1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 27 #include "internal.h" 28 29 bool can_do_mlock(void) 30 { 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return true; 33 if (capable(CAP_IPC_LOCK)) 34 return true; 35 return false; 36 } 37 EXPORT_SYMBOL(can_do_mlock); 38 39 /* 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing 41 * in vmscan and, possibly, the fault path; and to support semi-accurate 42 * statistics. 43 * 44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 46 * The unevictable list is an LRU sibling list to the [in]active lists. 47 * PageUnevictable is set to indicate the unevictable state. 48 * 49 * When lazy mlocking via vmscan, it is important to ensure that the 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 51 * may have mlocked a page that is being munlocked. So lazy mlock must take 52 * the mmap_lock for read, and verify that the vma really is locked 53 * (see mm/rmap.c). 54 */ 55 56 /* 57 * LRU accounting for clear_page_mlock() 58 */ 59 void clear_page_mlock(struct page *page) 60 { 61 int nr_pages; 62 63 if (!TestClearPageMlocked(page)) 64 return; 65 66 nr_pages = thp_nr_pages(page); 67 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 68 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 69 /* 70 * The previous TestClearPageMlocked() corresponds to the smp_mb() 71 * in __pagevec_lru_add_fn(). 72 * 73 * See __pagevec_lru_add_fn for more explanation. 74 */ 75 if (!isolate_lru_page(page)) { 76 putback_lru_page(page); 77 } else { 78 /* 79 * We lost the race. the page already moved to evictable list. 80 */ 81 if (PageUnevictable(page)) 82 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 83 } 84 } 85 86 /* 87 * Mark page as mlocked if not already. 88 * If page on LRU, isolate and putback to move to unevictable list. 89 */ 90 void mlock_vma_page(struct page *page) 91 { 92 /* Serialize with page migration */ 93 BUG_ON(!PageLocked(page)); 94 95 VM_BUG_ON_PAGE(PageTail(page), page); 96 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 97 98 if (!TestSetPageMlocked(page)) { 99 int nr_pages = thp_nr_pages(page); 100 101 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 102 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 103 if (!isolate_lru_page(page)) 104 putback_lru_page(page); 105 } 106 } 107 108 /* 109 * Finish munlock after successful page isolation 110 * 111 * Page must be locked. This is a wrapper for try_to_munlock() 112 * and putback_lru_page() with munlock accounting. 113 */ 114 static void __munlock_isolated_page(struct page *page) 115 { 116 /* 117 * Optimization: if the page was mapped just once, that's our mapping 118 * and we don't need to check all the other vmas. 119 */ 120 if (page_mapcount(page) > 1) 121 try_to_munlock(page); 122 123 /* Did try_to_unlock() succeed or punt? */ 124 if (!PageMlocked(page)) 125 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page)); 126 127 putback_lru_page(page); 128 } 129 130 /* 131 * Accounting for page isolation fail during munlock 132 * 133 * Performs accounting when page isolation fails in munlock. There is nothing 134 * else to do because it means some other task has already removed the page 135 * from the LRU. putback_lru_page() will take care of removing the page from 136 * the unevictable list, if necessary. vmscan [page_referenced()] will move 137 * the page back to the unevictable list if some other vma has it mlocked. 