xref: /linux/mm/mlock.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24 
25 #include "internal.h"
26 
27 int can_do_mlock(void)
28 {
29 	if (capable(CAP_IPC_LOCK))
30 		return 1;
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return 1;
33 	return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36 
37 /*
38  * Mlocked pages are marked with PageMlocked() flag for efficient testing
39  * in vmscan and, possibly, the fault path; and to support semi-accurate
40  * statistics.
41  *
42  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44  * The unevictable list is an LRU sibling list to the [in]active lists.
45  * PageUnevictable is set to indicate the unevictable state.
46  *
47  * When lazy mlocking via vmscan, it is important to ensure that the
48  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49  * may have mlocked a page that is being munlocked. So lazy mlock must take
50  * the mmap_sem for read, and verify that the vma really is locked
51  * (see mm/rmap.c).
52  */
53 
54 /*
55  *  LRU accounting for clear_page_mlock()
56  */
57 void clear_page_mlock(struct page *page)
58 {
59 	if (!TestClearPageMlocked(page))
60 		return;
61 
62 	mod_zone_page_state(page_zone(page), NR_MLOCK,
63 			    -hpage_nr_pages(page));
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	BUG_ON(!PageLocked(page));
83 
84 	if (!TestSetPageMlocked(page)) {
85 		mod_zone_page_state(page_zone(page), NR_MLOCK,
86 				    hpage_nr_pages(page));
87 		count_vm_event(UNEVICTABLE_PGMLOCKED);
88 		if (!isolate_lru_page(page))
89 			putback_lru_page(page);
90 	}
91 }
92 
93 /*
94  * Isolate a page from LRU with optional get_page() pin.
95  * Assumes lru_lock already held and page already pinned.
96  */
97 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
98 {
99 	if (PageLRU(page)) {
100 		struct lruvec *lruvec;
101 
102 		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
103 		if (getpage)
104 			get_page(page);
105 		ClearPageLRU(page);
106 		del_page_from_lru_list(page, lruvec, page_lru(page));
107 		return true;
108 	}
109 
110 	return false;
111 }
112 
113 /*
114  * Finish munlock after successful page isolation
115  *
116  * Page must be locked. This is a wrapper for try_to_munlock()
117  * and putback_lru_page() with munlock accounting.
118  */
119 static void __munlock_isolated_page(struct page *page)
120 {
121 	int ret = SWAP_AGAIN;
122 
123 	/*
124 	 * Optimization: if the page was mapped just once, that's our mapping
125 	 * and we don't need to check all the other vmas.
126 	 */
127 	if (page_mapcount(page) > 1)
128 		ret = try_to_munlock(page);
129 
130 	/* Did try_to_unlock() succeed or punt? */
131 	if (ret != SWAP_MLOCK)
132 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
133 
134 	putback_lru_page(page);
135 }
136 
137 /*
138  * Accounting for page isolation fail during munlock
139  *
140  * Performs accounting when page isolation fails in munlock. There is nothing
141  * else to do because it means some other task has already removed the page
142  * from the LRU. putback_lru_page() will take care of removing the page from
143  * the unevictable list, if necessary. vmscan [page_referenced()] will move
144  * the page back to the unevictable list if some other vma has it mlocked.
145  */
146 static void __munlock_isolation_failed(struct page *page)
147 {
148 	if (PageUnevictable(page))
149 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
150 	else
151 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
152 }
153 
154 /**
155  * munlock_vma_page - munlock a vma page
156  * @page - page to be unlocked, either a normal page or THP page head
157  *
158  * returns the size of the page as a page mask (0 for normal page,
159  *         HPAGE_PMD_NR - 1 for THP head page)
160  *
161  * called from munlock()/munmap() path with page supposedly on the LRU.
162  * When we munlock a page, because the vma where we found the page is being
163  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
164  * page locked so that we can leave it on the unevictable lru list and not
165  * bother vmscan with it.  However, to walk the page's rmap list in
166  * try_to_munlock() we must isolate the page from the LRU.  If some other
167  * task has removed the page from the LRU, we won't be able to do that.
168  * So we clear the PageMlocked as we might not get another chance.  If we
169  * can't isolate the page, we leave it for putback_lru_page() and vmscan
170  * [page_referenced()/try_to_unmap()] to deal with.
