xref: /linux/mm/mlock.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 #ifdef CONFIG_UNEVICTABLE_LRU
35 /*
36  * Mlocked pages are marked with PageMlocked() flag for efficient testing
37  * in vmscan and, possibly, the fault path; and to support semi-accurate
38  * statistics.
39  *
40  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
41  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42  * The unevictable list is an LRU sibling list to the [in]active lists.
43  * PageUnevictable is set to indicate the unevictable state.
44  *
45  * When lazy mlocking via vmscan, it is important to ensure that the
46  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47  * may have mlocked a page that is being munlocked. So lazy mlock must take
48  * the mmap_sem for read, and verify that the vma really is locked
49  * (see mm/rmap.c).
50  */
51 
52 /*
53  *  LRU accounting for clear_page_mlock()
54  */
55 void __clear_page_mlock(struct page *page)
56 {
57 	VM_BUG_ON(!PageLocked(page));
58 
59 	if (!page->mapping) {	/* truncated ? */
60 		return;
61 	}
62 
63 	dec_zone_page_state(page, NR_MLOCK);
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	BUG_ON(!PageLocked(page));
83 
84 	if (!TestSetPageMlocked(page)) {
85 		inc_zone_page_state(page, NR_MLOCK);
86 		count_vm_event(UNEVICTABLE_PGMLOCKED);
87 		if (!isolate_lru_page(page))
88 			putback_lru_page(page);
89 	}
90 }
91 
92 /*
93  * called from munlock()/munmap() path with page supposedly on the LRU.
94  *
95  * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
96  * [in try_to_munlock()] and then attempt to isolate the page.  We must
97  * isolate the page to keep others from messing with its unevictable
98  * and mlocked state while trying to munlock.  However, we pre-clear the
99  * mlocked state anyway as we might lose the isolation race and we might
100  * not get another chance to clear PageMlocked.  If we successfully
101  * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
102  * mapping the page, it will restore the PageMlocked state, unless the page
103  * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
104  * perhaps redundantly.
105  * If we lose the isolation race, and the page is mapped by other VM_LOCKED
106  * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
107  * either of which will restore the PageMlocked state by calling
108  * mlock_vma_page() above, if it can grab the vma's mmap sem.
109  */
110 static void munlock_vma_page(struct page *page)
111 {
112 	BUG_ON(!PageLocked(page));
113 
114 	if (TestClearPageMlocked(page)) {
115 		dec_zone_page_state(page, NR_MLOCK);
116 		if (!isolate_lru_page(page)) {
117 			int ret = try_to_munlock(page);
118 			/*
119 			 * did try_to_unlock() succeed or punt?
120 			 */
121 			if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
122 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123 
124 			putback_lru_page(page);
125 		} else {
126 			/*
127 			 * We lost the race.  let try_to_unmap() deal
128 			 * with it.  At least we get the page state and
129 			 * mlock stats right.  However, page is still on
130 			 * the noreclaim list.  We'll fix that up when
131 			 * the page is eventually freed or we scan the
132 			 * noreclaim list.
133 			 */
134 			if (PageUnevictable(page))
135 				count_vm_event(UNEVICTABLE_PGSTRANDED);
136 			else
137 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138 		}
139 	}
140 }
141 
142 /**
143  * __mlock_vma_pages_range() -  mlock/munlock a range of pages in the vma.
144  * @vma:   target vma
145  * @start: start address
146  * @end:   end address
147  * @mlock: 0 indicate munlock, otherwise mlock.
148  *
149  * If @mlock == 0, unlock an mlocked range;
150  * else mlock the range of pages.  This takes care of making the pages present ,
151  * too.
152  *
153  * return 0 on success, negative error code on error.
154  *
155  * vma->vm_mm->mmap_sem must be held for at least read.
