xref: /linux/mm/mlock.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 /**
139  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
140  * @vma:   target vma
141  * @start: start address
142  * @end:   end address
143  *
144  * This takes care of making the pages present too.
145  *
146  * return 0 on success, negative error code on error.
147  *
148  * vma->vm_mm->mmap_sem must be held for at least read.
149  */
150 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151 				    unsigned long start, unsigned long end)
152 {
153 	struct mm_struct *mm = vma->vm_mm;
154 	unsigned long addr = start;
155 	struct page *pages[16]; /* 16 gives a reasonable batch */
156 	int nr_pages = (end - start) / PAGE_SIZE;
157 	int ret = 0;
158 	int gup_flags;
159 
160 	VM_BUG_ON(start & ~PAGE_MASK);
161 	VM_BUG_ON(end   & ~PAGE_MASK);
162 	VM_BUG_ON(start < vma->vm_start);
163 	VM_BUG_ON(end   > vma->vm_end);
164 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
165 
166 	gup_flags = FOLL_TOUCH | FOLL_GET;
167 	if (vma->vm_flags & VM_WRITE)
168 		gup_flags |= FOLL_WRITE;
169 
170 	/* We don't try to access the guard page of a stack vma */
171 	if (vma->vm_flags & VM_GROWSDOWN) {
172 		if (start == vma->vm_start) {
173 			start += PAGE_SIZE;
174 			nr_pages--;
175 		}
176 	}
177 
178 	while (nr_pages > 0) {
179 		int i;
180 
181 		cond_resched();
182 
183 		/*
184 		 * get_user_pages makes pages present if we are
185 		 * setting mlock. and this extra reference count will
186 		 * disable migration of this page.  However, page may
187 		 * still be truncated out from under us.
188 		 */
189 		ret = __get_user_pages(current, mm, addr,
190 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
191 				gup_flags, pages, NULL);
192 		/*
193 		 * This can happen for, e.g., VM_NONLINEAR regions before
194 		 * a page has been allocated and mapped at a given offset,
195 		 * or for addresses that map beyond end of a file.
196 		 * We'll mlock the pages if/when they get faulted in.
197 		 */
198 		if (ret < 0)
199 			break;
200 
201 		lru_add_drain();	/* push cached pages to LRU */
202 
203 		for (i = 0; i < ret; i++) {
204 			struct page *page = pages[i];
205 
206 			if (page->mapping) {
207 				/*
208 				 * That preliminary check is mainly to avoid
209 				 * the pointless overhead of lock_page on the
210 				 * ZERO_PAGE: which might bounce very badly if
211 				 * there is contention.  However, we're still
212 				 * dirtying its cacheline with get/put_page:
213 				 * we'll add another __get_user_pages flag to
214 				 * avoid it if that case turns out to matter.
215 				 */
216 				lock_page(page);
217 				/*
218 				 * Because we lock page here and migration is
219 				 * blocked by the elevated reference, we need
220 				 * only check for file-cache page truncation.
221 				 */
222 				if (page->mapping)
223 					mlock_vma_page(page);
224 				unlock_page(page);
225 			}
226 			put_page(page);	/* ref from get_user_pages() */
227 		}
228 
229 		addr += ret * PAGE_SIZE;
230 		nr_pages -= ret;
231 		ret = 0;
232 	}
233 
234 	return ret;	/* 0 or negative error code */
235 }
236 
237 /*
238  * convert get_user_pages() return value to posix mlock() error
239  */
240 static int __mlock_posix_error_return(long retval)
241 {
242 	if (retval == -EFAULT)
243 		retval = -ENOMEM;
244 	else if (retval == -ENOMEM)
245 		retval = -EAGAIN;
246 	return retval;
247 }
248 
249 /**
250  * mlock_vma_pages_range() - mlock pages in specified vma range.
251  * @vma - the vma containing the specfied address range
252  * @start - starting address in @vma to mlock
253  * @end   - end address [+1] in @vma to mlock
254  *
255  * For mmap()/mremap()/expansion of mlocked vma.
256  *
257  * return 0 on success for "normal" vmas.
258  *
259  * return number of pages [> 0] to be removed from locked_vm on success
260  * of "special" vmas.
261  */
262 long mlock_vma_pages_range(struct vm_area_struct *vma,
263 			unsigned long start, unsigned long end)
264 {
265 	int nr_pages = (end - start) / PAGE_SIZE;
266 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
267 
268 	/*
269 	 * filter unlockable vmas
270 	 */
271 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
272 		goto no_mlock;
273 
274 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
275 			is_vm_hugetlb_page(vma) ||
276 			vma == get_gate_vma(current))) {
277 
278 		__mlock_vma_pages_range(vma, start, end);
279 
280 		/* Hide errors from mmap() and other callers */
281 		return 0;
282 	}
283 
284 	/*
285 	 * User mapped kernel pages or huge pages:
286 	 * make these pages present to populate the ptes, but
287 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
288 	 * return nr_pages so these don't get counted against task's
289 	 * locked limit.  huge pages are already counted against
290 	 * locked vm limit.
