xref: /linux/mm/mlock.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_lock for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	int nr_pages;
62 
63 	if (!TestClearPageMlocked(page))
64 		return;
65 
66 	nr_pages = thp_nr_pages(page);
67 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
68 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
69 	/*
70 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
71 	 * in __pagevec_lru_add_fn().
72 	 *
73 	 * See __pagevec_lru_add_fn for more explanation.
74 	 */
75 	if (!isolate_lru_page(page)) {
76 		putback_lru_page(page);
77 	} else {
78 		/*
79 		 * We lost the race. the page already moved to evictable list.
80 		 */
81 		if (PageUnevictable(page))
82 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
83 	}
84 }
85 
86 /*
87  * Mark page as mlocked if not already.
88  * If page on LRU, isolate and putback to move to unevictable list.
89  */
90 void mlock_vma_page(struct page *page)
91 {
92 	/* Serialize with page migration */
93 	BUG_ON(!PageLocked(page));
94 
95 	VM_BUG_ON_PAGE(PageTail(page), page);
96 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
97 
98 	if (!TestSetPageMlocked(page)) {
99 		int nr_pages = thp_nr_pages(page);
100 
101 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
102 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
103 		if (!isolate_lru_page(page))
104 			putback_lru_page(page);
105 	}
106 }
107 
108 /*
109  * Isolate a page from LRU with optional get_page() pin.
110  * Assumes lru_lock already held and page already pinned.
111  */
112 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
113 {
114 	if (PageLRU(page)) {
115 		struct lruvec *lruvec;
116 
117 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
118 		if (getpage)
119 			get_page(page);
120 		ClearPageLRU(page);
121 		del_page_from_lru_list(page, lruvec, page_lru(page));
122 		return true;
123 	}
124 
125 	return false;
126 }
127 
128 /*
129  * Finish munlock after successful page isolation
130  *
131  * Page must be locked. This is a wrapper for try_to_munlock()
132  * and putback_lru_page() with munlock accounting.
133  */
134 static void __munlock_isolated_page(struct page *page)
135 {
136 	/*
137 	 * Optimization: if the page was mapped just once, that's our mapping
138 	 * and we don't need to check all the other vmas.
139 	 */
140 	if (page_mapcount(page) > 1)
141 		try_to_munlock(page);
142 
143 	/* Did try_to_unlock() succeed or punt? */
144 	if (!PageMlocked(page))
145 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
146 
147 	putback_lru_page(page);
148 }
149 
150 /*
151  * Accounting for page isolation fail during munlock
152  *
153  * Performs accounting when page isolation fails in munlock. There is nothing
154  * else to do because it means some other task has already removed the page
155  * from the LRU. putback_lru_page() will take care of removing the page from
156  * the unevictable list, if necessary. vmscan [page_referenced()] will move
157  * the page back to the unevictable list if some other vma has it mlocked.
158  */
159 static void __munlock_isolation_failed(struct page *page)
160 {
161 	int nr_pages = thp_nr_pages(page);
162 
163 	if (PageUnevictable(page))
164 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
165 	else
166 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
167 }
168 
169 /**
170  * munlock_vma_page - munlock a vma page
171  * @page: page to be unlocked, either a normal page or THP page head
172  *
173  * returns the size of the page as a page mask (0 for normal page,
174  *         HPAGE_PMD_NR - 1 for THP head page)
175  *
176  * called from munlock()/munmap() path with page supposedly on the LRU.
177  * When we munlock a page, because the vma where we found the page is being
178  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
179  * page locked so that we can leave it on the unevictable lru list and not
180  * bother vmscan with it.  However, to walk the page's rmap list in
181  * try_to_munlock() we must isolate the page from the LRU.  If some other
182  * task has removed the page from the LRU, we won't be able to do that.
183  * So we clear the PageMlocked as we might not get another chance.  If we
184  * can't isolate the page, we leave it for putback_lru_page() and vmscan
185  * [page_referenced()/try_to_unmap()] to deal with.
