xref: /linux/mm/mlock.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24 
25 #include "internal.h"
26 
27 int can_do_mlock(void)
28 {
29 	if (rlimit(RLIMIT_MEMLOCK) != 0)
30 		return 1;
31 	if (capable(CAP_IPC_LOCK))
32 		return 1;
33 	return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36 
37 /*
38  * Mlocked pages are marked with PageMlocked() flag for efficient testing
39  * in vmscan and, possibly, the fault path; and to support semi-accurate
40  * statistics.
41  *
42  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44  * The unevictable list is an LRU sibling list to the [in]active lists.
45  * PageUnevictable is set to indicate the unevictable state.
46  *
47  * When lazy mlocking via vmscan, it is important to ensure that the
48  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49  * may have mlocked a page that is being munlocked. So lazy mlock must take
50  * the mmap_sem for read, and verify that the vma really is locked
51  * (see mm/rmap.c).
52  */
53 
54 /*
55  *  LRU accounting for clear_page_mlock()
56  */
57 void clear_page_mlock(struct page *page)
58 {
59 	if (!TestClearPageMlocked(page))
60 		return;
61 
62 	mod_zone_page_state(page_zone(page), NR_MLOCK,
63 			    -hpage_nr_pages(page));
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	/* Serialize with page migration */
83 	BUG_ON(!PageLocked(page));
84 
85 	if (!TestSetPageMlocked(page)) {
86 		mod_zone_page_state(page_zone(page), NR_MLOCK,
87 				    hpage_nr_pages(page));
88 		count_vm_event(UNEVICTABLE_PGMLOCKED);
89 		if (!isolate_lru_page(page))
90 			putback_lru_page(page);
91 	}
92 }
93 
94 /*
95  * Isolate a page from LRU with optional get_page() pin.
96  * Assumes lru_lock already held and page already pinned.
97  */
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99 {
100 	if (PageLRU(page)) {
101 		struct lruvec *lruvec;
102 
103 		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 		if (getpage)
105 			get_page(page);
106 		ClearPageLRU(page);
107 		del_page_from_lru_list(page, lruvec, page_lru(page));
108 		return true;
109 	}
110 
111 	return false;
112 }
113 
114 /*
115  * Finish munlock after successful page isolation
116  *
117  * Page must be locked. This is a wrapper for try_to_munlock()
118  * and putback_lru_page() with munlock accounting.
119  */
120 static void __munlock_isolated_page(struct page *page)
121 {
122 	int ret = SWAP_AGAIN;
123 
124 	/*
125 	 * Optimization: if the page was mapped just once, that's our mapping
126 	 * and we don't need to check all the other vmas.
127 	 */
128 	if (page_mapcount(page) > 1)
129 		ret = try_to_munlock(page);
130 
131 	/* Did try_to_unlock() succeed or punt? */
132 	if (ret != SWAP_MLOCK)
133 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 
135 	putback_lru_page(page);
136 }
137 
138 /*
139  * Accounting for page isolation fail during munlock
140  *
141  * Performs accounting when page isolation fails in munlock. There is nothing
142  * else to do because it means some other task has already removed the page
143  * from the LRU. putback_lru_page() will take care of removing the page from
144  * the unevictable list, if necessary. vmscan [page_referenced()] will move
145  * the page back to the unevictable list if some other vma has it mlocked.
146  */
147 static void __munlock_isolation_failed(struct page *page)
148 {
149 	if (PageUnevictable(page))
150 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
151 	else
152 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153 }
154 
155 /**
156  * munlock_vma_page - munlock a vma page
157  * @page - page to be unlocked, either a normal page or THP page head
158  *
159  * returns the size of the page as a page mask (0 for normal page,
160  *         HPAGE_PMD_NR - 1 for THP head page)
161  *
162  * called from munlock()/munmap() path with page supposedly on the LRU.
