xref: /linux/mm/mlock.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25 
26 #include "internal.h"
27 
28 bool can_do_mlock(void)
29 {
30 	if (rlimit(RLIMIT_MEMLOCK) != 0)
31 		return true;
32 	if (capable(CAP_IPC_LOCK))
33 		return true;
34 	return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37 
38 /*
39  * Mlocked pages are marked with PageMlocked() flag for efficient testing
40  * in vmscan and, possibly, the fault path; and to support semi-accurate
41  * statistics.
42  *
43  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
44  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45  * The unevictable list is an LRU sibling list to the [in]active lists.
46  * PageUnevictable is set to indicate the unevictable state.
47  *
48  * When lazy mlocking via vmscan, it is important to ensure that the
49  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50  * may have mlocked a page that is being munlocked. So lazy mlock must take
51  * the mmap_sem for read, and verify that the vma really is locked
52  * (see mm/rmap.c).
53  */
54 
55 /*
56  *  LRU accounting for clear_page_mlock()
57  */
58 void clear_page_mlock(struct page *page)
59 {
60 	if (!TestClearPageMlocked(page))
61 		return;
62 
63 	mod_zone_page_state(page_zone(page), NR_MLOCK,
64 			    -hpage_nr_pages(page));
65 	count_vm_event(UNEVICTABLE_PGCLEARED);
66 	if (!isolate_lru_page(page)) {
67 		putback_lru_page(page);
68 	} else {
69 		/*
70 		 * We lost the race. the page already moved to evictable list.
71 		 */
72 		if (PageUnevictable(page))
73 			count_vm_event(UNEVICTABLE_PGSTRANDED);
74 	}
75 }
76 
77 /*
78  * Mark page as mlocked if not already.
79  * If page on LRU, isolate and putback to move to unevictable list.
80  */
81 void mlock_vma_page(struct page *page)
82 {
83 	/* Serialize with page migration */
84 	BUG_ON(!PageLocked(page));
85 
86 	VM_BUG_ON_PAGE(PageTail(page), page);
87 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88 
89 	if (!TestSetPageMlocked(page)) {
90 		mod_zone_page_state(page_zone(page), NR_MLOCK,
91 				    hpage_nr_pages(page));
92 		count_vm_event(UNEVICTABLE_PGMLOCKED);
93 		if (!isolate_lru_page(page))
94 			putback_lru_page(page);
95 	}
96 }
97 
98 /*
99  * Isolate a page from LRU with optional get_page() pin.
100  * Assumes lru_lock already held and page already pinned.
101  */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 	if (PageLRU(page)) {
105 		struct lruvec *lruvec;
106 
107 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 		if (getpage)
109 			get_page(page);
110 		ClearPageLRU(page);
111 		del_page_from_lru_list(page, lruvec, page_lru(page));
112 		return true;
113 	}
114 
115 	return false;
116 }
117 
118 /*
119  * Finish munlock after successful page isolation
120  *
121  * Page must be locked. This is a wrapper for try_to_munlock()
122  * and putback_lru_page() with munlock accounting.
123  */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 	/*
127 	 * Optimization: if the page was mapped just once, that's our mapping
128 	 * and we don't need to check all the other vmas.
129 	 */
130 	if (page_mapcount(page) > 1)
131 		try_to_munlock(page);
132 
133 	/* Did try_to_unlock() succeed or punt? */
134 	if (!PageMlocked(page))
135 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136 
137 	putback_lru_page(page);
138 }
139 
140 /*
141  * Accounting for page isolation fail during munlock
142  *
143  * Performs accounting when page isolation fails in munlock. There is nothing
144  * else to do because it means some other task has already removed the page
145  * from the LRU. putback_lru_page() will take care of removing the page from
146  * the unevictable list, if necessary. vmscan [page_referenced()] will move
147  * the page back to the unevictable list if some other vma has it mlocked.
148  */
149 static void __munlock_isolation_failed(struct page *page)
150 {
151 	if (PageUnevictable(page))
152 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
153 	else
154 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
155 }
156 
157 /**
158  * munlock_vma_page - munlock a vma page
159  * @page - page to be unlocked, either a normal page or THP page head
160  *
161  * returns the size of the page as a page mask (0 for normal page,
162  *         HPAGE_PMD_NR - 1 for THP head page)
163  *
164  * called from munlock()/munmap() path with page supposedly on the LRU.