186  */
187 unsigned int munlock_vma_page(struct page *page)
188 {
189 	int nr_pages;
190 	pg_data_t *pgdat = page_pgdat(page);
191 
192 	/* For try_to_munlock() and to serialize with page migration */
193 	BUG_ON(!PageLocked(page));
194 
195 	VM_BUG_ON_PAGE(PageTail(page), page);
196 
197 	/*
198 	 * Serialize with any parallel __split_huge_page_refcount() which
199 	 * might otherwise copy PageMlocked to part of the tail pages before
200 	 * we clear it in the head page. It also stabilizes thp_nr_pages().
201 	 */
202 	spin_lock_irq(&pgdat->lru_lock);
203 
204 	if (!TestClearPageMlocked(page)) {
205 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
206 		nr_pages = 1;
207 		goto unlock_out;
208 	}
209 
210 	nr_pages = thp_nr_pages(page);
211 	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
212 
213 	if (__munlock_isolate_lru_page(page, true)) {
214 		spin_unlock_irq(&pgdat->lru_lock);
215 		__munlock_isolated_page(page);
216 		goto out;
217 	}
218 	__munlock_isolation_failed(page);
219 
220 unlock_out:
221 	spin_unlock_irq(&pgdat->lru_lock);
222 
223 out:
224 	return nr_pages - 1;
225 }
226 
227 /*
228  * convert get_user_pages() return value to posix mlock() error
229  */
230 static int __mlock_posix_error_return(long retval)
231 {
232 	if (retval == -EFAULT)
233 		retval = -ENOMEM;
234 	else if (retval == -ENOMEM)
235 		retval = -EAGAIN;
236 	return retval;
237 }
238 
239 /*
240  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
241  *
242  * The fast path is available only for evictable pages with single mapping.
243  * Then we can bypass the per-cpu pvec and get better performance.
244  * when mapcount > 1 we need try_to_munlock() which can fail.
245  * when !page_evictable(), we need the full redo logic of putback_lru_page to
246  * avoid leaving evictable page in unevictable list.
247  *
248  * In case of success, @page is added to @pvec and @pgrescued is incremented
249  * in case that the page was previously unevictable. @page is also unlocked.
250  */
251 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
252 		int *pgrescued)
253 {
254 	VM_BUG_ON_PAGE(PageLRU(page), page);
255 	VM_BUG_ON_PAGE(!PageLocked(page), page);
256 
257 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
258 		pagevec_add(pvec, page);
259 		if (TestClearPageUnevictable(page))
260 			(*pgrescued)++;
261 		unlock_page(page);
262 		return true;
263 	}
264 
265 	return false;
266 }
267 
268 /*
269  * Putback multiple evictable pages to the LRU
270  *
271  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
272  * the pages might have meanwhile become unevictable but that is OK.
273  */
274 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
275 {
276 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
277 	/*
278 	 *__pagevec_lru_add() calls release_pages() so we don't call
279 	 * put_page() explicitly
280 	 */
281 	__pagevec_lru_add(pvec);
282 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
283 }
284 
285 /*
286  * Munlock a batch of pages from the same zone
287  *
288  * The work is split to two main phases. First phase clears the Mlocked flag
289  * and attempts to isolate the pages, all under a single zone lru lock.
290  * The second phase finishes the munlock only for pages where isolation
291  * succeeded.
292  *
293  * Note that the pagevec may be modified during the process.
294  */
295 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
296 {
297 	int i;
298 	int nr = pagevec_count(pvec);
299 	int delta_munlocked = -nr;
300 	struct pagevec pvec_putback;
301 	int pgrescued = 0;
302 
303 	pagevec_init(&pvec_putback);
304 
305 	/* Phase 1: page isolation */
306 	spin_lock_irq(&zone->zone_pgdat->lru_lock);
307 	for (i = 0; i < nr; i++) {
308 		struct page *page = pvec->pages[i];
309 
310 		if (TestClearPageMlocked(page)) {
311 			/*
312 			 * We already have pin from follow_page_mask()
313 			 * so we can spare the get_page() here.
314 			 */
315 			if (__munlock_isolate_lru_page(page, false))
316 				continue;
317 			else
318 				__munlock_isolation_failed(page);
319 		} else {
320 			delta_munlocked++;
321 		}
322 
323 		/*
324 		 * We won't be munlocking this page in the next phase
325 		 * but we still need to release the follow_page_mask()
326 		 * pin. We cannot do it under lru_lock however. If it's
327 		 * the last pin, __page_cache_release() would deadlock.