156  */
157 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158 				   unsigned long start, unsigned long end,
159 				   int mlock)
160 {
161 	struct mm_struct *mm = vma->vm_mm;
162 	unsigned long addr = start;
163 	struct page *pages[16]; /* 16 gives a reasonable batch */
164 	int nr_pages = (end - start) / PAGE_SIZE;
165 	int ret = 0;
166 	int gup_flags = 0;
167 
168 	VM_BUG_ON(start & ~PAGE_MASK);
169 	VM_BUG_ON(end   & ~PAGE_MASK);
170 	VM_BUG_ON(start < vma->vm_start);
171 	VM_BUG_ON(end   > vma->vm_end);
172 	VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
173 		  (atomic_read(&mm->mm_users) != 0));
174 
175 	/*
176 	 * mlock:   don't page populate if page has PROT_NONE permission.
177 	 * munlock: the pages always do munlock althrough
178 	 *          its has PROT_NONE permission.
179 	 */
180 	if (!mlock)
181 		gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS;
182 
183 	if (vma->vm_flags & VM_WRITE)
184 		gup_flags |= GUP_FLAGS_WRITE;
185 
186 	while (nr_pages > 0) {
187 		int i;
188 
189 		cond_resched();
190 
191 		/*
192 		 * get_user_pages makes pages present if we are
193 		 * setting mlock. and this extra reference count will
194 		 * disable migration of this page.  However, page may
195 		 * still be truncated out from under us.
196 		 */
197 		ret = __get_user_pages(current, mm, addr,
198 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
199 				gup_flags, pages, NULL);
200 		/*
201 		 * This can happen for, e.g., VM_NONLINEAR regions before
202 		 * a page has been allocated and mapped at a given offset,
203 		 * or for addresses that map beyond end of a file.
204 		 * We'll mlock the the pages if/when they get faulted in.
205 		 */
206 		if (ret < 0)
207 			break;
208 		if (ret == 0) {
209 			/*
210 			 * We know the vma is there, so the only time
211 			 * we cannot get a single page should be an
212 			 * error (ret < 0) case.
213 			 */
214 			WARN_ON(1);
215 			break;
216 		}
217 
218 		lru_add_drain();	/* push cached pages to LRU */
219 
220 		for (i = 0; i < ret; i++) {
221 			struct page *page = pages[i];
222 
223 			lock_page(page);
224 			/*
225 			 * Because we lock page here and migration is blocked
226 			 * by the elevated reference, we need only check for
227 			 * page truncation (file-cache only).
228 			 */
229 			if (page->mapping) {
230 				if (mlock)
231 					mlock_vma_page(page);
232 				else
233 					munlock_vma_page(page);
234 			}
235 			unlock_page(page);
236 			put_page(page);		/* ref from get_user_pages() */
237 
238 			/*
239 			 * here we assume that get_user_pages() has given us
240 			 * a list of virtually contiguous pages.
241 			 */
242 			addr += PAGE_SIZE;	/* for next get_user_pages() */
243 			nr_pages--;
244 		}
245 		ret = 0;
246 	}
247 
248 	return ret;	/* count entire vma as locked_vm */
249 }
250 
251 /*
252  * convert get_user_pages() return value to posix mlock() error
253  */
254 static int __mlock_posix_error_return(long retval)
255 {
256 	if (retval == -EFAULT)
257 		retval = -ENOMEM;
258 	else if (retval == -ENOMEM)
259 		retval = -EAGAIN;
260 	return retval;
261 }
262 
263 #else /* CONFIG_UNEVICTABLE_LRU */
264 
265 /*
266  * Just make pages present if VM_LOCKED.  No-op if unlocking.
267  */
268 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
269 				   unsigned long start, unsigned long end,
270 				   int mlock)
271 {
272 	if (mlock && (vma->vm_flags & VM_LOCKED))
273 		return make_pages_present(start, end);
274 	return 0;
275 }
276 
277 static inline int __mlock_posix_error_return(long retval)
278 {
279 	return 0;
280 }
281 
282 #endif /* CONFIG_UNEVICTABLE_LRU */
283 
284 /**
285  * mlock_vma_pages_range() - mlock pages in specified vma range.
