1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/syscalls.h> 16 #include <linux/sched.h> 17 #include <linux/module.h> 18 #include <linux/rmap.h> 19 #include <linux/mmzone.h> 20 #include <linux/hugetlb.h> 21 22 #include "internal.h" 23 24 int can_do_mlock(void) 25 { 26 if (capable(CAP_IPC_LOCK)) 27 return 1; 28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 29 return 1; 30 return 0; 31 } 32 EXPORT_SYMBOL(can_do_mlock); 33 34 #ifdef CONFIG_UNEVICTABLE_LRU 35 /* 36 * Mlocked pages are marked with PageMlocked() flag for efficient testing 37 * in vmscan and, possibly, the fault path; and to support semi-accurate 38 * statistics. 39 * 40 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 41 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 42 * The unevictable list is an LRU sibling list to the [in]active lists. 43 * PageUnevictable is set to indicate the unevictable state. 44 * 45 * When lazy mlocking via vmscan, it is important to ensure that the 46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 47 * may have mlocked a page that is being munlocked. So lazy mlock must take 48 * the mmap_sem for read, and verify that the vma really is locked 49 * (see mm/rmap.c). 50 */ 51 52 /* 53 * LRU accounting for clear_page_mlock() 54 */ 55 void __clear_page_mlock(struct page *page) 56 { 57 VM_BUG_ON(!PageLocked(page)); 58 59 if (!page->mapping) { /* truncated ? */ 60 return; 61 } 62 63 dec_zone_page_state(page, NR_MLOCK); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 BUG_ON(!PageLocked(page)); 83 84 if (!TestSetPageMlocked(page)) { 85 inc_zone_page_state(page, NR_MLOCK); 86 count_vm_event(UNEVICTABLE_PGMLOCKED); 87 if (!isolate_lru_page(page)) 88 putback_lru_page(page); 89 } 90 } 91 92 /* 93 * called from munlock()/munmap() path with page supposedly on the LRU. 94 * 95 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked 96 * [in try_to_munlock()] and then attempt to isolate the page. We must 97 * isolate the page to keep others from messing with its unevictable 98 * and mlocked state while trying to munlock. However, we pre-clear the 99 * mlocked state anyway as we might lose the isolation race and we might 100 * not get another chance to clear PageMlocked. If we successfully 101 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas 102 * mapping the page, it will restore the PageMlocked state, unless the page 103 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(), 104 * perhaps redundantly. 105 * If we lose the isolation race, and the page is mapped by other VM_LOCKED 106 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap() 107 * either of which will restore the PageMlocked state by calling 108 * mlock_vma_page() above, if it can grab the vma's mmap sem. 109 */ 110 static void munlock_vma_page(struct page *page) 111 { 112 BUG_ON(!PageLocked(page)); 113 114 if (TestClearPageMlocked(page)) { 115 dec_zone_page_state(page, NR_MLOCK); 116 if (!isolate_lru_page(page)) { 117 int ret = try_to_munlock(page); 118 /* 119 * did try_to_unlock() succeed or punt? 120 */ 121 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN) 122 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 123 124 putback_lru_page(page); 125 } else { 126 /* 127 * We lost the race. let try_to_unmap() deal 128 * with it. At least we get the page state and 129 * mlock stats right. However, page is still on 130 * the noreclaim list. We'll fix that up when 131 * the page is eventually freed or we scan the 132 * noreclaim list. 133 */ 134 if (PageUnevictable(page)) 135 count_vm_event(UNEVICTABLE_PGSTRANDED); 136 else 137 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 138 } 139 } 140 } 141 142 /** 143 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma. 144 * @vma: target vma 145 * @start: start address 146 * @end: end address 147 * @mlock: 0 indicate munlock, otherwise mlock. 