xref: /linux/mm/mlock.c (revision af50e4ba34f4c45e92535364133d4deb5931c1c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_sem for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	if (!TestClearPageMlocked(page))
62 		return;
63 
64 	mod_zone_page_state(page_zone(page), NR_MLOCK,
65 			    -hpage_nr_pages(page));
66 	count_vm_event(UNEVICTABLE_PGCLEARED);
67 	/*
68 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
69 	 * in __pagevec_lru_add_fn().
70 	 *
71 	 * See __pagevec_lru_add_fn for more explanation.
72 	 */
73 	if (!isolate_lru_page(page)) {
74 		putback_lru_page(page);
75 	} else {
76 		/*
77 		 * We lost the race. the page already moved to evictable list.
78 		 */
79 		if (PageUnevictable(page))
80 			count_vm_event(UNEVICTABLE_PGSTRANDED);
81 	}
82 }
83 
84 /*
85  * Mark page as mlocked if not already.
86  * If page on LRU, isolate and putback to move to unevictable list.
87  */
88 void mlock_vma_page(struct page *page)
89 {
90 	/* Serialize with page migration */
91 	BUG_ON(!PageLocked(page));
92 
93 	VM_BUG_ON_PAGE(PageTail(page), page);
94 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95 
96 	if (!TestSetPageMlocked(page)) {
97 		mod_zone_page_state(page_zone(page), NR_MLOCK,
98 				    hpage_nr_pages(page));
99 		count_vm_event(UNEVICTABLE_PGMLOCKED);
100 		if (!isolate_lru_page(page))
101 			putback_lru_page(page);
102 	}
103 }
104 
105 /*
106  * Isolate a page from LRU with optional get_page() pin.
107  * Assumes lru_lock already held and page already pinned.
108  */
109 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110 {
111 	if (PageLRU(page)) {
112 		struct lruvec *lruvec;
113 
114 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115 		if (getpage)
116 			get_page(page);
117 		ClearPageLRU(page);
118 		del_page_from_lru_list(page, lruvec, page_lru(page));
119 		return true;
120 	}
121 
122 	return false;
123 }
124 
125 /*
126  * Finish munlock after successful page isolation
127  *
128  * Page must be locked. This is a wrapper for try_to_munlock()
129  * and putback_lru_page() with munlock accounting.
130  */
131 static void __munlock_isolated_page(struct page *page)
132 {
133 	/*
134 	 * Optimization: if the page was mapped just once, that's our mapping
135 	 * and we don't need to check all the other vmas.
136 	 */
137 	if (page_mapcount(page) > 1)
138 		try_to_munlock(page);
139 
140 	/* Did try_to_unlock() succeed or punt? */
141 	if (!PageMlocked(page))
142 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143 
144 	putback_lru_page(page);
145 }
146 
147 /*
148  * Accounting for page isolation fail during munlock
149  *
150  * Performs accounting when page isolation fails in munlock. There is nothing
151  * else to do because it means some other task has already removed the page
152  * from the LRU. putback_lru_page() will take care of removing the page from
153  * the unevictable list, if necessary. vmscan [page_referenced()] will move
154  * the page back to the unevictable list if some other vma has it mlocked.
155  */
156 static void __munlock_isolation_failed(struct page *page)
157 {
158 	if (PageUnevictable(page))
159 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
160 	else
161 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162 }
163 
164 /**
165  * munlock_vma_page - munlock a vma page
166  * @page: page to be unlocked, either a normal page or THP page head
167  *
168  * returns the size of the page as a page mask (0 for normal page,
169  *         HPAGE_PMD_NR - 1 for THP head page)
170  *
171  * called from munlock()/munmap() path with page supposedly on the LRU.
172  * When we munlock a page, because the vma where we found the page is being
173  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174  * page locked so that we can leave it on the unevictable lru list and not
175  * bother vmscan with it.  However, to walk the page's rmap list in
176  * try_to_munlock() we must isolate the page from the LRU.  If some other
177  * task has removed the page from the LRU, we won't be able to do that.
178  * So we clear the PageMlocked as we might not get another chance.  If we
179  * can't isolate the page, we leave it for putback_lru_page() and vmscan
180  * [page_referenced()/try_to_unmap()] to deal with.