165  * When we munlock a page, because the vma where we found the page is being
166  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167  * page locked so that we can leave it on the unevictable lru list and not
168  * bother vmscan with it.  However, to walk the page's rmap list in
169  * try_to_munlock() we must isolate the page from the LRU.  If some other
170  * task has removed the page from the LRU, we won't be able to do that.
171  * So we clear the PageMlocked as we might not get another chance.  If we
172  * can't isolate the page, we leave it for putback_lru_page() and vmscan
173  * [page_referenced()/try_to_unmap()] to deal with.
174  */
175 unsigned int munlock_vma_page(struct page *page)
176 {
177 	int nr_pages;
178 	struct zone *zone = page_zone(page);
179 
180 	/* For try_to_munlock() and to serialize with page migration */
181 	BUG_ON(!PageLocked(page));
182 
183 	VM_BUG_ON_PAGE(PageTail(page), page);
184 
185 	/*
186 	 * Serialize with any parallel __split_huge_page_refcount() which
187 	 * might otherwise copy PageMlocked to part of the tail pages before
188 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
189 	 */
190 	spin_lock_irq(zone_lru_lock(zone));
191 
192 	if (!TestClearPageMlocked(page)) {
193 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 		nr_pages = 1;
195 		goto unlock_out;
196 	}
197 
198 	nr_pages = hpage_nr_pages(page);
199 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200 
201 	if (__munlock_isolate_lru_page(page, true)) {
202 		spin_unlock_irq(zone_lru_lock(zone));
203 		__munlock_isolated_page(page);
204 		goto out;
205 	}
206 	__munlock_isolation_failed(page);
207 
208 unlock_out:
209 	spin_unlock_irq(zone_lru_lock(zone));
210 
211 out:
212 	return nr_pages - 1;
213 }
214 
215 /*
216  * convert get_user_pages() return value to posix mlock() error
217  */
218 static int __mlock_posix_error_return(long retval)
219 {
220 	if (retval == -EFAULT)
221 		retval = -ENOMEM;
222 	else if (retval == -ENOMEM)
223 		retval = -EAGAIN;
224 	return retval;
225 }
226 
227 /*
228  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229  *
230  * The fast path is available only for evictable pages with single mapping.
231  * Then we can bypass the per-cpu pvec and get better performance.
232  * when mapcount > 1 we need try_to_munlock() which can fail.
233  * when !page_evictable(), we need the full redo logic of putback_lru_page to
234  * avoid leaving evictable page in unevictable list.
235  *
236  * In case of success, @page is added to @pvec and @pgrescued is incremented
237  * in case that the page was previously unevictable. @page is also unlocked.
238  */
239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 		int *pgrescued)
241 {
242 	VM_BUG_ON_PAGE(PageLRU(page), page);
243 	VM_BUG_ON_PAGE(!PageLocked(page), page);
244 
245 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 		pagevec_add(pvec, page);
247 		if (TestClearPageUnevictable(page))
248 			(*pgrescued)++;
249 		unlock_page(page);
250 		return true;
251 	}
252 
253 	return false;
254 }
255 
256 /*
257  * Putback multiple evictable pages to the LRU
258  *
259  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260  * the pages might have meanwhile become unevictable but that is OK.
261  */
262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263 {
264 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 	/*
266 	 *__pagevec_lru_add() calls release_pages() so we don't call
267 	 * put_page() explicitly
268 	 */
269 	__pagevec_lru_add(pvec);
270 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271 }
272 
273 /*
274  * Munlock a batch of pages from the same zone
275  *
276  * The work is split to two main phases. First phase clears the Mlocked flag
277  * and attempts to isolate the pages, all under a single zone lru lock.
278  * The second phase finishes the munlock only for pages where isolation
279  * succeeded.
280  *
281  * Note that the pagevec may be modified during the process.
282  */
283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284 {
285 	int i;
286 	int nr = pagevec_count(pvec);
287 	int delta_munlocked = -nr;
288 	struct pagevec pvec_putback;
289 	int pgrescued = 0;
290 
291 	pagevec_init(&pvec_putback, 0);
292 
293 	/* Phase 1: page isolation */
294 	spin_lock_irq(zone_lru_lock(zone));
295 	for (i = 0; i < nr; i++) {
296 		struct page *page = pvec->pages[i];
297 
298 		if (TestClearPageMlocked(page)) {
299 			/*
300 			 * We already have pin from follow_page_mask()
301 			 * so we can spare the get_page() here.
