xref: /linux/mm/mlock.c (revision e74e1d55728509b352e4eec4283dd5b2781b2070)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_lock for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	if (!TestClearPageMlocked(page))
62 		return;
63 
64 	mod_zone_page_state(page_zone(page), NR_MLOCK, -thp_nr_pages(page));
65 	count_vm_event(UNEVICTABLE_PGCLEARED);
66 	/*
67 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
68 	 * in __pagevec_lru_add_fn().
69 	 *
70 	 * See __pagevec_lru_add_fn for more explanation.
71 	 */
72 	if (!isolate_lru_page(page)) {
73 		putback_lru_page(page);
74 	} else {
75 		/*
76 		 * We lost the race. the page already moved to evictable list.
77 		 */
78 		if (PageUnevictable(page))
79 			count_vm_event(UNEVICTABLE_PGSTRANDED);
80 	}
81 }
82 
83 /*
84  * Mark page as mlocked if not already.
85  * If page on LRU, isolate and putback to move to unevictable list.
86  */
87 void mlock_vma_page(struct page *page)
88 {
89 	/* Serialize with page migration */
90 	BUG_ON(!PageLocked(page));
91 
92 	VM_BUG_ON_PAGE(PageTail(page), page);
93 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
94 
95 	if (!TestSetPageMlocked(page)) {
96 		mod_zone_page_state(page_zone(page), NR_MLOCK,
97 				    thp_nr_pages(page));
98 		count_vm_event(UNEVICTABLE_PGMLOCKED);
99 		if (!isolate_lru_page(page))
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Isolate a page from LRU with optional get_page() pin.
106  * Assumes lru_lock already held and page already pinned.
107  */
108 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
109 {
110 	if (PageLRU(page)) {
111 		struct lruvec *lruvec;
112 
113 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
114 		if (getpage)
115 			get_page(page);
116 		ClearPageLRU(page);
117 		del_page_from_lru_list(page, lruvec, page_lru(page));
118 		return true;
119 	}
120 
121 	return false;
122 }
123 
124 /*
125  * Finish munlock after successful page isolation
126  *
127  * Page must be locked. This is a wrapper for try_to_munlock()
128  * and putback_lru_page() with munlock accounting.
129  */
130 static void __munlock_isolated_page(struct page *page)
131 {
132 	/*
133 	 * Optimization: if the page was mapped just once, that's our mapping
134 	 * and we don't need to check all the other vmas.
135 	 */
136 	if (page_mapcount(page) > 1)
137 		try_to_munlock(page);
138 
139 	/* Did try_to_unlock() succeed or punt? */
140 	if (!PageMlocked(page))
141 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142 
143 	putback_lru_page(page);
144 }
145 
146 /*
147  * Accounting for page isolation fail during munlock
148  *
149  * Performs accounting when page isolation fails in munlock. There is nothing
150  * else to do because it means some other task has already removed the page
151  * from the LRU. putback_lru_page() will take care of removing the page from
152  * the unevictable list, if necessary. vmscan [page_referenced()] will move
153  * the page back to the unevictable list if some other vma has it mlocked.
154  */
155 static void __munlock_isolation_failed(struct page *page)
156 {
157 	if (PageUnevictable(page))
158 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
159 	else
160 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
161 }
162 
163 /**
164  * munlock_vma_page - munlock a vma page
165  * @page: page to be unlocked, either a normal page or THP page head
166  *
167  * returns the size of the page as a page mask (0 for normal page,
168  *         HPAGE_PMD_NR - 1 for THP head page)
169  *
170  * called from munlock()/munmap() path with page supposedly on the LRU.
171  * When we munlock a page, because the vma where we found the page is being
172  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
173  * page locked so that we can leave it on the unevictable lru list and not
174  * bother vmscan with it.  However, to walk the page's rmap list in
175  * try_to_munlock() we must isolate the page from the LRU.  If some other
176  * task has removed the page from the LRU, we won't be able to do that.
177  * So we clear the PageMlocked as we might not get another chance.  If we
178  * can't isolate the page, we leave it for putback_lru_page() and vmscan
179  * [page_referenced()/try_to_unmap()] to deal with.
