1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 int can_do_mlock(void) 28 { 29 if (rlimit(RLIMIT_MEMLOCK) != 0) 30 return 1; 31 if (capable(CAP_IPC_LOCK)) 32 return 1; 33 return 0; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 /* Serialize with page migration */ 83 BUG_ON(!PageLocked(page)); 84 85 if (!TestSetPageMlocked(page)) { 86 mod_zone_page_state(page_zone(page), NR_MLOCK, 87 hpage_nr_pages(page)); 88 count_vm_event(UNEVICTABLE_PGMLOCKED); 89 if (!isolate_lru_page(page)) 90 putback_lru_page(page); 91 } 92 } 93 94 /* 95 * Isolate a page from LRU with optional get_page() pin. 96 * Assumes lru_lock already held and page already pinned. 97 */ 98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 99 { 100 if (PageLRU(page)) { 101 struct lruvec *lruvec; 102 103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); 104 if (getpage) 105 get_page(page); 106 ClearPageLRU(page); 107 del_page_from_lru_list(page, lruvec, page_lru(page)); 108 return true; 109 } 110 111 return false; 112 } 113 114 /* 115 * Finish munlock after successful page isolation 116 * 117 * Page must be locked. This is a wrapper for try_to_munlock() 118 * and putback_lru_page() with munlock accounting. 119 */ 120 static void __munlock_isolated_page(struct page *page) 121 { 122 int ret = SWAP_AGAIN; 123 124 /* 125 * Optimization: if the page was mapped just once, that's our mapping 126 * and we don't need to check all the other vmas. 127 */ 128 if (page_mapcount(page) > 1) 129 ret = try_to_munlock(page); 130 131 /* Did try_to_unlock() succeed or punt? */ 132 if (ret != SWAP_MLOCK) 133 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 134 135 putback_lru_page(page); 136 } 137 138 /* 139 * Accounting for page isolation fail during munlock 140 * 141 * Performs accounting when page isolation fails in munlock. There is nothing 142 * else to do because it means some other task has already removed the page 143 * from the LRU. putback_lru_page() will take care of removing the page from 144 * the unevictable list, if necessary. vmscan [page_referenced()] will move 145 * the page back to the unevictable list if some other vma has it mlocked. 146 */ 147 static void __munlock_isolation_failed(struct page *page) 148 { 149 if (PageUnevictable(page)) 150 __count_vm_event(UNEVICTABLE_PGSTRANDED); 151 else 152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 153 } 154 155 /** 156 * munlock_vma_page - munlock a vma page 157 * @page - page to be unlocked, either a normal page or THP page head 158 * 159 * returns the size of the page as a page mask (0 for normal page, 160 * HPAGE_PMD_NR - 1 for THP head page) 161 * 162 * called from munlock()/munmap() path with page supposedly on the LRU. 163 * When we munlock a page, because the vma where we found the page is being 164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 165 * page locked so that we can leave it on the unevictable lru list and not 166 * bother vmscan with it. However, to walk the page's rmap list in 167 * try_to_munlock() we must isolate the page from the LRU. If some other 168 * task has removed the page from the LRU, we won't be able to do that. 169 * So we clear the PageMlocked as we might not get another chance. If we 170 * can't isolate the page, we leave it for putback_lru_page() and vmscan 171 * [page_referenced()/try_to_unmap()] to deal with. 172 */ 173 unsigned int munlock_vma_page(struct page *page) 174 { 175 unsigned int nr_pages; 176 struct zone *zone = page_zone(page); 177 178 /* For try_to_munlock() and to serialize with page migration */ 179 BUG_ON(!PageLocked(page)); 180 181 /* 182 * Serialize with any parallel __split_huge_page_refcount() which 183 * might otherwise copy PageMlocked to part of the tail pages before 184 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 185 */ 186 spin_lock_irq(&zone->lru_lock); 187 188 nr_pages = hpage_nr_pages(page); 189 