286  * @vma - the vma containing the specfied address range
287  * @start - starting address in @vma to mlock
288  * @end   - end address [+1] in @vma to mlock
289  *
290  * For mmap()/mremap()/expansion of mlocked vma.
291  *
292  * return 0 on success for "normal" vmas.
293  *
294  * return number of pages [> 0] to be removed from locked_vm on success
295  * of "special" vmas.
296  *
297  * return negative error if vma spanning @start-@range disappears while
298  * mmap semaphore is dropped.  Unlikely?
299  */
300 long mlock_vma_pages_range(struct vm_area_struct *vma,
301 			unsigned long start, unsigned long end)
302 {
303 	struct mm_struct *mm = vma->vm_mm;
304 	int nr_pages = (end - start) / PAGE_SIZE;
305 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
306 
307 	/*
308 	 * filter unlockable vmas
309 	 */
310 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
311 		goto no_mlock;
312 
313 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
314 			is_vm_hugetlb_page(vma) ||
315 			vma == get_gate_vma(current))) {
316 		long error;
317 		downgrade_write(&mm->mmap_sem);
318 
319 		error = __mlock_vma_pages_range(vma, start, end, 1);
320 
321 		up_read(&mm->mmap_sem);
322 		/* vma can change or disappear */
323 		down_write(&mm->mmap_sem);
324 		vma = find_vma(mm, start);
325 		/* non-NULL vma must contain @start, but need to check @end */
326 		if (!vma ||  end > vma->vm_end)
327 			return -ENOMEM;
328 
329 		return 0;	/* hide other errors from mmap(), et al */
330 	}
331 
332 	/*
333 	 * User mapped kernel pages or huge pages:
334 	 * make these pages present to populate the ptes, but
335 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
336 	 * return nr_pages so these don't get counted against task's
337 	 * locked limit.  huge pages are already counted against
338 	 * locked vm limit.
339 	 */
340 	make_pages_present(start, end);
341 
342 no_mlock:
343 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
344 	return nr_pages;		/* error or pages NOT mlocked */
345 }
346 
347 
348 /*
349  * munlock_vma_pages_range() - munlock all pages in the vma range.'
350  * @vma - vma containing range to be munlock()ed.
351  * @start - start address in @vma of the range
352  * @end - end of range in @vma.
353  *
354  *  For mremap(), munmap() and exit().
355  *
356  * Called with @vma VM_LOCKED.
357  *
358  * Returns with VM_LOCKED cleared.  Callers must be prepared to
359  * deal with this.
360  *
361  * We don't save and restore VM_LOCKED here because pages are
362  * still on lru.  In unmap path, pages might be scanned by reclaim
363  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
364  * free them.  This will result in freeing mlocked pages.
365  */
366 void munlock_vma_pages_range(struct vm_area_struct *vma,
367 			   unsigned long start, unsigned long end)
368 {
369 	vma->vm_flags &= ~VM_LOCKED;
370 	__mlock_vma_pages_range(vma, start, end, 0);
371 }
372 
373 /*
374  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
375  *
376  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
377  * munlock is a no-op.  However, for some special vmas, we go ahead and
378  * populate the ptes via make_pages_present().
379  *
380  * For vmas that pass the filters, merge/split as appropriate.
381  */
382 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
383 	unsigned long start, unsigned long end, unsigned int newflags)
384 {
385 	struct mm_struct *mm = vma->vm_mm;
386 	pgoff_t pgoff;
387 	int nr_pages;
388 	int ret = 0;
389 	int lock = newflags & VM_LOCKED;
390 
391 	if (newflags == vma->vm_flags ||
392 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
393 		goto out;	/* don't set VM_LOCKED,  don't count */
394 
395 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
396 			is_vm_hugetlb_page(vma) ||
397 			vma == get_gate_vma(current)) {
398 		if (lock)
399 			make_pages_present(start, end);
400 		goto out;	/* don't set VM_LOCKED,  don't count */
401 	}
402 
403 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
404 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
405 			  vma->vm_file, pgoff, vma_policy(vma));
406 	if (*prev) {
407 		vma = *prev;
408 		goto success;
409 	}
410 
411 	if (start != vma->vm_start) {
412 		ret = split_vma(mm, vma, start, 1);
413 		if (ret)
414 			goto out;
415 	}
416 
417 	if (end != vma->vm_end) {
418 		ret = split_vma(mm, vma, end, 0);
419 		if (ret)
420 			goto out;
421 	}
422 
423 success:
424 	/*
425 	 * Keep track of amount of locked VM.