171  */
172 unsigned int munlock_vma_page(struct page *page)
173 {
174 	unsigned int nr_pages;
175 	struct zone *zone = page_zone(page);
176 
177 	BUG_ON(!PageLocked(page));
178 
179 	/*
180 	 * Serialize with any parallel __split_huge_page_refcount() which
181 	 * might otherwise copy PageMlocked to part of the tail pages before
182 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
183 	 */
184 	spin_lock_irq(&zone->lru_lock);
185 
186 	nr_pages = hpage_nr_pages(page);
187 	if (!TestClearPageMlocked(page))
188 		goto unlock_out;
189 
190 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
191 
192 	if (__munlock_isolate_lru_page(page, true)) {
193 		spin_unlock_irq(&zone->lru_lock);
194 		__munlock_isolated_page(page);
195 		goto out;
196 	}
197 	__munlock_isolation_failed(page);
198 
199 unlock_out:
200 	spin_unlock_irq(&zone->lru_lock);
201 
202 out:
203 	return nr_pages - 1;
204 }
205 
206 /**
207  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
208  * @vma:   target vma
209  * @start: start address
210  * @end:   end address
211  *
212  * This takes care of making the pages present too.
213  *
214  * return 0 on success, negative error code on error.
215  *
216  * vma->vm_mm->mmap_sem must be held for at least read.
217  */
218 long __mlock_vma_pages_range(struct vm_area_struct *vma,
219 		unsigned long start, unsigned long end, int *nonblocking)
220 {
221 	struct mm_struct *mm = vma->vm_mm;
222 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
223 	int gup_flags;
224 
225 	VM_BUG_ON(start & ~PAGE_MASK);
226 	VM_BUG_ON(end   & ~PAGE_MASK);
227 	VM_BUG_ON(start < vma->vm_start);
228 	VM_BUG_ON(end   > vma->vm_end);
229 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
230 
231 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
232 	/*
233 	 * We want to touch writable mappings with a write fault in order
234 	 * to break COW, except for shared mappings because these don't COW
235 	 * and we would not want to dirty them for nothing.
236 	 */
237 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
238 		gup_flags |= FOLL_WRITE;
239 
240 	/*
241 	 * We want mlock to succeed for regions that have any permissions
242 	 * other than PROT_NONE.
243 	 */
244 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
245 		gup_flags |= FOLL_FORCE;
246 
247 	/*
248 	 * We made sure addr is within a VMA, so the following will
249 	 * not result in a stack expansion that recurses back here.
250 	 */
251 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
252 				NULL, NULL, nonblocking);
253 }
254 
255 /*
256  * convert get_user_pages() return value to posix mlock() error
257  */
258 static int __mlock_posix_error_return(long retval)
259 {
260 	if (retval == -EFAULT)
261 		retval = -ENOMEM;
262 	else if (retval == -ENOMEM)
263 		retval = -EAGAIN;
264 	return retval;
265 }
266 
267 /*
268  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
269  *
270  * The fast path is available only for evictable pages with single mapping.
271  * Then we can bypass the per-cpu pvec and get better performance.
272  * when mapcount > 1 we need try_to_munlock() which can fail.
273  * when !page_evictable(), we need the full redo logic of putback_lru_page to
274  * avoid leaving evictable page in unevictable list.
275  *
276  * In case of success, @page is added to @pvec and @pgrescued is incremented
277  * in case that the page was previously unevictable. @page is also unlocked.
278  */
279 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
280 		int *pgrescued)
281 {
282 	VM_BUG_ON_PAGE(PageLRU(page), page);
283 	VM_BUG_ON_PAGE(!PageLocked(page), page);
284 
285 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
286 		pagevec_add(pvec, page);
287 		if (TestClearPageUnevictable(page))
288 			(*pgrescued)++;
289 		unlock_page(page);
290 		return true;
291 	}
292 
293 	return false;
294 }
295 
296 /*
297  * Putback multiple evictable pages to the LRU
298  *
299  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
300  * the pages might have meanwhile become unevictable but that is OK.
301  */
302 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
303 {
304 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
305 	/*
306 	 *__pagevec_lru_add() calls release_pages() so we don't call
307 	 * put_page() explicitly
308 	 */
309 	__pagevec_lru_add(pvec);
310 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
311 }
312 
313 /*
314  * Munlock a batch of pages from the same zone
315  *
316  * The work is split to two main phases. First phase clears the Mlocked flag
317  * and attempts to isolate the pages, all under a single zone lru lock.