if (!TestClearPageMlocked(page)) 190 goto unlock_out; 191 192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 193 194 if (__munlock_isolate_lru_page(page, true)) { 195 spin_unlock_irq(&zone->lru_lock); 196 __munlock_isolated_page(page); 197 goto out; 198 } 199 __munlock_isolation_failed(page); 200 201 unlock_out: 202 spin_unlock_irq(&zone->lru_lock); 203 204 out: 205 return nr_pages - 1; 206 } 207 208 /* 209 * convert get_user_pages() return value to posix mlock() error 210 */ 211 static int __mlock_posix_error_return(long retval) 212 { 213 if (retval == -EFAULT) 214 retval = -ENOMEM; 215 else if (retval == -ENOMEM) 216 retval = -EAGAIN; 217 return retval; 218 } 219 220 /* 221 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 222 * 223 * The fast path is available only for evictable pages with single mapping. 224 * Then we can bypass the per-cpu pvec and get better performance. 225 * when mapcount > 1 we need try_to_munlock() which can fail. 226 * when !page_evictable(), we need the full redo logic of putback_lru_page to 227 * avoid leaving evictable page in unevictable list. 228 * 229 * In case of success, @page is added to @pvec and @pgrescued is incremented 230 * in case that the page was previously unevictable. @page is also unlocked. 231 */ 232 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 233 int *pgrescued) 234 { 235 VM_BUG_ON_PAGE(PageLRU(page), page); 236 VM_BUG_ON_PAGE(!PageLocked(page), page); 237 238 if (page_mapcount(page) <= 1 && page_evictable(page)) { 239 pagevec_add(pvec, page); 240 if (TestClearPageUnevictable(page)) 241 (*pgrescued)++; 242 unlock_page(page); 243 return true; 244 } 245 246 return false; 247 } 248 249 /* 250 * Putback multiple evictable pages to the LRU 251 * 252 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 253 * the pages might have meanwhile become unevictable but that is OK. 254 */ 255 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 256 { 257 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 258 /* 259 *__pagevec_lru_add() calls release_pages() so we don't call 260 * put_page() explicitly 261 */ 262 __pagevec_lru_add(pvec); 263 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 264 } 265 266 /* 267 * Munlock a batch of pages from the same zone 268 * 269 * The work is split to two main phases. First phase clears the Mlocked flag 270 * and attempts to isolate the pages, all under a single zone lru lock. 271 * The second phase finishes the munlock only for pages where isolation 272 * succeeded. 273 * 274 * Note that the pagevec may be modified during the process. 275 */ 276 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 277 { 278 int i; 279 int nr = pagevec_count(pvec); 280 int delta_munlocked; 281 struct pagevec pvec_putback; 282 int pgrescued = 0; 283 284 pagevec_init(&pvec_putback, 0); 285 286 /* Phase 1: page isolation */ 287 spin_lock_irq(&zone->lru_lock); 288 for (i = 0; i < nr; i++) { 289 struct page *page = pvec->pages[i]; 290 291 if (TestClearPageMlocked(page)) { 292 /* 293 * We already have pin from follow_page_mask() 294 * so we can spare the get_page() here. 295 */ 296 if (__munlock_isolate_lru_page(page, false)) 297 continue; 298 else 299 __munlock_isolation_failed(page); 300 } 301 302 /* 303 * We won't be munlocking this page in the next phase 304 * but we still need to release the follow_page_mask() 305 * pin. We cannot do it under lru_lock however. If it's 306 * the last pin, __page_cache_release() would deadlock. 307 */ 308 pagevec_add(&pvec_putback, pvec->pages[i]); 309 pvec->pages[i] = NULL; 310 } 311 delta_munlocked = -nr + pagevec_count(&pvec_putback); 312 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 313 spin_unlock_irq(&zone->lru_lock); 314 315 /* Now we can release pins of pages that we are not munlocking */ 316 pagevec_release(&pvec_putback); 317 318 /* Phase 2: page munlock */ 319 for (i = 0; i < nr; i++) { 320 struct page *page = pvec->pages[i]; 321 322 if (page) { 323 lock_page(page); 324 if (!