180  */
181 unsigned int munlock_vma_page(struct page *page)
182 {
183 	int nr_pages;
184 	pg_data_t *pgdat = page_pgdat(page);
185 
186 	/* For try_to_munlock() and to serialize with page migration */
187 	BUG_ON(!PageLocked(page));
188 
189 	VM_BUG_ON_PAGE(PageTail(page), page);
190 
191 	/*
192 	 * Serialize with any parallel __split_huge_page_refcount() which
193 	 * might otherwise copy PageMlocked to part of the tail pages before
194 	 * we clear it in the head page. It also stabilizes thp_nr_pages().
195 	 */
196 	spin_lock_irq(&pgdat->lru_lock);
197 
198 	if (!TestClearPageMlocked(page)) {
199 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
200 		nr_pages = 1;
201 		goto unlock_out;
202 	}
203 
204 	nr_pages = thp_nr_pages(page);
205 	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
206 
207 	if (__munlock_isolate_lru_page(page, true)) {
208 		spin_unlock_irq(&pgdat->lru_lock);
209 		__munlock_isolated_page(page);
210 		goto out;
211 	}
212 	__munlock_isolation_failed(page);
213 
214 unlock_out:
215 	spin_unlock_irq(&pgdat->lru_lock);
216 
217 out:
218 	return nr_pages - 1;
219 }
220 
221 /*
222  * convert get_user_pages() return value to posix mlock() error
223  */
224 static int __mlock_posix_error_return(long retval)
225 {
226 	if (retval == -EFAULT)
227 		retval = -ENOMEM;
228 	else if (retval == -ENOMEM)
229 		retval = -EAGAIN;
230 	return retval;
231 }
232 
233 /*
234  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
235  *
236  * The fast path is available only for evictable pages with single mapping.
237  * Then we can bypass the per-cpu pvec and get better performance.
238  * when mapcount > 1 we need try_to_munlock() which can fail.
239  * when !page_evictable(), we need the full redo logic of putback_lru_page to
240  * avoid leaving evictable page in unevictable list.
241  *
242  * In case of success, @page is added to @pvec and @pgrescued is incremented
243  * in case that the page was previously unevictable. @page is also unlocked.
244  */
245 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
246 		int *pgrescued)
247 {
248 	VM_BUG_ON_PAGE(PageLRU(page), page);
249 	VM_BUG_ON_PAGE(!PageLocked(page), page);
250 
251 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
252 		pagevec_add(pvec, page);
253 		if (TestClearPageUnevictable(page))
254 			(*pgrescued)++;
255 		unlock_page(page);
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
262 /*
263  * Putback multiple evictable pages to the LRU
264  *
265  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
266  * the pages might have meanwhile become unevictable but that is OK.
267  */
268 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
269 {
270 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
271 	/*
272 	 *__pagevec_lru_add() calls release_pages() so we don't call
273 	 * put_page() explicitly
274 	 */
275 	__pagevec_lru_add(pvec);
276 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
277 }
278 
279 /*
280  * Munlock a batch of pages from the same zone
281  *
282  * The work is split to two main phases. First phase clears the Mlocked flag
283  * and attempts to isolate the pages, all under a single zone lru lock.
284  * The second phase finishes the munlock only for pages where isolation
285  * succeeded.
286  *
287  * Note that the pagevec may be modified during the process.
288  */
289 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
290 {
291 	int i;
292 	int nr = pagevec_count(pvec);
293 	int delta_munlocked = -nr;
294 	struct pagevec pvec_putback;
295 	int pgrescued = 0;
296 
297 	pagevec_init(&pvec_putback);
298 
299 	/* Phase 1: page isolation */
300 	spin_lock_irq(&zone->zone_pgdat->lru_lock);
301 	for (i = 0; i < nr; i++) {
302 		struct page *page = pvec->pages[i];
303 
304 		if (TestClearPageMlocked(page)) {
305 			/*
306 			 * We already have pin from follow_page_mask()
307 			 * so we can spare the get_page() here.
308 			 */
309 			if (__munlock_isolate_lru_page(page, false))
310 				continue;
311 			else
312 				__munlock_isolation_failed(page);
313 		} else {
314 			delta_munlocked++;
315 		}
316 
317 		/*
318 		 * We won't be munlocking this page in the next phase
319 		 * but we still need to release the follow_page_mask()
320 		 * pin. We cannot do it under lru_lock however. If it's
321 		 * the last pin, __page_cache_release() would deadlock.