318  * The second phase finishes the munlock only for pages where isolation
319  * succeeded.
320  *
321  * Note that the pagevec may be modified during the process.
322  */
323 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
324 {
325 	int i;
326 	int nr = pagevec_count(pvec);
327 	int delta_munlocked;
328 	struct pagevec pvec_putback;
329 	int pgrescued = 0;
330 
331 	pagevec_init(&pvec_putback, 0);
332 
333 	/* Phase 1: page isolation */
334 	spin_lock_irq(&zone->lru_lock);
335 	for (i = 0; i < nr; i++) {
336 		struct page *page = pvec->pages[i];
337 
338 		if (TestClearPageMlocked(page)) {
339 			/*
340 			 * We already have pin from follow_page_mask()
341 			 * so we can spare the get_page() here.
342 			 */
343 			if (__munlock_isolate_lru_page(page, false))
344 				continue;
345 			else
346 				__munlock_isolation_failed(page);
347 		}
348 
349 		/*
350 		 * We won't be munlocking this page in the next phase
351 		 * but we still need to release the follow_page_mask()
352 		 * pin. We cannot do it under lru_lock however. If it's
353 		 * the last pin, __page_cache_release() would deadlock.
354 		 */
355 		pagevec_add(&pvec_putback, pvec->pages[i]);
356 		pvec->pages[i] = NULL;
357 	}
358 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
359 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
360 	spin_unlock_irq(&zone->lru_lock);
361 
362 	/* Now we can release pins of pages that we are not munlocking */
363 	pagevec_release(&pvec_putback);
364 
365 	/* Phase 2: page munlock */
366 	for (i = 0; i < nr; i++) {
367 		struct page *page = pvec->pages[i];
368 
369 		if (page) {
370 			lock_page(page);
371 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
372 					&pgrescued)) {
373 				/*
374 				 * Slow path. We don't want to lose the last
375 				 * pin before unlock_page()
376 				 */
377 				get_page(page); /* for putback_lru_page() */
378 				__munlock_isolated_page(page);
379 				unlock_page(page);
380 				put_page(page); /* from follow_page_mask() */
381 			}
382 		}
383 	}
384 
385 	/*
386 	 * Phase 3: page putback for pages that qualified for the fast path
387 	 * This will also call put_page() to return pin from follow_page_mask()
388 	 */
389 	if (pagevec_count(&pvec_putback))
390 		__putback_lru_fast(&pvec_putback, pgrescued);
391 }
392 
393 /*
394  * Fill up pagevec for __munlock_pagevec using pte walk
395  *
396  * The function expects that the struct page corresponding to @start address is
397  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
398  *
399  * The rest of @pvec is filled by subsequent pages within the same pmd and same
400  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
401  * pages also get pinned.
402  *
403  * Returns the address of the next page that should be scanned. This equals
404  * @start + PAGE_SIZE when no page could be added by the pte walk.
405  */
406 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
407 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
408 		unsigned long end)
409 {
410 	pte_t *pte;
411 	spinlock_t *ptl;
412 
413 	/*
414 	 * Initialize pte walk starting at the already pinned page where we
415 	 * are sure that there is a pte, as it was pinned under the same
416 	 * mmap_sem write op.
417 	 */
418 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
419 	/* Make sure we do not cross the page table boundary */
420 	end = pgd_addr_end(start, end);
421 	end = pud_addr_end(start, end);
422 	end = pmd_addr_end(start, end);
423 
424 	/* The page next to the pinned page is the first we will try to get */
425 	start += PAGE_SIZE;
426 	while (start < end) {
427 		struct page *page = NULL;
428 		pte++;
429 		if (pte_present(*pte))
430 			page = vm_normal_page(vma, start, *pte);
431 		/*
432 		 * Break if page could not be obtained or the page's node+zone does not
433 		 * match
434 		 */
435 		if (!page || page_zone_id(page) != zoneid)
436 			break;
437 
438 		get_page(page);
439 		/*
440 		 * Increase the address that will be returned *before* the
441 		 * eventual break due to pvec becoming full by adding the page
442 		 */
443 		start += PAGE_SIZE;
444 		if (pagevec_add(pvec, page) == 0)
445 			break;
446 	}
447 	pte_unmap_unlock(pte, ptl);
448 	return start;
449 }
450 
451 /*
452  * munlock_vma_pages_range() - munlock all pages in the vma range.'