__putback_lru_fast_prepare(page, &pvec_putback, 325 &pgrescued)) { 326 /* 327 * Slow path. We don't want to lose the last 328 * pin before unlock_page() 329 */ 330 get_page(page); /* for putback_lru_page() */ 331 __munlock_isolated_page(page); 332 unlock_page(page); 333 put_page(page); /* from follow_page_mask() */ 334 } 335 } 336 } 337 338 /* 339 * Phase 3: page putback for pages that qualified for the fast path 340 * This will also call put_page() to return pin from follow_page_mask() 341 */ 342 if (pagevec_count(&pvec_putback)) 343 __putback_lru_fast(&pvec_putback, pgrescued); 344 } 345 346 /* 347 * Fill up pagevec for __munlock_pagevec using pte walk 348 * 349 * The function expects that the struct page corresponding to @start address is 350 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 351 * 352 * The rest of @pvec is filled by subsequent pages within the same pmd and same 353 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 354 * pages also get pinned. 355 * 356 * Returns the address of the next page that should be scanned. This equals 357 * @start + PAGE_SIZE when no page could be added by the pte walk. 358 */ 359 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 360 struct vm_area_struct *vma, int zoneid, unsigned long start, 361 unsigned long end) 362 { 363 pte_t *pte; 364 spinlock_t *ptl; 365 366 /* 367 * Initialize pte walk starting at the already pinned page where we 368 * are sure that there is a pte, as it was pinned under the same 369 * mmap_sem write op. 370 */ 371 pte = get_locked_pte(vma->vm_mm, start, &ptl); 372 /* Make sure we do not cross the page table boundary */ 373 end = pgd_addr_end(start, end); 374 end = pud_addr_end(start, end); 375 end = pmd_addr_end(start, end); 376 377 /* The page next to the pinned page is the first we will try to get */ 378 start += PAGE_SIZE; 379 while (start < end) { 380 struct page *page = NULL; 381 pte++; 382 if (pte_present(*pte)) 383 page = vm_normal_page(vma, start, *pte); 384 /* 385 * Break if page could not be obtained or the page's node+zone does not 386 * match 387 */ 388 if (!page || page_zone_id(page) != zoneid) 389 break; 390 391 get_page(page); 392 /* 393 * Increase the address that will be returned *before* the 394 * eventual break due to pvec becoming full by adding the page 395 */ 396 start += PAGE_SIZE; 397 if (pagevec_add(pvec, page) == 0) 398 break; 399 } 400 pte_unmap_unlock(pte, ptl); 401 return start; 402 } 403 404 /* 405 * munlock_vma_pages_range() - munlock all pages in the vma range.' 406 * @vma - vma containing range to be munlock()ed. 407 * @start - start address in @vma of the range 408 * @end - end of range in @vma. 409 * 410 * For mremap(), munmap() and exit(). 411 * 412 * Called with @vma VM_LOCKED. 413 * 414 * Returns with VM_LOCKED cleared. Callers must be prepared to 415 * deal with this. 416 * 417 * We don't save and restore VM_LOCKED here because pages are 418 * still on lru. In unmap path, pages might be scanned by reclaim 419 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 420 * free them. This will result in freeing mlocked pages. 421 */ 422 void munlock_vma_pages_range(struct vm_area_struct *vma, 423 unsigned long start, unsigned long end) 424 { 425 vma->vm_flags &= ~VM_LOCKED; 426 427 while (start < end) { 428 struct page *page = NULL; 429 unsigned int page_mask; 430 unsigned long page_increm; 431 struct pagevec pvec; 432 struct zone *zone; 433 int zoneid; 434 435 pagevec_init(&pvec, 0); 436 /* 437 * Although FOLL_DUMP is intended for get_dump_page(), 438 * it just so happens that its special treatment of the 439 * ZERO_PAGE (returning an error instead of doing get_page) 440 * suits munlock very well (and if somehow an abnormal page 441 * has sneaked into the range, we won't oops here: great). 