xref: /linux/mm/mlock.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/secretmem.h>
27 
28 #include "internal.h"
29 
30 bool can_do_mlock(void)
31 {
32 	if (rlimit(RLIMIT_MEMLOCK) != 0)
33 		return true;
34 	if (capable(CAP_IPC_LOCK))
35 		return true;
36 	return false;
37 }
38 EXPORT_SYMBOL(can_do_mlock);
39 
40 /*
41  * Mlocked pages are marked with PageMlocked() flag for efficient testing
42  * in vmscan and, possibly, the fault path; and to support semi-accurate
43  * statistics.
44  *
45  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
46  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47  * The unevictable list is an LRU sibling list to the [in]active lists.
48  * PageUnevictable is set to indicate the unevictable state.
49  *
50  * When lazy mlocking via vmscan, it is important to ensure that the
51  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52  * may have mlocked a page that is being munlocked. So lazy mlock must take
53  * the mmap_lock for read, and verify that the vma really is locked
54  * (see mm/rmap.c).
55  */
56 
57 /*
58  *  LRU accounting for clear_page_mlock()
59  */
60 void clear_page_mlock(struct page *page)
61 {
62 	int nr_pages;
63 
64 	if (!TestClearPageMlocked(page))
65 		return;
66 
67 	nr_pages = thp_nr_pages(page);
68 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
70 	/*
71 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 	 * in __pagevec_lru_add_fn().
73 	 *
74 	 * See __pagevec_lru_add_fn for more explanation.
75 	 */
76 	if (!isolate_lru_page(page)) {
77 		putback_lru_page(page);
78 	} else {
79 		/*
80 		 * We lost the race. the page already moved to evictable list.
81 		 */
82 		if (PageUnevictable(page))
83 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
84 	}
85 }
86 
87 /*
88  * Mark page as mlocked if not already.
89  * If page on LRU, isolate and putback to move to unevictable list.
90  */
91 void mlock_vma_page(struct page *page)
92 {
93 	/* Serialize with page migration */
94 	BUG_ON(!PageLocked(page));
95 
96 	VM_BUG_ON_PAGE(PageTail(page), page);
97 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98 
99 	if (!TestSetPageMlocked(page)) {
100 		int nr_pages = thp_nr_pages(page);
101 
102 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 		if (!isolate_lru_page(page))
105 			putback_lru_page(page);
106 	}
107 }
108 
109 /*
110  * Finish munlock after successful page isolation
111  *
112  * Page must be locked. This is a wrapper for page_mlock()
113  * and putback_lru_page() with munlock accounting.
114  */
115 static void __munlock_isolated_page(struct page *page)
116 {
117 	/*
118 	 * Optimization: if the page was mapped just once, that's our mapping
119 	 * and we don't need to check all the other vmas.
120 	 */
121 	if (page_mapcount(page) > 1)
122 		page_mlock(page);
123 
124 	/* Did try_to_unlock() succeed or punt? */
125 	if (!PageMlocked(page))
126 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
127 
128 	putback_lru_page(page);
129 }
130 
131 /*
132  * Accounting for page isolation fail during munlock
133  *
134  * Performs accounting when page isolation fails in munlock. There is nothing
135  * else to do because it means some other task has already removed the page
136  * from the LRU. putback_lru_page() will take care of removing the page from
137  * the unevictable list, if necessary. vmscan [page_referenced()] will move
138  * the page back to the unevictable list if some other vma has it mlocked.
139  */
140 static void __munlock_isolation_failed(struct page *page)
141 {
142 	int nr_pages = thp_nr_pages(page);
143 
144 	if (PageUnevictable(page))
145 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
146 	else
147 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
148 }
149 
150 /**
151  * munlock_vma_page - munlock a vma page
152  * @page: page to be unlocked, either a normal page or THP page head
153  *
154  * returns the size of the page as a page mask (0 for normal page,
155  *         HPAGE_PMD_NR - 1 for THP head page)
156  *
157  * called from munlock()/munmap() path with page supposedly on the LRU.
158  * When we munlock a page, because the vma where we found the page is being
159  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
160  * page locked so that we can leave it on the unevictable lru list and not
161  * bother vmscan with it.  However, to walk the page's rmap list in
162  * page_mlock() we must isolate the page from the LRU.  If some other
163  * task has removed the page from the LRU, we won't be able to do that.