453  * @vma - vma containing range to be munlock()ed.
454  * @start - start address in @vma of the range
455  * @end - end of range in @vma.
456  *
457  *  For mremap(), munmap() and exit().
458  *
459  * Called with @vma VM_LOCKED.
460  *
461  * Returns with VM_LOCKED cleared.  Callers must be prepared to
462  * deal with this.
463  *
464  * We don't save and restore VM_LOCKED here because pages are
465  * still on lru.  In unmap path, pages might be scanned by reclaim
466  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
467  * free them.  This will result in freeing mlocked pages.
468  */
469 void munlock_vma_pages_range(struct vm_area_struct *vma,
470 			     unsigned long start, unsigned long end)
471 {
472 	vma->vm_flags &= ~VM_LOCKED;
473 
474 	while (start < end) {
475 		struct page *page = NULL;
476 		unsigned int page_mask;
477 		unsigned long page_increm;
478 		struct pagevec pvec;
479 		struct zone *zone;
480 		int zoneid;
481 
482 		pagevec_init(&pvec, 0);
483 		/*
484 		 * Although FOLL_DUMP is intended for get_dump_page(),
485 		 * it just so happens that its special treatment of the
486 		 * ZERO_PAGE (returning an error instead of doing get_page)
487 		 * suits munlock very well (and if somehow an abnormal page
488 		 * has sneaked into the range, we won't oops here: great).
489 		 */
490 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
491 				&page_mask);
492 
493 		if (page && !IS_ERR(page)) {
494 			if (PageTransHuge(page)) {
495 				lock_page(page);
496 				/*
497 				 * Any THP page found by follow_page_mask() may
498 				 * have gotten split before reaching
499 				 * munlock_vma_page(), so we need to recompute
500 				 * the page_mask here.
501 				 */
502 				page_mask = munlock_vma_page(page);
503 				unlock_page(page);
504 				put_page(page); /* follow_page_mask() */
505 			} else {
506 				/*
507 				 * Non-huge pages are handled in batches via
508 				 * pagevec. The pin from follow_page_mask()
509 				 * prevents them from collapsing by THP.
510 				 */
511 				pagevec_add(&pvec, page);
512 				zone = page_zone(page);
513 				zoneid = page_zone_id(page);
514 
515 				/*
516 				 * Try to fill the rest of pagevec using fast
517 				 * pte walk. This will also update start to
518 				 * the next page to process. Then munlock the
519 				 * pagevec.
520 				 */
521 				start = __munlock_pagevec_fill(&pvec, vma,
522 						zoneid, start, end);
523 				__munlock_pagevec(&pvec, zone);
524 				goto next;
525 			}
526 		}
527 		/* It's a bug to munlock in the middle of a THP page */
528 		VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
529 		page_increm = 1 + page_mask;
530 		start += page_increm * PAGE_SIZE;
531 next:
532 		cond_resched();
533 	}
534 }
535 
536 /*
537  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
538  *
539  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
540  * munlock is a no-op.  However, for some special vmas, we go ahead and
541  * populate the ptes.
542  *
543  * For vmas that pass the filters, merge/split as appropriate.
544  */
545 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
546 	unsigned long start, unsigned long end, vm_flags_t newflags)
547 {
548 	struct mm_struct *mm = vma->vm_mm;
549 	pgoff_t pgoff;
550 	int nr_pages;
551 	int ret = 0;
552 	int lock = !!(newflags & VM_LOCKED);
553 
554 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
555 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
556 		goto out;	/* don't set VM_LOCKED,  don't count */
557 
558 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
559 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
560 			  vma->vm_file, pgoff, vma_policy(vma));
561 	if (*prev) {
562 		vma = *prev;
563 		goto success;
564 	}
565 
566 	if (start != vma->vm_start) {
567 		ret = split_vma(mm, vma, start, 1);
568 		if (ret)
569 			goto out;
570 	}
571 
572 	if (end != vma->vm_end) {
573 		ret = split_vma(mm, vma, end, 0);
574 		if (ret)
575 			goto out;
576 	}
577 
578 success:
579 	/*
580 	 * Keep track of amount of locked VM.