181  */
182 unsigned int munlock_vma_page(struct page *page)
183 {
184 	int nr_pages;
185 	struct zone *zone = page_zone(page);
186 
187 	/* For try_to_munlock() and to serialize with page migration */
188 	BUG_ON(!PageLocked(page));
189 
190 	VM_BUG_ON_PAGE(PageTail(page), page);
191 
192 	/*
193 	 * Serialize with any parallel __split_huge_page_refcount() which
194 	 * might otherwise copy PageMlocked to part of the tail pages before
195 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
196 	 */
197 	spin_lock_irq(zone_lru_lock(zone));
198 
199 	if (!TestClearPageMlocked(page)) {
200 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201 		nr_pages = 1;
202 		goto unlock_out;
203 	}
204 
205 	nr_pages = hpage_nr_pages(page);
206 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
207 
208 	if (__munlock_isolate_lru_page(page, true)) {
209 		spin_unlock_irq(zone_lru_lock(zone));
210 		__munlock_isolated_page(page);
211 		goto out;
212 	}
213 	__munlock_isolation_failed(page);
214 
215 unlock_out:
216 	spin_unlock_irq(zone_lru_lock(zone));
217 
218 out:
219 	return nr_pages - 1;
220 }
221 
222 /*
223  * convert get_user_pages() return value to posix mlock() error
224  */
225 static int __mlock_posix_error_return(long retval)
226 {
227 	if (retval == -EFAULT)
228 		retval = -ENOMEM;
229 	else if (retval == -ENOMEM)
230 		retval = -EAGAIN;
231 	return retval;
232 }
233 
234 /*
235  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236  *
237  * The fast path is available only for evictable pages with single mapping.
238  * Then we can bypass the per-cpu pvec and get better performance.
239  * when mapcount > 1 we need try_to_munlock() which can fail.
240  * when !page_evictable(), we need the full redo logic of putback_lru_page to
241  * avoid leaving evictable page in unevictable list.
242  *
243  * In case of success, @page is added to @pvec and @pgrescued is incremented
244  * in case that the page was previously unevictable. @page is also unlocked.
245  */
246 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247 		int *pgrescued)
248 {
249 	VM_BUG_ON_PAGE(PageLRU(page), page);
250 	VM_BUG_ON_PAGE(!PageLocked(page), page);
251 
252 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
253 		pagevec_add(pvec, page);
254 		if (TestClearPageUnevictable(page))
255 			(*pgrescued)++;
256 		unlock_page(page);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
263 /*
264  * Putback multiple evictable pages to the LRU
265  *
266  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267  * the pages might have meanwhile become unevictable but that is OK.
268  */
269 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270 {
271 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 	/*
273 	 *__pagevec_lru_add() calls release_pages() so we don't call
274 	 * put_page() explicitly
275 	 */
276 	__pagevec_lru_add(pvec);
277 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278 }
279 
280 /*
281  * Munlock a batch of pages from the same zone
282  *
283  * The work is split to two main phases. First phase clears the Mlocked flag
284  * and attempts to isolate the pages, all under a single zone lru lock.
285  * The second phase finishes the munlock only for pages where isolation
286  * succeeded.
287  *
288  * Note that the pagevec may be modified during the process.
289  */
290 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291 {
292 	int i;
293 	int nr = pagevec_count(pvec);
294 	int delta_munlocked = -nr;
295 	struct pagevec pvec_putback;
296 	int pgrescued = 0;
297 
298 	pagevec_init(&pvec_putback);
299 
300 	/* Phase 1: page isolation */
301 	spin_lock_irq(zone_lru_lock(zone));
302 	for (i = 0; i < nr; i++) {
303 		struct page *page = pvec->pages[i];
304 
305 		if (TestClearPageMlocked(page)) {
306 			/*
307 			 * We already have pin from follow_page_mask()
308 			 * so we can spare the get_page() here.
309 			 */
310 			if (__munlock_isolate_lru_page(page, false))
311 				continue;
312 			else
313 				__munlock_isolation_failed(page);
314 		} else {
315 			delta_munlocked++;
316 		}
317 
318 		/*
319 		 * We won't be munlocking this page in the next phase
320 		 * but we still need to release the follow_page_mask()
321 		 * pin. We cannot do it under lru_lock however. If it's
322 		 * the last pin, __page_cache_release() would deadlock.