328 		 */
329 		pagevec_add(&pvec_putback, pvec->pages[i]);
330 		pvec->pages[i] = NULL;
331 	}
332 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
333 	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
334 
335 	/* Now we can release pins of pages that we are not munlocking */
336 	pagevec_release(&pvec_putback);
337 
338 	/* Phase 2: page munlock */
339 	for (i = 0; i < nr; i++) {
340 		struct page *page = pvec->pages[i];
341 
342 		if (page) {
343 			lock_page(page);
344 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
345 					&pgrescued)) {
346 				/*
347 				 * Slow path. We don't want to lose the last
348 				 * pin before unlock_page()
349 				 */
350 				get_page(page); /* for putback_lru_page() */
351 				__munlock_isolated_page(page);
352 				unlock_page(page);
353 				put_page(page); /* from follow_page_mask() */
354 			}
355 		}
356 	}
357 
358 	/*
359 	 * Phase 3: page putback for pages that qualified for the fast path
360 	 * This will also call put_page() to return pin from follow_page_mask()
361 	 */
362 	if (pagevec_count(&pvec_putback))
363 		__putback_lru_fast(&pvec_putback, pgrescued);
364 }
365 
366 /*
367  * Fill up pagevec for __munlock_pagevec using pte walk
368  *
369  * The function expects that the struct page corresponding to @start address is
370  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
371  *
372  * The rest of @pvec is filled by subsequent pages within the same pmd and same
373  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
374  * pages also get pinned.
375  *
376  * Returns the address of the next page that should be scanned. This equals
377  * @start + PAGE_SIZE when no page could be added by the pte walk.
378  */
379 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
380 			struct vm_area_struct *vma, struct zone *zone,
381 			unsigned long start, unsigned long end)
382 {
383 	pte_t *pte;
384 	spinlock_t *ptl;
385 
386 	/*
387 	 * Initialize pte walk starting at the already pinned page where we
388 	 * are sure that there is a pte, as it was pinned under the same
389 	 * mmap_lock write op.
390 	 */
391 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
392 	/* Make sure we do not cross the page table boundary */
393 	end = pgd_addr_end(start, end);
394 	end = p4d_addr_end(start, end);
395 	end = pud_addr_end(start, end);
396 	end = pmd_addr_end(start, end);
397 
398 	/* The page next to the pinned page is the first we will try to get */
399 	start += PAGE_SIZE;
400 	while (start < end) {
401 		struct page *page = NULL;
402 		pte++;
403 		if (pte_present(*pte))
404 			page = vm_normal_page(vma, start, *pte);
405 		/*
406 		 * Break if page could not be obtained or the page's node+zone does not
407 		 * match
408 		 */
409 		if (!page || page_zone(page) != zone)
410 			break;
411 
412 		/*
413 		 * Do not use pagevec for PTE-mapped THP,
414 		 * munlock_vma_pages_range() will handle them.
415 		 */
416 		if (PageTransCompound(page))
417 			break;
418 
419 		get_page(page);
420 		/*
421 		 * Increase the address that will be returned *before* the
422 		 * eventual break due to pvec becoming full by adding the page
423 		 */
424 		start += PAGE_SIZE;
425 		if (pagevec_add(pvec, page) == 0)
426 			break;
427 	}
428 	pte_unmap_unlock(pte, ptl);
429 	return start;
430 }
431 
432 /*
433  * munlock_vma_pages_range() - munlock all pages in the vma range.'
434  * @vma - vma containing range to be munlock()ed.
435  * @start - start address in @vma of the range
436  * @end - end of range in @vma.
437  *
438  *  For mremap(), munmap() and exit().
439  *
440  * Called with @vma VM_LOCKED.
441  *
442  * Returns with VM_LOCKED cleared.  Callers must be prepared to
443  * deal with this.
444  *
445  * We don't save and restore VM_LOCKED here because pages are
446  * still on lru.  In unmap path, pages might be scanned by reclaim
447  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
448  * free them.  This will result in freeing mlocked pages.