138 */ 139 static void __munlock_isolation_failed(struct page *page) 140 { 141 int nr_pages = thp_nr_pages(page); 142 143 if (PageUnevictable(page)) 144 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 145 else 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 } 148 149 /** 150 * munlock_vma_page - munlock a vma page 151 * @page: page to be unlocked, either a normal page or THP page head 152 * 153 * returns the size of the page as a page mask (0 for normal page, 154 * HPAGE_PMD_NR - 1 for THP head page) 155 * 156 * called from munlock()/munmap() path with page supposedly on the LRU. 157 * When we munlock a page, because the vma where we found the page is being 158 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 159 * page locked so that we can leave it on the unevictable lru list and not 160 * bother vmscan with it. However, to walk the page's rmap list in 161 * try_to_munlock() we must isolate the page from the LRU. If some other 162 * task has removed the page from the LRU, we won't be able to do that. 163 * So we clear the PageMlocked as we might not get another chance. If we 164 * can't isolate the page, we leave it for putback_lru_page() and vmscan 165 * [page_referenced()/try_to_unmap()] to deal with. 166 */ 167 unsigned int munlock_vma_page(struct page *page) 168 { 169 int nr_pages; 170 171 /* For try_to_munlock() and to serialize with page migration */ 172 BUG_ON(!PageLocked(page)); 173 VM_BUG_ON_PAGE(PageTail(page), page); 174 175 if (!TestClearPageMlocked(page)) { 176 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 177 return 0; 178 } 179 180 nr_pages = thp_nr_pages(page); 181 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 182 183 if (!isolate_lru_page(page)) 184 __munlock_isolated_page(page); 185 else 186 __munlock_isolation_failed(page); 187 188 return nr_pages - 1; 189 } 190 191 /* 192 * convert get_user_pages() return value to posix mlock() error 193 */ 194 static int __mlock_posix_error_return(long retval) 195 { 196 if (retval == -EFAULT) 197 retval = -ENOMEM; 198 else if (retval == -ENOMEM) 199 retval = -EAGAIN; 200 return retval; 201 } 202 203 /* 204 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 205 * 206 * The fast path is available only for evictable pages with single mapping. 207 * Then we can bypass the per-cpu pvec and get better performance. 208 * when mapcount > 1 we need try_to_munlock() which can fail. 209 * when !page_evictable(), we need the full redo logic of putback_lru_page to 210 * avoid leaving evictable page in unevictable list. 211 * 212 * In case of success, @page is added to @pvec and @pgrescued is incremented 213 * in case that the page was previously unevictable. @page is also unlocked. 214 */ 215 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 216 int *pgrescued) 217 { 218 VM_BUG_ON_PAGE(PageLRU(page), page); 219 VM_BUG_ON_PAGE(!PageLocked(page), page); 220 221 if (page_mapcount(page) <= 1 && page_evictable(page)) { 222 pagevec_add(pvec, page); 223 if (TestClearPageUnevictable(page)) 224 (*pgrescued)++; 225 unlock_page(page); 226 return true; 227 } 228 229 return false; 230 } 231 232 /* 233 * Putback multiple evictable pages to the LRU 234 * 235 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 236 * the pages might have meanwhile become unevictable but that is OK. 237 */ 238 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 239 { 240 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 241 /* 242 *__pagevec_lru_add() calls release_pages() so we don't call 243 * put_page() explicitly 244 */ 245 __pagevec_lru_add(pvec); 246 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 247 } 248 249 /* 250 * Munlock a batch of pages from the same zone 251 * 252 * The work is split to two main phases. First phase clears the Mlocked flag 253 * and attempts to isolate the pages, all under a single zone lru lock. 254 * The second phase finishes the munlock only for pages where isolation 255 * succeeded. 256 * 257 * Note that the pagevec may be modified during the process. 