164  * So we clear the PageMlocked as we might not get another chance.  If we
165  * can't isolate the page, we leave it for putback_lru_page() and vmscan
166  * [page_referenced()/try_to_unmap()] to deal with.
167  */
168 unsigned int munlock_vma_page(struct page *page)
169 {
170 	int nr_pages;
171 
172 	/* For page_mlock() and to serialize with page migration */
173 	BUG_ON(!PageLocked(page));
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 
176 	if (!TestClearPageMlocked(page)) {
177 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
178 		return 0;
179 	}
180 
181 	nr_pages = thp_nr_pages(page);
182 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
183 
184 	if (!isolate_lru_page(page))
185 		__munlock_isolated_page(page);
186 	else
187 		__munlock_isolation_failed(page);
188 
189 	return nr_pages - 1;
190 }
191 
192 /*
193  * convert get_user_pages() return value to posix mlock() error
194  */
195 static int __mlock_posix_error_return(long retval)
196 {
197 	if (retval == -EFAULT)
198 		retval = -ENOMEM;
199 	else if (retval == -ENOMEM)
200 		retval = -EAGAIN;
201 	return retval;
202 }
203 
204 /*
205  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
206  *
207  * The fast path is available only for evictable pages with single mapping.
208  * Then we can bypass the per-cpu pvec and get better performance.
209  * when mapcount > 1 we need page_mlock() which can fail.
210  * when !page_evictable(), we need the full redo logic of putback_lru_page to
211  * avoid leaving evictable page in unevictable list.
212  *
213  * In case of success, @page is added to @pvec and @pgrescued is incremented
214  * in case that the page was previously unevictable. @page is also unlocked.
215  */
216 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
217 		int *pgrescued)
218 {
219 	VM_BUG_ON_PAGE(PageLRU(page), page);
220 	VM_BUG_ON_PAGE(!PageLocked(page), page);
221 
222 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
223 		pagevec_add(pvec, page);
224 		if (TestClearPageUnevictable(page))
225 			(*pgrescued)++;
226 		unlock_page(page);
227 		return true;
228 	}
229 
230 	return false;
231 }
232 
233 /*
234  * Putback multiple evictable pages to the LRU
235  *
236  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
237  * the pages might have meanwhile become unevictable but that is OK.
238  */
239 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
240 {
241 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
242 	/*
243 	 *__pagevec_lru_add() calls release_pages() so we don't call
244 	 * put_page() explicitly
245 	 */
246 	__pagevec_lru_add(pvec);
247 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
248 }
249 
250 /*
251  * Munlock a batch of pages from the same zone
252  *
253  * The work is split to two main phases. First phase clears the Mlocked flag
254  * and attempts to isolate the pages, all under a single zone lru lock.
255  * The second phase finishes the munlock only for pages where isolation
256  * succeeded.
257  *
258  * Note that the pagevec may be modified during the process.
259  */
260 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
261 {
262 	int i;
263 	int nr = pagevec_count(pvec);
264 	int delta_munlocked = -nr;
265 	struct pagevec pvec_putback;
266 	struct lruvec *lruvec = NULL;
267 	int pgrescued = 0;
268 
269 	pagevec_init(&pvec_putback);
270 
271 	/* Phase 1: page isolation */
272 	for (i = 0; i < nr; i++) {
273 		struct page *page = pvec->pages[i];
274 
275 		if (TestClearPageMlocked(page)) {
276 			/*
277 			 * We already have pin from follow_page_mask()
278 			 * so we can spare the get_page() here.
279 			 */
280 			if (TestClearPageLRU(page)) {
281 				lruvec = relock_page_lruvec_irq(page, lruvec);
282 				del_page_from_lru_list(page, lruvec);
283 				continue;
284 			} else
285 				__munlock_isolation_failed(page);
286 		} else {
287 			delta_munlocked++;
288 		}
289 
290 		/*
291 		 * We won't be munlocking this page in the next phase
292 		 * but we still need to release the follow_page_mask()
293 		 * pin. We cannot do it under lru_lock however. If it's
294 		 * the last pin, __page_cache_release() would deadlock.
