1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 bool can_do_mlock(void) 28 { 29 if (rlimit(RLIMIT_MEMLOCK) != 0) 30 return true; 31 if (capable(CAP_IPC_LOCK)) 32 return true; 33 return false; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 /* Serialize with page migration */ 83 BUG_ON(!PageLocked(page)); 84 85 VM_BUG_ON_PAGE(PageTail(page), page); 86 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 87 88 if (!TestSetPageMlocked(page)) { 89 mod_zone_page_state(page_zone(page), NR_MLOCK, 90 hpage_nr_pages(page)); 91 count_vm_event(UNEVICTABLE_PGMLOCKED); 92 if (!isolate_lru_page(page)) 93 putback_lru_page(page); 94 } 95 } 96 97 /* 98 * Isolate a page from LRU with optional get_page() pin. 99 * Assumes lru_lock already held and page already pinned. 100 */ 101 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 102 { 103 if (PageLRU(page)) { 104 struct lruvec *lruvec; 105 106 lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); 107 if (getpage) 108 get_page(page); 109 ClearPageLRU(page); 110 del_page_from_lru_list(page, lruvec, page_lru(page)); 111 return true; 112 } 113 114 return false; 115 } 116 117 /* 118 * Finish munlock after successful page isolation 119 * 120 * Page must be locked. This is a wrapper for try_to_munlock() 121 * and putback_lru_page() with munlock accounting. 122 */ 123 static void __munlock_isolated_page(struct page *page) 124 { 125 int ret = SWAP_AGAIN; 126 127 /* 128 * Optimization: if the page was mapped just once, that's our mapping 129 * and we don't need to check all the other vmas. 130 */ 131 if (page_mapcount(page) > 1) 132 ret = try_to_munlock(page); 133 134 /* Did try_to_unlock() succeed or punt? */ 135 if (ret != SWAP_MLOCK) 136 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 137 138 putback_lru_page(page); 139 } 140 141 /* 142 * Accounting for page isolation fail during munlock 143 * 144 * Performs accounting when page isolation fails in munlock. There is nothing 145 * else to do because it means some other task has already removed the page 146 * from the LRU. putback_lru_page() will take care of removing the page from 147 * the unevictable list, if necessary. vmscan [page_referenced()] will move 148 * the page back to the unevictable list if some other vma has it mlocked. 149 */ 150 static void __munlock_isolation_failed(struct page *page) 151 { 152 if (PageUnevictable(page)) 153 __count_vm_event(UNEVICTABLE_PGSTRANDED); 154 else 155 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 156 } 157 158 /** 159 * munlock_vma_page - munlock a vma page 160 * @page - page to be unlocked, either a normal page or THP page head 161 * 162 * returns the size of the page as a page mask (0 for normal page, 163 * HPAGE_PMD_NR - 1 for THP head page) 164 * 165 * called from munlock()/munmap() path with page supposedly on the LRU. 166 * When we munlock a page, because the vma where we found the page is being 167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 168 * page locked so that we can leave it on the unevictable lru list and not 169 * bother vmscan with it. However, to walk the page's rmap list in 170 * try_to_munlock() we must isolate the page from the LRU. If some other 171 * task has removed the page from the LRU, we won't be able to do that. 172 * So we clear the PageMlocked as we might not get another chance. If we 173 * can't isolate the page, we leave it for putback_lru_page() and vmscan 174 * [page_referenced()/try_to_unmap()] to deal with. 175 */ 176 unsigned int munlock_vma_page(struct page *page) 177 { 178 int nr_pages; 179 struct zone *zone = page_zone(page); 180 181 /* For try_to_munlock() and to serialize with page migration */ 182 BUG_ON(!PageLocked(page)); 183 184 VM_BUG_ON_PAGE(PageTail(page), page); 185 186 /* 187 * Serialize with any parallel __split_huge_page_refcount() which 188 * might otherwise copy PageMlocked to part of the tail pages before 189 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 190 */ 191 spin_lock_irq(&zone->lru_lock); 192 193 nr_pages = hpage_nr_pages(page); 194 if (!TestClearPageMlocked(page)) 195 goto unlock_out; 196 197 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 198 199 if (__munlock_isolate_lru_page(page, true)) { 200 