258 */ 259 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 260 { 261 int i; 262 int nr = pagevec_count(pvec); 263 int delta_munlocked = -nr; 264 struct pagevec pvec_putback; 265 struct lruvec *lruvec = NULL; 266 int pgrescued = 0; 267 268 pagevec_init(&pvec_putback); 269 270 /* Phase 1: page isolation */ 271 for (i = 0; i < nr; i++) { 272 struct page *page = pvec->pages[i]; 273 274 if (TestClearPageMlocked(page)) { 275 /* 276 * We already have pin from follow_page_mask() 277 * so we can spare the get_page() here. 278 */ 279 if (TestClearPageLRU(page)) { 280 lruvec = relock_page_lruvec_irq(page, lruvec); 281 del_page_from_lru_list(page, lruvec); 282 continue; 283 } else 284 __munlock_isolation_failed(page); 285 } else { 286 delta_munlocked++; 287 } 288 289 /* 290 * We won't be munlocking this page in the next phase 291 * but we still need to release the follow_page_mask() 292 * pin. We cannot do it under lru_lock however. If it's 293 * the last pin, __page_cache_release() would deadlock. 294 */ 295 pagevec_add(&pvec_putback, pvec->pages[i]); 296 pvec->pages[i] = NULL; 297 } 298 if (lruvec) { 299 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 300 unlock_page_lruvec_irq(lruvec); 301 } else if (delta_munlocked) { 302 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 303 } 304 305 /* Now we can release pins of pages that we are not munlocking */ 306 pagevec_release(&pvec_putback); 307 308 /* Phase 2: page munlock */ 309 for (i = 0; i < nr; i++) { 310 struct page *page = pvec->pages[i]; 311 312 if (page) { 313 lock_page(page); 314 if (!__putback_lru_fast_prepare(page, &pvec_putback, 315 &pgrescued)) { 316 /* 317 * Slow path. We don't want to lose the last 318 * pin before unlock_page() 319 */ 320 get_page(page); /* for putback_lru_page() */ 321 __munlock_isolated_page(page); 322 unlock_page(page); 323 put_page(page); /* from follow_page_mask() */ 324 } 325 } 326 } 327 328 /* 329 * Phase 3: page putback for pages that qualified for the fast path 330 * This will also call put_page() to return pin from follow_page_mask() 331 */ 332 if (pagevec_count(&pvec_putback)) 333 __putback_lru_fast(&pvec_putback, pgrescued); 334 } 335 336 /* 337 * Fill up pagevec for __munlock_pagevec using pte walk 338 * 339 * The function expects that the struct page corresponding to @start address is 340 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 341 * 342 * The rest of @pvec is filled by subsequent pages within the same pmd and same 343 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 344 * pages also get pinned. 345 * 346 * Returns the address of the next page that should be scanned. This equals 347 * @start + PAGE_SIZE when no page could be added by the pte walk. 348 */ 349 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 350 struct vm_area_struct *vma, struct zone *zone, 351 unsigned long start, unsigned long end) 352 { 353 pte_t *pte; 354 spinlock_t *ptl; 355 356 /* 357 * Initialize pte walk starting at the already pinned page where we 358 * are sure that there is a pte, as it was pinned under the same 359 * mmap_lock write op. 360 */ 361 pte = get_locked_pte(vma->vm_mm, start, &ptl); 362 /* Make sure we do not cross the page table boundary */ 363 end = pgd_addr_end(start, end); 364 end = p4d_addr_end(start, end); 365 end = pud_addr_end(start, end); 366 end = pmd_addr_end(start, end); 367 368 /* The page next to the pinned page is the first we will try to get */ 369 start += PAGE_SIZE; 370 while (start < end) { 371 struct page *page = NULL; 372 pte++; 373 if (pte_present(*pte)) 374 page = vm_normal_page(vma, start, *pte); 375 /* 376 * Break if page could not be obtained or the page's node+zone does not 377 * match 378 */ 379 if (!page || page_zone(page) != zone) 380 break; 381 382 /* 383 * Do not use pagevec for PTE-mapped THP, 384 * munlock_vma_pages_range() will handle them. 385 */ 386 if (PageTransCompound(page)) 387 break; 388 389 get_page(page); 390 /* 391 * Increase the address that will be returned *before* the 392 * eventual break due to pvec becoming full by adding the page 393 */ 394 start += PAGE_SIZE; 395 if (pagevec_add(pvec, page) == 0) 396 break; 397 } 398 pte_unmap_unlock(pte, ptl); 399 return start; 400 } 401 402 /* 403 * munlock_vma_pages_range() - munlock all pages in the vma range.' 