148 * 149 * If @mlock == 0, unlock an mlocked range; 150 * else mlock the range of pages. This takes care of making the pages present , 151 * too. 152 * 153 * return 0 on success, negative error code on error. 154 * 155 * vma->vm_mm->mmap_sem must be held for at least read. 156 */ 157 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 158 unsigned long start, unsigned long end, 159 int mlock) 160 { 161 struct mm_struct *mm = vma->vm_mm; 162 unsigned long addr = start; 163 struct page *pages[16]; /* 16 gives a reasonable batch */ 164 int nr_pages = (end - start) / PAGE_SIZE; 165 int ret = 0; 166 int gup_flags = 0; 167 168 VM_BUG_ON(start & ~PAGE_MASK); 169 VM_BUG_ON(end & ~PAGE_MASK); 170 VM_BUG_ON(start < vma->vm_start); 171 VM_BUG_ON(end > vma->vm_end); 172 VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) && 173 (atomic_read(&mm->mm_users) != 0)); 174 175 /* 176 * mlock: don't page populate if page has PROT_NONE permission. 177 * munlock: the pages always do munlock althrough 178 * its has PROT_NONE permission. 179 */ 180 if (!mlock) 181 gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS; 182 183 if (vma->vm_flags & VM_WRITE) 184 gup_flags |= GUP_FLAGS_WRITE; 185 186 while (nr_pages > 0) { 187 int i; 188 189 cond_resched(); 190 191 /* 192 * get_user_pages makes pages present if we are 193 * setting mlock. and this extra reference count will 194 * disable migration of this page. However, page may 195 * still be truncated out from under us. 196 */ 197 ret = __get_user_pages(current, mm, addr, 198 min_t(int, nr_pages, ARRAY_SIZE(pages)), 199 gup_flags, pages, NULL); 200 /* 201 * This can happen for, e.g., VM_NONLINEAR regions before 202 * a page has been allocated and mapped at a given offset, 203 * or for addresses that map beyond end of a file. 204 * We'll mlock the the pages if/when they get faulted in. 205 */ 206 if (ret < 0) 207 break; 208 if (ret == 0) { 209 /* 210 * We know the vma is there, so the only time 211 * we cannot get a single page should be an 212 * error (ret < 0) case. 213 */ 214 WARN_ON(1); 215 break; 216 } 217 218 lru_add_drain(); /* push cached pages to LRU */ 219 220 for (i = 0; i < ret; i++) { 221 struct page *page = pages[i]; 222 223 lock_page(page); 224 /* 225 * Because we lock page here and migration is blocked 226 * by the elevated reference, we need only check for 227 * page truncation (file-cache only). 228 */ 229 if (page->mapping) { 230 if (mlock) 231 mlock_vma_page(page); 232 else 233 munlock_vma_page(page); 234 } 235 unlock_page(page); 236 put_page(page); /* ref from get_user_pages() */ 237 238 /* 239 * here we assume that get_user_pages() has given us 240 * a list of virtually contiguous pages. 241 */ 242 addr += PAGE_SIZE; /* for next get_user_pages() */ 243 nr_pages--; 244 } 245 ret = 0; 246 } 247 248 return ret; /* count entire vma as locked_vm */ 249 } 250 251 /* 252 * convert get_user_pages() return value to posix mlock() error 253 */ 254 static int __mlock_posix_error_return(long retval) 255 { 256 if (retval == -EFAULT) 257 retval = -ENOMEM; 258 else if (retval == -ENOMEM) 259 retval = -EAGAIN; 260 return retval; 261 } 262 263 #else /* CONFIG_UNEVICTABLE_LRU */ 264 265 /* 266 * Just make pages present if VM_LOCKED. No-op if unlocking. 