581 	 */
582 	nr_pages = (end - start) >> PAGE_SHIFT;
583 	if (!lock)
584 		nr_pages = -nr_pages;
585 	mm->locked_vm += nr_pages;
586 
587 	/*
588 	 * vm_flags is protected by the mmap_sem held in write mode.
589 	 * It's okay if try_to_unmap_one unmaps a page just after we
590 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
591 	 */
592 
593 	if (lock)
594 		vma->vm_flags = newflags;
595 	else
596 		munlock_vma_pages_range(vma, start, end);
597 
598 out:
599 	*prev = vma;
600 	return ret;
601 }
602 
603 static int do_mlock(unsigned long start, size_t len, int on)
604 {
605 	unsigned long nstart, end, tmp;
606 	struct vm_area_struct * vma, * prev;
607 	int error;
608 
609 	VM_BUG_ON(start & ~PAGE_MASK);
610 	VM_BUG_ON(len != PAGE_ALIGN(len));
611 	end = start + len;
612 	if (end < start)
613 		return -EINVAL;
614 	if (end == start)
615 		return 0;
616 	vma = find_vma(current->mm, start);
617 	if (!vma || vma->vm_start > start)
618 		return -ENOMEM;
619 
620 	prev = vma->vm_prev;
621 	if (start > vma->vm_start)
622 		prev = vma;
623 
624 	for (nstart = start ; ; ) {
625 		vm_flags_t newflags;
626 
627 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
628 
629 		newflags = vma->vm_flags & ~VM_LOCKED;
630 		if (on)
631 			newflags |= VM_LOCKED;
632 
633 		tmp = vma->vm_end;
634 		if (tmp > end)
635 			tmp = end;
636 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
637 		if (error)
638 			break;
639 		nstart = tmp;
640 		if (nstart < prev->vm_end)
641 			nstart = prev->vm_end;
642 		if (nstart >= end)
643 			break;
644 
645 		vma = prev->vm_next;
646 		if (!vma || vma->vm_start != nstart) {
647 			error = -ENOMEM;
648 			break;
649 		}
650 	}
651 	return error;
652 }
653 
654 /*
655  * __mm_populate - populate and/or mlock pages within a range of address space.
656  *
657  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
658  * flags. VMAs must be already marked with the desired vm_flags, and
659  * mmap_sem must not be held.
660  */
661 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
662 {
663 	struct mm_struct *mm = current->mm;
664 	unsigned long end, nstart, nend;
665 	struct vm_area_struct *vma = NULL;
666 	int locked = 0;
667 	long ret = 0;
668 
669 	VM_BUG_ON(start & ~PAGE_MASK);
670 	VM_BUG_ON(len != PAGE_ALIGN(len));
671 	end = start + len;
672 
673 	for (nstart = start; nstart < end; nstart = nend) {
674 		/*
675 		 * We want to fault in pages for [nstart; end) address range.
676 		 * Find first corresponding VMA.
677 		 */
678 		if (!locked) {
679 			locked = 1;
680 			down_read(&mm->mmap_sem);
681 			vma = find_vma(mm, nstart);
682 		} else if (nstart >= vma->vm_end)
683 			vma = vma->vm_next;
684 		if (!vma || vma->vm_start >= end)
685 			break;
686 		/*
687 		 * Set [nstart; nend) to intersection of desired address
688 		 * range with the first VMA. Also, skip undesirable VMA types.
689 		 */
690 		nend = min(end, vma->vm_end);
691 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
692 			continue;
693 		if (nstart < vma->vm_start)
694 			nstart = vma->vm_start;
695 		/*
696 		 * Now fault in a range of pages. __mlock_vma_pages_range()
697 		 * double checks the vma flags, so that it won't mlock pages
698 		 * if the vma was already munlocked.