323 		 */
324 		pagevec_add(&pvec_putback, pvec->pages[i]);
325 		pvec->pages[i] = NULL;
326 	}
327 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328 	spin_unlock_irq(zone_lru_lock(zone));
329 
330 	/* Now we can release pins of pages that we are not munlocking */
331 	pagevec_release(&pvec_putback);
332 
333 	/* Phase 2: page munlock */
334 	for (i = 0; i < nr; i++) {
335 		struct page *page = pvec->pages[i];
336 
337 		if (page) {
338 			lock_page(page);
339 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 					&pgrescued)) {
341 				/*
342 				 * Slow path. We don't want to lose the last
343 				 * pin before unlock_page()
344 				 */
345 				get_page(page); /* for putback_lru_page() */
346 				__munlock_isolated_page(page);
347 				unlock_page(page);
348 				put_page(page); /* from follow_page_mask() */
349 			}
350 		}
351 	}
352 
353 	/*
354 	 * Phase 3: page putback for pages that qualified for the fast path
355 	 * This will also call put_page() to return pin from follow_page_mask()
356 	 */
357 	if (pagevec_count(&pvec_putback))
358 		__putback_lru_fast(&pvec_putback, pgrescued);
359 }
360 
361 /*
362  * Fill up pagevec for __munlock_pagevec using pte walk
363  *
364  * The function expects that the struct page corresponding to @start address is
365  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366  *
367  * The rest of @pvec is filled by subsequent pages within the same pmd and same
368  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369  * pages also get pinned.
370  *
371  * Returns the address of the next page that should be scanned. This equals
372  * @start + PAGE_SIZE when no page could be added by the pte walk.
373  */
374 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375 			struct vm_area_struct *vma, struct zone *zone,
376 			unsigned long start, unsigned long end)
377 {
378 	pte_t *pte;
379 	spinlock_t *ptl;
380 
381 	/*
382 	 * Initialize pte walk starting at the already pinned page where we
383 	 * are sure that there is a pte, as it was pinned under the same
384 	 * mmap_sem write op.
385 	 */
386 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
387 	/* Make sure we do not cross the page table boundary */
388 	end = pgd_addr_end(start, end);
389 	end = p4d_addr_end(start, end);
390 	end = pud_addr_end(start, end);
391 	end = pmd_addr_end(start, end);
392 
393 	/* The page next to the pinned page is the first we will try to get */
394 	start += PAGE_SIZE;
395 	while (start < end) {
396 		struct page *page = NULL;
397 		pte++;
398 		if (pte_present(*pte))
399 			page = vm_normal_page(vma, start, *pte);
400 		/*
401 		 * Break if page could not be obtained or the page's node+zone does not
402 		 * match
403 		 */
404 		if (!page || page_zone(page) != zone)
405 			break;
406 
407 		/*
408 		 * Do not use pagevec for PTE-mapped THP,
409 		 * munlock_vma_pages_range() will handle them.
410 		 */
411 		if (PageTransCompound(page))
412 			break;
413 
414 		get_page(page);
415 		/*
416 		 * Increase the address that will be returned *before* the
417 		 * eventual break due to pvec becoming full by adding the page
418 		 */
419 		start += PAGE_SIZE;
420 		if (pagevec_add(pvec, page) == 0)
421 			break;
422 	}
423 	pte_unmap_unlock(pte, ptl);
424 	return start;
425 }
426 
427 /*
428  * munlock_vma_pages_range() - munlock all pages in the vma range.'
429  * @vma - vma containing range to be munlock()ed.
430  * @start - start address in @vma of the range
431  * @end - end of range in @vma.
432  *
433  *  For mremap(), munmap() and exit().
434  *
435  * Called with @vma VM_LOCKED.
436  *
437  * Returns with VM_LOCKED cleared.  Callers must be prepared to
438  * deal with this.
439  *
440  * We don't save and restore VM_LOCKED here because pages are
441  * still on lru.  In unmap path, pages might be scanned by reclaim
442  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443  * free them.  This will result in freeing mlocked pages.