449  */
450 void munlock_vma_pages_range(struct vm_area_struct *vma,
451 			     unsigned long start, unsigned long end)
452 {
453 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
454 
455 	while (start < end) {
456 		struct page *page;
457 		unsigned int page_mask = 0;
458 		unsigned long page_increm;
459 		struct pagevec pvec;
460 		struct zone *zone;
461 
462 		pagevec_init(&pvec);
463 		/*
464 		 * Although FOLL_DUMP is intended for get_dump_page(),
465 		 * it just so happens that its special treatment of the
466 		 * ZERO_PAGE (returning an error instead of doing get_page)
467 		 * suits munlock very well (and if somehow an abnormal page
468 		 * has sneaked into the range, we won't oops here: great).
469 		 */
470 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
471 
472 		if (page && !IS_ERR(page)) {
473 			if (PageTransTail(page)) {
474 				VM_BUG_ON_PAGE(PageMlocked(page), page);
475 				put_page(page); /* follow_page_mask() */
476 			} else if (PageTransHuge(page)) {
477 				lock_page(page);
478 				/*
479 				 * Any THP page found by follow_page_mask() may
480 				 * have gotten split before reaching
481 				 * munlock_vma_page(), so we need to compute
482 				 * the page_mask here instead.
483 				 */
484 				page_mask = munlock_vma_page(page);
485 				unlock_page(page);
486 				put_page(page); /* follow_page_mask() */
487 			} else {
488 				/*
489 				 * Non-huge pages are handled in batches via
490 				 * pagevec. The pin from follow_page_mask()
491 				 * prevents them from collapsing by THP.
492 				 */
493 				pagevec_add(&pvec, page);
494 				zone = page_zone(page);
495 
496 				/*
497 				 * Try to fill the rest of pagevec using fast
498 				 * pte walk. This will also update start to
499 				 * the next page to process. Then munlock the
500 				 * pagevec.
501 				 */
502 				start = __munlock_pagevec_fill(&pvec, vma,
503 						zone, start, end);
504 				__munlock_pagevec(&pvec, zone);
505 				goto next;
506 			}
507 		}
508 		page_increm = 1 + page_mask;
509 		start += page_increm * PAGE_SIZE;
510 next:
511 		cond_resched();
512 	}
513 }
514 
515 /*
516  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
517  *
518  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
519  * munlock is a no-op.  However, for some special vmas, we go ahead and
520  * populate the ptes.
521  *
522  * For vmas that pass the filters, merge/split as appropriate.
523  */
524 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
525 	unsigned long start, unsigned long end, vm_flags_t newflags)
526 {
527 	struct mm_struct *mm = vma->vm_mm;
528 	pgoff_t pgoff;
529 	int nr_pages;
530 	int ret = 0;
531 	int lock = !!(newflags & VM_LOCKED);
532 	vm_flags_t old_flags = vma->vm_flags;
533 
534 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
535 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
536 	    vma_is_dax(vma))
537 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
538 		goto out;
539 
540 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
541 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
542 			  vma->vm_file, pgoff, vma_policy(vma),
543 			  vma->vm_userfaultfd_ctx);
544 	if (*prev) {
545 		vma = *prev;
546 		goto success;
547 	}
548 
549 	if (start != vma->vm_start) {
550 		ret = split_vma(mm, vma, start, 1);
551 		if (ret)
552 			goto out;
553 	}
554 
555 	if (end != vma->vm_end) {
556 		ret = split_vma(mm, vma, end, 0);
557 		if (ret)
558 			goto out;
559 	}
560 
561 success:
562 	/*
563 	 * Keep track of amount of locked VM.
564 	 */
565 	nr_pages = (end - start) >> PAGE_SHIFT;
566 	if (!lock)
567 		nr_pages = -nr_pages;
568 	else if (old_flags & VM_LOCKED)
569 		nr_pages = 0;
570 	mm->locked_vm += nr_pages;
571 
572 	/*
573 	 * vm_flags is protected by the mmap_lock held in write mode.