267 */ 268 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 269 unsigned long start, unsigned long end, 270 int mlock) 271 { 272 if (mlock && (vma->vm_flags & VM_LOCKED)) 273 return make_pages_present(start, end); 274 return 0; 275 } 276 277 static inline int __mlock_posix_error_return(long retval) 278 { 279 return 0; 280 } 281 282 #endif /* CONFIG_UNEVICTABLE_LRU */ 283 284 /** 285 * mlock_vma_pages_range() - mlock pages in specified vma range. 286 * @vma - the vma containing the specfied address range 287 * @start - starting address in @vma to mlock 288 * @end - end address [+1] in @vma to mlock 289 * 290 * For mmap()/mremap()/expansion of mlocked vma. 291 * 292 * return 0 on success for "normal" vmas. 293 * 294 * return number of pages [> 0] to be removed from locked_vm on success 295 * of "special" vmas. 296 * 297 * return negative error if vma spanning @start-@range disappears while 298 * mmap semaphore is dropped. Unlikely? 299 */ 300 long mlock_vma_pages_range(struct vm_area_struct *vma, 301 unsigned long start, unsigned long end) 302 { 303 struct mm_struct *mm = vma->vm_mm; 304 int nr_pages = (end - start) / PAGE_SIZE; 305 BUG_ON(!(vma->vm_flags & VM_LOCKED)); 306 307 /* 308 * filter unlockable vmas 309 */ 310 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 311 goto no_mlock; 312 313 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 314 is_vm_hugetlb_page(vma) || 315 vma == get_gate_vma(current))) { 316 long error; 317 downgrade_write(&mm->mmap_sem); 318 319 error = __mlock_vma_pages_range(vma, start, end, 1); 320 321 up_read(&mm->mmap_sem); 322 /* vma can change or disappear */ 323 down_write(&mm->mmap_sem); 324 vma = find_vma(mm, start); 325 /* non-NULL vma must contain @start, but need to check @end */ 326 if (!vma || end > vma->vm_end) 327 return -ENOMEM; 328 329 return 0; /* hide other errors from mmap(), et al */ 330 } 331 332 /* 333 * User mapped kernel pages or huge pages: 334 * make these pages present to populate the ptes, but 335 * fall thru' to reset VM_LOCKED--no need to unlock, and 336 * return nr_pages so these don't get counted against task's 337 * locked limit. huge pages are already counted against 338 * locked vm limit. 339 */ 340 make_pages_present(start, end); 341 342 no_mlock: 343 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */ 344 return nr_pages; /* error or pages NOT mlocked */ 345 } 346 347 348 /* 349 * munlock_vma_pages_range() - munlock all pages in the vma range.' 350 * @vma - vma containing range to be munlock()ed. 351 * @start - start address in @vma of the range 352 * @end - end of range in @vma. 353 * 354 * For mremap(), munmap() and exit(). 355 * 356 * Called with @vma VM_LOCKED. 357 * 358 * Returns with VM_LOCKED cleared. Callers must be prepared to 359 * deal with this. 360 * 361 * We don't save and restore VM_LOCKED here because pages are 362 * still on lru. In unmap path, pages might be scanned by reclaim 363 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 364 * free them. This will result in freeing mlocked pages. 365 */ 366 void munlock_vma_pages_range(struct vm_area_struct *vma, 367 unsigned long start, unsigned long end) 368 { 369 vma->vm_flags &= ~VM_LOCKED; 370 __mlock_vma_pages_range(vma, start, end, 0); 371 } 372 373 /* 374 * mlock_fixup - handle mlock[all]/munlock[all] requests. 375 * 376 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 377 * munlock is a no-op. However, for some special vmas, we go ahead and 378 * populate the ptes via make_pages_present(). 379 * 380 * For vmas that pass the filters, merge/split as appropriate. 