404 * @vma - vma containing range to be munlock()ed. 405 * @start - start address in @vma of the range 406 * @end - end of range in @vma. 407 * 408 * For mremap(), munmap() and exit(). 409 * 410 * Called with @vma VM_LOCKED. 411 * 412 * Returns with VM_LOCKED cleared. Callers must be prepared to 413 * deal with this. 414 * 415 * We don't save and restore VM_LOCKED here because pages are 416 * still on lru. In unmap path, pages might be scanned by reclaim 417 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 418 * free them. This will result in freeing mlocked pages. 419 */ 420 void munlock_vma_pages_range(struct vm_area_struct *vma, 421 unsigned long start, unsigned long end) 422 { 423 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 424 425 while (start < end) { 426 struct page *page; 427 unsigned int page_mask = 0; 428 unsigned long page_increm; 429 struct pagevec pvec; 430 struct zone *zone; 431 432 pagevec_init(&pvec); 433 /* 434 * Although FOLL_DUMP is intended for get_dump_page(), 435 * it just so happens that its special treatment of the 436 * ZERO_PAGE (returning an error instead of doing get_page) 437 * suits munlock very well (and if somehow an abnormal page 438 * has sneaked into the range, we won't oops here: great). 439 */ 440 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 441 442 if (page && !IS_ERR(page)) { 443 if (PageTransTail(page)) { 444 VM_BUG_ON_PAGE(PageMlocked(page), page); 445 put_page(page); /* follow_page_mask() */ 446 } else if (PageTransHuge(page)) { 447 lock_page(page); 448 /* 449 * Any THP page found by follow_page_mask() may 450 * have gotten split before reaching 451 * munlock_vma_page(), so we need to compute 452 * the page_mask here instead. 453 */ 454 page_mask = munlock_vma_page(page); 455 unlock_page(page); 456 put_page(page); /* follow_page_mask() */ 457 } else { 458 /* 459 * Non-huge pages are handled in batches via 460 * pagevec. The pin from follow_page_mask() 461 * prevents them from collapsing by THP. 462 */ 463 pagevec_add(&pvec, page); 464 zone = page_zone(page); 465 466 /* 467 * Try to fill the rest of pagevec using fast 468 * pte walk. This will also update start to 469 * the next page to process. Then munlock the 470 * pagevec. 471 */ 472 start = __munlock_pagevec_fill(&pvec, vma, 473 zone, start, end); 474 __munlock_pagevec(&pvec, zone); 475 goto next; 476 } 477 } 478 page_increm = 1 + page_mask; 479 start += page_increm * PAGE_SIZE; 480 next: 481 cond_resched(); 482 } 483 } 484 485 /* 486 * mlock_fixup - handle mlock[all]/munlock[all] requests. 487 * 488 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 489 * munlock is a no-op. However, for some special vmas, we go ahead and 490 * populate the ptes. 491 * 492 * For vmas that pass the filters, merge/split as appropriate. 493 */ 494 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 495 unsigned long start, unsigned long end, vm_flags_t newflags) 496 { 497 struct mm_struct *mm = vma->vm_mm; 498 pgoff_t pgoff; 499 int nr_pages; 500 int ret = 0; 501 int lock = !!(newflags & VM_LOCKED); 502 vm_flags_t old_flags = vma->vm_flags; 503 504 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 505 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 506 vma_is_dax(vma)) 507 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 508 goto out; 509 510 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 511 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 512 vma->vm_file, pgoff, vma_policy(vma), 513 vma->vm_userfaultfd_ctx); 514 if (*prev) { 515 vma = *prev; 516 goto success; 517 } 518 519 if (start != vma->vm_start) { 520 ret = split_vma(mm, vma, start, 1); 521 if (ret) 522 goto out; 523 } 524 525 if (end != vma->vm_end) { 526 ret = split_vma(mm, vma, end, 0); 527 if (ret) 528 goto out; 529 } 530 531 success: 532 /* 533 * Keep track of amount of locked VM. 534 */ 535 nr_pages = (end - start) >> PAGE_SHIFT; 536 if (!lock) 537 nr_pages = -nr_pages; 538 else if (old_flags & VM_LOCKED) 539 nr_pages = 0; 540 mm->locked_vm += nr_pages; 541 542 /* 543 * vm_flags is protected by the mmap_lock held in write mode. 544 * It's okay if try_to_unmap_one unmaps a page just after we 545 * set VM_LOCKED, populate_vma_page_range will bring it back. 546 */ 547 548 if (lock) 549 vma->vm_flags = newflags; 550 else 551 munlock_vma_pages_range(vma, start, end); 552 553 out: 554 *prev = vma; 555 return ret; 556 } 557 558 static int apply_vma_lock_flags(unsigned long start, size_t len, 559 vm_flags_t flags) 560 { 561 unsigned long nstart, end, tmp; 562 struct vm_area_struct *vma, *prev; 563 int error; 564 565 VM_BUG_ON(offset_in_page(start)); 566 VM_BUG_ON(len != PAGE_ALIGN(len)); 567 end = start + len; 568 if (end < start) 569 return -EINVAL; 570 if (end == start) 571 return 0; 572 vma = find_vma(current->mm, start); 573 if (!vma || vma->vm_start > start) 574 return -ENOMEM; 575 576 prev = vma->vm_prev; 577 if (start > vma->vm_start) 578 prev = vma; 579 580 for (nstart = start ; ; ) { 581 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 582 583 newflags |= flags; 584 585 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 586 tmp = vma->vm_end; 587 if (tmp > end) 588 tmp = end; 589 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 590 if (error) 591 break; 592 nstart = tmp; 593 if (nstart < prev->vm_end) 594 nstart = prev->vm_end; 595 if (nstart >= end) 596 break; 597 598 vma = prev->vm_next; 599 if (!vma || vma->vm_start != nstart) { 600 error = -ENOMEM; 601 break; 602 } 603 } 604 return error; 605 } 606 607 /* 608 * Go through vma areas and sum size of mlocked 609 * vma pages, as return value. 610 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 611 * is also counted. 612 * Return value: previously mlocked page counts 613 */ 614 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 615 unsigned long start, size_t len) 616 { 617 struct vm_area_struct *vma; 618 unsigned long count = 0; 619 620 if (mm == NULL) 621 mm = current->mm; 622 623 vma = find_vma(mm, start); 624 if (vma == NULL) 625 return 0; 626 627 for (; vma ; vma = vma->vm_next) { 628 if (start >= vma->vm_end) 629 continue; 630 if (start + len <= vma->vm_start) 631 break; 632 if (vma->vm_flags & VM_LOCKED) { 633 if (start > vma->vm_start) 634 count -= (start - vma->vm_start); 635 if (start + len < vma->vm_end) { 636 count += start + len - vma->vm_start; 637 break; 638 } 639 count += vma->vm_end - vma->vm_start; 640 } 641 } 642 643 return count >> PAGE_SHIFT; 644 } 645 646 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 647 { 648 unsigned long locked; 649 unsigned long lock_limit; 650 int error = -ENOMEM; 651 652 start = untagged_addr(start); 653 654 if (!can_do_mlock()) 655 return -EPERM; 656 657 len = PAGE_ALIGN(len + (offset_in_page(start))); 658 start &= PAGE_MASK; 659 660 lock_limit = rlimit(RLIMIT_MEMLOCK); 661 lock_limit >>= PAGE_SHIFT; 662 locked = len >> PAGE_SHIFT; 663 664 if (mmap_write_lock_killable(current->mm)) 665 return -EINTR; 666 667 locked += current->mm->locked_vm; 668 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 669 /* 670 * It is possible that the regions requested intersect with 671 * previously mlocked areas, that part area in "mm->locked_vm" 672 * should not be counted to new mlock increment count. So check 673 * and adjust locked count if necessary. 