444  */
445 void munlock_vma_pages_range(struct vm_area_struct *vma,
446 			     unsigned long start, unsigned long end)
447 {
448 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449 
450 	while (start < end) {
451 		struct page *page;
452 		unsigned int page_mask = 0;
453 		unsigned long page_increm;
454 		struct pagevec pvec;
455 		struct zone *zone;
456 
457 		pagevec_init(&pvec);
458 		/*
459 		 * Although FOLL_DUMP is intended for get_dump_page(),
460 		 * it just so happens that its special treatment of the
461 		 * ZERO_PAGE (returning an error instead of doing get_page)
462 		 * suits munlock very well (and if somehow an abnormal page
463 		 * has sneaked into the range, we won't oops here: great).
464 		 */
465 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466 
467 		if (page && !IS_ERR(page)) {
468 			if (PageTransTail(page)) {
469 				VM_BUG_ON_PAGE(PageMlocked(page), page);
470 				put_page(page); /* follow_page_mask() */
471 			} else if (PageTransHuge(page)) {
472 				lock_page(page);
473 				/*
474 				 * Any THP page found by follow_page_mask() may
475 				 * have gotten split before reaching
476 				 * munlock_vma_page(), so we need to compute
477 				 * the page_mask here instead.
478 				 */
479 				page_mask = munlock_vma_page(page);
480 				unlock_page(page);
481 				put_page(page); /* follow_page_mask() */
482 			} else {
483 				/*
484 				 * Non-huge pages are handled in batches via
485 				 * pagevec. The pin from follow_page_mask()
486 				 * prevents them from collapsing by THP.
487 				 */
488 				pagevec_add(&pvec, page);
489 				zone = page_zone(page);
490 
491 				/*
492 				 * Try to fill the rest of pagevec using fast
493 				 * pte walk. This will also update start to
494 				 * the next page to process. Then munlock the
495 				 * pagevec.
496 				 */
497 				start = __munlock_pagevec_fill(&pvec, vma,
498 						zone, start, end);
499 				__munlock_pagevec(&pvec, zone);
500 				goto next;
501 			}
502 		}
503 		page_increm = 1 + page_mask;
504 		start += page_increm * PAGE_SIZE;
505 next:
506 		cond_resched();
507 	}
508 }
509 
510 /*
511  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
512  *
513  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514  * munlock is a no-op.  However, for some special vmas, we go ahead and
515  * populate the ptes.
516  *
517  * For vmas that pass the filters, merge/split as appropriate.
518  */
519 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520 	unsigned long start, unsigned long end, vm_flags_t newflags)
521 {
522 	struct mm_struct *mm = vma->vm_mm;
523 	pgoff_t pgoff;
524 	int nr_pages;
525 	int ret = 0;
526 	int lock = !!(newflags & VM_LOCKED);
527 	vm_flags_t old_flags = vma->vm_flags;
528 
529 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
530 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
531 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
532 		goto out;
533 
534 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
535 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
536 			  vma->vm_file, pgoff, vma_policy(vma),
537 			  vma->vm_userfaultfd_ctx);
538 	if (*prev) {
539 		vma = *prev;
540 		goto success;
541 	}
542 
543 	if (start != vma->vm_start) {
544 		ret = split_vma(mm, vma, start, 1);
545 		if (ret)
546 			goto out;
547 	}
548 
549 	if (end != vma->vm_end) {
550 		ret = split_vma(mm, vma, end, 0);
551 		if (ret)
552 			goto out;
553 	}
554 
555 success:
556 	/*
557 	 * Keep track of amount of locked VM.
558 	 */
559 	nr_pages = (end - start) >> PAGE_SHIFT;
560 	if (!lock)
561 		nr_pages = -nr_pages;
562 	else if (old_flags & VM_LOCKED)
563 		nr_pages = 0;
564 	mm->locked_vm += nr_pages;
565 
566 	/*
567 	 * vm_flags is protected by the mmap_sem held in write mode.
