xref: /linux/mm/mlock.c (revision 95db3b255fde4e830e5f8cc011eb404023f669d4)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24 
25 #include "internal.h"
26 
27 bool can_do_mlock(void)
28 {
29 	if (rlimit(RLIMIT_MEMLOCK) != 0)
30 		return true;
31 	if (capable(CAP_IPC_LOCK))
32 		return true;
33 	return false;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36 
37 /*
38  * Mlocked pages are marked with PageMlocked() flag for efficient testing
39  * in vmscan and, possibly, the fault path; and to support semi-accurate
40  * statistics.
41  *
42  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44  * The unevictable list is an LRU sibling list to the [in]active lists.
45  * PageUnevictable is set to indicate the unevictable state.
46  *
47  * When lazy mlocking via vmscan, it is important to ensure that the
48  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49  * may have mlocked a page that is being munlocked. So lazy mlock must take
50  * the mmap_sem for read, and verify that the vma really is locked
51  * (see mm/rmap.c).
52  */
53 
54 /*
55  *  LRU accounting for clear_page_mlock()
56  */
57 void clear_page_mlock(struct page *page)
58 {
59 	if (!TestClearPageMlocked(page))
60 		return;
61 
62 	mod_zone_page_state(page_zone(page), NR_MLOCK,
63 			    -hpage_nr_pages(page));
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	/* Serialize with page migration */
83 	BUG_ON(!PageLocked(page));
84 
85 	VM_BUG_ON_PAGE(PageTail(page), page);
86 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
87 
88 	if (!TestSetPageMlocked(page)) {
89 		mod_zone_page_state(page_zone(page), NR_MLOCK,
90 				    hpage_nr_pages(page));
91 		count_vm_event(UNEVICTABLE_PGMLOCKED);
92 		if (!isolate_lru_page(page))
93 			putback_lru_page(page);
94 	}
95 }
96 
97 /*
98  * Isolate a page from LRU with optional get_page() pin.
99  * Assumes lru_lock already held and page already pinned.
100  */
101 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
102 {
103 	if (PageLRU(page)) {
104 		struct lruvec *lruvec;
105 
106 		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
107 		if (getpage)
108 			get_page(page);
109 		ClearPageLRU(page);
110 		del_page_from_lru_list(page, lruvec, page_lru(page));
111 		return true;
112 	}
113 
114 	return false;
115 }
116 
117 /*
118  * Finish munlock after successful page isolation
119  *
120  * Page must be locked. This is a wrapper for try_to_munlock()
121  * and putback_lru_page() with munlock accounting.
122  */
123 static void __munlock_isolated_page(struct page *page)
124 {
125 	int ret = SWAP_AGAIN;
126 
127 	/*
128 	 * Optimization: if the page was mapped just once, that's our mapping
129 	 * and we don't need to check all the other vmas.
130 	 */
131 	if (page_mapcount(page) > 1)
132 		ret = try_to_munlock(page);
133 
134 	/* Did try_to_unlock() succeed or punt? */
135 	if (ret != SWAP_MLOCK)
136 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137 
138 	putback_lru_page(page);
139 }
140 
141 /*
142  * Accounting for page isolation fail during munlock
143  *
144  * Performs accounting when page isolation fails in munlock. There is nothing
145  * else to do because it means some other task has already removed the page
146  * from the LRU. putback_lru_page() will take care of removing the page from
147  * the unevictable list, if necessary. vmscan [page_referenced()] will move
148  * the page back to the unevictable list if some other vma has it mlocked.
149  */
150 static void __munlock_isolation_failed(struct page *page)
151 {
152 	if (PageUnevictable(page))
153 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
154 	else
155 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156 }
157 
158 /**
159  * munlock_vma_page - munlock a vma page
160  * @page - page to be unlocked, either a normal page or THP page head
161  *
162  * returns the size of the page as a page mask (0 for normal page,
163  *         HPAGE_PMD_NR - 1 for THP head page)
164  *
165  * called from munlock()/munmap() path with page supposedly on the LRU.