295 		 */
296 		pagevec_add(&pvec_putback, pvec->pages[i]);
297 		pvec->pages[i] = NULL;
298 	}
299 	if (lruvec) {
300 		__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
301 		unlock_page_lruvec_irq(lruvec);
302 	} else if (delta_munlocked) {
303 		mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
304 	}
305 
306 	/* Now we can release pins of pages that we are not munlocking */
307 	pagevec_release(&pvec_putback);
308 
309 	/* Phase 2: page munlock */
310 	for (i = 0; i < nr; i++) {
311 		struct page *page = pvec->pages[i];
312 
313 		if (page) {
314 			lock_page(page);
315 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
316 					&pgrescued)) {
317 				/*
318 				 * Slow path. We don't want to lose the last
319 				 * pin before unlock_page()
320 				 */
321 				get_page(page); /* for putback_lru_page() */
322 				__munlock_isolated_page(page);
323 				unlock_page(page);
324 				put_page(page); /* from follow_page_mask() */
325 			}
326 		}
327 	}
328 
329 	/*
330 	 * Phase 3: page putback for pages that qualified for the fast path
331 	 * This will also call put_page() to return pin from follow_page_mask()
332 	 */
333 	if (pagevec_count(&pvec_putback))
334 		__putback_lru_fast(&pvec_putback, pgrescued);
335 }
336 
337 /*
338  * Fill up pagevec for __munlock_pagevec using pte walk
339  *
340  * The function expects that the struct page corresponding to @start address is
341  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
342  *
343  * The rest of @pvec is filled by subsequent pages within the same pmd and same
344  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
345  * pages also get pinned.
346  *
347  * Returns the address of the next page that should be scanned. This equals
348  * @start + PAGE_SIZE when no page could be added by the pte walk.
349  */
350 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
351 			struct vm_area_struct *vma, struct zone *zone,
352 			unsigned long start, unsigned long end)
353 {
354 	pte_t *pte;
355 	spinlock_t *ptl;
356 
357 	/*
358 	 * Initialize pte walk starting at the already pinned page where we
359 	 * are sure that there is a pte, as it was pinned under the same
360 	 * mmap_lock write op.
361 	 */
362 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
363 	/* Make sure we do not cross the page table boundary */
364 	end = pgd_addr_end(start, end);
365 	end = p4d_addr_end(start, end);
366 	end = pud_addr_end(start, end);
367 	end = pmd_addr_end(start, end);
368 
369 	/* The page next to the pinned page is the first we will try to get */
370 	start += PAGE_SIZE;
371 	while (start < end) {
372 		struct page *page = NULL;
373 		pte++;
374 		if (pte_present(*pte))
375 			page = vm_normal_page(vma, start, *pte);
376 		/*
377 		 * Break if page could not be obtained or the page's node+zone does not
378 		 * match
379 		 */
380 		if (!page || page_zone(page) != zone)
381 			break;
382 
383 		/*
384 		 * Do not use pagevec for PTE-mapped THP,
385 		 * munlock_vma_pages_range() will handle them.
386 		 */
387 		if (PageTransCompound(page))
388 			break;
389 
390 		get_page(page);
391 		/*
392 		 * Increase the address that will be returned *before* the
393 		 * eventual break due to pvec becoming full by adding the page
394 		 */
395 		start += PAGE_SIZE;
396 		if (pagevec_add(pvec, page) == 0)
397 			break;
398 	}
399 	pte_unmap_unlock(pte, ptl);
400 	return start;
401 }
402 
403 /*
404  * munlock_vma_pages_range() - munlock all pages in the vma range.'
405  * @vma - vma containing range to be munlock()ed.
406  * @start - start address in @vma of the range
407  * @end - end of range in @vma.
408  *
409  *  For mremap(), munmap() and exit().
410  *
411  * Called with @vma VM_LOCKED.
412  *
413  * Returns with VM_LOCKED cleared.  Callers must be prepared to
414  * deal with this.
415  *
416  * We don't save and restore VM_LOCKED here because pages are
417  * still on lru.  In unmap path, pages might be scanned by reclaim
418  * and re-mlocked by page_mlock/try_to_unmap before we unmap and
419  * free them.  This will result in freeing mlocked pages.
