1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 27 #include "internal.h" 28 29 bool can_do_mlock(void) 30 { 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return true; 33 if (capable(CAP_IPC_LOCK)) 34 return true; 35 return false; 36 } 37 EXPORT_SYMBOL(can_do_mlock); 38 39 /* 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing 41 * in vmscan and, possibly, the fault path; and to support semi-accurate 42 * statistics. 43 * 44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 46 * The unevictable list is an LRU sibling list to the [in]active lists. 47 * PageUnevictable is set to indicate the unevictable state. 48 * 49 * When lazy mlocking via vmscan, it is important to ensure that the 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 51 * may have mlocked a page that is being munlocked. So lazy mlock must take 52 * the mmap_sem for read, and verify that the vma really is locked 53 * (see mm/rmap.c). 54 */ 55 56 /* 57 * LRU accounting for clear_page_mlock() 58 */ 59 void clear_page_mlock(struct page *page) 60 { 61 if (!TestClearPageMlocked(page)) 62 return; 63 64 mod_zone_page_state(page_zone(page), NR_MLOCK, 65 -hpage_nr_pages(page)); 66 count_vm_event(UNEVICTABLE_PGCLEARED); 67 if (!isolate_lru_page(page)) { 68 putback_lru_page(page); 69 } else { 70 /* 71 * We lost the race. the page already moved to evictable list. 72 */ 73 if (PageUnevictable(page)) 74 count_vm_event(UNEVICTABLE_PGSTRANDED); 75 } 76 } 77 78 /* 79 * Mark page as mlocked if not already. 80 * If page on LRU, isolate and putback to move to unevictable list. 81 */ 82 void mlock_vma_page(struct page *page) 83 { 84 /* Serialize with page migration */ 85 BUG_ON(!PageLocked(page)); 86 87 VM_BUG_ON_PAGE(PageTail(page), page); 88 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 89 90 if (!TestSetPageMlocked(page)) { 91 mod_zone_page_state(page_zone(page), NR_MLOCK, 92 hpage_nr_pages(page)); 93 count_vm_event(UNEVICTABLE_PGMLOCKED); 94 if (!isolate_lru_page(page)) 95 putback_lru_page(page); 96 } 97 } 98 99 /* 100 * Isolate a page from LRU with optional get_page() pin. 101 * Assumes lru_lock already held and page already pinned. 102 */ 103 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 104 { 105 if (PageLRU(page)) { 106 struct lruvec *lruvec; 107 108 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 109 if (getpage) 110 get_page(page); 111 ClearPageLRU(page); 112 del_page_from_lru_list(page, lruvec, page_lru(page)); 113 return true; 114 } 115 116 return false; 117 } 118 119 /* 120 * Finish munlock after successful page isolation 121 * 122 * Page must be locked. This is a wrapper for try_to_munlock() 123 * and putback_lru_page() with munlock accounting. 124 */ 125 static void __munlock_isolated_page(struct page *page) 126 { 127 /* 128 * Optimization: if the page was mapped just once, that's our mapping 129 * and we don't need to check all the other vmas. 130 */ 131 if (page_mapcount(page) > 1) 132 try_to_munlock(page); 133 134 /* Did try_to_unlock() succeed or punt? */ 135 if (!PageMlocked(page)) 136 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 137 138 putback_lru_page(page); 139 } 140 141 /* 142 * Accounting for page isolation fail during munlock 143 * 144 * Performs accounting when page isolation fails in munlock. There is nothing 145 * else to do because it means some other task has already removed the page 146 * from the LRU. putback_lru_page() will take care of removing the page from 147 * the unevictable list, if necessary. vmscan [page_referenced()] will move 148 * the page back to the unevictable list if some other vma has it mlocked. 