574 	 * It's okay if try_to_unmap_one unmaps a page just after we
575 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
576 	 */
577 
578 	if (lock)
579 		vma->vm_flags = newflags;
580 	else
581 		munlock_vma_pages_range(vma, start, end);
582 
583 out:
584 	*prev = vma;
585 	return ret;
586 }
587 
588 static int apply_vma_lock_flags(unsigned long start, size_t len,
589 				vm_flags_t flags)
590 {
591 	unsigned long nstart, end, tmp;
592 	struct vm_area_struct * vma, * prev;
593 	int error;
594 
595 	VM_BUG_ON(offset_in_page(start));
596 	VM_BUG_ON(len != PAGE_ALIGN(len));
597 	end = start + len;
598 	if (end < start)
599 		return -EINVAL;
600 	if (end == start)
601 		return 0;
602 	vma = find_vma(current->mm, start);
603 	if (!vma || vma->vm_start > start)
604 		return -ENOMEM;
605 
606 	prev = vma->vm_prev;
607 	if (start > vma->vm_start)
608 		prev = vma;
609 
610 	for (nstart = start ; ; ) {
611 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
612 
613 		newflags |= flags;
614 
615 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
616 		tmp = vma->vm_end;
617 		if (tmp > end)
618 			tmp = end;
619 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
620 		if (error)
621 			break;
622 		nstart = tmp;
623 		if (nstart < prev->vm_end)
624 			nstart = prev->vm_end;
625 		if (nstart >= end)
626 			break;
627 
628 		vma = prev->vm_next;
629 		if (!vma || vma->vm_start != nstart) {
630 			error = -ENOMEM;
631 			break;
632 		}
633 	}
634 	return error;
635 }
636 
637 /*
638  * Go through vma areas and sum size of mlocked
639  * vma pages, as return value.
640  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
641  * is also counted.
642  * Return value: previously mlocked page counts
643  */
644 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
645 		unsigned long start, size_t len)
646 {
647 	struct vm_area_struct *vma;
648 	unsigned long count = 0;
649 
650 	if (mm == NULL)
651 		mm = current->mm;
652 
653 	vma = find_vma(mm, start);
654 	if (vma == NULL)
655 		vma = mm->mmap;
656 
657 	for (; vma ; vma = vma->vm_next) {
658 		if (start >= vma->vm_end)
659 			continue;
660 		if (start + len <=  vma->vm_start)
661 			break;
662 		if (vma->vm_flags & VM_LOCKED) {
663 			if (start > vma->vm_start)
664 				count -= (start - vma->vm_start);
665 			if (start + len < vma->vm_end) {
666 				count += start + len - vma->vm_start;
667 				break;
668 			}
669 			count += vma->vm_end - vma->vm_start;
670 		}
671 	}
672 
673 	return count >> PAGE_SHIFT;
674 }
675 
676 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
677 {
678 	unsigned long locked;
679 	unsigned long lock_limit;
680 	int error = -ENOMEM;
681 
682 	start = untagged_addr(start);
683 
684 	if (!can_do_mlock())
685 		return -EPERM;
686 
687 	len = PAGE_ALIGN(len + (offset_in_page(start)));
688 	start &= PAGE_MASK;
689 
690 	lock_limit = rlimit(RLIMIT_MEMLOCK);
691 	lock_limit >>= PAGE_SHIFT;
692 	locked = len >> PAGE_SHIFT;
693 
694 	if (mmap_write_lock_killable(current->mm))
695 		return -EINTR;
696 
697 	locked += current->mm->locked_vm;
698 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
699 		/*
700 		 * It is possible that the regions requested intersect with
701 		 * previously mlocked areas, that part area in "mm->locked_vm"
702 		 * should not be counted to new mlock increment count. So check
703 		 * and adjust locked count if necessary.
704 		 */
705 		locked -= count_mm_mlocked_page_nr(current->mm,
706 				start, len);
707 	}
708 
709 	/* check against resource limits */
710 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
711 		error = apply_vma_lock_flags(start, len, flags);
712 
713 	mmap_write_unlock(current->mm);
714 	if (error)
715 		return error;
716 
717 	error = __mm_populate(start, len, 0);
718 	if (error)
719 		return __mlock_posix_error_return(error);
720 	return 0;
721 }
722 
723 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
724 {
725 	return do_mlock(start, len, VM_LOCKED);
726 }
727 
728 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
729 {
730 	vm_flags_t vm_flags = VM_LOCKED;
731 
732 	if (flags & ~MLOCK_ONFAULT)
733 		return -EINVAL;
734 
735 	if (flags & MLOCK_ONFAULT)
736 		vm_flags |= VM_LOCKONFAULT;
737 
738 	return do_mlock(start, len, vm_flags);
739 }
740 
741 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
742 {
743 	int ret;
744 
745 	start = untagged_addr(start);
746 
747 	len = PAGE_ALIGN(len + (offset_in_page(start)));
748 	start &= PAGE_MASK;
749 
750 	if (mmap_write_lock_killable(current->mm))
751 		return -EINTR;
752 	ret = apply_vma_lock_flags(start, len, 0);
753 	mmap_write_unlock(current->mm);
754 
755 	return ret;
756 }
757 
758 /*
759  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
760  * and translate into the appropriate modifications to mm->def_flags and/or the
761  * flags for all current VMAs.
