xref: /linux/mm/mlock.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25 
26 #include "internal.h"
27 
28 bool can_do_mlock(void)
29 {
30 	if (rlimit(RLIMIT_MEMLOCK) != 0)
31 		return true;
32 	if (capable(CAP_IPC_LOCK))
33 		return true;
34 	return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37 
38 /*
39  * Mlocked pages are marked with PageMlocked() flag for efficient testing
40  * in vmscan and, possibly, the fault path; and to support semi-accurate
41  * statistics.
42  *
43  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
44  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45  * The unevictable list is an LRU sibling list to the [in]active lists.
46  * PageUnevictable is set to indicate the unevictable state.
47  *
48  * When lazy mlocking via vmscan, it is important to ensure that the
49  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50  * may have mlocked a page that is being munlocked. So lazy mlock must take
51  * the mmap_sem for read, and verify that the vma really is locked
52  * (see mm/rmap.c).
53  */
54 
55 /*
56  *  LRU accounting for clear_page_mlock()
57  */
58 void clear_page_mlock(struct page *page)
59 {
60 	if (!TestClearPageMlocked(page))
61 		return;
62 
63 	mod_zone_page_state(page_zone(page), NR_MLOCK,
64 			    -hpage_nr_pages(page));
65 	count_vm_event(UNEVICTABLE_PGCLEARED);
66 	if (!isolate_lru_page(page)) {
67 		putback_lru_page(page);
68 	} else {
69 		/*
70 		 * We lost the race. the page already moved to evictable list.
71 		 */
72 		if (PageUnevictable(page))
73 			count_vm_event(UNEVICTABLE_PGSTRANDED);
74 	}
75 }
76 
77 /*
78  * Mark page as mlocked if not already.
79  * If page on LRU, isolate and putback to move to unevictable list.
80  */
81 void mlock_vma_page(struct page *page)
82 {
83 	/* Serialize with page migration */
84 	BUG_ON(!PageLocked(page));
85 
86 	VM_BUG_ON_PAGE(PageTail(page), page);
87 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88 
89 	if (!TestSetPageMlocked(page)) {
90 		mod_zone_page_state(page_zone(page), NR_MLOCK,
91 				    hpage_nr_pages(page));
92 		count_vm_event(UNEVICTABLE_PGMLOCKED);
93 		if (!isolate_lru_page(page))
94 			putback_lru_page(page);
95 	}
96 }
97 
98 /*
99  * Isolate a page from LRU with optional get_page() pin.
100  * Assumes lru_lock already held and page already pinned.
101  */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 	if (PageLRU(page)) {
105 		struct lruvec *lruvec;
106 
107 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 		if (getpage)
109 			get_page(page);
110 		ClearPageLRU(page);
111 		del_page_from_lru_list(page, lruvec, page_lru(page));
112 		return true;
113 	}
114 
115 	return false;
116 }
117 
118 /*
119  * Finish munlock after successful page isolation
120  *
121  * Page must be locked. This is a wrapper for try_to_munlock()
122  * and putback_lru_page() with munlock accounting.
123  */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 	/*
127 	 * Optimization: if the page was mapped just once, that's our mapping
128 	 * and we don't need to check all the other vmas.
129 	 */
130 	if (page_mapcount(page) > 1)
131 		try_to_munlock(page);
132 
133 	/* Did try_to_unlock() succeed or punt? */
134 	if (!PageMlocked(page))
135 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136 
137 	putback_lru_page(page);
138 }
139 
140 /*
141  * Accounting for page isolation fail during munlock
142  *
143  * Performs accounting when page isolation fails in munlock. There is nothing
144  * else to do because it means some other task has already removed the page
145  * from the LRU. putback_lru_page() will take care of removing the page from
146  * the unevictable list, if necessary. vmscan [page_referenced()] will move
147  * the page back to the unevictable list if some other vma has it mlocked.
148  */
149 static void __munlock_isolation_failed(struct page *page)
150 {
151 	if (PageUnevictable(page))
152 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
153 	else
154 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
155 }
156 
157 /**
158  * munlock_vma_page - munlock a vma page
159  * @page - page to be unlocked, either a normal page or THP page head
160  *
161  * returns the size of the page as a page mask (0 for normal page,
162  *         HPAGE_PMD_NR - 1 for THP head page)
163  *
164  * called from munlock()/munmap() path with page supposedly on the LRU.
165  * When we munlock a page, because the vma where we found the page is being
166  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167  * page locked so that we can leave it on the unevictable lru list and not
168  * bother vmscan with it.  However, to walk the page's rmap list in
169  * try_to_munlock() we must isolate the page from the LRU.  If some other
170  * task has removed the page from the LRU, we won't be able to do that.
171  * So we clear the PageMlocked as we might not get another chance.  If we
172  * can't isolate the page, we leave it for putback_lru_page() and vmscan
173  * [page_referenced()/try_to_unmap()] to deal with.