302 			 */
303 			if (__munlock_isolate_lru_page(page, false))
304 				continue;
305 			else
306 				__munlock_isolation_failed(page);
307 		} else {
308 			delta_munlocked++;
309 		}
310 
311 		/*
312 		 * We won't be munlocking this page in the next phase
313 		 * but we still need to release the follow_page_mask()
314 		 * pin. We cannot do it under lru_lock however. If it's
315 		 * the last pin, __page_cache_release() would deadlock.
316 		 */
317 		pagevec_add(&pvec_putback, pvec->pages[i]);
318 		pvec->pages[i] = NULL;
319 	}
320 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
321 	spin_unlock_irq(zone_lru_lock(zone));
322 
323 	/* Now we can release pins of pages that we are not munlocking */
324 	pagevec_release(&pvec_putback);
325 
326 	/* Phase 2: page munlock */
327 	for (i = 0; i < nr; i++) {
328 		struct page *page = pvec->pages[i];
329 
330 		if (page) {
331 			lock_page(page);
332 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
333 					&pgrescued)) {
334 				/*
335 				 * Slow path. We don't want to lose the last
336 				 * pin before unlock_page()
337 				 */
338 				get_page(page); /* for putback_lru_page() */
339 				__munlock_isolated_page(page);
340 				unlock_page(page);
341 				put_page(page); /* from follow_page_mask() */
342 			}
343 		}
344 	}
345 
346 	/*
347 	 * Phase 3: page putback for pages that qualified for the fast path
348 	 * This will also call put_page() to return pin from follow_page_mask()
349 	 */
350 	if (pagevec_count(&pvec_putback))
351 		__putback_lru_fast(&pvec_putback, pgrescued);
352 }
353 
354 /*
355  * Fill up pagevec for __munlock_pagevec using pte walk
356  *
357  * The function expects that the struct page corresponding to @start address is
358  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
359  *
360  * The rest of @pvec is filled by subsequent pages within the same pmd and same
361  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
362  * pages also get pinned.
363  *
364  * Returns the address of the next page that should be scanned. This equals
365  * @start + PAGE_SIZE when no page could be added by the pte walk.
366  */
367 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
368 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
369 		unsigned long end)
370 {
371 	pte_t *pte;
372 	spinlock_t *ptl;
373 
374 	/*
375 	 * Initialize pte walk starting at the already pinned page where we
376 	 * are sure that there is a pte, as it was pinned under the same
377 	 * mmap_sem write op.
378 	 */
379 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
380 	/* Make sure we do not cross the page table boundary */
381 	end = pgd_addr_end(start, end);
382 	end = p4d_addr_end(start, end);
383 	end = pud_addr_end(start, end);
384 	end = pmd_addr_end(start, end);
385 
386 	/* The page next to the pinned page is the first we will try to get */
387 	start += PAGE_SIZE;
388 	while (start < end) {
389 		struct page *page = NULL;
390 		pte++;
391 		if (pte_present(*pte))
392 			page = vm_normal_page(vma, start, *pte);
393 		/*
394 		 * Break if page could not be obtained or the page's node+zone does not
395 		 * match
396 		 */
397 		if (!page || page_zone_id(page) != zoneid)
398 			break;
399 
400 		/*
401 		 * Do not use pagevec for PTE-mapped THP,
402 		 * munlock_vma_pages_range() will handle them.
403 		 */
404 		if (PageTransCompound(page))
405 			break;
406 
407 		get_page(page);
408 		/*
409 		 * Increase the address that will be returned *before* the
410 		 * eventual break due to pvec becoming full by adding the page
411 		 */
412 		start += PAGE_SIZE;
413 		if (pagevec_add(pvec, page) == 0)
414 			break;
415 	}
416 	pte_unmap_unlock(pte, ptl);
417 	return start;
418 }
419 
420 /*
421  * munlock_vma_pages_range() - munlock all pages in the vma range.'
422  * @vma - vma containing range to be munlock()ed.
423  * @start - start address in @vma of the range
424  * @end - end of range in @vma.
425  *
426  *  For mremap(), munmap() and exit().
427  *
428  * Called with @vma VM_LOCKED.
429  *
430  * Returns with VM_LOCKED cleared.  Callers must be prepared to
431  * deal with this.