762  *
763  * There are a couple of subtleties with this.  If mlockall() is called multiple
764  * times with different flags, the values do not necessarily stack.  If mlockall
765  * is called once including the MCL_FUTURE flag and then a second time without
766  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
767  */
768 static int apply_mlockall_flags(int flags)
769 {
770 	struct vm_area_struct * vma, * prev = NULL;
771 	vm_flags_t to_add = 0;
772 
773 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
774 	if (flags & MCL_FUTURE) {
775 		current->mm->def_flags |= VM_LOCKED;
776 
777 		if (flags & MCL_ONFAULT)
778 			current->mm->def_flags |= VM_LOCKONFAULT;
779 
780 		if (!(flags & MCL_CURRENT))
781 			goto out;
782 	}
783 
784 	if (flags & MCL_CURRENT) {
785 		to_add |= VM_LOCKED;
786 		if (flags & MCL_ONFAULT)
787 			to_add |= VM_LOCKONFAULT;
788 	}
789 
790 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
791 		vm_flags_t newflags;
792 
793 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
794 		newflags |= to_add;
795 
796 		/* Ignore errors */
797 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
798 		cond_resched();
799 	}
800 out:
801 	return 0;
802 }
803 
804 SYSCALL_DEFINE1(mlockall, int, flags)
805 {
806 	unsigned long lock_limit;
807 	int ret;
808 
809 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
810 	    flags == MCL_ONFAULT)
811 		return -EINVAL;
812 
813 	if (!can_do_mlock())
814 		return -EPERM;
815 
816 	lock_limit = rlimit(RLIMIT_MEMLOCK);
817 	lock_limit >>= PAGE_SHIFT;
818 
819 	if (mmap_write_lock_killable(current->mm))
820 		return -EINTR;
821 
822 	ret = -ENOMEM;
823 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
824 	    capable(CAP_IPC_LOCK))
825 		ret = apply_mlockall_flags(flags);
826 	mmap_write_unlock(current->mm);
827 	if (!ret && (flags & MCL_CURRENT))
828 		mm_populate(0, TASK_SIZE);
829 
830 	return ret;
831 }
832 
833 SYSCALL_DEFINE0(munlockall)
834 {
835 	int ret;
836 
837 	if (mmap_write_lock_killable(current->mm))
838 		return -EINTR;
839 	ret = apply_mlockall_flags(0);
840 	mmap_write_unlock(current->mm);
841 	return ret;
842 }
843 
844 /*
845  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
846  * shm segments) get accounted against the user_struct instead.
847  */
848 static DEFINE_SPINLOCK(shmlock_user_lock);
849 
850 int user_shm_lock(size_t size, struct user_struct *user)
851 {
852 	unsigned long lock_limit, locked;
853 	int allowed = 0;
854 
855 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
856 	lock_limit = rlimit(RLIMIT_MEMLOCK);
857 	if (lock_limit == RLIM_INFINITY)
858 		allowed = 1;
859 	lock_limit >>= PAGE_SHIFT;
860 	spin_lock(&shmlock_user_lock);
861 	if (!allowed &&
862 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
863 		goto out;
864 	get_uid(user);
865 	user->locked_shm += locked;
866 	allowed = 1;
867 out:
868 	spin_unlock(&shmlock_user_lock);
869 	return allowed;
870 }
871 
872 void user_shm_unlock(size_t size, struct user_struct *user)
873 {
874 	spin_lock(&shmlock_user_lock);
875 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
876 	spin_unlock(&shmlock_user_lock);
877 	free_uid(user);
878 }
879