163  * When we munlock a page, because the vma where we found the page is being
164  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165  * page locked so that we can leave it on the unevictable lru list and not
166  * bother vmscan with it.  However, to walk the page's rmap list in
167  * try_to_munlock() we must isolate the page from the LRU.  If some other
168  * task has removed the page from the LRU, we won't be able to do that.
169  * So we clear the PageMlocked as we might not get another chance.  If we
170  * can't isolate the page, we leave it for putback_lru_page() and vmscan
171  * [page_referenced()/try_to_unmap()] to deal with.
172  */
173 unsigned int munlock_vma_page(struct page *page)
174 {
175 	unsigned int nr_pages;
176 	struct zone *zone = page_zone(page);
177 
178 	/* For try_to_munlock() and to serialize with page migration */
179 	BUG_ON(!PageLocked(page));
180 
181 	/*
182 	 * Serialize with any parallel __split_huge_page_refcount() which
183 	 * might otherwise copy PageMlocked to part of the tail pages before
184 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185 	 */
186 	spin_lock_irq(&zone->lru_lock);
187 
188 	nr_pages = hpage_nr_pages(page);
189 	if (!TestClearPageMlocked(page))
190 		goto unlock_out;
191 
192 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193 
194 	if (__munlock_isolate_lru_page(page, true)) {
195 		spin_unlock_irq(&zone->lru_lock);
196 		__munlock_isolated_page(page);
197 		goto out;
198 	}
199 	__munlock_isolation_failed(page);
200 
201 unlock_out:
202 	spin_unlock_irq(&zone->lru_lock);
203 
204 out:
205 	return nr_pages - 1;
206 }
207 
208 /*
209  * convert get_user_pages() return value to posix mlock() error
210  */
211 static int __mlock_posix_error_return(long retval)
212 {
213 	if (retval == -EFAULT)
214 		retval = -ENOMEM;
215 	else if (retval == -ENOMEM)
216 		retval = -EAGAIN;
217 	return retval;
218 }
219 
220 /*
221  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
222  *
223  * The fast path is available only for evictable pages with single mapping.
224  * Then we can bypass the per-cpu pvec and get better performance.
225  * when mapcount > 1 we need try_to_munlock() which can fail.
226  * when !page_evictable(), we need the full redo logic of putback_lru_page to
227  * avoid leaving evictable page in unevictable list.
228  *
229  * In case of success, @page is added to @pvec and @pgrescued is incremented
230  * in case that the page was previously unevictable. @page is also unlocked.
231  */
232 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
233 		int *pgrescued)
234 {
235 	VM_BUG_ON_PAGE(PageLRU(page), page);
236 	VM_BUG_ON_PAGE(!PageLocked(page), page);
237 
238 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
239 		pagevec_add(pvec, page);
240 		if (TestClearPageUnevictable(page))
241 			(*pgrescued)++;
242 		unlock_page(page);
243 		return true;
244 	}
245 
246 	return false;
247 }
248 
249 /*
250  * Putback multiple evictable pages to the LRU
251  *
252  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
253  * the pages might have meanwhile become unevictable but that is OK.
254  */
255 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
256 {
257 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
258 	/*
259 	 *__pagevec_lru_add() calls release_pages() so we don't call
260 	 * put_page() explicitly
261 	 */
262 	__pagevec_lru_add(pvec);
263 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
264 }
265 
266 /*
267  * Munlock a batch of pages from the same zone
268  *
269  * The work is split to two main phases. First phase clears the Mlocked flag
270  * and attempts to isolate the pages, all under a single zone lru lock.
271  * The second phase finishes the munlock only for pages where isolation
272  * succeeded.
273  *
274  * Note that the pagevec may be modified during the process.