291 	 */
292 	make_pages_present(start, end);
293 
294 no_mlock:
295 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
296 	return nr_pages;		/* error or pages NOT mlocked */
297 }
298 
299 /*
300  * munlock_vma_pages_range() - munlock all pages in the vma range.'
301  * @vma - vma containing range to be munlock()ed.
302  * @start - start address in @vma of the range
303  * @end - end of range in @vma.
304  *
305  *  For mremap(), munmap() and exit().
306  *
307  * Called with @vma VM_LOCKED.
308  *
309  * Returns with VM_LOCKED cleared.  Callers must be prepared to
310  * deal with this.
311  *
312  * We don't save and restore VM_LOCKED here because pages are
313  * still on lru.  In unmap path, pages might be scanned by reclaim
314  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
315  * free them.  This will result in freeing mlocked pages.
316  */
317 void munlock_vma_pages_range(struct vm_area_struct *vma,
318 			     unsigned long start, unsigned long end)
319 {
320 	unsigned long addr;
321 
322 	lru_add_drain();
323 	vma->vm_flags &= ~VM_LOCKED;
324 
325 	for (addr = start; addr < end; addr += PAGE_SIZE) {
326 		struct page *page;
327 		/*
328 		 * Although FOLL_DUMP is intended for get_dump_page(),
329 		 * it just so happens that its special treatment of the
330 		 * ZERO_PAGE (returning an error instead of doing get_page)
331 		 * suits munlock very well (and if somehow an abnormal page
332 		 * has sneaked into the range, we won't oops here: great).
333 		 */
334 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
335 		if (page && !IS_ERR(page)) {
336 			lock_page(page);
337 			/*
338 			 * Like in __mlock_vma_pages_range(),
339 			 * because we lock page here and migration is
340 			 * blocked by the elevated reference, we need
341 			 * only check for file-cache page truncation.
342 			 */
343 			if (page->mapping)
344 				munlock_vma_page(page);
345 			unlock_page(page);
346 			put_page(page);
347 		}
348 		cond_resched();
349 	}
350 }
351 
352 /*
353  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
354  *
355  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
356  * munlock is a no-op.  However, for some special vmas, we go ahead and
357  * populate the ptes via make_pages_present().
358  *
359  * For vmas that pass the filters, merge/split as appropriate.
360  */
361 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
362 	unsigned long start, unsigned long end, unsigned int newflags)
363 {
364 	struct mm_struct *mm = vma->vm_mm;
365 	pgoff_t pgoff;
366 	int nr_pages;
367 	int ret = 0;
368 	int lock = newflags & VM_LOCKED;
369 
370 	if (newflags == vma->vm_flags ||
371 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
372 		goto out;	/* don't set VM_LOCKED,  don't count */
373 
374 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
375 			is_vm_hugetlb_page(vma) ||
376 			vma == get_gate_vma(current)) {
377 		if (lock)
378 			make_pages_present(start, end);
379 		goto out;	/* don't set VM_LOCKED,  don't count */
380 	}
381 
382 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
383 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
384 			  vma->vm_file, pgoff, vma_policy(vma));
385 	if (*prev) {
386 		vma = *prev;
387 		goto success;
388 	}
389 
390 	if (start != vma->vm_start) {
391 		ret = split_vma(mm, vma, start, 1);
392 		if (ret)
393 			goto out;
394 	}
395 
396 	if (end != vma->vm_end) {
397 		ret = split_vma(mm, vma, end, 0);
398 		if (ret)
399 			goto out;
400 	}
401 
402 success:
403 	/*
404 	 * Keep track of amount of locked VM.
405 	 */
406 	nr_pages = (end - start) >> PAGE_SHIFT;
407 	if (!lock)
408 		nr_pages = -nr_pages;
409 	mm->locked_vm += nr_pages;
410 
411 	/*
412 	 * vm_flags is protected by the mmap_sem held in write mode.