322 		 */
323 		pagevec_add(&pvec_putback, pvec->pages[i]);
324 		pvec->pages[i] = NULL;
325 	}
326 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
327 	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
328 
329 	/* Now we can release pins of pages that we are not munlocking */
330 	pagevec_release(&pvec_putback);
331 
332 	/* Phase 2: page munlock */
333 	for (i = 0; i < nr; i++) {
334 		struct page *page = pvec->pages[i];
335 
336 		if (page) {
337 			lock_page(page);
338 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
339 					&pgrescued)) {
340 				/*
341 				 * Slow path. We don't want to lose the last
342 				 * pin before unlock_page()
343 				 */
344 				get_page(page); /* for putback_lru_page() */
345 				__munlock_isolated_page(page);
346 				unlock_page(page);
347 				put_page(page); /* from follow_page_mask() */
348 			}
349 		}
350 	}
351 
352 	/*
353 	 * Phase 3: page putback for pages that qualified for the fast path
354 	 * This will also call put_page() to return pin from follow_page_mask()
355 	 */
356 	if (pagevec_count(&pvec_putback))
357 		__putback_lru_fast(&pvec_putback, pgrescued);
358 }
359 
360 /*
361  * Fill up pagevec for __munlock_pagevec using pte walk
362  *
363  * The function expects that the struct page corresponding to @start address is
364  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
365  *
366  * The rest of @pvec is filled by subsequent pages within the same pmd and same
367  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
368  * pages also get pinned.
369  *
370  * Returns the address of the next page that should be scanned. This equals
371  * @start + PAGE_SIZE when no page could be added by the pte walk.
372  */
373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
374 			struct vm_area_struct *vma, struct zone *zone,
375 			unsigned long start, unsigned long end)
376 {
377 	pte_t *pte;
378 	spinlock_t *ptl;
379 
380 	/*
381 	 * Initialize pte walk starting at the already pinned page where we
382 	 * are sure that there is a pte, as it was pinned under the same
383 	 * mmap_lock write op.
384 	 */
385 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
386 	/* Make sure we do not cross the page table boundary */
387 	end = pgd_addr_end(start, end);
388 	end = p4d_addr_end(start, end);
389 	end = pud_addr_end(start, end);
390 	end = pmd_addr_end(start, end);
391 
392 	/* The page next to the pinned page is the first we will try to get */
393 	start += PAGE_SIZE;
394 	while (start < end) {
395 		struct page *page = NULL;
396 		pte++;
397 		if (pte_present(*pte))
398 			page = vm_normal_page(vma, start, *pte);
399 		/*
400 		 * Break if page could not be obtained or the page's node+zone does not
401 		 * match
402 		 */
403 		if (!page || page_zone(page) != zone)
404 			break;
405 
406 		/*
407 		 * Do not use pagevec for PTE-mapped THP,
408 		 * munlock_vma_pages_range() will handle them.
409 		 */
410 		if (PageTransCompound(page))
411 			break;
412 
413 		get_page(page);
414 		/*
415 		 * Increase the address that will be returned *before* the
416 		 * eventual break due to pvec becoming full by adding the page
417 		 */
418 		start += PAGE_SIZE;
419 		if (pagevec_add(pvec, page) == 0)
420 			break;
421 	}
422 	pte_unmap_unlock(pte, ptl);
423 	return start;
424 }
425 
426 /*
427  * munlock_vma_pages_range() - munlock all pages in the vma range.'
428  * @vma - vma containing range to be munlock()ed.
429  * @start - start address in @vma of the range
430  * @end - end of range in @vma.
431  *
432  *  For mremap(), munmap() and exit().
433  *
434  * Called with @vma VM_LOCKED.
435  *
436  * Returns with VM_LOCKED cleared.  Callers must be prepared to
437  * deal with this.
438  *
439  * We don't save and restore VM_LOCKED here because pages are
440  * still on lru.  In unmap path, pages might be scanned by reclaim
441  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
442  * free them.  This will result in freeing mlocked pages.
