xref: /linux/mm/mlock.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/secretmem.h>
27 
28 #include "internal.h"
29 
30 bool can_do_mlock(void)
31 {
32 	if (rlimit(RLIMIT_MEMLOCK) != 0)
33 		return true;
34 	if (capable(CAP_IPC_LOCK))
35 		return true;
36 	return false;
37 }
38 EXPORT_SYMBOL(can_do_mlock);
39 
40 /*
41  * Mlocked pages are marked with PageMlocked() flag for efficient testing
42  * in vmscan and, possibly, the fault path; and to support semi-accurate
43  * statistics.
44  *
45  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
46  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47  * The unevictable list is an LRU sibling list to the [in]active lists.
48  * PageUnevictable is set to indicate the unevictable state.
49  *
50  * When lazy mlocking via vmscan, it is important to ensure that the
51  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52  * may have mlocked a page that is being munlocked. So lazy mlock must take
53  * the mmap_lock for read, and verify that the vma really is locked
54  * (see mm/rmap.c).
55  */
56 
57 /*
58  *  LRU accounting for clear_page_mlock()
59  */
60 void clear_page_mlock(struct page *page)
61 {
62 	int nr_pages;
63 
64 	if (!TestClearPageMlocked(page))
65 		return;
66 
67 	nr_pages = thp_nr_pages(page);
68 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
70 	/*
71 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 	 * in __pagevec_lru_add_fn().
73 	 *
74 	 * See __pagevec_lru_add_fn for more explanation.
75 	 */
76 	if (!isolate_lru_page(page)) {
77 		putback_lru_page(page);
78 	} else {
79 		/*
80 		 * We lost the race. the page already moved to evictable list.
81 		 */
82 		if (PageUnevictable(page))
83 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
84 	}
85 }
86 
87 /*
88  * Mark page as mlocked if not already.
89  * If page on LRU, isolate and putback to move to unevictable list.
90  */
91 void mlock_vma_page(struct page *page)
92 {
93 	/* Serialize with page migration */
94 	BUG_ON(!PageLocked(page));
95 
96 	VM_BUG_ON_PAGE(PageTail(page), page);
97 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98 
99 	if (!TestSetPageMlocked(page)) {
100 		int nr_pages = thp_nr_pages(page);
101 
102 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 		if (!isolate_lru_page(page))
105 			putback_lru_page(page);
106 	}
107 }
108 
109 /*
110  * Finish munlock after successful page isolation
111  *
112  * Page must be locked. This is a wrapper for page_mlock()
113  * and putback_lru_page() with munlock accounting.
114  */
115 static void __munlock_isolated_page(struct page *page)
116 {
117 	/*
118 	 * Optimization: if the page was mapped just once, that's our mapping
119 	 * and we don't need to check all the other vmas.
120 	 */
121 	if (page_mapcount(page) > 1)
122 		page_mlock(page);
123 
124 	/* Did try_to_unlock() succeed or punt? */
125 	if (!PageMlocked(page))
126 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
127 
128 	putback_lru_page(page);
129 }
130 
131 /*
132  * Accounting for page isolation fail during munlock
133  *
134  * Performs accounting when page isolation fails in munlock. There is nothing
135  * else to do because it means some other task has already removed the page
136  * from the LRU. putback_lru_page() will take care of removing the page from
137  * the unevictable list, if necessary. vmscan [page_referenced()] will move
138  * the page back to the unevictable list if some other vma has it mlocked.
139  */
140 static void __munlock_isolation_failed(struct page *page)
141 {
142 	int nr_pages = thp_nr_pages(page);
143 
144 	if (PageUnevictable(page))
145 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
146 	else
147 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
148 }
149 
150 /**
151  * munlock_vma_page - munlock a vma page
152  * @page: page to be unlocked, either a normal page or THP page head
153  *
154  * returns the size of the page as a page mask (0 for normal page,
155  *         HPAGE_PMD_NR - 1 for THP head page)
156  *
157  * called from munlock()/munmap() path with page supposedly on the LRU.
158  * When we munlock a page, because the vma where we found the page is being
159  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
160  * page locked so that we can leave it on the unevictable lru list and not
161  * bother vmscan with it.  However, to walk the page's rmap list in
162  * page_mlock() we must isolate the page from the LRU.  If some other
163  * task has removed the page from the LRU, we won't be able to do that.
