MCL_ONFAULT) 712 return -EINVAL; 713 714 if (!can_do_mlock()) 715 return -EPERM; 716 717 lock_limit = rlimit(RLIMIT_MEMLOCK); 718 lock_limit >>= PAGE_SHIFT; 719 720 if (mmap_write_lock_killable(current->mm)) 721 return -EINTR; 722 723 ret = -ENOMEM; 724 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 725 capable(CAP_IPC_LOCK)) 726 ret = apply_mlockall_flags(flags); 727 mmap_write_unlock(current->mm); 728 if (!ret && (flags & MCL_CURRENT)) 729 mm_populate(0, TASK_SIZE); 730 731 return ret; 732 } 733 734 SYSCALL_DEFINE0(munlockall) 735 { 736 int ret; 737 738 if (mmap_write_lock_killable(current->mm)) 739 return -EINTR; 740 ret = apply_mlockall_flags(0); 741 mmap_write_unlock(current->mm); 742 return ret; 743 } 744 745 /* 746 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 747 * shm segments) get accounted against the user_struct instead. 748 */ 749 static DEFINE_SPINLOCK(shmlock_user_lock); 750 751 int user_shm_lock(size_t size, struct ucounts *ucounts) 752 { 753 unsigned long lock_limit, locked; 754 long memlock; 755 int allowed = 0; 756 757 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 758 lock_limit = rlimit(RLIMIT_MEMLOCK); 759 if (lock_limit != RLIM_INFINITY) 760 lock_limit >>= PAGE_SHIFT; 761 spin_lock(&shmlock_user_lock); 762 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 763 764 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { 765 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 766 goto out; 767 } 768 if (!get_ucounts(ucounts)) { 769 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 770 allowed = 0; 771 goto out; 772 } 773 allowed = 1; 774 out: 775 spin_unlock(&shmlock_user_lock); 776 return allowed; 777 } 778 779 void user_shm_unlock(size_t size, struct ucounts *ucounts) 780 { 781 spin_lock(&shmlock_user_lock); 782 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 783 spin_unlock(&shmlock_user_lock); 784 put_ucounts(ucounts); 785 } 786