426 	 */
427 	nr_pages = (end - start) >> PAGE_SHIFT;
428 	if (!lock)
429 		nr_pages = -nr_pages;
430 	mm->locked_vm += nr_pages;
431 
432 	/*
433 	 * vm_flags is protected by the mmap_sem held in write mode.
434 	 * It's okay if try_to_unmap_one unmaps a page just after we
435 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
436 	 */
437 	vma->vm_flags = newflags;
438 
439 	if (lock) {
440 		/*
441 		 * mmap_sem is currently held for write.  Downgrade the write
442 		 * lock to a read lock so that other faults, mmap scans, ...
443 		 * while we fault in all pages.
444 		 */
445 		downgrade_write(&mm->mmap_sem);
446 
447 		ret = __mlock_vma_pages_range(vma, start, end, 1);
448 
449 		/*
450 		 * Need to reacquire mmap sem in write mode, as our callers
451 		 * expect this.  We have no support for atomically upgrading
452 		 * a sem to write, so we need to check for ranges while sem
453 		 * is unlocked.
454 		 */
455 		up_read(&mm->mmap_sem);
456 		/* vma can change or disappear */
457 		down_write(&mm->mmap_sem);
458 		*prev = find_vma(mm, start);
459 		/* non-NULL *prev must contain @start, but need to check @end */
460 		if (!(*prev) || end > (*prev)->vm_end)
461 			ret = -ENOMEM;
462 		else if (ret > 0) {
463 			mm->locked_vm -= ret;
464 			ret = 0;
465 		} else
466 			ret = __mlock_posix_error_return(ret); /* translate if needed */
467 	} else {
468 		/*
469 		 * TODO:  for unlocking, pages will already be resident, so
470 		 * we don't need to wait for allocations/reclaim/pagein, ...
471 		 * However, unlocking a very large region can still take a
472 		 * while.  Should we downgrade the semaphore for both lock
473 		 * AND unlock ?
474 		 */
475 		__mlock_vma_pages_range(vma, start, end, 0);
476 	}
477 
478 out:
479 	*prev = vma;
480 	return ret;
481 }
482 
483 static int do_mlock(unsigned long start, size_t len, int on)
484 {
485 	unsigned long nstart, end, tmp;
486 	struct vm_area_struct * vma, * prev;
487 	int error;
488 
489 	len = PAGE_ALIGN(len);
490 	end = start + len;
491 	if (end < start)
492 		return -EINVAL;
493 	if (end == start)
494 		return 0;
495 	vma = find_vma_prev(current->mm, start, &prev);
496 	if (!vma || vma->vm_start > start)
497 		return -ENOMEM;
498 
499 	if (start > vma->vm_start)
500 		prev = vma;
501 
502 	for (nstart = start ; ; ) {
503 		unsigned int newflags;
504 
505 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
506 
507 		newflags = vma->vm_flags | VM_LOCKED;
508 		if (!on)
509 			newflags &= ~VM_LOCKED;
510 
511 		tmp = vma->vm_end;
512 		if (tmp > end)
513 			tmp = end;
514 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
515 		if (error)
516 			break;
517 		nstart = tmp;
518 		if (nstart < prev->vm_end)
519 			nstart = prev->vm_end;
520 		if (nstart >= end)
521 			break;
522 
523 		vma = prev->vm_next;
524 		if (!vma || vma->vm_start != nstart) {
525 			error = -ENOMEM;
526 			break;
527 		}
528 	}
529 	return error;
530 }
531 
532 asmlinkage long sys_mlock(unsigned long start, size_t len)
533 {
534 	unsigned long locked;
535 	unsigned long lock_limit;
536 	int error = -ENOMEM;
537 
538 	if (!can_do_mlock())
539 		return -EPERM;
540 
541 	lru_add_drain_all();	/* flush pagevec */
542 
543 	down_write(&current->mm->mmap_sem);
544 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