442 */ 443 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 444 &page_mask); 445 446 if (page && !IS_ERR(page)) { 447 if (PageTransHuge(page)) { 448 lock_page(page); 449 /* 450 * Any THP page found by follow_page_mask() may 451 * have gotten split before reaching 452 * munlock_vma_page(), so we need to recompute 453 * the page_mask here. 454 */ 455 page_mask = munlock_vma_page(page); 456 unlock_page(page); 457 put_page(page); /* follow_page_mask() */ 458 } else { 459 /* 460 * Non-huge pages are handled in batches via 461 * pagevec. The pin from follow_page_mask() 462 * prevents them from collapsing by THP. 463 */ 464 pagevec_add(&pvec, page); 465 zone = page_zone(page); 466 zoneid = page_zone_id(page); 467 468 /* 469 * Try to fill the rest of pagevec using fast 470 * pte walk. This will also update start to 471 * the next page to process. Then munlock the 472 * pagevec. 473 */ 474 start = __munlock_pagevec_fill(&pvec, vma, 475 zoneid, start, end); 476 __munlock_pagevec(&pvec, zone); 477 goto next; 478 } 479 } 480 /* It's a bug to munlock in the middle of a THP page */ 481 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask); 482 page_increm = 1 + page_mask; 483 start += page_increm * PAGE_SIZE; 484 next: 485 cond_resched(); 486 } 487 } 488 489 /* 490 * mlock_fixup - handle mlock[all]/munlock[all] requests. 491 * 492 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 493 * munlock is a no-op. However, for some special vmas, we go ahead and 494 * populate the ptes. 495 * 496 * For vmas that pass the filters, merge/split as appropriate. 497 */ 498 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 499 unsigned long start, unsigned long end, vm_flags_t newflags) 500 { 501 struct mm_struct *mm = vma->vm_mm; 502 pgoff_t pgoff; 503 int nr_pages; 504 int ret = 0; 505 int lock = !!(newflags & VM_LOCKED); 506 507 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 508 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 509 goto out; /* don't set VM_LOCKED, don't count */ 510 511 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 512 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 513 vma->vm_file, pgoff, vma_policy(vma)); 514 if (*prev) { 515 vma = *prev; 516 goto success; 517 } 518 519 if (start != vma->vm_start) { 520 ret = split_vma(mm, vma, start, 1); 521 if (ret) 522 goto out; 523 } 524 525 if (end != vma->vm_end) { 526 ret = split_vma(mm, vma, end, 0); 527 if (ret) 528 goto out; 529 } 530 531 success: 532 /* 533 * Keep track of amount of locked VM. 534 */ 535 nr_pages = (end - start) >> PAGE_SHIFT; 536 if (!lock) 537 nr_pages = -nr_pages; 538 mm->locked_vm += nr_pages; 539 540 /* 541 * vm_flags is protected by the mmap_sem held in write mode. 542 * It's okay if try_to_unmap_one unmaps a page just after we 543 * set VM_LOCKED, populate_vma_page_range will bring it back. 544 */ 545 546 if (lock) 547 vma->vm_flags = newflags; 548 else 549 munlock_vma_pages_range(vma, start, end); 550 551 out: 552 *prev = vma; 553 return ret; 554 } 555 556 static int do_mlock(unsigned long start, size_t len, int on) 557 { 558 unsigned long nstart, end, tmp; 559 struct vm_area_struct * vma, * prev; 560 int error; 561 562 VM_BUG_ON(start & ~PAGE_MASK); 563 VM_BUG_ON(len != PAGE_ALIGN(len)); 564 end = start + len; 565 if (end < start) 566 return -EINVAL; 567 if (end == start) 568 return 0; 569 vma = find_vma(current->mm, start); 570 if (!vma || vma->vm_start > start) 571 return -ENOMEM; 572 573 prev = vma->vm_prev; 574 if (start > vma->vm_start) 575 prev = vma; 576 577 for (nstart = start ; ; ) { 578 vm_flags_t newflags; 579 580 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 581 582 newflags = vma->vm_flags & ~VM_LOCKED; 583 if (on) 584 newflags |= VM_LOCKED; 585 586 tmp = vma->vm_end; 587 if (tmp > end) 588 tmp = end; 589 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 590 if (error) 591 break; 592 nstart = tmp; 593 if (nstart < prev->vm_end) 594 nstart = prev->vm_end; 595 if (nstart >= end) 596 break; 597 598 vma = prev->vm_next; 599 if (!vma || vma->vm_start != nstart) { 600 error = -ENOMEM; 601 break; 602 } 603 } 604 return error; 605 } 606 607 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 608 { 609 unsigned long locked; 610 unsigned long lock_limit; 611 int error = -ENOMEM; 612 613 if (!can_do_mlock()) 614 return -EPERM; 615 616 lru_add_drain_all(); /* flush pagevec */ 617 618 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 619 start &= PAGE_MASK; 620 621 lock_limit = rlimit(RLIMIT_MEMLOCK); 622 lock_limit >>= PAGE_SHIFT; 623 locked = len >> PAGE_SHIFT; 624 625 down_write(¤t->mm->mmap_sem); 626 627 locked += current->mm->locked_vm; 628 629 /* check against resource limits */ 630 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 631 error = do_mlock(start, len, 1); 632 633 up_write(¤t->mm->mmap_sem); 634 if (error) 635 return error; 636 637 error = __mm_populate(start, len, 0); 638 if (error) 639 return __mlock_posix_error_return(error); 640 return 0; 641 } 642 643 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 644 { 645 int ret; 646 647 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 648 start &= PAGE_MASK; 649 650 down_write(¤t->mm->mmap_sem); 651 ret = do_mlock(start, len, 0); 652 up_write(¤t->mm->mmap_sem); 653 654 return ret; 655 } 656 657 static int do_mlockall(int flags) 658 { 659 struct vm_area_struct * vma, * prev = NULL; 660 661 if (flags & MCL_FUTURE) 662 current->mm->def_flags |= VM_LOCKED; 663 else 664 current->mm->def_flags &= ~VM_LOCKED; 665 if (flags == MCL_FUTURE) 666 goto out; 667 668 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 669 vm_flags_t newflags; 670 671 newflags = vma->vm_flags & ~VM_LOCKED; 672 if (flags & MCL_CURRENT) 673 newflags |= VM_LOCKED; 674 675 /* Ignore errors */ 676 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 677 cond_resched_rcu_qs(); 678 } 679 out: 680 return 0; 681 } 682 683 SYSCALL_DEFINE1(mlockall, int, flags) 684 { 685 unsigned long lock_limit; 686 int ret = -EINVAL; 687 688 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 689 goto out; 690 691 ret = -EPERM; 692 if (!can_do_mlock()) 693 goto out; 694 695 if (flags & MCL_CURRENT) 696 lru_add_drain_all(); /* flush pagevec */ 697 698 lock_limit = rlimit(RLIMIT_MEMLOCK); 699 lock_limit >>= PAGE_SHIFT; 700 701 ret = -ENOMEM; 702 down_write(¤t->mm->mmap_sem); 703 704 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 705 capable(CAP_IPC_LOCK)) 706 ret = do_mlockall(flags); 707 up_write(¤t->mm->mmap_sem); 708 if (!ret && (flags & MCL_CURRENT)) 709 mm_populate(0, TASK_SIZE); 710 out: 711 return ret; 712 } 713 714 SYSCALL_DEFINE0(munlockall) 715 { 716 int ret; 717 718 down_write(¤t->mm->mmap_sem); 719 ret = do_mlockall(0); 720 up_write(¤t->mm->mmap_sem); 721 return ret; 722 } 723 724 /* 725 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 726 * shm segments) get accounted against the user_struct instead. 727 */ 728 static DEFINE_SPINLOCK(shmlock_user_lock); 729 730 int user_shm_lock(size_t size, struct user_struct *user) 731 { 732 unsigned long lock_limit, locked; 733 int allowed = 0; 734 735 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 736 lock_limit = rlimit(RLIMIT_MEMLOCK); 737 if (lock_limit == RLIM_INFINITY) 738 allowed = 1; 739 lock_limit >>= PAGE_SHIFT; 740 spin_lock(&shmlock_user_lock); 741 if (!allowed && 742 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 743 goto out; 744 get_uid(user); 745 user->locked_shm += locked; 746 allowed = 1; 747 out: 748 spin_unlock(&shmlock_user_lock); 749 return allowed; 750 } 751 752 void user_shm_unlock(size_t size, struct user_struct *user) 753 { 754 spin_lock(&shmlock_user_lock); 755 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 756 spin_unlock(&shmlock_user_lock); 757 free_uid(user); 758 } 759