420  */
421 void munlock_vma_pages_range(struct vm_area_struct *vma,
422 			     unsigned long start, unsigned long end)
423 {
424 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
425 
426 	while (start < end) {
427 		struct page *page;
428 		unsigned int page_mask = 0;
429 		unsigned long page_increm;
430 		struct pagevec pvec;
431 		struct zone *zone;
432 
433 		pagevec_init(&pvec);
434 		/*
435 		 * Although FOLL_DUMP is intended for get_dump_page(),
436 		 * it just so happens that its special treatment of the
437 		 * ZERO_PAGE (returning an error instead of doing get_page)
438 		 * suits munlock very well (and if somehow an abnormal page
439 		 * has sneaked into the range, we won't oops here: great).
440 		 */
441 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
442 
443 		if (page && !IS_ERR(page)) {
444 			if (PageTransTail(page)) {
445 				VM_BUG_ON_PAGE(PageMlocked(page), page);
446 				put_page(page); /* follow_page_mask() */
447 			} else if (PageTransHuge(page)) {
448 				lock_page(page);
449 				/*
450 				 * Any THP page found by follow_page_mask() may
451 				 * have gotten split before reaching
452 				 * munlock_vma_page(), so we need to compute
453 				 * the page_mask here instead.
454 				 */
455 				page_mask = munlock_vma_page(page);
456 				unlock_page(page);
457 				put_page(page); /* follow_page_mask() */
458 			} else {
459 				/*
460 				 * Non-huge pages are handled in batches via
461 				 * pagevec. The pin from follow_page_mask()
462 				 * prevents them from collapsing by THP.
463 				 */
464 				pagevec_add(&pvec, page);
465 				zone = page_zone(page);
466 
467 				/*
468 				 * Try to fill the rest of pagevec using fast
469 				 * pte walk. This will also update start to
470 				 * the next page to process. Then munlock the
471 				 * pagevec.
472 				 */
473 				start = __munlock_pagevec_fill(&pvec, vma,
474 						zone, start, end);
475 				__munlock_pagevec(&pvec, zone);
476 				goto next;
477 			}
478 		}
479 		page_increm = 1 + page_mask;
480 		start += page_increm * PAGE_SIZE;
481 next:
482 		cond_resched();
483 	}
484 }
485 
486 /*
487  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
488  *
489  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
490  * munlock is a no-op.  However, for some special vmas, we go ahead and
491  * populate the ptes.
492  *
493  * For vmas that pass the filters, merge/split as appropriate.
494  */
495 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
496 	unsigned long start, unsigned long end, vm_flags_t newflags)
497 {
498 	struct mm_struct *mm = vma->vm_mm;
499 	pgoff_t pgoff;
500 	int nr_pages;
501 	int ret = 0;
502 	int lock = !!(newflags & VM_LOCKED);
503 	vm_flags_t old_flags = vma->vm_flags;
504 
505 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
506 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
507 	    vma_is_dax(vma) || vma_is_secretmem(vma))
508 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
509 		goto out;
510 
511 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
512 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
513 			  vma->vm_file, pgoff, vma_policy(vma),
514 			  vma->vm_userfaultfd_ctx);
515 	if (*prev) {
516 		vma = *prev;
517 		goto success;
518 	}
519 
520 	if (start != vma->vm_start) {
521 		ret = split_vma(mm, vma, start, 1);
522 		if (ret)
523 			goto out;
524 	}
525 
526 	if (end != vma->vm_end) {
527 		ret = split_vma(mm, vma, end, 0);
528 		if (ret)
529 			goto out;
530 	}
531 
532 success:
533 	/*
534 	 * Keep track of amount of locked VM.
535 	 */
536 	nr_pages = (end - start) >> PAGE_SHIFT;
537 	if (!lock)
538 		nr_pages = -nr_pages;
539 	else if (old_flags & VM_LOCKED)
540 		nr_pages = 0;
541 	mm->locked_vm += nr_pages;
542 
543 	/*
544 	 * vm_flags is protected by the mmap_lock held in write mode.