568 	 * It's okay if try_to_unmap_one unmaps a page just after we
569 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
570 	 */
571 
572 	if (lock)
573 		vma->vm_flags = newflags;
574 	else
575 		munlock_vma_pages_range(vma, start, end);
576 
577 out:
578 	*prev = vma;
579 	return ret;
580 }
581 
582 static int apply_vma_lock_flags(unsigned long start, size_t len,
583 				vm_flags_t flags)
584 {
585 	unsigned long nstart, end, tmp;
586 	struct vm_area_struct * vma, * prev;
587 	int error;
588 
589 	VM_BUG_ON(offset_in_page(start));
590 	VM_BUG_ON(len != PAGE_ALIGN(len));
591 	end = start + len;
592 	if (end < start)
593 		return -EINVAL;
594 	if (end == start)
595 		return 0;
596 	vma = find_vma(current->mm, start);
597 	if (!vma || vma->vm_start > start)
598 		return -ENOMEM;
599 
600 	prev = vma->vm_prev;
601 	if (start > vma->vm_start)
602 		prev = vma;
603 
604 	for (nstart = start ; ; ) {
605 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
606 
607 		newflags |= flags;
608 
609 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
610 		tmp = vma->vm_end;
611 		if (tmp > end)
612 			tmp = end;
613 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
614 		if (error)
615 			break;
616 		nstart = tmp;
617 		if (nstart < prev->vm_end)
618 			nstart = prev->vm_end;
619 		if (nstart >= end)
620 			break;
621 
622 		vma = prev->vm_next;
623 		if (!vma || vma->vm_start != nstart) {
624 			error = -ENOMEM;
625 			break;
626 		}
627 	}
628 	return error;
629 }
630 
631 /*
632  * Go through vma areas and sum size of mlocked
633  * vma pages, as return value.
634  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
635  * is also counted.
636  * Return value: previously mlocked page counts
637  */
638 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
639 		unsigned long start, size_t len)
640 {
641 	struct vm_area_struct *vma;
642 	int count = 0;
643 
644 	if (mm == NULL)
645 		mm = current->mm;
646 
647 	vma = find_vma(mm, start);
648 	if (vma == NULL)
649 		vma = mm->mmap;
650 
651 	for (; vma ; vma = vma->vm_next) {
652 		if (start >= vma->vm_end)
653 			continue;
654 		if (start + len <=  vma->vm_start)
655 			break;
656 		if (vma->vm_flags & VM_LOCKED) {
657 			if (start > vma->vm_start)
658 				count -= (start - vma->vm_start);
659 			if (start + len < vma->vm_end) {
660 				count += start + len - vma->vm_start;
661 				break;
662 			}
663 			count += vma->vm_end - vma->vm_start;
664 		}
665 	}
666 
667 	return count >> PAGE_SHIFT;
668 }
669 
670 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
671 {
672 	unsigned long locked;
673 	unsigned long lock_limit;
674 	int error = -ENOMEM;
675 
676 	if (!can_do_mlock())
677 		return -EPERM;
678 
679 	len = PAGE_ALIGN(len + (offset_in_page(start)));
680 	start &= PAGE_MASK;
681 
682 	lock_limit = rlimit(RLIMIT_MEMLOCK);
683 	lock_limit >>= PAGE_SHIFT;
684 	locked = len >> PAGE_SHIFT;
685 
686 	if (down_write_killable(&current->mm->mmap_sem))
687 		return -EINTR;
688 
689 	locked += current->mm->locked_vm;
690 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
691 		/*
692 		 * It is possible that the regions requested intersect with
693 		 * previously mlocked areas, that part area in "mm->locked_vm"
694 		 * should not be counted to new mlock increment count. So check
695 		 * and adjust locked count if necessary.
696 		 */
697 		locked -= count_mm_mlocked_page_nr(current->mm,
698 				start, len);
699 	}
700 
701 	/* check against resource limits */
702 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
703 		error = apply_vma_lock_flags(start, len, flags);
704 
705 	up_write(&current->mm->mmap_sem);
706 	if (error)
707 		return error;
708 
709 	error = __mm_populate(start, len, 0);
710 	if (error)
711 		return __mlock_posix_error_return(error);
712 	return 0;
713 }
714 
715 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
716 {
717 	return do_mlock(start, len, VM_LOCKED);
718 }
719 
720 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
721 {
722 	vm_flags_t vm_flags = VM_LOCKED;
723 
724 	if (flags & ~MLOCK_ONFAULT)
725 		return -EINVAL;
726 
727 	if (flags & MLOCK_ONFAULT)
728 		vm_flags |= VM_LOCKONFAULT;
729 
730 	return do_mlock(start, len, vm_flags);
731 }
732 
733 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
734 {
735 	int ret;
736 
737 	len = PAGE_ALIGN(len + (offset_in_page(start)));
738 	start &= PAGE_MASK;
739 
740 	if (down_write_killable(&current->mm->mmap_sem))
741 		return -EINTR;
742 	ret = apply_vma_lock_flags(start, len, 0);
743 	up_write(&current->mm->mmap_sem);
744 
745 	return ret;
746 }
747 
748 /*
749  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
750  * and translate into the appropriate modifications to mm->def_flags and/or the
751  * flags for all current VMAs.