443  */
444 void munlock_vma_pages_range(struct vm_area_struct *vma,
445 			     unsigned long start, unsigned long end)
446 {
447 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
448 
449 	while (start < end) {
450 		struct page *page;
451 		unsigned int page_mask = 0;
452 		unsigned long page_increm;
453 		struct pagevec pvec;
454 		struct zone *zone;
455 
456 		pagevec_init(&pvec);
457 		/*
458 		 * Although FOLL_DUMP is intended for get_dump_page(),
459 		 * it just so happens that its special treatment of the
460 		 * ZERO_PAGE (returning an error instead of doing get_page)
461 		 * suits munlock very well (and if somehow an abnormal page
462 		 * has sneaked into the range, we won't oops here: great).
463 		 */
464 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
465 
466 		if (page && !IS_ERR(page)) {
467 			if (PageTransTail(page)) {
468 				VM_BUG_ON_PAGE(PageMlocked(page), page);
469 				put_page(page); /* follow_page_mask() */
470 			} else if (PageTransHuge(page)) {
471 				lock_page(page);
472 				/*
473 				 * Any THP page found by follow_page_mask() may
474 				 * have gotten split before reaching
475 				 * munlock_vma_page(), so we need to compute
476 				 * the page_mask here instead.
477 				 */
478 				page_mask = munlock_vma_page(page);
479 				unlock_page(page);
480 				put_page(page); /* follow_page_mask() */
481 			} else {
482 				/*
483 				 * Non-huge pages are handled in batches via
484 				 * pagevec. The pin from follow_page_mask()
485 				 * prevents them from collapsing by THP.
486 				 */
487 				pagevec_add(&pvec, page);
488 				zone = page_zone(page);
489 
490 				/*
491 				 * Try to fill the rest of pagevec using fast
492 				 * pte walk. This will also update start to
493 				 * the next page to process. Then munlock the
494 				 * pagevec.
495 				 */
496 				start = __munlock_pagevec_fill(&pvec, vma,
497 						zone, start, end);
498 				__munlock_pagevec(&pvec, zone);
499 				goto next;
500 			}
501 		}
502 		page_increm = 1 + page_mask;
503 		start += page_increm * PAGE_SIZE;
504 next:
505 		cond_resched();
506 	}
507 }
508 
509 /*
510  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
511  *
512  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
513  * munlock is a no-op.  However, for some special vmas, we go ahead and
514  * populate the ptes.
515  *
516  * For vmas that pass the filters, merge/split as appropriate.
517  */
518 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
519 	unsigned long start, unsigned long end, vm_flags_t newflags)
520 {
521 	struct mm_struct *mm = vma->vm_mm;
522 	pgoff_t pgoff;
523 	int nr_pages;
524 	int ret = 0;
525 	int lock = !!(newflags & VM_LOCKED);
526 	vm_flags_t old_flags = vma->vm_flags;
527 
528 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
529 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
530 	    vma_is_dax(vma))
531 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
532 		goto out;
533 
534 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
535 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
536 			  vma->vm_file, pgoff, vma_policy(vma),
537 			  vma->vm_userfaultfd_ctx);
538 	if (*prev) {
539 		vma = *prev;
540 		goto success;
541 	}
542 
543 	if (start != vma->vm_start) {
544 		ret = split_vma(mm, vma, start, 1);
545 		if (ret)
546 			goto out;
547 	}
548 
549 	if (end != vma->vm_end) {
550 		ret = split_vma(mm, vma, end, 0);
551 		if (ret)
552 			goto out;
553 	}
554 
555 success:
556 	/*
557 	 * Keep track of amount of locked VM.
558 	 */
559 	nr_pages = (end - start) >> PAGE_SHIFT;
560 	if (!lock)
561 		nr_pages = -nr_pages;
562 	else if (old_flags & VM_LOCKED)
563 		nr_pages = 0;
564 	mm->locked_vm += nr_pages;
565 
566 	/*
567 	 * vm_flags is protected by the mmap_lock held in write mode.