spin_unlock_irq(&zone->lru_lock); 201 __munlock_isolated_page(page); 202 goto out; 203 } 204 __munlock_isolation_failed(page); 205 206 unlock_out: 207 spin_unlock_irq(&zone->lru_lock); 208 209 out: 210 return nr_pages - 1; 211 } 212 213 /* 214 * convert get_user_pages() return value to posix mlock() error 215 */ 216 static int __mlock_posix_error_return(long retval) 217 { 218 if (retval == -EFAULT) 219 retval = -ENOMEM; 220 else if (retval == -ENOMEM) 221 retval = -EAGAIN; 222 return retval; 223 } 224 225 /* 226 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 227 * 228 * The fast path is available only for evictable pages with single mapping. 229 * Then we can bypass the per-cpu pvec and get better performance. 230 * when mapcount > 1 we need try_to_munlock() which can fail. 231 * when !page_evictable(), we need the full redo logic of putback_lru_page to 232 * avoid leaving evictable page in unevictable list. 233 * 234 * In case of success, @page is added to @pvec and @pgrescued is incremented 235 * in case that the page was previously unevictable. @page is also unlocked. 236 */ 237 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 238 int *pgrescued) 239 { 240 VM_BUG_ON_PAGE(PageLRU(page), page); 241 VM_BUG_ON_PAGE(!PageLocked(page), page); 242 243 if (page_mapcount(page) <= 1 && page_evictable(page)) { 244 pagevec_add(pvec, page); 245 if (TestClearPageUnevictable(page)) 246 (*pgrescued)++; 247 unlock_page(page); 248 return true; 249 } 250 251 return false; 252 } 253 254 /* 255 * Putback multiple evictable pages to the LRU 256 * 257 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 258 * the pages might have meanwhile become unevictable but that is OK. 259 */ 260 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 261 { 262 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 263 /* 264 *__pagevec_lru_add() calls release_pages() so we don't call 265 * put_page() explicitly 266 */ 267 __pagevec_lru_add(pvec); 268 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 269 } 270 271 /* 272 * Munlock a batch of pages from the same zone 273 * 274 * The work is split to two main phases. First phase clears the Mlocked flag 275 * and attempts to isolate the pages, all under a single zone lru lock. 276 * The second phase finishes the munlock only for pages where isolation 277 * succeeded. 278 * 279 * Note that the pagevec may be modified during the process. 280 */ 281 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 282 { 283 int i; 284 int nr = pagevec_count(pvec); 285 int delta_munlocked; 286 struct pagevec pvec_putback; 287 int pgrescued = 0; 288 289 pagevec_init(&pvec_putback, 0); 290 291 /* Phase 1: page isolation */ 292 spin_lock_irq(&zone->lru_lock); 293 for (i = 0; i < nr; i++) { 294 struct page *page = pvec->pages[i]; 295 296 if (TestClearPageMlocked(page)) { 297 /* 298 * We already have pin from follow_page_mask() 299 * so we can spare the get_page() here. 300 */ 301 if (__munlock_isolate_lru_page(page, false)) 302 continue; 303 else 304 __munlock_isolation_failed(page); 305 } 306 307 /* 308 * We won't be munlocking this page in the next phase 309 * but we still need to release the follow_page_mask() 310 * pin. We cannot do it under lru_lock however. If it's 311 * the last pin, __page_cache_release() would deadlock. 312 */ 313 pagevec_add(&pvec_putback, pvec->pages[i]); 314 pvec->pages[i] = NULL; 315 } 316 delta_munlocked = -nr + pagevec_count(&pvec_putback); 317 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 318 spin_unlock_irq(&zone->lru_lock); 319 320 /* Now we can release pins of pages that we are not munlocking */ 321 pagevec_release(&pvec_putback); 322 323 /* Phase 2: page munlock */ 324 for (i = 0; i < nr; i++) { 325 struct page *page = pvec->pages[i]; 326 327 if (page) { 328 lock_page(page); 329 if (!