166  * When we munlock a page, because the vma where we found the page is being
167  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168  * page locked so that we can leave it on the unevictable lru list and not
169  * bother vmscan with it.  However, to walk the page's rmap list in
170  * try_to_munlock() we must isolate the page from the LRU.  If some other
171  * task has removed the page from the LRU, we won't be able to do that.
172  * So we clear the PageMlocked as we might not get another chance.  If we
173  * can't isolate the page, we leave it for putback_lru_page() and vmscan
174  * [page_referenced()/try_to_unmap()] to deal with.
175  */
176 unsigned int munlock_vma_page(struct page *page)
177 {
178 	int nr_pages;
179 	struct zone *zone = page_zone(page);
180 
181 	/* For try_to_munlock() and to serialize with page migration */
182 	BUG_ON(!PageLocked(page));
183 
184 	VM_BUG_ON_PAGE(PageTail(page), page);
185 
186 	/*
187 	 * Serialize with any parallel __split_huge_page_refcount() which
188 	 * might otherwise copy PageMlocked to part of the tail pages before
189 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
190 	 */
191 	spin_lock_irq(&zone->lru_lock);
192 
193 	nr_pages = hpage_nr_pages(page);
194 	if (!TestClearPageMlocked(page))
195 		goto unlock_out;
196 
197 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
198 
199 	if (__munlock_isolate_lru_page(page, true)) {
200 		spin_unlock_irq(&zone->lru_lock);
201 		__munlock_isolated_page(page);
202 		goto out;
203 	}
204 	__munlock_isolation_failed(page);
205 
206 unlock_out:
207 	spin_unlock_irq(&zone->lru_lock);
208 
209 out:
210 	return nr_pages - 1;
211 }
212 
213 /*
214  * convert get_user_pages() return value to posix mlock() error
215  */
216 static int __mlock_posix_error_return(long retval)
217 {
218 	if (retval == -EFAULT)
219 		retval = -ENOMEM;
220 	else if (retval == -ENOMEM)
221 		retval = -EAGAIN;
222 	return retval;
223 }
224 
225 /*
226  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
227  *
228  * The fast path is available only for evictable pages with single mapping.
229  * Then we can bypass the per-cpu pvec and get better performance.
230  * when mapcount > 1 we need try_to_munlock() which can fail.
231  * when !page_evictable(), we need the full redo logic of putback_lru_page to
232  * avoid leaving evictable page in unevictable list.
233  *
234  * In case of success, @page is added to @pvec and @pgrescued is incremented
235  * in case that the page was previously unevictable. @page is also unlocked.
236  */
237 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
238 		int *pgrescued)
239 {
240 	VM_BUG_ON_PAGE(PageLRU(page), page);
241 	VM_BUG_ON_PAGE(!PageLocked(page), page);
242 
243 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
244 		pagevec_add(pvec, page);
245 		if (TestClearPageUnevictable(page))
246 			(*pgrescued)++;
247 		unlock_page(page);
248 		return true;
249 	}
250 
251 	return false;
252 }
253 
254 /*
255  * Putback multiple evictable pages to the LRU
256  *
257  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
258  * the pages might have meanwhile become unevictable but that is OK.
259  */
260 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
261 {
262 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
263 	/*
264 	 *__pagevec_lru_add() calls release_pages() so we don't call
265 	 * put_page() explicitly
266 	 */
267 	__pagevec_lru_add(pvec);
268 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
269 }
270 
271 /*
272  * Munlock a batch of pages from the same zone
273  *
274  * The work is split to two main phases. First phase clears the Mlocked flag
275  * and attempts to isolate the pages, all under a single zone lru lock.
276  * The second phase finishes the munlock only for pages where isolation
277  * succeeded.
278  *
279  * Note that the pagevec may be modified during the process.