164  * So we clear the PageMlocked as we might not get another chance.  If we
165  * can't isolate the page, we leave it for putback_lru_page() and vmscan
166  * [page_referenced()/try_to_unmap()] to deal with.
167  */
168 unsigned int munlock_vma_page(struct page *page)
169 {
170 	int nr_pages;
171 
172 	/* For page_mlock() and to serialize with page migration */
173 	BUG_ON(!PageLocked(page));
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 
176 	if (!TestClearPageMlocked(page)) {
177 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
178 		return 0;
179 	}
180 
181 	nr_pages = thp_nr_pages(page);
182 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
183 
184 	if (!isolate_lru_page(page))
185 		__munlock_isolated_page(page);
186 	else
187 		__munlock_isolation_failed(page);
188 
189 	return nr_pages - 1;
190 }
191 
192 /*
193  * convert get_user_pages() return value to posix mlock() error
194  */
195 static int __mlock_posix_error_return(long retval)
196 {
197 	if (retval == -EFAULT)
198 		retval = -ENOMEM;
199 	else if (retval == -ENOMEM)
200 		retval = -EAGAIN;
201 	return retval;
202 }
203 
204 /*
205  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
206  *
207  * The fast path is available only for evictable pages with single mapping.
208  * Then we can bypass the per-cpu pvec and get better performance.
209  * when mapcount > 1 we need page_mlock() which can fail.
210  * when !page_evictable(), we need the full redo logic of putback_lru_page to
211  * avoid leaving evictable page in unevictable list.
212  *
213  * In case of success, @page is added to @pvec and @pgrescued is incremented
214  * in case that the page was previously unevictable. @page is also unlocked.
215  */
216 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
217 		int *pgrescued)
218 {
219 	VM_BUG_ON_PAGE(PageLRU(page), page);
220 	VM_BUG_ON_PAGE(!PageLocked(page), page);
221 
222 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
223 		pagevec_add(pvec, page);
224 		if (TestClearPageUnevictable(page))
225 			(*pgrescued)++;
226 		unlock_page(page);
227 		return true;
228 	}
229 
230 	return false;
231 }
232 
233 /*
234  * Putback multiple evictable pages to the LRU
235  *
236  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
237  * the pages might have meanwhile become unevictable but that is OK.
238  */
239 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
240 {
241 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
242 	/*
243 	 *__pagevec_lru_add() calls release_pages() so we don't call
244 	 * put_page() explicitly
245 	 */
246 	__pagevec_lru_add(pvec);
247 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
248 }
249 
250 /*
251  * Munlock a batch of pages from the same zone
252  *
253  * The work is split to two main phases. First phase clears the Mlocked flag
254  * and attempts to isolate the pages, all under a single zone lru lock.
255  * The second phase finishes the munlock only for pages where isolation
256  * succeeded.
257  *
258  * Note that the pagevec may be modified during the process.
259  */
260 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
261 {
262 	int i;
263 	int nr = pagevec_count(pvec);
264 	int delta_munlocked = -nr;
265 	struct pagevec pvec_putback;
266 	struct lruvec *lruvec = NULL;
267 	int pgrescued = 0;
268 
269 	pagevec_init(&pvec_putback);
270 
271 	/* Phase 1: page isolation */
272 	for (i = 0; i < nr; i++) {
273 		struct page *page = pvec->pages[i];
274 		struct folio *folio = page_folio(page);
275 
276 		if (TestClearPageMlocked(page)) {
277 			/*
278 			 * We already have pin from follow_page_mask()
279 			 * so we can spare the get_page() here.
280 			 */
281 			if (TestClearPageLRU(page)) {
282 				lruvec = folio_lruvec_relock_irq(folio, lruvec);
283 				del_page_from_lru_list(page, lruvec);
284 				continue;
285 			} else
286 				__munlock_isolation_failed(page);
287 		} else {
288 			delta_munlocked++;
289 		}
290 
291 		/*
292 		 * We won't be munlocking this page in the next phase
293 		 * but we still need to release the follow_page_mask()
294 		 * pin. We cannot do it under lru_lock however. If it's
295 		 * the last pin, __page_cache_release() would deadlock.