275  */
276 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
277 {
278 	int i;
279 	int nr = pagevec_count(pvec);
280 	int delta_munlocked;
281 	struct pagevec pvec_putback;
282 	int pgrescued = 0;
283 
284 	pagevec_init(&pvec_putback, 0);
285 
286 	/* Phase 1: page isolation */
287 	spin_lock_irq(&zone->lru_lock);
288 	for (i = 0; i < nr; i++) {
289 		struct page *page = pvec->pages[i];
290 
291 		if (TestClearPageMlocked(page)) {
292 			/*
293 			 * We already have pin from follow_page_mask()
294 			 * so we can spare the get_page() here.
295 			 */
296 			if (__munlock_isolate_lru_page(page, false))
297 				continue;
298 			else
299 				__munlock_isolation_failed(page);
300 		}
301 
302 		/*
303 		 * We won't be munlocking this page in the next phase
304 		 * but we still need to release the follow_page_mask()
305 		 * pin. We cannot do it under lru_lock however. If it's
306 		 * the last pin, __page_cache_release() would deadlock.
307 		 */
308 		pagevec_add(&pvec_putback, pvec->pages[i]);
309 		pvec->pages[i] = NULL;
310 	}
311 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
312 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
313 	spin_unlock_irq(&zone->lru_lock);
314 
315 	/* Now we can release pins of pages that we are not munlocking */
316 	pagevec_release(&pvec_putback);
317 
318 	/* Phase 2: page munlock */
319 	for (i = 0; i < nr; i++) {
320 		struct page *page = pvec->pages[i];
321 
322 		if (page) {
323 			lock_page(page);
324 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
325 					&pgrescued)) {
326 				/*
327 				 * Slow path. We don't want to lose the last
328 				 * pin before unlock_page()
329 				 */
330 				get_page(page); /* for putback_lru_page() */
331 				__munlock_isolated_page(page);
332 				unlock_page(page);
333 				put_page(page); /* from follow_page_mask() */
334 			}
335 		}
336 	}
337 
338 	/*
339 	 * Phase 3: page putback for pages that qualified for the fast path
340 	 * This will also call put_page() to return pin from follow_page_mask()
341 	 */
342 	if (pagevec_count(&pvec_putback))
343 		__putback_lru_fast(&pvec_putback, pgrescued);
344 }
345 
346 /*
347  * Fill up pagevec for __munlock_pagevec using pte walk
348  *
349  * The function expects that the struct page corresponding to @start address is
350  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
351  *
352  * The rest of @pvec is filled by subsequent pages within the same pmd and same
353  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
354  * pages also get pinned.
355  *
356  * Returns the address of the next page that should be scanned. This equals
357  * @start + PAGE_SIZE when no page could be added by the pte walk.
358  */
359 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
360 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
361 		unsigned long end)
362 {
363 	pte_t *pte;
364 	spinlock_t *ptl;
365 
366 	/*
367 	 * Initialize pte walk starting at the already pinned page where we
368 	 * are sure that there is a pte, as it was pinned under the same
369 	 * mmap_sem write op.
370 	 */
371 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
372 	/* Make sure we do not cross the page table boundary */
373 	end = pgd_addr_end(start, end);
374 	end = pud_addr_end(start, end);
375 	end = pmd_addr_end(start, end);
376 
377 	/* The page next to the pinned page is the first we will try to get */
378 	start += PAGE_SIZE;
379 	while (start < end) {
380 		struct page *page = NULL;
381 		pte++;
382 		if (pte_present(*pte))
383 			page = vm_normal_page(vma, start, *pte);
384 		/*
385 		 * Break if page could not be obtained or the page's node+zone does not
386 		 * match
387 		 */
388 		if (!page || page_zone_id(page) != zoneid)
389 			break;
390 
391 		get_page(page);
392 		/*
393 		 * Increase the address that will be returned *before* the
394 		 * eventual break due to pvec becoming full by adding the page
395 		 */
396 		start += PAGE_SIZE;
397 		if (pagevec_add(pvec, page) == 0)
398 			break;
399 	}
400 	pte_unmap_unlock(pte, ptl);
401 	return start;
402 }
403 
404 /*
405  * munlock_vma_pages_range() - munlock all pages in the vma range.'