568 	 * It's okay if try_to_unmap_one unmaps a page just after we
569 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
570 	 */
571 
572 	if (lock)
573 		vma->vm_flags = newflags;
574 	else
575 		munlock_vma_pages_range(vma, start, end);
576 
577 out:
578 	*prev = vma;
579 	return ret;
580 }
581 
582 static int apply_vma_lock_flags(unsigned long start, size_t len,
583 				vm_flags_t flags)
584 {
585 	unsigned long nstart, end, tmp;
586 	struct vm_area_struct * vma, * prev;
587 	int error;
588 
589 	VM_BUG_ON(offset_in_page(start));
590 	VM_BUG_ON(len != PAGE_ALIGN(len));
591 	end = start + len;
592 	if (end < start)
593 		return -EINVAL;
594 	if (end == start)
595 		return 0;
596 	vma = find_vma(current->mm, start);
597 	if (!vma || vma->vm_start > start)
598 		return -ENOMEM;
599 
600 	prev = vma->vm_prev;
601 	if (start > vma->vm_start)
602 		prev = vma;
603 
604 	for (nstart = start ; ; ) {
605 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
606 
607 		newflags |= flags;
608 
609 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
610 		tmp = vma->vm_end;
611 		if (tmp > end)
612 			tmp = end;
613 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
614 		if (error)
615 			break;
616 		nstart = tmp;
617 		if (nstart < prev->vm_end)
618 			nstart = prev->vm_end;
619 		if (nstart >= end)
620 			break;
621 
622 		vma = prev->vm_next;
623 		if (!vma || vma->vm_start != nstart) {
624 			error = -ENOMEM;
625 			break;
626 		}
627 	}
628 	return error;
629 }
630 
631 /*
632  * Go through vma areas and sum size of mlocked
633  * vma pages, as return value.
634  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
635  * is also counted.
636  * Return value: previously mlocked page counts
637  */
638 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
639 		unsigned long start, size_t len)
640 {
641 	struct vm_area_struct *vma;
642 	unsigned long count = 0;
643 
644 	if (mm == NULL)
645 		mm = current->mm;
646 
647 	vma = find_vma(mm, start);
648 	if (vma == NULL)
649 		vma = mm->mmap;
650 
651 	for (; vma ; vma = vma->vm_next) {
652 		if (start >= vma->vm_end)
653 			continue;
654 		if (start + len <=  vma->vm_start)
655 			break;
656 		if (vma->vm_flags & VM_LOCKED) {
657 			if (start > vma->vm_start)
658 				count -= (start - vma->vm_start);
659 			if (start + len < vma->vm_end) {
660 				count += start + len - vma->vm_start;
661 				break;
662 			}
663 			count += vma->vm_end - vma->vm_start;
664 		}
665 	}
666 
667 	return count >> PAGE_SHIFT;
668 }
669 
670 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
671 {
672 	unsigned long locked;
673 	unsigned long lock_limit;
674 	int error = -ENOMEM;
675 
676 	start = untagged_addr(start);
677 
678 	if (!can_do_mlock())
679 		return -EPERM;
680 
681 	len = PAGE_ALIGN(len + (offset_in_page(start)));
682 	start &= PAGE_MASK;
683 
684 	lock_limit = rlimit(RLIMIT_MEMLOCK);
685 	lock_limit >>= PAGE_SHIFT;
686 	locked = len >> PAGE_SHIFT;
687 
688 	if (mmap_write_lock_killable(current->mm))
689 		return -EINTR;
690 
691 	locked += current->mm->locked_vm;
692 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
693 		/*
694 		 * It is possible that the regions requested intersect with
695 		 * previously mlocked areas, that part area in "mm->locked_vm"
696 		 * should not be counted to new mlock increment count. So check
697 		 * and adjust locked count if necessary.
698 		 */
699 		locked -= count_mm_mlocked_page_nr(current->mm,
700 				start, len);
701 	}
702 
703 	/* check against resource limits */
704 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
705 		error = apply_vma_lock_flags(start, len, flags);
706 
707 	mmap_write_unlock(current->mm);
708 	if (error)
709 		return error;
710 
711 	error = __mm_populate(start, len, 0);
712 	if (error)
713 		return __mlock_posix_error_return(error);
714 	return 0;
715 }
716 
717 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
718 {
719 	return do_mlock(start, len, VM_LOCKED);
720 }
721 
722 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
723 {
724 	vm_flags_t vm_flags = VM_LOCKED;
725 
726 	if (flags & ~MLOCK_ONFAULT)
727 		return -EINVAL;
728 
729 	if (flags & MLOCK_ONFAULT)
730 		vm_flags |= VM_LOCKONFAULT;
731 
732 	return do_mlock(start, len, vm_flags);
733 }
734 
735 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
736 {
737 	int ret;
738 
739 	start = untagged_addr(start);
740 
741 	len = PAGE_ALIGN(len + (offset_in_page(start)));
742 	start &= PAGE_MASK;
743 
744 	if (mmap_write_lock_killable(current->mm))
745 		return -EINTR;
746 	ret = apply_vma_lock_flags(start, len, 0);
747 	mmap_write_unlock(current->mm);
748 
749 	return ret;
750 }
751 
752 /*
753  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
754  * and translate into the appropriate modifications to mm->def_flags and/or the
755  * flags for all current VMAs.