149 */ 150 static void __munlock_isolation_failed(struct page *page) 151 { 152 if (PageUnevictable(page)) 153 __count_vm_event(UNEVICTABLE_PGSTRANDED); 154 else 155 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 156 } 157 158 /** 159 * munlock_vma_page - munlock a vma page 160 * @page - page to be unlocked, either a normal page or THP page head 161 * 162 * returns the size of the page as a page mask (0 for normal page, 163 * HPAGE_PMD_NR - 1 for THP head page) 164 * 165 * called from munlock()/munmap() path with page supposedly on the LRU. 166 * When we munlock a page, because the vma where we found the page is being 167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 168 * page locked so that we can leave it on the unevictable lru list and not 169 * bother vmscan with it. However, to walk the page's rmap list in 170 * try_to_munlock() we must isolate the page from the LRU. If some other 171 * task has removed the page from the LRU, we won't be able to do that. 172 * So we clear the PageMlocked as we might not get another chance. If we 173 * can't isolate the page, we leave it for putback_lru_page() and vmscan 174 * [page_referenced()/try_to_unmap()] to deal with. 175 */ 176 unsigned int munlock_vma_page(struct page *page) 177 { 178 int nr_pages; 179 struct zone *zone = page_zone(page); 180 181 /* For try_to_munlock() and to serialize with page migration */ 182 BUG_ON(!PageLocked(page)); 183 184 VM_BUG_ON_PAGE(PageTail(page), page); 185 186 /* 187 * Serialize with any parallel __split_huge_page_refcount() which 188 * might otherwise copy PageMlocked to part of the tail pages before 189 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 190 */ 191 spin_lock_irq(zone_lru_lock(zone)); 192 193 if (!TestClearPageMlocked(page)) { 194 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 195 nr_pages = 1; 196 goto unlock_out; 197 } 198 199 nr_pages = hpage_nr_pages(page); 200 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 201 202 if (__munlock_isolate_lru_page(page, true)) { 203 spin_unlock_irq(zone_lru_lock(zone)); 204 __munlock_isolated_page(page); 205 goto out; 206 } 207 __munlock_isolation_failed(page); 208 209 unlock_out: 210 spin_unlock_irq(zone_lru_lock(zone)); 211 212 out: 213 return nr_pages - 1; 214 } 215 216 /* 217 * convert get_user_pages() return value to posix mlock() error 218 */ 219 static int __mlock_posix_error_return(long retval) 220 { 221 if (retval == -EFAULT) 222 retval = -ENOMEM; 223 else if (retval == -ENOMEM) 224 retval = -EAGAIN; 225 return retval; 226 } 227 228 /* 229 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 230 * 231 * The fast path is available only for evictable pages with single mapping. 232 * Then we can bypass the per-cpu pvec and get better performance. 233 * when mapcount > 1 we need try_to_munlock() which can fail. 234 * when !page_evictable(), we need the full redo logic of putback_lru_page to 235 * avoid leaving evictable page in unevictable list. 236 * 237 * In case of success, @page is added to @pvec and @pgrescued is incremented 238 * in case that the page was previously unevictable. @page is also unlocked. 239 */ 240 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 241 int *pgrescued) 242 { 243 VM_BUG_ON_PAGE(PageLRU(page), page); 244 VM_BUG_ON_PAGE(!PageLocked(page), page); 245 246 if (page_mapcount(page) <= 1 && page_evictable(page)) { 247 pagevec_add(pvec, page); 248 if (TestClearPageUnevictable(page)) 249 (*pgrescued)++; 250 unlock_page(page); 251 return true; 252 } 253 254 return false; 255 } 256 257 /* 258 * Putback multiple evictable pages to the LRU 259 * 260 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 261 * the pages might have meanwhile become unevictable but that is OK. 262 */ 263 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 264 { 265 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 266 /* 267 *__pagevec_lru_add() calls release_pages() so we don't call 268 * put_page() explicitly 269 */ 270 __pagevec_lru_add(pvec); 271 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 272 } 273 274 /* 275 * Munlock a batch of pages from the same zone 276 * 277 * The work is split to two main phases. First phase clears the Mlocked flag 278 * and attempts to isolate the pages, all under a single zone lru lock. 279 * The second phase finishes the munlock only for pages where isolation 280 * succeeded. 