406  * @vma - vma containing range to be munlock()ed.
407  * @start - start address in @vma of the range
408  * @end - end of range in @vma.
409  *
410  *  For mremap(), munmap() and exit().
411  *
412  * Called with @vma VM_LOCKED.
413  *
414  * Returns with VM_LOCKED cleared.  Callers must be prepared to
415  * deal with this.
416  *
417  * We don't save and restore VM_LOCKED here because pages are
418  * still on lru.  In unmap path, pages might be scanned by reclaim
419  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
420  * free them.  This will result in freeing mlocked pages.
421  */
422 void munlock_vma_pages_range(struct vm_area_struct *vma,
423 			     unsigned long start, unsigned long end)
424 {
425 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
426 
427 	while (start < end) {
428 		struct page *page = NULL;
429 		unsigned int page_mask;
430 		unsigned long page_increm;
431 		struct pagevec pvec;
432 		struct zone *zone;
433 		int zoneid;
434 
435 		pagevec_init(&pvec, 0);
436 		/*
437 		 * Although FOLL_DUMP is intended for get_dump_page(),
438 		 * it just so happens that its special treatment of the
439 		 * ZERO_PAGE (returning an error instead of doing get_page)
440 		 * suits munlock very well (and if somehow an abnormal page
441 		 * has sneaked into the range, we won't oops here: great).
442 		 */
443 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
444 				&page_mask);
445 
446 		if (page && !IS_ERR(page)) {
447 			if (PageTransHuge(page)) {
448 				lock_page(page);
449 				/*
450 				 * Any THP page found by follow_page_mask() may
451 				 * have gotten split before reaching
452 				 * munlock_vma_page(), so we need to recompute
453 				 * the page_mask here.
454 				 */
455 				page_mask = munlock_vma_page(page);
456 				unlock_page(page);
457 				put_page(page); /* follow_page_mask() */
458 			} else {
459 				/*
460 				 * Non-huge pages are handled in batches via
461 				 * pagevec. The pin from follow_page_mask()
462 				 * prevents them from collapsing by THP.
463 				 */
464 				pagevec_add(&pvec, page);
465 				zone = page_zone(page);
466 				zoneid = page_zone_id(page);
467 
468 				/*
469 				 * Try to fill the rest of pagevec using fast
470 				 * pte walk. This will also update start to
471 				 * the next page to process. Then munlock the
472 				 * pagevec.
473 				 */
474 				start = __munlock_pagevec_fill(&pvec, vma,
475 						zoneid, start, end);
476 				__munlock_pagevec(&pvec, zone);
477 				goto next;
478 			}
479 		}
480 		/* It's a bug to munlock in the middle of a THP page */
481 		VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
482 		page_increm = 1 + page_mask;
483 		start += page_increm * PAGE_SIZE;
484 next:
485 		cond_resched();
486 	}
487 }
488 
489 /*
490  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
491  *
492  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
493  * munlock is a no-op.  However, for some special vmas, we go ahead and
494  * populate the ptes.
495  *
496  * For vmas that pass the filters, merge/split as appropriate.
497  */
498 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
499 	unsigned long start, unsigned long end, vm_flags_t newflags)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	pgoff_t pgoff;
503 	int nr_pages;
504 	int ret = 0;
505 	int lock = !!(newflags & VM_LOCKED);
506 
507 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
508 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
509 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
510 		goto out;
511 
512 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
513 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
514 			  vma->vm_file, pgoff, vma_policy(vma),
515 			  vma->vm_userfaultfd_ctx);
516 	if (*prev) {
517 		vma = *prev;
518 		goto success;
519 	}
520 
521 	if (start != vma->vm_start) {
522 		ret = split_vma(mm, vma, start, 1);
523 		if (ret)
524 			goto out;
525 	}
526 
527 	if (end != vma->vm_end) {
528 		ret = split_vma(mm, vma, end, 0);
529 		if (ret)
530 			goto out;
531 	}
532 
533 success:
534 	/*
535 	 * Keep track of amount of locked VM.