756  *
757  * There are a couple of subtleties with this.  If mlockall() is called multiple
758  * times with different flags, the values do not necessarily stack.  If mlockall
759  * is called once including the MCL_FUTURE flag and then a second time without
760  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
761  */
762 static int apply_mlockall_flags(int flags)
763 {
764 	struct vm_area_struct * vma, * prev = NULL;
765 	vm_flags_t to_add = 0;
766 
767 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
768 	if (flags & MCL_FUTURE) {
769 		current->mm->def_flags |= VM_LOCKED;
770 
771 		if (flags & MCL_ONFAULT)
772 			current->mm->def_flags |= VM_LOCKONFAULT;
773 
774 		if (!(flags & MCL_CURRENT))
775 			goto out;
776 	}
777 
778 	if (flags & MCL_CURRENT) {
779 		to_add |= VM_LOCKED;
780 		if (flags & MCL_ONFAULT)
781 			to_add |= VM_LOCKONFAULT;
782 	}
783 
784 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
785 		vm_flags_t newflags;
786 
787 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
788 		newflags |= to_add;
789 
790 		/* Ignore errors */
791 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
792 		cond_resched();
793 	}
794 out:
795 	return 0;
796 }
797 
798 SYSCALL_DEFINE1(mlockall, int, flags)
799 {
800 	unsigned long lock_limit;
801 	int ret;
802 
803 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
804 	    flags == MCL_ONFAULT)
805 		return -EINVAL;
806 
807 	if (!can_do_mlock())
808 		return -EPERM;
809 
810 	lock_limit = rlimit(RLIMIT_MEMLOCK);
811 	lock_limit >>= PAGE_SHIFT;
812 
813 	if (mmap_write_lock_killable(current->mm))
814 		return -EINTR;
815 
816 	ret = -ENOMEM;
817 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
818 	    capable(CAP_IPC_LOCK))
819 		ret = apply_mlockall_flags(flags);
820 	mmap_write_unlock(current->mm);
821 	if (!ret && (flags & MCL_CURRENT))
822 		mm_populate(0, TASK_SIZE);
823 
824 	return ret;
825 }
826 
827 SYSCALL_DEFINE0(munlockall)
828 {
829 	int ret;
830 
831 	if (mmap_write_lock_killable(current->mm))
832 		return -EINTR;
833 	ret = apply_mlockall_flags(0);
834 	mmap_write_unlock(current->mm);
835 	return ret;
836 }
837 
838 /*
839  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
840  * shm segments) get accounted against the user_struct instead.
841  */
842 static DEFINE_SPINLOCK(shmlock_user_lock);
843 
844 int user_shm_lock(size_t size, struct user_struct *user)
845 {
846 	unsigned long lock_limit, locked;
847 	int allowed = 0;
848 
849 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 	lock_limit = rlimit(RLIMIT_MEMLOCK);
851 	if (lock_limit == RLIM_INFINITY)
852 		allowed = 1;
853 	lock_limit >>= PAGE_SHIFT;
854 	spin_lock(&shmlock_user_lock);
855 	if (!allowed &&
856 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
857 		goto out;
858 	get_uid(user);
859 	user->locked_shm += locked;
860 	allowed = 1;
861 out:
862 	spin_unlock(&shmlock_user_lock);
863 	return allowed;
864 }
865 
866 void user_shm_unlock(size_t size, struct user_struct *user)
867 {
868 	spin_lock(&shmlock_user_lock);
869 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
870 	spin_unlock(&shmlock_user_lock);
871 	free_uid(user);
872 }
873