413 	 * It's okay if try_to_unmap_one unmaps a page just after we
414 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
415 	 */
416 
417 	if (lock) {
418 		vma->vm_flags = newflags;
419 		ret = __mlock_vma_pages_range(vma, start, end);
420 		if (ret < 0)
421 			ret = __mlock_posix_error_return(ret);
422 	} else {
423 		munlock_vma_pages_range(vma, start, end);
424 	}
425 
426 out:
427 	*prev = vma;
428 	return ret;
429 }
430 
431 static int do_mlock(unsigned long start, size_t len, int on)
432 {
433 	unsigned long nstart, end, tmp;
434 	struct vm_area_struct * vma, * prev;
435 	int error;
436 
437 	len = PAGE_ALIGN(len);
438 	end = start + len;
439 	if (end < start)
440 		return -EINVAL;
441 	if (end == start)
442 		return 0;
443 	vma = find_vma_prev(current->mm, start, &prev);
444 	if (!vma || vma->vm_start > start)
445 		return -ENOMEM;
446 
447 	if (start > vma->vm_start)
448 		prev = vma;
449 
450 	for (nstart = start ; ; ) {
451 		unsigned int newflags;
452 
453 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
454 
455 		newflags = vma->vm_flags | VM_LOCKED;
456 		if (!on)
457 			newflags &= ~VM_LOCKED;
458 
459 		tmp = vma->vm_end;
460 		if (tmp > end)
461 			tmp = end;
462 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
463 		if (error)
464 			break;
465 		nstart = tmp;
466 		if (nstart < prev->vm_end)
467 			nstart = prev->vm_end;
468 		if (nstart >= end)
469 			break;
470 
471 		vma = prev->vm_next;
472 		if (!vma || vma->vm_start != nstart) {
473 			error = -ENOMEM;
474 			break;
475 		}
476 	}
477 	return error;
478 }
479 
480 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
481 {
482 	unsigned long locked;
483 	unsigned long lock_limit;
484 	int error = -ENOMEM;
485 
486 	if (!can_do_mlock())
487 		return -EPERM;
488 
489 	lru_add_drain_all();	/* flush pagevec */
490 
491 	down_write(&current->mm->mmap_sem);
492 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
493 	start &= PAGE_MASK;
494 
495 	locked = len >> PAGE_SHIFT;
496 	locked += current->mm->locked_vm;
497 
498 	lock_limit = rlimit(RLIMIT_MEMLOCK);
499 	lock_limit >>= PAGE_SHIFT;
500 
501 	/* check against resource limits */
502 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
503 		error = do_mlock(start, len, 1);
504 	up_write(&current->mm->mmap_sem);
505 	return error;
506 }
507 
508 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
509 {
510 	int ret;
511 
512 	down_write(&current->mm->mmap_sem);
513 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
514 	start &= PAGE_MASK;
515 	ret = do_mlock(start, len, 0);
516 	up_write(&current->mm->mmap_sem);
517 	return ret;
518 }
519 
520 static int do_mlockall(int flags)
521 {
522 	struct vm_area_struct * vma, * prev = NULL;
523 	unsigned int def_flags = 0;
524 
525 	if (flags & MCL_FUTURE)
526 		def_flags = VM_LOCKED;
527 	current->mm->def_flags = def_flags;
528 	if (flags == MCL_FUTURE)
529 		goto out;
530 
531 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
532 		unsigned int newflags;
533 
534 		newflags = vma->vm_flags | VM_LOCKED;
535 		if (!(flags & MCL_CURRENT))
536 			newflags &= ~VM_LOCKED;
537 
538 		/* Ignore errors */
539 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
540 	}
541 out:
542 	return 0;
543 }
544 
545 SYSCALL_DEFINE1(mlockall, int, flags)
546 {
547 	unsigned long lock_limit;
548 	int ret = -EINVAL;
549 
550 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
551 		goto out;
552 
553 	ret = -EPERM;
554 	if (!can_do_mlock())
555 		goto out;
556 
557 	lru_add_drain_all();	/* flush pagevec */
558 
559 	down_write(&current->mm->mmap_sem);
560 
561 	lock_limit = rlimit(RLIMIT_MEMLOCK);
562 	lock_limit >>= PAGE_SHIFT;
563 
564 	ret = -ENOMEM;
565 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
566 	    capable(CAP_IPC_LOCK))
567 		ret = do_mlockall(flags);
568 	up_write(&current->mm->mmap_sem);
569 out:
570 	return ret;
571 }
572 
573 SYSCALL_DEFINE0(munlockall)
574 {
575 	int ret;
576 
577 	down_write(&current->mm->mmap_sem);
578 	ret = do_mlockall(0);
579 	up_write(&current->mm->mmap_sem);
580 	return ret;
581 }
582 
583 /*
584  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
585  * shm segments) get accounted against the user_struct instead.
586  */
587 static DEFINE_SPINLOCK(shmlock_user_lock);
588 
589 int user_shm_lock(size_t size, struct user_struct *user)
590 {
591 	unsigned long lock_limit, locked;
592 	int allowed = 0;
593 
594 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
595 	lock_limit = rlimit(RLIMIT_MEMLOCK);
596 	if (lock_limit == RLIM_INFINITY)
597 		allowed = 1;
598 	lock_limit >>= PAGE_SHIFT;
599 	spin_lock(&shmlock_user_lock);
600 	if (!allowed &&
601 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
602 		goto out;
603 	get_uid(user);
604 	user->locked_shm += locked;
605 	allowed = 1;
606 out:
607 	spin_unlock(&shmlock_user_lock);
608 	return allowed;
609 }
610 
611 void user_shm_unlock(size_t size, struct user_struct *user)
612 {
613 	spin_lock(&shmlock_user_lock);
614 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
615 	spin_unlock(&shmlock_user_lock);
616 	free_uid(user);
617 }
618