674 */ 675 locked -= count_mm_mlocked_page_nr(current->mm, 676 start, len); 677 } 678 679 /* check against resource limits */ 680 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 681 error = apply_vma_lock_flags(start, len, flags); 682 683 mmap_write_unlock(current->mm); 684 if (error) 685 return error; 686 687 error = __mm_populate(start, len, 0); 688 if (error) 689 return __mlock_posix_error_return(error); 690 return 0; 691 } 692 693 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 694 { 695 return do_mlock(start, len, VM_LOCKED); 696 } 697 698 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 699 { 700 vm_flags_t vm_flags = VM_LOCKED; 701 702 if (flags & ~MLOCK_ONFAULT) 703 return -EINVAL; 704 705 if (flags & MLOCK_ONFAULT) 706 vm_flags |= VM_LOCKONFAULT; 707 708 return do_mlock(start, len, vm_flags); 709 } 710 711 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 712 { 713 int ret; 714 715 start = untagged_addr(start); 716 717 len = PAGE_ALIGN(len + (offset_in_page(start))); 718 start &= PAGE_MASK; 719 720 if (mmap_write_lock_killable(current->mm)) 721 return -EINTR; 722 ret = apply_vma_lock_flags(start, len, 0); 723 mmap_write_unlock(current->mm); 724 725 return ret; 726 } 727 728 /* 729 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 730 * and translate into the appropriate modifications to mm->def_flags and/or the 731 * flags for all current VMAs. 732 * 733 * There are a couple of subtleties with this. If mlockall() is called multiple 734 * times with different flags, the values do not necessarily stack. If mlockall 735 * is called once including the MCL_FUTURE flag and then a second time without 736 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 737 */ 738 static int apply_mlockall_flags(int flags) 739 { 740 struct vm_area_struct *vma, *prev = NULL; 741 vm_flags_t to_add = 0; 742 743 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 744 if (flags & MCL_FUTURE) { 745 current->mm->def_flags |= VM_LOCKED; 746 747 if (flags & MCL_ONFAULT) 748 current->mm->def_flags |= VM_LOCKONFAULT; 749 750 if (!(flags & MCL_CURRENT)) 751 goto out; 752 } 753 754 if (flags & MCL_CURRENT) { 755 to_add |= VM_LOCKED; 756 if (flags & MCL_ONFAULT) 757 to_add |= VM_LOCKONFAULT; 758 } 759 760 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 761 vm_flags_t newflags; 762 763 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 764 newflags |= to_add; 765 766 /* Ignore errors */ 767 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 768 cond_resched(); 769 } 770 out: 771 return 0; 772 } 773 774 SYSCALL_DEFINE1(mlockall, int, flags) 775 { 776 unsigned long lock_limit; 777 int ret; 778 779 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 780 flags == MCL_ONFAULT) 781 return -EINVAL; 782 783 if (!can_do_mlock()) 784 return -EPERM; 785 786 lock_limit = rlimit(RLIMIT_MEMLOCK); 787 lock_limit >>= PAGE_SHIFT; 788 789 if (mmap_write_lock_killable(current->mm)) 790 return -EINTR; 791 792 ret = -ENOMEM; 793 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 794 capable(CAP_IPC_LOCK)) 795 ret = apply_mlockall_flags(flags); 796 mmap_write_unlock(current->mm); 797 if (!ret && (flags & MCL_CURRENT)) 798 mm_populate(0, TASK_SIZE); 799 800 return ret; 801 } 802 803 SYSCALL_DEFINE0(munlockall) 804 { 805 int ret; 806 807 if (mmap_write_lock_killable(current->mm)) 808 return -EINTR; 809 ret = apply_mlockall_flags(0); 810 mmap_write_unlock(current->mm); 811 return ret; 812 } 813 814 /* 815 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 816 * shm segments) get accounted against the user_struct instead. 817 */ 818 static DEFINE_SPINLOCK(shmlock_user_lock); 819 820 int user_shm_lock(size_t size, struct user_struct *user) 821 { 822 unsigned long lock_limit, locked; 823 int allowed = 0; 824 825 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 826 lock_limit = rlimit(RLIMIT_MEMLOCK); 827 if (lock_limit == RLIM_INFINITY) 828 allowed = 1; 829 lock_limit >>= PAGE_SHIFT; 830 spin_lock(&shmlock_user_lock); 831 if (!allowed && 832 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 833 goto out; 834 get_uid(user); 835 user->locked_shm += locked; 836 allowed = 1; 837 out: 838 spin_unlock(&shmlock_user_lock); 839 return allowed; 840 } 841 842 void user_shm_unlock(size_t size, struct user_struct *user) 843 { 844 spin_lock(&shmlock_user_lock); 845 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 846 spin_unlock(&shmlock_user_lock); 847 free_uid(user); 848 } 849