296 		 */
297 		pagevec_add(&pvec_putback, pvec->pages[i]);
298 		pvec->pages[i] = NULL;
299 	}
300 	if (lruvec) {
301 		__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
302 		unlock_page_lruvec_irq(lruvec);
303 	} else if (delta_munlocked) {
304 		mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
305 	}
306 
307 	/* Now we can release pins of pages that we are not munlocking */
308 	pagevec_release(&pvec_putback);
309 
310 	/* Phase 2: page munlock */
311 	for (i = 0; i < nr; i++) {
312 		struct page *page = pvec->pages[i];
313 
314 		if (page) {
315 			lock_page(page);
316 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
317 					&pgrescued)) {
318 				/*
319 				 * Slow path. We don't want to lose the last
320 				 * pin before unlock_page()
321 				 */
322 				get_page(page); /* for putback_lru_page() */
323 				__munlock_isolated_page(page);
324 				unlock_page(page);
325 				put_page(page); /* from follow_page_mask() */
326 			}
327 		}
328 	}
329 
330 	/*
331 	 * Phase 3: page putback for pages that qualified for the fast path
332 	 * This will also call put_page() to return pin from follow_page_mask()
333 	 */
334 	if (pagevec_count(&pvec_putback))
335 		__putback_lru_fast(&pvec_putback, pgrescued);
336 }
337 
338 /*
339  * Fill up pagevec for __munlock_pagevec using pte walk
340  *
341  * The function expects that the struct page corresponding to @start address is
342  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
343  *
344  * The rest of @pvec is filled by subsequent pages within the same pmd and same
345  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
346  * pages also get pinned.
347  *
348  * Returns the address of the next page that should be scanned. This equals
349  * @start + PAGE_SIZE when no page could be added by the pte walk.
350  */
351 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
352 			struct vm_area_struct *vma, struct zone *zone,
353 			unsigned long start, unsigned long end)
354 {
355 	pte_t *pte;
356 	spinlock_t *ptl;
357 
358 	/*
359 	 * Initialize pte walk starting at the already pinned page where we
360 	 * are sure that there is a pte, as it was pinned under the same
361 	 * mmap_lock write op.
362 	 */
363 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
364 	/* Make sure we do not cross the page table boundary */
365 	end = pgd_addr_end(start, end);
366 	end = p4d_addr_end(start, end);
367 	end = pud_addr_end(start, end);
368 	end = pmd_addr_end(start, end);
369 
370 	/* The page next to the pinned page is the first we will try to get */
371 	start += PAGE_SIZE;
372 	while (start < end) {
373 		struct page *page = NULL;
374 		pte++;
375 		if (pte_present(*pte))
376 			page = vm_normal_page(vma, start, *pte);
377 		/*
378 		 * Break if page could not be obtained or the page's node+zone does not
379 		 * match
380 		 */
381 		if (!page || page_zone(page) != zone)
382 			break;
383 
384 		/*
385 		 * Do not use pagevec for PTE-mapped THP,
386 		 * munlock_vma_pages_range() will handle them.
387 		 */
388 		if (PageTransCompound(page))
389 			break;
390 
391 		get_page(page);
392 		/*
393 		 * Increase the address that will be returned *before* the
394 		 * eventual break due to pvec becoming full by adding the page
395 		 */
396 		start += PAGE_SIZE;
397 		if (pagevec_add(pvec, page) == 0)
398 			break;
399 	}
400 	pte_unmap_unlock(pte, ptl);
401 	return start;
402 }
403 
404 /*
405  * munlock_vma_pages_range() - munlock all pages in the vma range.'
406  * @vma - vma containing range to be munlock()ed.
407  * @start - start address in @vma of the range
408  * @end - end of range in @vma.
409  *
410  *  For mremap(), munmap() and exit().
411  *
412  * Called with @vma VM_LOCKED.
413  *
414  * Returns with VM_LOCKED cleared.  Callers must be prepared to
415  * deal with this.
416  *
417  * We don't save and restore VM_LOCKED here because pages are
418  * still on lru.  In unmap path, pages might be scanned by reclaim
419  * and re-mlocked by page_mlock/try_to_unmap before we unmap and
420  * free them.  This will result in freeing mlocked pages.