432  *
433  * We don't save and restore VM_LOCKED here because pages are
434  * still on lru.  In unmap path, pages might be scanned by reclaim
435  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
436  * free them.  This will result in freeing mlocked pages.
437  */
438 void munlock_vma_pages_range(struct vm_area_struct *vma,
439 			     unsigned long start, unsigned long end)
440 {
441 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
442 
443 	while (start < end) {
444 		struct page *page;
445 		unsigned int page_mask = 0;
446 		unsigned long page_increm;
447 		struct pagevec pvec;
448 		struct zone *zone;
449 		int zoneid;
450 
451 		pagevec_init(&pvec, 0);
452 		/*
453 		 * Although FOLL_DUMP is intended for get_dump_page(),
454 		 * it just so happens that its special treatment of the
455 		 * ZERO_PAGE (returning an error instead of doing get_page)
456 		 * suits munlock very well (and if somehow an abnormal page
457 		 * has sneaked into the range, we won't oops here: great).
458 		 */
459 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
460 
461 		if (page && !IS_ERR(page)) {
462 			if (PageTransTail(page)) {
463 				VM_BUG_ON_PAGE(PageMlocked(page), page);
464 				put_page(page); /* follow_page_mask() */
465 			} else if (PageTransHuge(page)) {
466 				lock_page(page);
467 				/*
468 				 * Any THP page found by follow_page_mask() may
469 				 * have gotten split before reaching
470 				 * munlock_vma_page(), so we need to compute
471 				 * the page_mask here instead.
472 				 */
473 				page_mask = munlock_vma_page(page);
474 				unlock_page(page);
475 				put_page(page); /* follow_page_mask() */
476 			} else {
477 				/*
478 				 * Non-huge pages are handled in batches via
479 				 * pagevec. The pin from follow_page_mask()
480 				 * prevents them from collapsing by THP.
481 				 */
482 				pagevec_add(&pvec, page);
483 				zone = page_zone(page);
484 				zoneid = page_zone_id(page);
485 
486 				/*
487 				 * Try to fill the rest of pagevec using fast
488 				 * pte walk. This will also update start to
489 				 * the next page to process. Then munlock the
490 				 * pagevec.
491 				 */
492 				start = __munlock_pagevec_fill(&pvec, vma,
493 						zoneid, start, end);
494 				__munlock_pagevec(&pvec, zone);
495 				goto next;
496 			}
497 		}
498 		page_increm = 1 + page_mask;
499 		start += page_increm * PAGE_SIZE;
500 next:
501 		cond_resched();
502 	}
503 }
504 
505 /*
506  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
507  *
508  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
509  * munlock is a no-op.  However, for some special vmas, we go ahead and
510  * populate the ptes.
511  *
512  * For vmas that pass the filters, merge/split as appropriate.
513  */
514 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
515 	unsigned long start, unsigned long end, vm_flags_t newflags)
516 {
517 	struct mm_struct *mm = vma->vm_mm;
518 	pgoff_t pgoff;
519 	int nr_pages;
520 	int ret = 0;
521 	int lock = !!(newflags & VM_LOCKED);
522 	vm_flags_t old_flags = vma->vm_flags;
523 
524 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
525 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
526 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
527 		goto out;
528 
529 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
530 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
531 			  vma->vm_file, pgoff, vma_policy(vma),
532 			  vma->vm_userfaultfd_ctx);
533 	if (*prev) {
534 		vma = *prev;
535 		goto success;
536 	}
537 
538 	if (start != vma->vm_start) {
539 		ret = split_vma(mm, vma, start, 1);
540 		if (ret)
541 			goto out;
542 	}
543 
544 	if (end != vma->vm_end) {
545 		ret = split_vma(mm, vma, end, 0);
546 		if (ret)
547 			goto out;
548 	}
549 
550 success:
551 	/*
552 	 * Keep track of amount of locked VM.
553 	 */
554 	nr_pages = (end - start) >> PAGE_SHIFT;
555 	if (!lock)
556 		nr_pages = -nr_pages;
557 	else if (old_flags & VM_LOCKED)
558 		nr_pages = 0;
559 	mm->locked_vm += nr_pages;
560 
561 	/*
562 	 * vm_flags is protected by the mmap_sem held in write mode.