280  */
281 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
282 {
283 	int i;
284 	int nr = pagevec_count(pvec);
285 	int delta_munlocked;
286 	struct pagevec pvec_putback;
287 	int pgrescued = 0;
288 
289 	pagevec_init(&pvec_putback, 0);
290 
291 	/* Phase 1: page isolation */
292 	spin_lock_irq(&zone->lru_lock);
293 	for (i = 0; i < nr; i++) {
294 		struct page *page = pvec->pages[i];
295 
296 		if (TestClearPageMlocked(page)) {
297 			/*
298 			 * We already have pin from follow_page_mask()
299 			 * so we can spare the get_page() here.
300 			 */
301 			if (__munlock_isolate_lru_page(page, false))
302 				continue;
303 			else
304 				__munlock_isolation_failed(page);
305 		}
306 
307 		/*
308 		 * We won't be munlocking this page in the next phase
309 		 * but we still need to release the follow_page_mask()
310 		 * pin. We cannot do it under lru_lock however. If it's
311 		 * the last pin, __page_cache_release() would deadlock.
312 		 */
313 		pagevec_add(&pvec_putback, pvec->pages[i]);
314 		pvec->pages[i] = NULL;
315 	}
316 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
317 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
318 	spin_unlock_irq(&zone->lru_lock);
319 
320 	/* Now we can release pins of pages that we are not munlocking */
321 	pagevec_release(&pvec_putback);
322 
323 	/* Phase 2: page munlock */
324 	for (i = 0; i < nr; i++) {
325 		struct page *page = pvec->pages[i];
326 
327 		if (page) {
328 			lock_page(page);
329 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
330 					&pgrescued)) {
331 				/*
332 				 * Slow path. We don't want to lose the last
333 				 * pin before unlock_page()
334 				 */
335 				get_page(page); /* for putback_lru_page() */
336 				__munlock_isolated_page(page);
337 				unlock_page(page);
338 				put_page(page); /* from follow_page_mask() */
339 			}
340 		}
341 	}
342 
343 	/*
344 	 * Phase 3: page putback for pages that qualified for the fast path
345 	 * This will also call put_page() to return pin from follow_page_mask()
346 	 */
347 	if (pagevec_count(&pvec_putback))
348 		__putback_lru_fast(&pvec_putback, pgrescued);
349 }
350 
351 /*
352  * Fill up pagevec for __munlock_pagevec using pte walk
353  *
354  * The function expects that the struct page corresponding to @start address is
355  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
356  *
357  * The rest of @pvec is filled by subsequent pages within the same pmd and same
358  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
359  * pages also get pinned.
360  *
361  * Returns the address of the next page that should be scanned. This equals
362  * @start + PAGE_SIZE when no page could be added by the pte walk.
363  */
364 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
365 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
366 		unsigned long end)
367 {
368 	pte_t *pte;
369 	spinlock_t *ptl;
370 
371 	/*
372 	 * Initialize pte walk starting at the already pinned page where we
373 	 * are sure that there is a pte, as it was pinned under the same
374 	 * mmap_sem write op.
375 	 */
376 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
377 	/* Make sure we do not cross the page table boundary */
378 	end = pgd_addr_end(start, end);
379 	end = pud_addr_end(start, end);
380 	end = pmd_addr_end(start, end);
381 
382 	/* The page next to the pinned page is the first we will try to get */
383 	start += PAGE_SIZE;
384 	while (start < end) {
385 		struct page *page = NULL;
386 		pte++;
387 		if (pte_present(*pte))
388 			page = vm_normal_page(vma, start, *pte);
389 		/*
390 		 * Break if page could not be obtained or the page's node+zone does not
391 		 * match
392 		 */
393 		if (!page || page_zone_id(page) != zoneid)
394 			break;
395 
396 		/*
397 		 * Do not use pagevec for PTE-mapped THP,
398 		 * munlock_vma_pages_range() will handle them.
399 		 */
400 		if (PageTransCompound(page))
401 			break;
402 
403 		get_page(page);
404 		/*
405 		 * Increase the address that will be returned *before* the
406 		 * eventual break due to pvec becoming full by adding the page
407 		 */
408 		start += PAGE_SIZE;
409 		if (pagevec_add(pvec, page) == 0)
410 			break;
411 	}
412 	pte_unmap_unlock(pte, ptl);
413 	return start;
414 }
415 
416 /*
417  * munlock_vma_pages_range() - munlock all pages in the vma range.'