281 * 282 * Note that the pagevec may be modified during the process. 283 */ 284 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 285 { 286 int i; 287 int nr = pagevec_count(pvec); 288 int delta_munlocked = -nr; 289 struct pagevec pvec_putback; 290 int pgrescued = 0; 291 292 pagevec_init(&pvec_putback); 293 294 /* Phase 1: page isolation */ 295 spin_lock_irq(zone_lru_lock(zone)); 296 for (i = 0; i < nr; i++) { 297 struct page *page = pvec->pages[i]; 298 299 if (TestClearPageMlocked(page)) { 300 /* 301 * We already have pin from follow_page_mask() 302 * so we can spare the get_page() here. 303 */ 304 if (__munlock_isolate_lru_page(page, false)) 305 continue; 306 else 307 __munlock_isolation_failed(page); 308 } else { 309 delta_munlocked++; 310 } 311 312 /* 313 * We won't be munlocking this page in the next phase 314 * but we still need to release the follow_page_mask() 315 * pin. We cannot do it under lru_lock however. If it's 316 * the last pin, __page_cache_release() would deadlock. 317 */ 318 pagevec_add(&pvec_putback, pvec->pages[i]); 319 pvec->pages[i] = NULL; 320 } 321 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 322 spin_unlock_irq(zone_lru_lock(zone)); 323 324 /* Now we can release pins of pages that we are not munlocking */ 325 pagevec_release(&pvec_putback); 326 327 /* Phase 2: page munlock */ 328 for (i = 0; i < nr; i++) { 329 struct page *page = pvec->pages[i]; 330 331 if (page) { 332 lock_page(page); 333 if (!__putback_lru_fast_prepare(page, &pvec_putback, 334 &pgrescued)) { 335 /* 336 * Slow path. We don't want to lose the last 337 * pin before unlock_page() 338 */ 339 get_page(page); /* for putback_lru_page() */ 340 __munlock_isolated_page(page); 341 unlock_page(page); 342 put_page(page); /* from follow_page_mask() */ 343 } 344 } 345 } 346 347 /* 348 * Phase 3: page putback for pages that qualified for the fast path 349 * This will also call put_page() to return pin from follow_page_mask() 350 */ 351 if (pagevec_count(&pvec_putback)) 352 __putback_lru_fast(&pvec_putback, pgrescued); 353 } 354 355 /* 356 * Fill up pagevec for __munlock_pagevec using pte walk 357 * 358 * The function expects that the struct page corresponding to @start address is 359 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 360 * 361 * The rest of @pvec is filled by subsequent pages within the same pmd and same 362 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 363 * pages also get pinned. 364 * 365 * Returns the address of the next page that should be scanned. This equals 366 * @start + PAGE_SIZE when no page could be added by the pte walk. 367 */ 368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 369 struct vm_area_struct *vma, struct zone *zone, 370 unsigned long start, unsigned long end) 371 { 372 pte_t *pte; 373 spinlock_t *ptl; 374 375 /* 376 * Initialize pte walk starting at the already pinned page where we 377 * are sure that there is a pte, as it was pinned under the same 378 * mmap_sem write op. 379 */ 380 pte = get_locked_pte(vma->vm_mm, start, &ptl); 381 /* Make sure we do not cross the page table boundary */ 382 end = pgd_addr_end(start, end); 383 end = p4d_addr_end(start, end); 384 end = pud_addr_end(start, end); 385 end = pmd_addr_end(start, end); 386 387 /* The page next to the pinned page is the first we will try to get */ 388 start += PAGE_SIZE; 389 while (start < end) { 390 struct page *page = NULL; 391 pte++; 392 if (pte_present(*pte)) 393 page = vm_normal_page(vma, start, *pte); 394 /* 395 * Break if page could not be obtained or the page's node+zone does not 396 * match 397 */ 398 if (!page || page_zone(page) != zone) 399 break; 400 401 /* 402 * Do not use pagevec for PTE-mapped THP, 403 * munlock_vma_pages_range() will handle them. 404 */ 405 if (PageTransCompound(page)) 406 break; 407 408 get_page(page); 409 /* 410 * Increase the address that will be returned *before* the 411 * eventual break due to pvec becoming full by adding the page 412 */ 413 start += PAGE_SIZE; 414 if (pagevec_add(pvec, page) == 0) 415 break; 416 } 417 pte_unmap_unlock(pte, ptl); 418 return start; 419 } 420 421 /* 422 * munlock_vma_pages_range() - munlock all pages in the vma range.' 