421  */
422 void munlock_vma_pages_range(struct vm_area_struct *vma,
423 			     unsigned long start, unsigned long end)
424 {
425 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
426 
427 	while (start < end) {
428 		struct page *page;
429 		unsigned int page_mask = 0;
430 		unsigned long page_increm;
431 		struct pagevec pvec;
432 		struct zone *zone;
433 
434 		pagevec_init(&pvec);
435 		/*
436 		 * Although FOLL_DUMP is intended for get_dump_page(),
437 		 * it just so happens that its special treatment of the
438 		 * ZERO_PAGE (returning an error instead of doing get_page)
439 		 * suits munlock very well (and if somehow an abnormal page
440 		 * has sneaked into the range, we won't oops here: great).
441 		 */
442 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
443 
444 		if (page && !IS_ERR(page)) {
445 			if (PageTransTail(page)) {
446 				VM_BUG_ON_PAGE(PageMlocked(page), page);
447 				put_page(page); /* follow_page_mask() */
448 			} else if (PageTransHuge(page)) {
449 				lock_page(page);
450 				/*
451 				 * Any THP page found by follow_page_mask() may
452 				 * have gotten split before reaching
453 				 * munlock_vma_page(), so we need to compute
454 				 * the page_mask here instead.
455 				 */
456 				page_mask = munlock_vma_page(page);
457 				unlock_page(page);
458 				put_page(page); /* follow_page_mask() */
459 			} else {
460 				/*
461 				 * Non-huge pages are handled in batches via
462 				 * pagevec. The pin from follow_page_mask()
463 				 * prevents them from collapsing by THP.
464 				 */
465 				pagevec_add(&pvec, page);
466 				zone = page_zone(page);
467 
468 				/*
469 				 * Try to fill the rest of pagevec using fast
470 				 * pte walk. This will also update start to
471 				 * the next page to process. Then munlock the
472 				 * pagevec.
473 				 */
474 				start = __munlock_pagevec_fill(&pvec, vma,
475 						zone, start, end);
476 				__munlock_pagevec(&pvec, zone);
477 				goto next;
478 			}
479 		}
480 		page_increm = 1 + page_mask;
481 		start += page_increm * PAGE_SIZE;
482 next:
483 		cond_resched();
484 	}
485 }
486 
487 /*
488  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
489  *
490  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
491  * munlock is a no-op.  However, for some special vmas, we go ahead and
492  * populate the ptes.
493  *
494  * For vmas that pass the filters, merge/split as appropriate.
495  */
496 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
497 	unsigned long start, unsigned long end, vm_flags_t newflags)
498 {
499 	struct mm_struct *mm = vma->vm_mm;
500 	pgoff_t pgoff;
501 	int nr_pages;
502 	int ret = 0;
503 	int lock = !!(newflags & VM_LOCKED);
504 	vm_flags_t old_flags = vma->vm_flags;
505 
506 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
507 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
508 	    vma_is_dax(vma) || vma_is_secretmem(vma))
509 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
510 		goto out;
511 
512 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
513 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
514 			  vma->vm_file, pgoff, vma_policy(vma),
515 			  vma->vm_userfaultfd_ctx, vma_anon_name(vma));
516 	if (*prev) {
517 		vma = *prev;
518 		goto success;
519 	}
520 
521 	if (start != vma->vm_start) {
522 		ret = split_vma(mm, vma, start, 1);
523 		if (ret)
524 			goto out;
525 	}
526 
527 	if (end != vma->vm_end) {
528 		ret = split_vma(mm, vma, end, 0);
529 		if (ret)
530 			goto out;
531 	}
532 
533 success:
534 	/*
535 	 * Keep track of amount of locked VM.
536 	 */
537 	nr_pages = (end - start) >> PAGE_SHIFT;
538 	if (!lock)
539 		nr_pages = -nr_pages;
540 	else if (old_flags & VM_LOCKED)
541 		nr_pages = 0;
542 	mm->locked_vm += nr_pages;
543 
544 	/*
545 	 * vm_flags is protected by the mmap_lock held in write mode.