418  * @vma - vma containing range to be munlock()ed.
419  * @start - start address in @vma of the range
420  * @end - end of range in @vma.
421  *
422  *  For mremap(), munmap() and exit().
423  *
424  * Called with @vma VM_LOCKED.
425  *
426  * Returns with VM_LOCKED cleared.  Callers must be prepared to
427  * deal with this.
428  *
429  * We don't save and restore VM_LOCKED here because pages are
430  * still on lru.  In unmap path, pages might be scanned by reclaim
431  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
432  * free them.  This will result in freeing mlocked pages.
433  */
434 void munlock_vma_pages_range(struct vm_area_struct *vma,
435 			     unsigned long start, unsigned long end)
436 {
437 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
438 
439 	while (start < end) {
440 		struct page *page;
441 		unsigned int page_mask;
442 		unsigned long page_increm;
443 		struct pagevec pvec;
444 		struct zone *zone;
445 		int zoneid;
446 
447 		pagevec_init(&pvec, 0);
448 		/*
449 		 * Although FOLL_DUMP is intended for get_dump_page(),
450 		 * it just so happens that its special treatment of the
451 		 * ZERO_PAGE (returning an error instead of doing get_page)
452 		 * suits munlock very well (and if somehow an abnormal page
453 		 * has sneaked into the range, we won't oops here: great).
454 		 */
455 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
456 				&page_mask);
457 
458 		if (page && !IS_ERR(page)) {
459 			if (PageTransTail(page)) {
460 				VM_BUG_ON_PAGE(PageMlocked(page), page);
461 				put_page(page); /* follow_page_mask() */
462 			} else if (PageTransHuge(page)) {
463 				lock_page(page);
464 				/*
465 				 * Any THP page found by follow_page_mask() may
466 				 * have gotten split before reaching
467 				 * munlock_vma_page(), so we need to recompute
468 				 * the page_mask here.
469 				 */
470 				page_mask = munlock_vma_page(page);
471 				unlock_page(page);
472 				put_page(page); /* follow_page_mask() */
473 			} else {
474 				/*
475 				 * Non-huge pages are handled in batches via
476 				 * pagevec. The pin from follow_page_mask()
477 				 * prevents them from collapsing by THP.
478 				 */
479 				pagevec_add(&pvec, page);
480 				zone = page_zone(page);
481 				zoneid = page_zone_id(page);
482 
483 				/*
484 				 * Try to fill the rest of pagevec using fast
485 				 * pte walk. This will also update start to
486 				 * the next page to process. Then munlock the
487 				 * pagevec.
488 				 */
489 				start = __munlock_pagevec_fill(&pvec, vma,
490 						zoneid, start, end);
491 				__munlock_pagevec(&pvec, zone);
492 				goto next;
493 			}
494 		}
495 		page_increm = 1 + page_mask;
496 		start += page_increm * PAGE_SIZE;
497 next:
498 		cond_resched();
499 	}
500 }
501 
502 /*
503  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
504  *
505  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
506  * munlock is a no-op.  However, for some special vmas, we go ahead and
507  * populate the ptes.
508  *
509  * For vmas that pass the filters, merge/split as appropriate.
510  */
511 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
512 	unsigned long start, unsigned long end, vm_flags_t newflags)
513 {
514 	struct mm_struct *mm = vma->vm_mm;
515 	pgoff_t pgoff;
516 	int nr_pages;
517 	int ret = 0;
518 	int lock = !!(newflags & VM_LOCKED);
519 
520 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
521 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
522 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
523 		goto out;
524 
525 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
526 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
527 			  vma->vm_file, pgoff, vma_policy(vma),
528 			  vma->vm_userfaultfd_ctx);
529 	if (*prev) {
530 		vma = *prev;
531 		goto success;
532 	}
533 
534 	if (start != vma->vm_start) {
535 		ret = split_vma(mm, vma, start, 1);
536 		if (ret)
537 			goto out;
538 	}
539 
540 	if (end != vma->vm_end) {
541 		ret = split_vma(mm, vma, end, 0);
542 		if (ret)
543 			goto out;
544 	}
545 
546 success:
547 	/*
548 	 * Keep track of amount of locked VM.