536 	 */
537 	nr_pages = (end - start) >> PAGE_SHIFT;
538 	if (!lock)
539 		nr_pages = -nr_pages;
540 	mm->locked_vm += nr_pages;
541 
542 	/*
543 	 * vm_flags is protected by the mmap_sem held in write mode.
544 	 * It's okay if try_to_unmap_one unmaps a page just after we
545 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
546 	 */
547 
548 	if (lock)
549 		vma->vm_flags = newflags;
550 	else
551 		munlock_vma_pages_range(vma, start, end);
552 
553 out:
554 	*prev = vma;
555 	return ret;
556 }
557 
558 static int apply_vma_lock_flags(unsigned long start, size_t len,
559 				vm_flags_t flags)
560 {
561 	unsigned long nstart, end, tmp;
562 	struct vm_area_struct * vma, * prev;
563 	int error;
564 
565 	VM_BUG_ON(offset_in_page(start));
566 	VM_BUG_ON(len != PAGE_ALIGN(len));
567 	end = start + len;
568 	if (end < start)
569 		return -EINVAL;
570 	if (end == start)
571 		return 0;
572 	vma = find_vma(current->mm, start);
573 	if (!vma || vma->vm_start > start)
574 		return -ENOMEM;
575 
576 	prev = vma->vm_prev;
577 	if (start > vma->vm_start)
578 		prev = vma;
579 
580 	for (nstart = start ; ; ) {
581 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
582 
583 		newflags |= flags;
584 
585 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
586 		tmp = vma->vm_end;
587 		if (tmp > end)
588 			tmp = end;
589 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
590 		if (error)
591 			break;
592 		nstart = tmp;
593 		if (nstart < prev->vm_end)
594 			nstart = prev->vm_end;
595 		if (nstart >= end)
596 			break;
597 
598 		vma = prev->vm_next;
599 		if (!vma || vma->vm_start != nstart) {
600 			error = -ENOMEM;
601 			break;
602 		}
603 	}
604 	return error;
605 }
606 
607 static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
608 {
609 	unsigned long locked;
610 	unsigned long lock_limit;
611 	int error = -ENOMEM;
612 
613 	if (!can_do_mlock())
614 		return -EPERM;
615 
616 	lru_add_drain_all();	/* flush pagevec */
617 
618 	len = PAGE_ALIGN(len + (offset_in_page(start)));
619 	start &= PAGE_MASK;
620 
621 	lock_limit = rlimit(RLIMIT_MEMLOCK);
622 	lock_limit >>= PAGE_SHIFT;
623 	locked = len >> PAGE_SHIFT;
624 
625 	down_write(&current->mm->mmap_sem);
626 
627 	locked += current->mm->locked_vm;
628 
629 	/* check against resource limits */
630 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
631 		error = apply_vma_lock_flags(start, len, flags);
632 
633 	up_write(&current->mm->mmap_sem);
634 	if (error)
635 		return error;
636 
637 	error = __mm_populate(start, len, 0);
638 	if (error)
639 		return __mlock_posix_error_return(error);
640 	return 0;
641 }
642 
643 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
644 {
645 	return do_mlock(start, len, VM_LOCKED);
646 }
647 
648 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
649 {
650 	vm_flags_t vm_flags = VM_LOCKED;
651 
652 	if (flags & ~MLOCK_ONFAULT)
653 		return -EINVAL;
654 
655 	if (flags & MLOCK_ONFAULT)
656 		vm_flags |= VM_LOCKONFAULT;
657 
658 	return do_mlock(start, len, vm_flags);
659 }
660 
661 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
662 {
663 	int ret;
664 
665 	len = PAGE_ALIGN(len + (offset_in_page(start)));
666 	start &= PAGE_MASK;
667 
668 	down_write(&current->mm->mmap_sem);
669 	ret = apply_vma_lock_flags(start, len, 0);
670 	up_write(&current->mm->mmap_sem);
671 
672 	return ret;
673 }
674 
675 /*
676  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
677  * and translate into the appropriate modifications to mm->def_flags and/or the
678  * flags for all current VMAs.