__putback_lru_fast_prepare(page, &pvec_putback, 330 &pgrescued)) { 331 /* 332 * Slow path. We don't want to lose the last 333 * pin before unlock_page() 334 */ 335 get_page(page); /* for putback_lru_page() */ 336 __munlock_isolated_page(page); 337 unlock_page(page); 338 put_page(page); /* from follow_page_mask() */ 339 } 340 } 341 } 342 343 /* 344 * Phase 3: page putback for pages that qualified for the fast path 345 * This will also call put_page() to return pin from follow_page_mask() 346 */ 347 if (pagevec_count(&pvec_putback)) 348 __putback_lru_fast(&pvec_putback, pgrescued); 349 } 350 351 /* 352 * Fill up pagevec for __munlock_pagevec using pte walk 353 * 354 * The function expects that the struct page corresponding to @start address is 355 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 356 * 357 * The rest of @pvec is filled by subsequent pages within the same pmd and same 358 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 359 * pages also get pinned. 360 * 361 * Returns the address of the next page that should be scanned. This equals 362 * @start + PAGE_SIZE when no page could be added by the pte walk. 363 */ 364 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 365 struct vm_area_struct *vma, int zoneid, unsigned long start, 366 unsigned long end) 367 { 368 pte_t *pte; 369 spinlock_t *ptl; 370 371 /* 372 * Initialize pte walk starting at the already pinned page where we 373 * are sure that there is a pte, as it was pinned under the same 374 * mmap_sem write op. 375 */ 376 pte = get_locked_pte(vma->vm_mm, start, &ptl); 377 /* Make sure we do not cross the page table boundary */ 378 end = pgd_addr_end(start, end); 379 end = pud_addr_end(start, end); 380 end = pmd_addr_end(start, end); 381 382 /* The page next to the pinned page is the first we will try to get */ 383 start += PAGE_SIZE; 384 while (start < end) { 385 struct page *page = NULL; 386 pte++; 387 if (pte_present(*pte)) 388 page = vm_normal_page(vma, start, *pte); 389 /* 390 * Break if page could not be obtained or the page's node+zone does not 391 * match 392 */ 393 if (!page || page_zone_id(page) != zoneid) 394 break; 395 396 /* 397 * Do not use pagevec for PTE-mapped THP, 398 * munlock_vma_pages_range() will handle them. 399 */ 400 if (PageTransCompound(page)) 401 break; 402 403 get_page(page); 404 /* 405 * Increase the address that will be returned *before* the 406 * eventual break due to pvec becoming full by adding the page 407 */ 408 start += PAGE_SIZE; 409 if (pagevec_add(pvec, page) == 0) 410 break; 411 } 412 pte_unmap_unlock(pte, ptl); 413 return start; 414 } 415 416 /* 417 * munlock_vma_pages_range() - munlock all pages in the vma range.' 418 * @vma - vma containing range to be munlock()ed. 419 * @start - start address in @vma of the range 420 * @end - end of range in @vma. 421 * 422 * For mremap(), munmap() and exit(). 423 * 424 * Called with @vma VM_LOCKED. 425 * 426 * Returns with VM_LOCKED cleared. Callers must be prepared to 427 * deal with this. 428 * 429 * We don't save and restore VM_LOCKED here because pages are 430 * still on lru. In unmap path, pages might be scanned by reclaim 431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 432 * free them. This will result in freeing mlocked pages. 433 */ 434 void munlock_vma_pages_range(struct vm_area_struct *vma, 435 unsigned long start, unsigned long end) 436 { 437 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 438 439 while (start < end) { 440 struct page *page; 441 unsigned int page_mask; 442 unsigned long page_increm; 443 struct pagevec pvec; 444 struct zone *zone; 445 int zoneid; 446 447 pagevec_init(&pvec, 0); 448 /* 449 * Although FOLL_DUMP is intended for get_dump_page(), 450 * it just so happens that its special treatment of the 451 * ZERO_PAGE (returning an error instead of doing get_page) 452 * suits munlock very well (and if somehow an abnormal page 453 * has sneaked into the range, we won't oops here: great). 454 */ 455 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 456 &page_mask); 457 458 if (page && !IS_ERR(page)) { 459 if (PageTransTail(page)) { 460 VM_BUG_ON_PAGE(PageMlocked(page), page); 461 put_page(page); /* follow_page_mask() */ 462 } else if (PageTransHuge(page)) { 463 lock_page(page); 464 /* 465 * Any THP page found by follow_page_mask() may 466 * have gotten split before reaching 467 * munlock_vma_page(), so we need to recompute 468 * the page_mask here. 469 */ 470 page_mask = munlock_vma_page(page); 471 unlock_page(page); 472 put_page(page); /* follow_page_mask() */ 473 } else { 474 /* 475 * Non-huge pages are handled in batches via 476 * pagevec. The pin from follow_page_mask() 477 * prevents them from collapsing by THP. 478 */ 479 pagevec_add(&pvec, page); 480 zone = page_zone(page); 481 zoneid = page_zone_id(page); 482 483 /* 484 * Try to fill the rest of pagevec using fast 485 * pte walk. This will also update start to 486 * the next page to process. Then munlock the 487 * pagevec. 