699 		 */
700 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
701 		if (ret < 0) {
702 			if (ignore_errors) {
703 				ret = 0;
704 				continue;	/* continue at next VMA */
705 			}
706 			ret = __mlock_posix_error_return(ret);
707 			break;
708 		}
709 		nend = nstart + ret * PAGE_SIZE;
710 		ret = 0;
711 	}
712 	if (locked)
713 		up_read(&mm->mmap_sem);
714 	return ret;	/* 0 or negative error code */
715 }
716 
717 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
718 {
719 	unsigned long locked;
720 	unsigned long lock_limit;
721 	int error = -ENOMEM;
722 
723 	if (!can_do_mlock())
724 		return -EPERM;
725 
726 	lru_add_drain_all();	/* flush pagevec */
727 
728 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
729 	start &= PAGE_MASK;
730 
731 	lock_limit = rlimit(RLIMIT_MEMLOCK);
732 	lock_limit >>= PAGE_SHIFT;
733 	locked = len >> PAGE_SHIFT;
734 
735 	down_write(&current->mm->mmap_sem);
736 
737 	locked += current->mm->locked_vm;
738 
739 	/* check against resource limits */
740 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
741 		error = do_mlock(start, len, 1);
742 
743 	up_write(&current->mm->mmap_sem);
744 	if (!error)
745 		error = __mm_populate(start, len, 0);
746 	return error;
747 }
748 
749 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
750 {
751 	int ret;
752 
753 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
754 	start &= PAGE_MASK;
755 
756 	down_write(&current->mm->mmap_sem);
757 	ret = do_mlock(start, len, 0);
758 	up_write(&current->mm->mmap_sem);
759 
760 	return ret;
761 }
762 
763 static int do_mlockall(int flags)
764 {
765 	struct vm_area_struct * vma, * prev = NULL;
766 
767 	if (flags & MCL_FUTURE)
768 		current->mm->def_flags |= VM_LOCKED;
769 	else
770 		current->mm->def_flags &= ~VM_LOCKED;
771 	if (flags == MCL_FUTURE)
772 		goto out;
773 
774 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
775 		vm_flags_t newflags;
776 
777 		newflags = vma->vm_flags & ~VM_LOCKED;
778 		if (flags & MCL_CURRENT)
779 			newflags |= VM_LOCKED;
780 
781 		/* Ignore errors */
782 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
783 		cond_resched();
784 	}
785 out:
786 	return 0;
787 }
788 
789 SYSCALL_DEFINE1(mlockall, int, flags)
790 {
791 	unsigned long lock_limit;
792 	int ret = -EINVAL;
793 
794 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
795 		goto out;
796 
797 	ret = -EPERM;
798 	if (!can_do_mlock())
799 		goto out;
800 
801 	if (flags & MCL_CURRENT)
802 		lru_add_drain_all();	/* flush pagevec */
803 
804 	lock_limit = rlimit(RLIMIT_MEMLOCK);
805 	lock_limit >>= PAGE_SHIFT;
806 
807 	ret = -ENOMEM;
808 	down_write(&current->mm->mmap_sem);
809 
810 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
811 	    capable(CAP_IPC_LOCK))
812 		ret = do_mlockall(flags);
813 	up_write(&current->mm->mmap_sem);
814 	if (!ret && (flags & MCL_CURRENT))
815 		mm_populate(0, TASK_SIZE);
816 out:
817 	return ret;
818 }
819 
820 SYSCALL_DEFINE0(munlockall)
821 {
822 	int ret;
823 
824 	down_write(&current->mm->mmap_sem);
825 	ret = do_mlockall(0);
826 	up_write(&current->mm->mmap_sem);
827 	return ret;
828 }
829 
830 /*
831  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
832  * shm segments) get accounted against the user_struct instead.
833  */
834 static DEFINE_SPINLOCK(shmlock_user_lock);
835 
836 int user_shm_lock(size_t size, struct user_struct *user)
837 {
838 	unsigned long lock_limit, locked;
839 	int allowed = 0;
840 
841 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
842 	lock_limit = rlimit(RLIMIT_MEMLOCK);
843 	if (lock_limit == RLIM_INFINITY)
844 		allowed = 1;
845 	lock_limit >>= PAGE_SHIFT;
846 	spin_lock(&shmlock_user_lock);
847 	if (!allowed &&
848 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
849 		goto out;
850 	get_uid(user);
851 	user->locked_shm += locked;
852 	allowed = 1;
853 out:
854 	spin_unlock(&shmlock_user_lock);
855 	return allowed;
856 }
857 
858 void user_shm_unlock(size_t size, struct user_struct *user)
859 {
860 	spin_lock(&shmlock_user_lock);
861 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
862 	spin_unlock(&shmlock_user_lock);
863 	free_uid(user);
864 }
865