679  *
680  * There are a couple of subtleties with this.  If mlockall() is called multiple
681  * times with different flags, the values do not necessarily stack.  If mlockall
682  * is called once including the MCL_FUTURE flag and then a second time without
683  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
684  */
685 static int apply_mlockall_flags(int flags)
686 {
687 	struct vm_area_struct * vma, * prev = NULL;
688 	vm_flags_t to_add = 0;
689 
690 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
691 	if (flags & MCL_FUTURE) {
692 		current->mm->def_flags |= VM_LOCKED;
693 
694 		if (flags & MCL_ONFAULT)
695 			current->mm->def_flags |= VM_LOCKONFAULT;
696 
697 		if (!(flags & MCL_CURRENT))
698 			goto out;
699 	}
700 
701 	if (flags & MCL_CURRENT) {
702 		to_add |= VM_LOCKED;
703 		if (flags & MCL_ONFAULT)
704 			to_add |= VM_LOCKONFAULT;
705 	}
706 
707 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
708 		vm_flags_t newflags;
709 
710 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
711 		newflags |= to_add;
712 
713 		/* Ignore errors */
714 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
715 		cond_resched_rcu_qs();
716 	}
717 out:
718 	return 0;
719 }
720 
721 SYSCALL_DEFINE1(mlockall, int, flags)
722 {
723 	unsigned long lock_limit;
724 	int ret;
725 
726 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
727 		return -EINVAL;
728 
729 	if (!can_do_mlock())
730 		return -EPERM;
731 
732 	if (flags & MCL_CURRENT)
733 		lru_add_drain_all();	/* flush pagevec */
734 
735 	lock_limit = rlimit(RLIMIT_MEMLOCK);
736 	lock_limit >>= PAGE_SHIFT;
737 
738 	ret = -ENOMEM;
739 	down_write(&current->mm->mmap_sem);
740 
741 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
742 	    capable(CAP_IPC_LOCK))
743 		ret = apply_mlockall_flags(flags);
744 	up_write(&current->mm->mmap_sem);
745 	if (!ret && (flags & MCL_CURRENT))
746 		mm_populate(0, TASK_SIZE);
747 
748 	return ret;
749 }
750 
751 SYSCALL_DEFINE0(munlockall)
752 {
753 	int ret;
754 
755 	down_write(&current->mm->mmap_sem);
756 	ret = apply_mlockall_flags(0);
757 	up_write(&current->mm->mmap_sem);
758 	return ret;
759 }
760 
761 /*
762  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
763  * shm segments) get accounted against the user_struct instead.
764  */
765 static DEFINE_SPINLOCK(shmlock_user_lock);
766 
767 int user_shm_lock(size_t size, struct user_struct *user)
768 {
769 	unsigned long lock_limit, locked;
770 	int allowed = 0;
771 
772 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
773 	lock_limit = rlimit(RLIMIT_MEMLOCK);
774 	if (lock_limit == RLIM_INFINITY)
775 		allowed = 1;
776 	lock_limit >>= PAGE_SHIFT;
777 	spin_lock(&shmlock_user_lock);
778 	if (!allowed &&
779 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
780 		goto out;
781 	get_uid(user);
782 	user->locked_shm += locked;
783 	allowed = 1;
784 out:
785 	spin_unlock(&shmlock_user_lock);
786 	return allowed;
787 }
788 
789 void user_shm_unlock(size_t size, struct user_struct *user)
790 {
791 	spin_lock(&shmlock_user_lock);
792 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
793 	spin_unlock(&shmlock_user_lock);
794 	free_uid(user);
795 }
796