423 * @vma - vma containing range to be munlock()ed. 424 * @start - start address in @vma of the range 425 * @end - end of range in @vma. 426 * 427 * For mremap(), munmap() and exit(). 428 * 429 * Called with @vma VM_LOCKED. 430 * 431 * Returns with VM_LOCKED cleared. Callers must be prepared to 432 * deal with this. 433 * 434 * We don't save and restore VM_LOCKED here because pages are 435 * still on lru. In unmap path, pages might be scanned by reclaim 436 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 437 * free them. This will result in freeing mlocked pages. 438 */ 439 void munlock_vma_pages_range(struct vm_area_struct *vma, 440 unsigned long start, unsigned long end) 441 { 442 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 443 444 while (start < end) { 445 struct page *page; 446 unsigned int page_mask = 0; 447 unsigned long page_increm; 448 struct pagevec pvec; 449 struct zone *zone; 450 451 pagevec_init(&pvec); 452 /* 453 * Although FOLL_DUMP is intended for get_dump_page(), 454 * it just so happens that its special treatment of the 455 * ZERO_PAGE (returning an error instead of doing get_page) 456 * suits munlock very well (and if somehow an abnormal page 457 * has sneaked into the range, we won't oops here: great). 458 */ 459 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 460 461 if (page && !IS_ERR(page)) { 462 if (PageTransTail(page)) { 463 VM_BUG_ON_PAGE(PageMlocked(page), page); 464 put_page(page); /* follow_page_mask() */ 465 } else if (PageTransHuge(page)) { 466 lock_page(page); 467 /* 468 * Any THP page found by follow_page_mask() may 469 * have gotten split before reaching 470 * munlock_vma_page(), so we need to compute 471 * the page_mask here instead. 472 */ 473 page_mask = munlock_vma_page(page); 474 unlock_page(page); 475 put_page(page); /* follow_page_mask() */ 476 } else { 477 /* 478 * Non-huge pages are handled in batches via 479 * pagevec. The pin from follow_page_mask() 480 * prevents them from collapsing by THP. 481 */ 482 pagevec_add(&pvec, page); 483 zone = page_zone(page); 484 485 /* 486 * Try to fill the rest of pagevec using fast 487 * pte walk. This will also update start to 488 * the next page to process. Then munlock the 489 * pagevec. 490 */ 491 start = __munlock_pagevec_fill(&pvec, vma, 492 zone, start, end); 493 __munlock_pagevec(&pvec, zone); 494 goto next; 495 } 496 } 497 page_increm = 1 + page_mask; 498 start += page_increm * PAGE_SIZE; 499 next: 500 cond_resched(); 501 } 502 } 503 504 /* 505 * mlock_fixup - handle mlock[all]/munlock[all] requests. 506 * 507 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 508 * munlock is a no-op. However, for some special vmas, we go ahead and 509 * populate the ptes. 510 * 511 * For vmas that pass the filters, merge/split as appropriate. 512 */ 513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 514 unsigned long start, unsigned long end, vm_flags_t newflags) 515 { 516 struct mm_struct *mm = vma->vm_mm; 517 pgoff_t pgoff; 518 int nr_pages; 519 int ret = 0; 520 int lock = !!(newflags & VM_LOCKED); 521 vm_flags_t old_flags = vma->vm_flags; 522 523 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 524 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 525 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 526 goto out; 527 528 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 529 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 530 vma->vm_file, pgoff, vma_policy(vma), 531 vma->vm_userfaultfd_ctx); 532 if (*prev) { 533 vma = *prev; 534 goto success; 535 } 536 537 if (start != vma->vm_start) { 538 ret = split_vma(mm, vma, start, 1); 539 if (ret) 540 goto out; 541 } 542 543 if (end != vma->vm_end) { 544 ret = split_vma(mm, vma, end, 0); 545 if (ret) 546 goto out; 547 } 548 549 success: 550 /* 551 * Keep track of amount of locked VM. 552 */ 553 nr_pages = (end - start) >> PAGE_SHIFT; 554 if (!lock) 555 nr_pages = -nr_pages; 556 else if (old_flags & VM_LOCKED) 557 nr_pages = 0; 558 mm->locked_vm += nr_pages; 559 560 /* 561 * vm_flags is protected by the mmap_sem held in write mode. 562 * It's okay if try_to_unmap_one unmaps a page just after we 563 * set VM_LOCKED, populate_vma_page_range will bring it back. 564 */ 565 566 if (lock) 567 vma->vm_flags = newflags; 568 else 569 munlock_vma_pages_range(vma, start, end); 570 571 out: 572 *prev = vma; 573 return ret; 574 } 575 576 static int apply_vma_lock_flags(unsigned long start, size_t len, 577 vm_flags_t flags) 578 { 579 unsigned long nstart, end, tmp; 580 struct vm_area_struct * vma, * prev; 581 int error; 582 583 VM_BUG_ON(offset_in_page(start)); 584 VM_BUG_ON(len != PAGE_ALIGN(len)); 585 end = start + len; 586 if (end < start) 587 return -EINVAL; 588 if (end == start) 589 return 0; 590 vma = find_vma(current->mm, start); 591 if (!vma || vma->vm_start > start) 592 return -ENOMEM; 593 594 prev = vma->vm_prev; 595 if (start > vma->vm_start) 596 prev = vma; 597 598 for (nstart = start ; ; ) { 599 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 600 601 newflags |= flags; 602 603 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 604 tmp = vma->vm_end; 605 if (tmp > end) 606 tmp = end; 607 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 608 if (error) 609 break; 610 nstart = tmp; 611 if (nstart < prev->vm_end) 612 nstart = prev->vm_end; 613 if (nstart >= end) 614 break; 615 616 vma = prev->vm_next; 617 if (!vma || vma->vm_start != nstart) { 618 error = -ENOMEM; 619 break; 620 } 621 } 622 return error; 623 } 624 625 /* 626 * Go through vma areas and sum size of mlocked 627 * vma pages, as return value. 628 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 629 * is also counted. 630 * Return value: previously mlocked page counts 631 */ 632 static int count_mm_mlocked_page_nr(struct mm_struct *mm, 633 unsigned long start, size_t len) 634 { 635 struct vm_area_struct *vma; 636 int count = 0; 637 638 if (mm == NULL) 639 mm = current->mm; 640 641 vma = find_vma(mm, start); 642 if (vma == NULL) 643 vma = mm->mmap; 644 645 for (; vma ; vma = vma->vm_next) { 646 if (start >= vma->vm_end) 647 continue; 648 if (start + len <= vma->vm_start) 649 break; 650 if (vma->vm_flags & VM_LOCKED) { 651 if (start > vma->vm_start) 652 count -= (start - vma->vm_start); 653 if (start + len < vma->vm_end) { 654 count += start + len - vma->vm_start; 655 break; 656 } 657 count += vma->vm_end - vma->vm_start; 658 } 659 } 660 661 return count >> PAGE_SHIFT; 662 } 663 664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 665 { 666 unsigned long locked; 667 unsigned long lock_limit; 668 int error = -ENOMEM; 669 670 if (!can_do_mlock()) 671 return -EPERM; 672 673 len = PAGE_ALIGN(len + (offset_in_page(start))); 674 start &= PAGE_MASK; 675 676 lock_limit = rlimit(RLIMIT_MEMLOCK); 677 lock_limit >>= PAGE_SHIFT; 678 locked = len >> PAGE_SHIFT; 679 680 if (down_write_killable(¤t->mm->mmap_sem)) 681 return -EINTR; 682 683 locked += current->mm->locked_vm; 684 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 685 /* 686 * It is possible that the regions requested intersect with 687 * previously mlocked areas, that part area in "mm->locked_vm" 688 * should not be counted to new mlock increment count. So check 689 * and adjust locked count if necessary. 