545 	start &= PAGE_MASK;
546 
547 	locked = len >> PAGE_SHIFT;
548 	locked += current->mm->locked_vm;
549 
550 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
551 	lock_limit >>= PAGE_SHIFT;
552 
553 	/* check against resource limits */
554 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
555 		error = do_mlock(start, len, 1);
556 	up_write(&current->mm->mmap_sem);
557 	return error;
558 }
559 
560 asmlinkage long sys_munlock(unsigned long start, size_t len)
561 {
562 	int ret;
563 
564 	down_write(&current->mm->mmap_sem);
565 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
566 	start &= PAGE_MASK;
567 	ret = do_mlock(start, len, 0);
568 	up_write(&current->mm->mmap_sem);
569 	return ret;
570 }
571 
572 static int do_mlockall(int flags)
573 {
574 	struct vm_area_struct * vma, * prev = NULL;
575 	unsigned int def_flags = 0;
576 
577 	if (flags & MCL_FUTURE)
578 		def_flags = VM_LOCKED;
579 	current->mm->def_flags = def_flags;
580 	if (flags == MCL_FUTURE)
581 		goto out;
582 
583 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
584 		unsigned int newflags;
585 
586 		newflags = vma->vm_flags | VM_LOCKED;
587 		if (!(flags & MCL_CURRENT))
588 			newflags &= ~VM_LOCKED;
589 
590 		/* Ignore errors */
591 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
592 	}
593 out:
594 	return 0;
595 }
596 
597 asmlinkage long sys_mlockall(int flags)
598 {
599 	unsigned long lock_limit;
600 	int ret = -EINVAL;
601 
602 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
603 		goto out;
604 
605 	ret = -EPERM;
606 	if (!can_do_mlock())
607 		goto out;
608 
609 	lru_add_drain_all();	/* flush pagevec */
610 
611 	down_write(&current->mm->mmap_sem);
612 
613 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
614 	lock_limit >>= PAGE_SHIFT;
615 
616 	ret = -ENOMEM;
617 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
618 	    capable(CAP_IPC_LOCK))
619 		ret = do_mlockall(flags);
620 	up_write(&current->mm->mmap_sem);
621 out:
622 	return ret;
623 }
624 
625 asmlinkage long sys_munlockall(void)
626 {
627 	int ret;
628 
629 	down_write(&current->mm->mmap_sem);
630 	ret = do_mlockall(0);
631 	up_write(&current->mm->mmap_sem);
632 	return ret;
633 }
634 
635 /*
636  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
637  * shm segments) get accounted against the user_struct instead.
638  */
639 static DEFINE_SPINLOCK(shmlock_user_lock);
640 
641 int user_shm_lock(size_t size, struct user_struct *user)
642 {
643 	unsigned long lock_limit, locked;
644 	int allowed = 0;
645 
646 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
647 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
648 	if (lock_limit == RLIM_INFINITY)
649 		allowed = 1;
650 	lock_limit >>= PAGE_SHIFT;
651 	spin_lock(&shmlock_user_lock);
652 	if (!allowed &&
653 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
654 		goto out;
655 	get_uid(user);
656 	user->locked_shm += locked;
657 	allowed = 1;
658 out:
659 	spin_unlock(&shmlock_user_lock);
660 	return allowed;
661 }
662 
663 void user_shm_unlock(size_t size, struct user_struct *user)
664 {
665 	spin_lock(&shmlock_user_lock);
666 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
667 	spin_unlock(&shmlock_user_lock);
668 	free_uid(user);
669 }
670