549 	 */
550 	nr_pages = (end - start) >> PAGE_SHIFT;
551 	if (!lock)
552 		nr_pages = -nr_pages;
553 	mm->locked_vm += nr_pages;
554 
555 	/*
556 	 * vm_flags is protected by the mmap_sem held in write mode.
557 	 * It's okay if try_to_unmap_one unmaps a page just after we
558 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
559 	 */
560 
561 	if (lock)
562 		vma->vm_flags = newflags;
563 	else
564 		munlock_vma_pages_range(vma, start, end);
565 
566 out:
567 	*prev = vma;
568 	return ret;
569 }
570 
571 static int apply_vma_lock_flags(unsigned long start, size_t len,
572 				vm_flags_t flags)
573 {
574 	unsigned long nstart, end, tmp;
575 	struct vm_area_struct * vma, * prev;
576 	int error;
577 
578 	VM_BUG_ON(offset_in_page(start));
579 	VM_BUG_ON(len != PAGE_ALIGN(len));
580 	end = start + len;
581 	if (end < start)
582 		return -EINVAL;
583 	if (end == start)
584 		return 0;
585 	vma = find_vma(current->mm, start);
586 	if (!vma || vma->vm_start > start)
587 		return -ENOMEM;
588 
589 	prev = vma->vm_prev;
590 	if (start > vma->vm_start)
591 		prev = vma;
592 
593 	for (nstart = start ; ; ) {
594 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
595 
596 		newflags |= flags;
597 
598 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
599 		tmp = vma->vm_end;
600 		if (tmp > end)
601 			tmp = end;
602 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
603 		if (error)
604 			break;
605 		nstart = tmp;
606 		if (nstart < prev->vm_end)
607 			nstart = prev->vm_end;
608 		if (nstart >= end)
609 			break;
610 
611 		vma = prev->vm_next;
612 		if (!vma || vma->vm_start != nstart) {
613 			error = -ENOMEM;
614 			break;
615 		}
616 	}
617 	return error;
618 }
619 
620 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
621 {
622 	unsigned long locked;
623 	unsigned long lock_limit;
624 	int error = -ENOMEM;
625 
626 	if (!can_do_mlock())
627 		return -EPERM;
628 
629 	lru_add_drain_all();	/* flush pagevec */
630 
631 	len = PAGE_ALIGN(len + (offset_in_page(start)));
632 	start &= PAGE_MASK;
633 
634 	lock_limit = rlimit(RLIMIT_MEMLOCK);
635 	lock_limit >>= PAGE_SHIFT;
636 	locked = len >> PAGE_SHIFT;
637 
638 	if (down_write_killable(&current->mm->mmap_sem))
639 		return -EINTR;
640 
641 	locked += current->mm->locked_vm;
642 
643 	/* check against resource limits */
644 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
645 		error = apply_vma_lock_flags(start, len, flags);
646 
647 	up_write(&current->mm->mmap_sem);
648 	if (error)
649 		return error;
650 
651 	error = __mm_populate(start, len, 0);
652 	if (error)
653 		return __mlock_posix_error_return(error);
654 	return 0;
655 }
656 
657 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
658 {
659 	return do_mlock(start, len, VM_LOCKED);
660 }
661 
662 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
663 {
664 	vm_flags_t vm_flags = VM_LOCKED;
665 
666 	if (flags & ~MLOCK_ONFAULT)
667 		return -EINVAL;
668 
669 	if (flags & MLOCK_ONFAULT)
670 		vm_flags |= VM_LOCKONFAULT;
671 
672 	return do_mlock(start, len, vm_flags);
673 }
674 
675 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
676 {
677 	int ret;
678 
679 	len = PAGE_ALIGN(len + (offset_in_page(start)));
680 	start &= PAGE_MASK;
681 
682 	if (down_write_killable(&current->mm->mmap_sem))
683 		return -EINTR;
684 	ret = apply_vma_lock_flags(start, len, 0);
685 	up_write(&current->mm->mmap_sem);
686 
687 	return ret;
688 }
689 
690 /*
691  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
692  * and translate into the appropriate modifications to mm->def_flags and/or the
693  * flags for all current VMAs.