545 	 * It's okay if try_to_unmap_one unmaps a page just after we
546 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
547 	 */
548 
549 	if (lock)
550 		vma->vm_flags = newflags;
551 	else
552 		munlock_vma_pages_range(vma, start, end);
553 
554 out:
555 	*prev = vma;
556 	return ret;
557 }
558 
559 static int apply_vma_lock_flags(unsigned long start, size_t len,
560 				vm_flags_t flags)
561 {
562 	unsigned long nstart, end, tmp;
563 	struct vm_area_struct *vma, *prev;
564 	int error;
565 
566 	VM_BUG_ON(offset_in_page(start));
567 	VM_BUG_ON(len != PAGE_ALIGN(len));
568 	end = start + len;
569 	if (end < start)
570 		return -EINVAL;
571 	if (end == start)
572 		return 0;
573 	vma = find_vma(current->mm, start);
574 	if (!vma || vma->vm_start > start)
575 		return -ENOMEM;
576 
577 	prev = vma->vm_prev;
578 	if (start > vma->vm_start)
579 		prev = vma;
580 
581 	for (nstart = start ; ; ) {
582 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
583 
584 		newflags |= flags;
585 
586 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
587 		tmp = vma->vm_end;
588 		if (tmp > end)
589 			tmp = end;
590 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
591 		if (error)
592 			break;
593 		nstart = tmp;
594 		if (nstart < prev->vm_end)
595 			nstart = prev->vm_end;
596 		if (nstart >= end)
597 			break;
598 
599 		vma = prev->vm_next;
600 		if (!vma || vma->vm_start != nstart) {
601 			error = -ENOMEM;
602 			break;
603 		}
604 	}
605 	return error;
606 }
607 
608 /*
609  * Go through vma areas and sum size of mlocked
610  * vma pages, as return value.
611  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
612  * is also counted.
613  * Return value: previously mlocked page counts
614  */
615 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
616 		unsigned long start, size_t len)
617 {
618 	struct vm_area_struct *vma;
619 	unsigned long count = 0;
620 
621 	if (mm == NULL)
622 		mm = current->mm;
623 
624 	vma = find_vma(mm, start);
625 	if (vma == NULL)
626 		return 0;
627 
628 	for (; vma ; vma = vma->vm_next) {
629 		if (start >= vma->vm_end)
630 			continue;
631 		if (start + len <=  vma->vm_start)
632 			break;
633 		if (vma->vm_flags & VM_LOCKED) {
634 			if (start > vma->vm_start)
635 				count -= (start - vma->vm_start);
636 			if (start + len < vma->vm_end) {
637 				count += start + len - vma->vm_start;
638 				break;
639 			}
640 			count += vma->vm_end - vma->vm_start;
641 		}
642 	}
643 
644 	return count >> PAGE_SHIFT;
645 }
646 
647 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
648 {
649 	unsigned long locked;
650 	unsigned long lock_limit;
651 	int error = -ENOMEM;
652 
653 	start = untagged_addr(start);
654 
655 	if (!can_do_mlock())
656 		return -EPERM;
657 
658 	len = PAGE_ALIGN(len + (offset_in_page(start)));
659 	start &= PAGE_MASK;
660 
661 	lock_limit = rlimit(RLIMIT_MEMLOCK);
662 	lock_limit >>= PAGE_SHIFT;
663 	locked = len >> PAGE_SHIFT;
664 
665 	if (mmap_write_lock_killable(current->mm))
666 		return -EINTR;
667 
668 	locked += current->mm->locked_vm;
669 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
670 		/*
671 		 * It is possible that the regions requested intersect with
672 		 * previously mlocked areas, that part area in "mm->locked_vm"
673 		 * should not be counted to new mlock increment count. So check
674 		 * and adjust locked count if necessary.
675 		 */
676 		locked -= count_mm_mlocked_page_nr(current->mm,
677 				start, len);
678 	}
679 
680 	/* check against resource limits */
681 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
682 		error = apply_vma_lock_flags(start, len, flags);
683 
684 	mmap_write_unlock(current->mm);
685 	if (error)
686 		return error;
687 
688 	error = __mm_populate(start, len, 0);
689 	if (error)
690 		return __mlock_posix_error_return(error);
691 	return 0;
692 }
693 
694 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
695 {
696 	return do_mlock(start, len, VM_LOCKED);
697 }
698 
699 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
700 {
701 	vm_flags_t vm_flags = VM_LOCKED;
702 
703 	if (flags & ~MLOCK_ONFAULT)
704 		return -EINVAL;
705 
706 	if (flags & MLOCK_ONFAULT)
707 		vm_flags |= VM_LOCKONFAULT;
708 
709 	return do_mlock(start, len, vm_flags);
710 }
711 
712 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
713 {
714 	int ret;
715 
716 	start = untagged_addr(start);
717 
718 	len = PAGE_ALIGN(len + (offset_in_page(start)));
719 	start &= PAGE_MASK;
720 
721 	if (mmap_write_lock_killable(current->mm))
722 		return -EINTR;
723 	ret = apply_vma_lock_flags(start, len, 0);
724 	mmap_write_unlock(current->mm);
725 
726 	return ret;
727 }
728 
729 /*
730  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
731  * and translate into the appropriate modifications to mm->def_flags and/or the
732  * flags for all current VMAs.