546 	 * It's okay if try_to_unmap_one unmaps a page just after we
547 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
548 	 */
549 
550 	if (lock)
551 		vma->vm_flags = newflags;
552 	else
553 		munlock_vma_pages_range(vma, start, end);
554 
555 out:
556 	*prev = vma;
557 	return ret;
558 }
559 
560 static int apply_vma_lock_flags(unsigned long start, size_t len,
561 				vm_flags_t flags)
562 {
563 	unsigned long nstart, end, tmp;
564 	struct vm_area_struct *vma, *prev;
565 	int error;
566 
567 	VM_BUG_ON(offset_in_page(start));
568 	VM_BUG_ON(len != PAGE_ALIGN(len));
569 	end = start + len;
570 	if (end < start)
571 		return -EINVAL;
572 	if (end == start)
573 		return 0;
574 	vma = find_vma(current->mm, start);
575 	if (!vma || vma->vm_start > start)
576 		return -ENOMEM;
577 
578 	prev = vma->vm_prev;
579 	if (start > vma->vm_start)
580 		prev = vma;
581 
582 	for (nstart = start ; ; ) {
583 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
584 
585 		newflags |= flags;
586 
587 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
588 		tmp = vma->vm_end;
589 		if (tmp > end)
590 			tmp = end;
591 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
592 		if (error)
593 			break;
594 		nstart = tmp;
595 		if (nstart < prev->vm_end)
596 			nstart = prev->vm_end;
597 		if (nstart >= end)
598 			break;
599 
600 		vma = prev->vm_next;
601 		if (!vma || vma->vm_start != nstart) {
602 			error = -ENOMEM;
603 			break;
604 		}
605 	}
606 	return error;
607 }
608 
609 /*
610  * Go through vma areas and sum size of mlocked
611  * vma pages, as return value.
612  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
613  * is also counted.
614  * Return value: previously mlocked page counts
615  */
616 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
617 		unsigned long start, size_t len)
618 {
619 	struct vm_area_struct *vma;
620 	unsigned long count = 0;
621 
622 	if (mm == NULL)
623 		mm = current->mm;
624 
625 	vma = find_vma(mm, start);
626 	if (vma == NULL)
627 		return 0;
628 
629 	for (; vma ; vma = vma->vm_next) {
630 		if (start >= vma->vm_end)
631 			continue;
632 		if (start + len <=  vma->vm_start)
633 			break;
634 		if (vma->vm_flags & VM_LOCKED) {
635 			if (start > vma->vm_start)
636 				count -= (start - vma->vm_start);
637 			if (start + len < vma->vm_end) {
638 				count += start + len - vma->vm_start;
639 				break;
640 			}
641 			count += vma->vm_end - vma->vm_start;
642 		}
643 	}
644 
645 	return count >> PAGE_SHIFT;
646 }
647 
648 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
649 {
650 	unsigned long locked;
651 	unsigned long lock_limit;
652 	int error = -ENOMEM;
653 
654 	start = untagged_addr(start);
655 
656 	if (!can_do_mlock())
657 		return -EPERM;
658 
659 	len = PAGE_ALIGN(len + (offset_in_page(start)));
660 	start &= PAGE_MASK;
661 
662 	lock_limit = rlimit(RLIMIT_MEMLOCK);
663 	lock_limit >>= PAGE_SHIFT;
664 	locked = len >> PAGE_SHIFT;
665 
666 	if (mmap_write_lock_killable(current->mm))
667 		return -EINTR;
668 
669 	locked += current->mm->locked_vm;
670 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
671 		/*
672 		 * It is possible that the regions requested intersect with
673 		 * previously mlocked areas, that part area in "mm->locked_vm"
674 		 * should not be counted to new mlock increment count. So check
675 		 * and adjust locked count if necessary.
676 		 */
677 		locked -= count_mm_mlocked_page_nr(current->mm,
678 				start, len);
679 	}
680 
681 	/* check against resource limits */
682 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
683 		error = apply_vma_lock_flags(start, len, flags);
684 
685 	mmap_write_unlock(current->mm);
686 	if (error)
687 		return error;
688 
689 	error = __mm_populate(start, len, 0);
690 	if (error)
691 		return __mlock_posix_error_return(error);
692 	return 0;
693 }
694 
695 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
696 {
697 	return do_mlock(start, len, VM_LOCKED);
698 }
699 
700 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
701 {
702 	vm_flags_t vm_flags = VM_LOCKED;
703 
704 	if (flags & ~MLOCK_ONFAULT)
705 		return -EINVAL;
706 
707 	if (flags & MLOCK_ONFAULT)
708 		vm_flags |= VM_LOCKONFAULT;
709 
710 	return do_mlock(start, len, vm_flags);
711 }
712 
713 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
714 {
715 	int ret;
716 
717 	start = untagged_addr(start);
718 
719 	len = PAGE_ALIGN(len + (offset_in_page(start)));
720 	start &= PAGE_MASK;
721 
722 	if (mmap_write_lock_killable(current->mm))
723 		return -EINTR;
724 	ret = apply_vma_lock_flags(start, len, 0);
725 	mmap_write_unlock(current->mm);
726 
727 	return ret;
728 }
729 
730 /*
731  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
732  * and translate into the appropriate modifications to mm->def_flags and/or the
733  * flags for all current VMAs.