381 */ 382 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 383 unsigned long start, unsigned long end, unsigned int newflags) 384 { 385 struct mm_struct *mm = vma->vm_mm; 386 pgoff_t pgoff; 387 int nr_pages; 388 int ret = 0; 389 int lock = newflags & VM_LOCKED; 390 391 if (newflags == vma->vm_flags || 392 (vma->vm_flags & (VM_IO | VM_PFNMAP))) 393 goto out; /* don't set VM_LOCKED, don't count */ 394 395 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 396 is_vm_hugetlb_page(vma) || 397 vma == get_gate_vma(current)) { 398 if (lock) 399 make_pages_present(start, end); 400 goto out; /* don't set VM_LOCKED, don't count */ 401 } 402 403 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 404 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 405 vma->vm_file, pgoff, vma_policy(vma)); 406 if (*prev) { 407 vma = *prev; 408 goto success; 409 } 410 411 if (start != vma->vm_start) { 412 ret = split_vma(mm, vma, start, 1); 413 if (ret) 414 goto out; 415 } 416 417 if (end != vma->vm_end) { 418 ret = split_vma(mm, vma, end, 0); 419 if (ret) 420 goto out; 421 } 422 423 success: 424 /* 425 * Keep track of amount of locked VM. 426 */ 427 nr_pages = (end - start) >> PAGE_SHIFT; 428 if (!lock) 429 nr_pages = -nr_pages; 430 mm->locked_vm += nr_pages; 431 432 /* 433 * vm_flags is protected by the mmap_sem held in write mode. 434 * It's okay if try_to_unmap_one unmaps a page just after we 435 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 436 */ 437 vma->vm_flags = newflags; 438 439 if (lock) { 440 /* 441 * mmap_sem is currently held for write. Downgrade the write 442 * lock to a read lock so that other faults, mmap scans, ... 443 * while we fault in all pages. 444 */ 445 downgrade_write(&mm->mmap_sem); 446 447 ret = __mlock_vma_pages_range(vma, start, end, 1); 448 449 /* 450 * Need to reacquire mmap sem in write mode, as our callers 451 * expect this. We have no support for atomically upgrading 452 * a sem to write, so we need to check for ranges while sem 453 * is unlocked. 454 */ 455 up_read(&mm->mmap_sem); 456 /* vma can change or disappear */ 457 down_write(&mm->mmap_sem); 458 *prev = find_vma(mm, start); 459 /* non-NULL *prev must contain @start, but need to check @end */ 460 if (!(*prev) || end > (*prev)->vm_end) 461 ret = -ENOMEM; 462 else if (ret > 0) { 463 mm->locked_vm -= ret; 464 ret = 0; 465 } else 466 ret = __mlock_posix_error_return(ret); /* translate if needed */ 467 } else { 468 /* 469 * TODO: for unlocking, pages will already be resident, so 470 * we don't need to wait for allocations/reclaim/pagein, ... 471 * However, unlocking a very large region can still take a 472 * while. Should we downgrade the semaphore for both lock 473 * AND unlock ? 474 */ 475 __mlock_vma_pages_range(vma, start, end, 0); 476 } 477 478 out: 479 *prev = vma; 480 return ret; 481 } 482 483 static int do_mlock(unsigned long start, size_t len, int on) 484 { 485 unsigned long nstart, end, tmp; 486 struct vm_area_struct * vma, * prev; 487 int error; 488 489 len = PAGE_ALIGN(len); 490 end = start + len; 491 if (end < start) 492 return -EINVAL; 493 if (end == start) 494 return 0; 495 vma = find_vma_prev(current->mm, start, &prev); 496 if (!vma || vma->vm_start > start) 497 return -ENOMEM; 498 499 if (start > vma->vm_start) 500 prev = vma; 501 502 for (nstart = start ; ; ) { 503 unsigned int newflags; 504 505 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 506 507 newflags = vma->vm_flags | VM_LOCKED; 508 if (!on) 509 newflags &= ~VM_LOCKED; 510 511 tmp = vma->vm_end; 512 if (tmp > end) 513 tmp = end; 514 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 515 if (error) 516 break; 517 nstart = tmp; 518 if (nstart < prev->vm_end) 519 nstart = prev->vm_end; 520 if (nstart >= end) 521 break; 522 523 vma = prev->vm_next; 524 if (!vma || vma->vm_start != nstart) { 525 error = -ENOMEM; 526 break; 527 } 528 } 529 return error; 530 } 531 532 asmlinkage long sys_mlock(unsigned long start, size_t len) 533 { 534 unsigned long locked; 535 unsigned long lock_limit; 536 int error = -ENOMEM; 537 538 if (!can_do_mlock()) 539 return -EPERM; 540 541 lru_add_drain_all(); /* flush pagevec */ 542 543 down_write(¤t->mm->mmap_sem); 544 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 545 start &= PAGE_MASK; 546 547 locked = len >> PAGE_SHIFT; 548 locked += current->mm->locked_vm; 549 550 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 551 lock_limit >>= PAGE_SHIFT; 552 553 /* check against resource limits */ 554 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 555 error = do_mlock(start, len, 1); 556 up_write(¤t->mm->mmap_sem); 557 return error; 558 } 559 560 asmlinkage long sys_munlock(unsigned long start, size_t len) 561 { 562 int ret; 563 564 down_write(¤t->mm->mmap_sem); 565 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 566 start &= PAGE_MASK; 567 ret = do_mlock(start, len, 0); 568 up_write(¤t->mm->mmap_sem); 569 return ret; 570 } 571 572 static int do_mlockall(int flags) 573 { 574 struct vm_area_struct * vma, * prev = NULL; 575 unsigned int def_flags = 0; 576 577 if (flags & MCL_FUTURE) 578 def_flags = VM_LOCKED; 579 current->mm->def_flags = def_flags; 580 if (flags == MCL_FUTURE) 581 goto out; 582 583 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 584 unsigned int newflags; 585 586 newflags = vma->vm_flags | VM_LOCKED; 587 if (!(flags & MCL_CURRENT)) 588 newflags &= ~VM_LOCKED; 589 590 /* Ignore errors */ 591 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 592 } 593 out: 594 return 0; 595 } 596 597 asmlinkage long sys_mlockall(int flags) 598 { 599 unsigned long lock_limit; 600 int ret = -EINVAL; 601 602 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 603 goto out; 604 605 ret = -EPERM; 606 if (!can_do_mlock()) 607 goto out; 608 609 lru_add_drain_all(); /* flush pagevec */ 610 611 down_write(¤t->mm->mmap_sem); 612 613 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 614 lock_limit >>= PAGE_SHIFT; 615 616 ret = -ENOMEM; 617 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 618 capable(CAP_IPC_LOCK)) 619 ret = do_mlockall(flags); 620 up_write(¤t->mm->mmap_sem); 621 out: 622 return ret; 623 } 624 625 asmlinkage long sys_munlockall(void) 626 { 627 int ret; 628 629 down_write(¤t->mm->mmap_sem); 630 ret = do_mlockall(0); 631 up_write(¤t->mm->mmap_sem); 632 return ret; 633 } 634 635 /* 636 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 637 * shm segments) get accounted against the user_struct instead. 638 */ 639 static DEFINE_SPINLOCK(shmlock_user_lock); 640 641 int user_shm_lock(size_t size, struct user_struct *user) 642 { 643 unsigned long lock_limit, locked; 644 int allowed = 0; 645 646 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 647 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 648 if (lock_limit == RLIM_INFINITY) 649 allowed = 1; 650 lock_limit >>= PAGE_SHIFT; 651 spin_lock(&shmlock_user_lock); 652 if (!allowed && 653 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 654 goto out; 655 get_uid(user); 656 user->locked_shm += locked; 657 allowed = 1; 658 out: 659 spin_unlock(&shmlock_user_lock); 660 return allowed; 661 } 662 663 void user_shm_unlock(size_t size, struct user_struct *user) 664 { 665 spin_lock(&shmlock_user_lock); 666 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 667 spin_unlock(&shmlock_user_lock); 668 free_uid(user); 669 } 670