733  *
734  * There are a couple of subtleties with this.  If mlockall() is called multiple
735  * times with different flags, the values do not necessarily stack.  If mlockall
736  * is called once including the MCL_FUTURE flag and then a second time without
737  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
738  */
739 static int apply_mlockall_flags(int flags)
740 {
741 	struct vm_area_struct *vma, *prev = NULL;
742 	vm_flags_t to_add = 0;
743 
744 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
745 	if (flags & MCL_FUTURE) {
746 		current->mm->def_flags |= VM_LOCKED;
747 
748 		if (flags & MCL_ONFAULT)
749 			current->mm->def_flags |= VM_LOCKONFAULT;
750 
751 		if (!(flags & MCL_CURRENT))
752 			goto out;
753 	}
754 
755 	if (flags & MCL_CURRENT) {
756 		to_add |= VM_LOCKED;
757 		if (flags & MCL_ONFAULT)
758 			to_add |= VM_LOCKONFAULT;
759 	}
760 
761 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
762 		vm_flags_t newflags;
763 
764 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
765 		newflags |= to_add;
766 
767 		/* Ignore errors */
768 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
769 		cond_resched();
770 	}
771 out:
772 	return 0;
773 }
774 
775 SYSCALL_DEFINE1(mlockall, int, flags)
776 {
777 	unsigned long lock_limit;
778 	int ret;
779 
780 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
781 	    flags == MCL_ONFAULT)
782 		return -EINVAL;
783 
784 	if (!can_do_mlock())
785 		return -EPERM;
786 
787 	lock_limit = rlimit(RLIMIT_MEMLOCK);
788 	lock_limit >>= PAGE_SHIFT;
789 
790 	if (mmap_write_lock_killable(current->mm))
791 		return -EINTR;
792 
793 	ret = -ENOMEM;
794 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
795 	    capable(CAP_IPC_LOCK))
796 		ret = apply_mlockall_flags(flags);
797 	mmap_write_unlock(current->mm);
798 	if (!ret && (flags & MCL_CURRENT))
799 		mm_populate(0, TASK_SIZE);
800 
801 	return ret;
802 }
803 
804 SYSCALL_DEFINE0(munlockall)
805 {
806 	int ret;
807 
808 	if (mmap_write_lock_killable(current->mm))
809 		return -EINTR;
810 	ret = apply_mlockall_flags(0);
811 	mmap_write_unlock(current->mm);
812 	return ret;
813 }
814 
815 /*
816  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
817  * shm segments) get accounted against the user_struct instead.
818  */
819 static DEFINE_SPINLOCK(shmlock_user_lock);
820 
821 int user_shm_lock(size_t size, struct ucounts *ucounts)
822 {
823 	unsigned long lock_limit, locked;
824 	long memlock;
825 	int allowed = 0;
826 
827 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
828 	lock_limit = rlimit(RLIMIT_MEMLOCK);
829 	if (lock_limit == RLIM_INFINITY)
830 		allowed = 1;
831 	lock_limit >>= PAGE_SHIFT;
832 	spin_lock(&shmlock_user_lock);
833 	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
834 
835 	if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
836 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
837 		goto out;
838 	}
839 	if (!get_ucounts(ucounts)) {
840 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
841 		goto out;
842 	}
843 	allowed = 1;
844 out:
845 	spin_unlock(&shmlock_user_lock);
846 	return allowed;
847 }
848 
849 void user_shm_unlock(size_t size, struct ucounts *ucounts)
850 {
851 	spin_lock(&shmlock_user_lock);
852 	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
853 	spin_unlock(&shmlock_user_lock);
854 	put_ucounts(ucounts);
855 }
856