488 */ 489 start = __munlock_pagevec_fill(&pvec, vma, 490 zoneid, start, end); 491 __munlock_pagevec(&pvec, zone); 492 goto next; 493 } 494 } 495 page_increm = 1 + page_mask; 496 start += page_increm * PAGE_SIZE; 497 next: 498 cond_resched(); 499 } 500 } 501 502 /* 503 * mlock_fixup - handle mlock[all]/munlock[all] requests. 504 * 505 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 506 * munlock is a no-op. However, for some special vmas, we go ahead and 507 * populate the ptes. 508 * 509 * For vmas that pass the filters, merge/split as appropriate. 510 */ 511 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 512 unsigned long start, unsigned long end, vm_flags_t newflags) 513 { 514 struct mm_struct *mm = vma->vm_mm; 515 pgoff_t pgoff; 516 int nr_pages; 517 int ret = 0; 518 int lock = !!(newflags & VM_LOCKED); 519 520 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 521 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 522 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 523 goto out; 524 525 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 526 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 527 vma->vm_file, pgoff, vma_policy(vma), 528 vma->vm_userfaultfd_ctx); 529 if (*prev) { 530 vma = *prev; 531 goto success; 532 } 533 534 if (start != vma->vm_start) { 535 ret = split_vma(mm, vma, start, 1); 536 if (ret) 537 goto out; 538 } 539 540 if (end != vma->vm_end) { 541 ret = split_vma(mm, vma, end, 0); 542 if (ret) 543 goto out; 544 } 545 546 success: 547 /* 548 * Keep track of amount of locked VM. 549 */ 550 nr_pages = (end - start) >> PAGE_SHIFT; 551 if (!lock) 552 nr_pages = -nr_pages; 553 mm->locked_vm += nr_pages; 554 555 /* 556 * vm_flags is protected by the mmap_sem held in write mode. 557 * It's okay if try_to_unmap_one unmaps a page just after we 558 * set VM_LOCKED, populate_vma_page_range will bring it back. 559 */ 560 561 if (lock) 562 vma->vm_flags = newflags; 563 else 564 munlock_vma_pages_range(vma, start, end); 565 566 out: 567 *prev = vma; 568 return ret; 569 } 570 571 static int apply_vma_lock_flags(unsigned long start, size_t len, 572 vm_flags_t flags) 573 { 574 unsigned long nstart, end, tmp; 575 struct vm_area_struct * vma, * prev; 576 int error; 577 578 VM_BUG_ON(offset_in_page(start)); 579 VM_BUG_ON(len != PAGE_ALIGN(len)); 580 end = start + len; 581 if (end < start) 582 return -EINVAL; 583 if (end == start) 584 return 0; 585 vma = find_vma(current->mm, start); 586 if (!vma || vma->vm_start > start) 587 return -ENOMEM; 588 589 prev = vma->vm_prev; 590 if (start > vma->vm_start) 591 prev = vma; 592 593 for (nstart = start ; ; ) { 594 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 595 596 newflags |= flags; 597 598 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 599 tmp = vma->vm_end; 600 if (tmp > end) 601 tmp = end; 602 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 603 if (error) 604 break; 605 nstart = tmp; 606 if (nstart < prev->vm_end) 607 nstart = prev->vm_end; 608 if (nstart >= end) 609 break; 610 611 vma = prev->vm_next; 612 if (!vma || vma->vm_start != nstart) { 613 error = -ENOMEM; 614 break; 615 } 616 } 617 return error; 618 } 619 620 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 621 { 622 unsigned long locked; 623 unsigned long lock_limit; 624 int error = -ENOMEM; 625 626 if (!can_do_mlock()) 627 return -EPERM; 628 629 lru_add_drain_all(); /* flush pagevec */ 630 631 len = PAGE_ALIGN(len + (offset_in_page(start))); 632 start &= PAGE_MASK; 633 634 lock_limit = rlimit(RLIMIT_MEMLOCK); 635 lock_limit >>= PAGE_SHIFT; 636 locked = len >> PAGE_SHIFT; 637 638 if (down_write_killable(¤t->mm->mmap_sem)) 639 return -EINTR; 640 641 locked += current->mm->locked_vm; 642 643 /* check against resource limits */ 644 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 645 error = apply_vma_lock_flags(start, len, flags); 646 647 