752  *
753  * There are a couple of subtleties with this.  If mlockall() is called multiple
754  * times with different flags, the values do not necessarily stack.  If mlockall
755  * is called once including the MCL_FUTURE flag and then a second time without
756  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
757  */
758 static int apply_mlockall_flags(int flags)
759 {
760 	struct vm_area_struct * vma, * prev = NULL;
761 	vm_flags_t to_add = 0;
762 
763 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
764 	if (flags & MCL_FUTURE) {
765 		current->mm->def_flags |= VM_LOCKED;
766 
767 		if (flags & MCL_ONFAULT)
768 			current->mm->def_flags |= VM_LOCKONFAULT;
769 
770 		if (!(flags & MCL_CURRENT))
771 			goto out;
772 	}
773 
774 	if (flags & MCL_CURRENT) {
775 		to_add |= VM_LOCKED;
776 		if (flags & MCL_ONFAULT)
777 			to_add |= VM_LOCKONFAULT;
778 	}
779 
780 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
781 		vm_flags_t newflags;
782 
783 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
784 		newflags |= to_add;
785 
786 		/* Ignore errors */
787 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
788 		cond_resched();
789 	}
790 out:
791 	return 0;
792 }
793 
794 SYSCALL_DEFINE1(mlockall, int, flags)
795 {
796 	unsigned long lock_limit;
797 	int ret;
798 
799 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
800 		return -EINVAL;
801 
802 	if (!can_do_mlock())
803 		return -EPERM;
804 
805 	lock_limit = rlimit(RLIMIT_MEMLOCK);
806 	lock_limit >>= PAGE_SHIFT;
807 
808 	if (down_write_killable(&current->mm->mmap_sem))
809 		return -EINTR;
810 
811 	ret = -ENOMEM;
812 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813 	    capable(CAP_IPC_LOCK))
814 		ret = apply_mlockall_flags(flags);
815 	up_write(&current->mm->mmap_sem);
816 	if (!ret && (flags & MCL_CURRENT))
817 		mm_populate(0, TASK_SIZE);
818 
819 	return ret;
820 }
821 
822 SYSCALL_DEFINE0(munlockall)
823 {
824 	int ret;
825 
826 	if (down_write_killable(&current->mm->mmap_sem))
827 		return -EINTR;
828 	ret = apply_mlockall_flags(0);
829 	up_write(&current->mm->mmap_sem);
830 	return ret;
831 }
832 
833 /*
834  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
835  * shm segments) get accounted against the user_struct instead.
836  */
837 static DEFINE_SPINLOCK(shmlock_user_lock);
838 
839 int user_shm_lock(size_t size, struct user_struct *user)
840 {
841 	unsigned long lock_limit, locked;
842 	int allowed = 0;
843 
844 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
845 	lock_limit = rlimit(RLIMIT_MEMLOCK);
846 	if (lock_limit == RLIM_INFINITY)
847 		allowed = 1;
848 	lock_limit >>= PAGE_SHIFT;
849 	spin_lock(&shmlock_user_lock);
850 	if (!allowed &&
851 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
852 		goto out;
853 	get_uid(user);
854 	user->locked_shm += locked;
855 	allowed = 1;
856 out:
857 	spin_unlock(&shmlock_user_lock);
858 	return allowed;
859 }
860 
861 void user_shm_unlock(size_t size, struct user_struct *user)
862 {
863 	spin_lock(&shmlock_user_lock);
864 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
865 	spin_unlock(&shmlock_user_lock);
866 	free_uid(user);
867 }
868