563 	 * It's okay if try_to_unmap_one unmaps a page just after we
564 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
565 	 */
566 
567 	if (lock)
568 		vma->vm_flags = newflags;
569 	else
570 		munlock_vma_pages_range(vma, start, end);
571 
572 out:
573 	*prev = vma;
574 	return ret;
575 }
576 
577 static int apply_vma_lock_flags(unsigned long start, size_t len,
578 				vm_flags_t flags)
579 {
580 	unsigned long nstart, end, tmp;
581 	struct vm_area_struct * vma, * prev;
582 	int error;
583 
584 	VM_BUG_ON(offset_in_page(start));
585 	VM_BUG_ON(len != PAGE_ALIGN(len));
586 	end = start + len;
587 	if (end < start)
588 		return -EINVAL;
589 	if (end == start)
590 		return 0;
591 	vma = find_vma(current->mm, start);
592 	if (!vma || vma->vm_start > start)
593 		return -ENOMEM;
594 
595 	prev = vma->vm_prev;
596 	if (start > vma->vm_start)
597 		prev = vma;
598 
599 	for (nstart = start ; ; ) {
600 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
601 
602 		newflags |= flags;
603 
604 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
605 		tmp = vma->vm_end;
606 		if (tmp > end)
607 			tmp = end;
608 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
609 		if (error)
610 			break;
611 		nstart = tmp;
612 		if (nstart < prev->vm_end)
613 			nstart = prev->vm_end;
614 		if (nstart >= end)
615 			break;
616 
617 		vma = prev->vm_next;
618 		if (!vma || vma->vm_start != nstart) {
619 			error = -ENOMEM;
620 			break;
621 		}
622 	}
623 	return error;
624 }
625 
626 /*
627  * Go through vma areas and sum size of mlocked
628  * vma pages, as return value.
629  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
630  * is also counted.
631  * Return value: previously mlocked page counts
632  */
633 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
634 		unsigned long start, size_t len)
635 {
636 	struct vm_area_struct *vma;
637 	int count = 0;
638 
639 	if (mm == NULL)
640 		mm = current->mm;
641 
642 	vma = find_vma(mm, start);
643 	if (vma == NULL)
644 		vma = mm->mmap;
645 
646 	for (; vma ; vma = vma->vm_next) {
647 		if (start >= vma->vm_end)
648 			continue;
649 		if (start + len <=  vma->vm_start)
650 			break;
651 		if (vma->vm_flags & VM_LOCKED) {
652 			if (start > vma->vm_start)
653 				count -= (start - vma->vm_start);
654 			if (start + len < vma->vm_end) {
655 				count += start + len - vma->vm_start;
656 				break;
657 			}
658 			count += vma->vm_end - vma->vm_start;
659 		}
660 	}
661 
662 	return count >> PAGE_SHIFT;
663 }
664 
665 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
666 {
667 	unsigned long locked;
668 	unsigned long lock_limit;
669 	int error = -ENOMEM;
670 
671 	if (!can_do_mlock())
672 		return -EPERM;
673 
674 	lru_add_drain_all();	/* flush pagevec */
675 
676 	len = PAGE_ALIGN(len + (offset_in_page(start)));
677 	start &= PAGE_MASK;
678 
679 	lock_limit = rlimit(RLIMIT_MEMLOCK);
680 	lock_limit >>= PAGE_SHIFT;
681 	locked = len >> PAGE_SHIFT;
682 
683 	if (down_write_killable(&current->mm->mmap_sem))
684 		return -EINTR;
685 
686 	locked += current->mm->locked_vm;
687 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
688 		/*
689 		 * It is possible that the regions requested intersect with
690 		 * previously mlocked areas, that part area in "mm->locked_vm"
691 		 * should not be counted to new mlock increment count. So check
692 		 * and adjust locked count if necessary.
693 		 */
694 		locked -= count_mm_mlocked_page_nr(current->mm,
695 				start, len);
696 	}
697 
698 	/* check against resource limits */
699 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
700 		error = apply_vma_lock_flags(start, len, flags);
701 
702 	up_write(&current->mm->mmap_sem);
703 	if (error)
704 		return error;
705 
706 	error = __mm_populate(start, len, 0);
707 	if (error)
708 		return __mlock_posix_error_return(error);
709 	return 0;
710 }
711 
712 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
713 {
714 	return do_mlock(start, len, VM_LOCKED);
715 }
716 
717 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
718 {
719 	vm_flags_t vm_flags = VM_LOCKED;
720 
721 	if (flags & ~MLOCK_ONFAULT)
722 		return -EINVAL;
723 
724 	if (flags & MLOCK_ONFAULT)
725 		vm_flags |= VM_LOCKONFAULT;
726 
727 	return do_mlock(start, len, vm_flags);
728 }
729 
730 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
731 {
732 	int ret;
733 
734 	len = PAGE_ALIGN(len + (offset_in_page(start)));
735 	start &= PAGE_MASK;
736 
737 	if (down_write_killable(&current->mm->mmap_sem))
738 		return -EINTR;
739 	ret = apply_vma_lock_flags(start, len, 0);
740 	up_write(&current->mm->mmap_sem);
741 
742 	return ret;
743 }
744 
745 /*
746  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
747  * and translate into the appropriate modifications to mm->def_flags and/or the
748  * flags for all current VMAs.