690 */ 691 locked -= count_mm_mlocked_page_nr(current->mm, 692 start, len); 693 } 694 695 /* check against resource limits */ 696 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 697 error = apply_vma_lock_flags(start, len, flags); 698 699 up_write(¤t->mm->mmap_sem); 700 if (error) 701 return error; 702 703 error = __mm_populate(start, len, 0); 704 if (error) 705 return __mlock_posix_error_return(error); 706 return 0; 707 } 708 709 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 710 { 711 return do_mlock(start, len, VM_LOCKED); 712 } 713 714 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 715 { 716 vm_flags_t vm_flags = VM_LOCKED; 717 718 if (flags & ~MLOCK_ONFAULT) 719 return -EINVAL; 720 721 if (flags & MLOCK_ONFAULT) 722 vm_flags |= VM_LOCKONFAULT; 723 724 return do_mlock(start, len, vm_flags); 725 } 726 727 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 728 { 729 int ret; 730 731 len = PAGE_ALIGN(len + (offset_in_page(start))); 732 start &= PAGE_MASK; 733 734 if (down_write_killable(¤t->mm->mmap_sem)) 735 return -EINTR; 736 ret = apply_vma_lock_flags(start, len, 0); 737 up_write(¤t->mm->mmap_sem); 738 739 return ret; 740 } 741 742 /* 743 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 744 * and translate into the appropriate modifications to mm->def_flags and/or the 745 * flags for all current VMAs. 746 * 747 * There are a couple of subtleties with this. If mlockall() is called multiple 748 * times with different flags, the values do not necessarily stack. If mlockall 749 * is called once including the MCL_FUTURE flag and then a second time without 750 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 751 */ 752 static int apply_mlockall_flags(int flags) 753 { 754 struct vm_area_struct * vma, * prev = NULL; 755 vm_flags_t to_add = 0; 756 757 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 758 if (flags & MCL_FUTURE) { 759 current->mm->def_flags |= VM_LOCKED; 760 761 if (flags & MCL_ONFAULT) 762 current->mm->def_flags |= VM_LOCKONFAULT; 763 764 if (!(flags & MCL_CURRENT)) 765 goto out; 766 } 767 768 if (flags & MCL_CURRENT) { 769 to_add |= VM_LOCKED; 770 if (flags & MCL_ONFAULT) 771 to_add |= VM_LOCKONFAULT; 772 } 773 774 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 775 vm_flags_t newflags; 776 777 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 778 newflags |= to_add; 779 780 /* Ignore errors */ 781 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 782 cond_resched_rcu_qs(); 783 } 784 out: 785 return 0; 786 } 787 788 SYSCALL_DEFINE1(mlockall, int, flags) 789 { 790 unsigned long lock_limit; 791 int ret; 792 793 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) 794 return -EINVAL; 795 796 if (!can_do_mlock()) 797 return -EPERM; 798 799 lock_limit = rlimit(RLIMIT_MEMLOCK); 800 lock_limit >>= PAGE_SHIFT; 801 802 if (down_write_killable(¤t->mm->mmap_sem)) 803 return -EINTR; 804 805 ret = -ENOMEM; 806 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 807 capable(CAP_IPC_LOCK)) 808 ret = apply_mlockall_flags(flags); 809 up_write(¤t->mm->mmap_sem); 810 if (!ret && (flags & MCL_CURRENT)) 811 mm_populate(0, TASK_SIZE); 812 813 return ret; 814 } 815 816 SYSCALL_DEFINE0(munlockall) 817 { 818 int ret; 819 820 if (down_write_killable(¤t->mm->mmap_sem)) 821 return -EINTR; 822 ret = apply_mlockall_flags(0); 823 up_write(¤t->mm->mmap_sem); 824 return ret; 825 } 826 827 /* 828 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 829 * shm segments) get accounted against the user_struct instead. 830 */ 831 static DEFINE_SPINLOCK(shmlock_user_lock); 832 833 int user_shm_lock(size_t size, struct user_struct *user) 834 { 835 unsigned long lock_limit, locked; 836 int allowed = 0; 837 838 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 839 lock_limit = rlimit(RLIMIT_MEMLOCK); 840 if (lock_limit == RLIM_INFINITY) 841 allowed = 1; 842 lock_limit >>= PAGE_SHIFT; 843 spin_lock(&shmlock_user_lock); 844 if (!allowed && 845 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 846 goto out; 847 get_uid(user); 848 user->locked_shm += locked; 849 allowed = 1; 850 out: 851 spin_unlock(&shmlock_user_lock); 852 return allowed; 853 } 854 855 void user_shm_unlock(size_t size, struct user_struct *user) 856 { 857 spin_lock(&shmlock_user_lock); 858 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 859 spin_unlock(&shmlock_user_lock); 860 free_uid(user); 861 } 862