734  *
735  * There are a couple of subtleties with this.  If mlockall() is called multiple
736  * times with different flags, the values do not necessarily stack.  If mlockall
737  * is called once including the MCL_FUTURE flag and then a second time without
738  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
739  */
740 static int apply_mlockall_flags(int flags)
741 {
742 	struct vm_area_struct *vma, *prev = NULL;
743 	vm_flags_t to_add = 0;
744 
745 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
746 	if (flags & MCL_FUTURE) {
747 		current->mm->def_flags |= VM_LOCKED;
748 
749 		if (flags & MCL_ONFAULT)
750 			current->mm->def_flags |= VM_LOCKONFAULT;
751 
752 		if (!(flags & MCL_CURRENT))
753 			goto out;
754 	}
755 
756 	if (flags & MCL_CURRENT) {
757 		to_add |= VM_LOCKED;
758 		if (flags & MCL_ONFAULT)
759 			to_add |= VM_LOCKONFAULT;
760 	}
761 
762 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
763 		vm_flags_t newflags;
764 
765 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
766 		newflags |= to_add;
767 
768 		/* Ignore errors */
769 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
770 		cond_resched();
771 	}
772 out:
773 	return 0;
774 }
775 
776 SYSCALL_DEFINE1(mlockall, int, flags)
777 {
778 	unsigned long lock_limit;
779 	int ret;
780 
781 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
782 	    flags == MCL_ONFAULT)
783 		return -EINVAL;
784 
785 	if (!can_do_mlock())
786 		return -EPERM;
787 
788 	lock_limit = rlimit(RLIMIT_MEMLOCK);
789 	lock_limit >>= PAGE_SHIFT;
790 
791 	if (mmap_write_lock_killable(current->mm))
792 		return -EINTR;
793 
794 	ret = -ENOMEM;
795 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
796 	    capable(CAP_IPC_LOCK))
797 		ret = apply_mlockall_flags(flags);
798 	mmap_write_unlock(current->mm);
799 	if (!ret && (flags & MCL_CURRENT))
800 		mm_populate(0, TASK_SIZE);
801 
802 	return ret;
803 }
804 
805 SYSCALL_DEFINE0(munlockall)
806 {
807 	int ret;
808 
809 	if (mmap_write_lock_killable(current->mm))
810 		return -EINTR;
811 	ret = apply_mlockall_flags(0);
812 	mmap_write_unlock(current->mm);
813 	return ret;
814 }
815 
816 /*
817  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
818  * shm segments) get accounted against the user_struct instead.
819  */
820 static DEFINE_SPINLOCK(shmlock_user_lock);
821 
822 int user_shm_lock(size_t size, struct ucounts *ucounts)
823 {
824 	unsigned long lock_limit, locked;
825 	long memlock;
826 	int allowed = 0;
827 
828 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
829 	lock_limit = rlimit(RLIMIT_MEMLOCK);
830 	if (lock_limit == RLIM_INFINITY)
831 		allowed = 1;
832 	lock_limit >>= PAGE_SHIFT;
833 	spin_lock(&shmlock_user_lock);
834 	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
835 
836 	if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
837 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
838 		goto out;
839 	}
840 	if (!get_ucounts(ucounts)) {
841 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
842 		goto out;
843 	}
844 	allowed = 1;
845 out:
846 	spin_unlock(&shmlock_user_lock);
847 	return allowed;
848 }
849 
850 void user_shm_unlock(size_t size, struct ucounts *ucounts)
851 {
852 	spin_lock(&shmlock_user_lock);
853 	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
854 	spin_unlock(&shmlock_user_lock);
855 	put_ucounts(ucounts);
856 }
857