749  *
750  * There are a couple of subtleties with this.  If mlockall() is called multiple
751  * times with different flags, the values do not necessarily stack.  If mlockall
752  * is called once including the MCL_FUTURE flag and then a second time without
753  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
754  */
755 static int apply_mlockall_flags(int flags)
756 {
757 	struct vm_area_struct * vma, * prev = NULL;
758 	vm_flags_t to_add = 0;
759 
760 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
761 	if (flags & MCL_FUTURE) {
762 		current->mm->def_flags |= VM_LOCKED;
763 
764 		if (flags & MCL_ONFAULT)
765 			current->mm->def_flags |= VM_LOCKONFAULT;
766 
767 		if (!(flags & MCL_CURRENT))
768 			goto out;
769 	}
770 
771 	if (flags & MCL_CURRENT) {
772 		to_add |= VM_LOCKED;
773 		if (flags & MCL_ONFAULT)
774 			to_add |= VM_LOCKONFAULT;
775 	}
776 
777 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
778 		vm_flags_t newflags;
779 
780 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
781 		newflags |= to_add;
782 
783 		/* Ignore errors */
784 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
785 		cond_resched_rcu_qs();
786 	}
787 out:
788 	return 0;
789 }
790 
791 SYSCALL_DEFINE1(mlockall, int, flags)
792 {
793 	unsigned long lock_limit;
794 	int ret;
795 
796 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
797 		return -EINVAL;
798 
799 	if (!can_do_mlock())
800 		return -EPERM;
801 
802 	if (flags & MCL_CURRENT)
803 		lru_add_drain_all();	/* flush pagevec */
804 
805 	lock_limit = rlimit(RLIMIT_MEMLOCK);
806 	lock_limit >>= PAGE_SHIFT;
807 
808 	if (down_write_killable(&current->mm->mmap_sem))
809 		return -EINTR;
810 
811 	ret = -ENOMEM;
812 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813 	    capable(CAP_IPC_LOCK))
814 		ret = apply_mlockall_flags(flags);
815 	up_write(&current->mm->mmap_sem);
816 	if (!ret && (flags & MCL_CURRENT))
817 		mm_populate(0, TASK_SIZE);
818 
819 	return ret;
820 }
821 
822 SYSCALL_DEFINE0(munlockall)
823 {
824 	int ret;
825 
826 	if (down_write_killable(&current->mm->mmap_sem))
827 		return -EINTR;
828 	ret = apply_mlockall_flags(0);
829 	up_write(&current->mm->mmap_sem);
830 	return ret;
831 }
832 
833 /*
834  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
835  * shm segments) get accounted against the user_struct instead.
836  */
837 static DEFINE_SPINLOCK(shmlock_user_lock);
838 
839 int user_shm_lock(size_t size, struct user_struct *user)
840 {
841 	unsigned long lock_limit, locked;
842 	int allowed = 0;
843 
844 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
845 	lock_limit = rlimit(RLIMIT_MEMLOCK);
846 	if (lock_limit == RLIM_INFINITY)
847 		allowed = 1;
848 	lock_limit >>= PAGE_SHIFT;
849 	spin_lock(&shmlock_user_lock);
850 	if (!allowed &&
851 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
852 		goto out;
853 	get_uid(user);
854 	user->locked_shm += locked;
855 	allowed = 1;
856 out:
857 	spin_unlock(&shmlock_user_lock);
858 	return allowed;
859 }
860 
861 void user_shm_unlock(size_t size, struct user_struct *user)
862 {
863 	spin_lock(&shmlock_user_lock);
864 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
865 	spin_unlock(&shmlock_user_lock);
866 	free_uid(user);
867 }
868