694  *
695  * There are a couple of subtleties with this.  If mlockall() is called multiple
696  * times with different flags, the values do not necessarily stack.  If mlockall
697  * is called once including the MCL_FUTURE flag and then a second time without
698  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
699  */
700 static int apply_mlockall_flags(int flags)
701 {
702 	struct vm_area_struct * vma, * prev = NULL;
703 	vm_flags_t to_add = 0;
704 
705 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
706 	if (flags & MCL_FUTURE) {
707 		current->mm->def_flags |= VM_LOCKED;
708 
709 		if (flags & MCL_ONFAULT)
710 			current->mm->def_flags |= VM_LOCKONFAULT;
711 
712 		if (!(flags & MCL_CURRENT))
713 			goto out;
714 	}
715 
716 	if (flags & MCL_CURRENT) {
717 		to_add |= VM_LOCKED;
718 		if (flags & MCL_ONFAULT)
719 			to_add |= VM_LOCKONFAULT;
720 	}
721 
722 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
723 		vm_flags_t newflags;
724 
725 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
726 		newflags |= to_add;
727 
728 		/* Ignore errors */
729 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
730 		cond_resched_rcu_qs();
731 	}
732 out:
733 	return 0;
734 }
735 
736 SYSCALL_DEFINE1(mlockall, int, flags)
737 {
738 	unsigned long lock_limit;
739 	int ret;
740 
741 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
742 		return -EINVAL;
743 
744 	if (!can_do_mlock())
745 		return -EPERM;
746 
747 	if (flags & MCL_CURRENT)
748 		lru_add_drain_all();	/* flush pagevec */
749 
750 	lock_limit = rlimit(RLIMIT_MEMLOCK);
751 	lock_limit >>= PAGE_SHIFT;
752 
753 	if (down_write_killable(&current->mm->mmap_sem))
754 		return -EINTR;
755 
756 	ret = -ENOMEM;
757 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
758 	    capable(CAP_IPC_LOCK))
759 		ret = apply_mlockall_flags(flags);
760 	up_write(&current->mm->mmap_sem);
761 	if (!ret && (flags & MCL_CURRENT))
762 		mm_populate(0, TASK_SIZE);
763 
764 	return ret;
765 }
766 
767 SYSCALL_DEFINE0(munlockall)
768 {
769 	int ret;
770 
771 	if (down_write_killable(&current->mm->mmap_sem))
772 		return -EINTR;
773 	ret = apply_mlockall_flags(0);
774 	up_write(&current->mm->mmap_sem);
775 	return ret;
776 }
777 
778 /*
779  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
780  * shm segments) get accounted against the user_struct instead.
781  */
782 static DEFINE_SPINLOCK(shmlock_user_lock);
783 
784 int user_shm_lock(size_t size, struct user_struct *user)
785 {
786 	unsigned long lock_limit, locked;
787 	int allowed = 0;
788 
789 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 	lock_limit = rlimit(RLIMIT_MEMLOCK);
791 	if (lock_limit == RLIM_INFINITY)
792 		allowed = 1;
793 	lock_limit >>= PAGE_SHIFT;
794 	spin_lock(&shmlock_user_lock);
795 	if (!allowed &&
796 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
797 		goto out;
798 	get_uid(user);
799 	user->locked_shm += locked;
800 	allowed = 1;
801 out:
802 	spin_unlock(&shmlock_user_lock);
803 	return allowed;
804 }
805 
806 void user_shm_unlock(size_t size, struct user_struct *user)
807 {
808 	spin_lock(&shmlock_user_lock);
809 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
810 	spin_unlock(&shmlock_user_lock);
811 	free_uid(user);
812 }
813