up_write(¤t->mm->mmap_sem); 648 if (error) 649 return error; 650 651 error = __mm_populate(start, len, 0); 652 if (error) 653 return __mlock_posix_error_return(error); 654 return 0; 655 } 656 657 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 658 { 659 return do_mlock(start, len, VM_LOCKED); 660 } 661 662 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 663 { 664 vm_flags_t vm_flags = VM_LOCKED; 665 666 if (flags & ~MLOCK_ONFAULT) 667 return -EINVAL; 668 669 if (flags & MLOCK_ONFAULT) 670 vm_flags |= VM_LOCKONFAULT; 671 672 return do_mlock(start, len, vm_flags); 673 } 674 675 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 676 { 677 int ret; 678 679 len = PAGE_ALIGN(len + (offset_in_page(start))); 680 start &= PAGE_MASK; 681 682 if (down_write_killable(¤t->mm->mmap_sem)) 683 return -EINTR; 684 ret = apply_vma_lock_flags(start, len, 0); 685 up_write(¤t->mm->mmap_sem); 686 687 return ret; 688 } 689 690 /* 691 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 692 * and translate into the appropriate modifications to mm->def_flags and/or the 693 * flags for all current VMAs. 694 * 695 * There are a couple of subtleties with this. If mlockall() is called multiple 696 * times with different flags, the values do not necessarily stack. If mlockall 697 * is called once including the MCL_FUTURE flag and then a second time without 698 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 699 */ 700 static int apply_mlockall_flags(int flags) 701 { 702 struct vm_area_struct * vma, * prev = NULL; 703 vm_flags_t to_add = 0; 704 705 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 706 if (flags & MCL_FUTURE) { 707 current->mm->def_flags |= VM_LOCKED; 708 709 if (flags & MCL_ONFAULT) 710 current->mm->def_flags |= VM_LOCKONFAULT; 711 712 if (!(flags & MCL_CURRENT)) 713 goto out; 714 } 715 716 if (flags & MCL_CURRENT) { 717 to_add |= VM_LOCKED; 718 if (flags & MCL_ONFAULT) 719 to_add |= VM_LOCKONFAULT; 720 } 721 722 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 723 vm_flags_t newflags; 724 725 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 726 newflags |= to_add; 727 728 /* Ignore errors */ 729 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 730 cond_resched_rcu_qs(); 731 } 732 out: 733 return 0; 734 } 735 736 SYSCALL_DEFINE1(mlockall, int, flags) 737 { 738 unsigned long lock_limit; 739 int ret; 740 741 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) 742 return -EINVAL; 743 744 if (!can_do_mlock()) 745 return -EPERM; 746 747 if (flags & MCL_CURRENT) 748 lru_add_drain_all(); /* flush pagevec */ 749 750 lock_limit = rlimit(RLIMIT_MEMLOCK); 751 lock_limit >>= PAGE_SHIFT; 752 753 if (down_write_killable(¤t->mm->mmap_sem)) 754 return -EINTR; 755 756 ret = -ENOMEM; 757 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 758 capable(CAP_IPC_LOCK)) 759 ret = apply_mlockall_flags(flags); 760 up_write(¤t->mm->mmap_sem); 761 if (!ret && (flags & MCL_CURRENT)) 762 mm_populate(0, TASK_SIZE); 763 764 return ret; 765 } 766 767 SYSCALL_DEFINE0(munlockall) 768 { 769 int ret; 770 771 if (down_write_killable(¤t->mm->mmap_sem)) 772 return -EINTR; 773 ret = apply_mlockall_flags(0); 774 up_write(¤t->mm->mmap_sem); 775 return ret; 776 } 777 778 /* 779 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 780 * shm segments) get accounted against the user_struct instead. 781 */ 782 static DEFINE_SPINLOCK(shmlock_user_lock); 783 784 int user_shm_lock(size_t size, struct user_struct *user) 785 { 786 unsigned long lock_limit, locked; 787 int allowed = 0; 788 789 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 790 lock_limit = rlimit(RLIMIT_MEMLOCK); 791 if (lock_limit == RLIM_INFINITY) 792 allowed = 1; 793 lock_limit >>= PAGE_SHIFT; 794 spin_lock(&shmlock_user_lock); 795 if (!allowed && 796 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 797 goto out; 798 get_uid(user); 799 user->locked_shm += locked; 800 allowed = 1; 801 out: 802 spin_unlock(&shmlock_user_lock); 803 return allowed; 804 } 805 806 void user_shm_unlock(size_t size, struct user_struct *user) 807 { 808 spin_lock(&shmlock_user_lock); 809 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 810 spin_unlock(&shmlock_user_lock); 811 free_uid(user); 812 } 813