174  */
175 unsigned int munlock_vma_page(struct page *page)
176 {
177 	int nr_pages;
178 	struct zone *zone = page_zone(page);
179 
180 	/* For try_to_munlock() and to serialize with page migration */
181 	BUG_ON(!PageLocked(page));
182 
183 	VM_BUG_ON_PAGE(PageTail(page), page);
184 
185 	/*
186 	 * Serialize with any parallel __split_huge_page_refcount() which
187 	 * might otherwise copy PageMlocked to part of the tail pages before
188 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
189 	 */
190 	spin_lock_irq(zone_lru_lock(zone));
191 
192 	if (!TestClearPageMlocked(page)) {
193 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 		nr_pages = 1;
195 		goto unlock_out;
196 	}
197 
198 	nr_pages = hpage_nr_pages(page);
199 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200 
201 	if (__munlock_isolate_lru_page(page, true)) {
202 		spin_unlock_irq(zone_lru_lock(zone));
203 		__munlock_isolated_page(page);
204 		goto out;
205 	}
206 	__munlock_isolation_failed(page);
207 
208 unlock_out:
209 	spin_unlock_irq(zone_lru_lock(zone));
210 
211 out:
212 	return nr_pages - 1;
213 }
214 
215 /*
216  * convert get_user_pages() return value to posix mlock() error
217  */
218 static int __mlock_posix_error_return(long retval)
219 {
220 	if (retval == -EFAULT)
221 		retval = -ENOMEM;
222 	else if (retval == -ENOMEM)
223 		retval = -EAGAIN;
224 	return retval;
225 }
226 
227 /*
228  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229  *
230  * The fast path is available only for evictable pages with single mapping.
231  * Then we can bypass the per-cpu pvec and get better performance.
232  * when mapcount > 1 we need try_to_munlock() which can fail.
233  * when !page_evictable(), we need the full redo logic of putback_lru_page to
234  * avoid leaving evictable page in unevictable list.
235  *
236  * In case of success, @page is added to @pvec and @pgrescued is incremented
237  * in case that the page was previously unevictable. @page is also unlocked.
238  */
239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 		int *pgrescued)
241 {
242 	VM_BUG_ON_PAGE(PageLRU(page), page);
243 	VM_BUG_ON_PAGE(!PageLocked(page), page);
244 
245 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 		pagevec_add(pvec, page);
247 		if (TestClearPageUnevictable(page))
248 			(*pgrescued)++;
249 		unlock_page(page);
250 		return true;
251 	}
252 
253 	return false;
254 }
255 
256 /*
257  * Putback multiple evictable pages to the LRU
258  *
259  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260  * the pages might have meanwhile become unevictable but that is OK.
261  */
262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263 {
264 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 	/*
266 	 *__pagevec_lru_add() calls release_pages() so we don't call
267 	 * put_page() explicitly
268 	 */
269 	__pagevec_lru_add(pvec);
270 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271 }
272 
273 /*
274  * Munlock a batch of pages from the same zone
275  *
276  * The work is split to two main phases. First phase clears the Mlocked flag
277  * and attempts to isolate the pages, all under a single zone lru lock.
278  * The second phase finishes the munlock only for pages where isolation
279  * succeeded.
280  *
281  * Note that the pagevec may be modified during the process.
282  */
283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284 {
285 	int i;
286 	int nr = pagevec_count(pvec);
287 	int delta_munlocked;
288 	struct pagevec pvec_putback;
289 	int pgrescued = 0;
290 
291 	pagevec_init(&pvec_putback, 0);
292 
293 	/* Phase 1: page isolation */
294 	spin_lock_irq(zone_lru_lock(zone));
295 	for (i = 0; i < nr; i++) {
296 		struct page *page = pvec->pages[i];
297 
298 		if (TestClearPageMlocked(page)) {
299 			/*
300 			 * We already have pin from follow_page_mask()
301 			 * so we can spare the get_page() here.
302 			 */
303 			if (__munlock_isolate_lru_page(page, false))
304 				continue;
305 			else
306 				__munlock_isolation_failed(page);
307 		}
308 
309 		/*
310 		 * We won't be munlocking this page in the next phase
311 		 * but we still need to release the follow_page_mask()
312 		 * pin. We cannot do it under lru_lock however. If it's
313 		 * the last pin, __page_cache_release() would deadlock.
314 		 */
315 		pagevec_add(&pvec_putback, pvec->pages[i]);
316 		pvec->pages[i] = NULL;
317 	}
318 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
319 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
320 	spin_unlock_irq(zone_lru_lock(zone));
321 
322 	/* Now we can release pins of pages that we are not munlocking */
323 	pagevec_release(&pvec_putback);
324 
325 	/* Phase 2: page munlock */
326 	for (i = 0; i < nr; i++) {
327 		struct page *page = pvec->pages[i];
328 
329 		if (page) {
330 			lock_page(page);
331 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
332 					&pgrescued)) {
333 				/*
334 				 * Slow path. We don't want to lose the last
335 				 * pin before unlock_page()
336 				 */
337 				get_page(page); /* for putback_lru_page() */
338 				__munlock_isolated_page(page);
339 				unlock_page(page);
340 				put_page(page); /* from follow_page_mask() */
341 			}
342 		}
343 	}
344 
345 	/*
346 	 * Phase 3: page putback for pages that qualified for the fast path
347 	 * This will also call put_page() to return pin from follow_page_mask()
348 	 */
349 	if (pagevec_count(&pvec_putback))
350 		__putback_lru_fast(&pvec_putback, pgrescued);
351 }
352 
353 /*
354  * Fill up pagevec for __munlock_pagevec using pte walk
355  *
356  * The function expects that the struct page corresponding to @start address is
357  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
358  *
359  * The rest of @pvec is filled by subsequent pages within the same pmd and same
360  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
361  * pages also get pinned.
362  *
363  * Returns the address of the next page that should be scanned. This equals
364  * @start + PAGE_SIZE when no page could be added by the pte walk.
365  */
366 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
367 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
368 		unsigned long end)
369 {
370 	pte_t *pte;
371 	spinlock_t *ptl;
372 
373 	/*
374 	 * Initialize pte walk starting at the already pinned page where we
375 	 * are sure that there is a pte, as it was pinned under the same
376 	 * mmap_sem write op.
377 	 */
378 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
379 	/* Make sure we do not cross the page table boundary */
380 	end = pgd_addr_end(start, end);
381 	end = p4d_addr_end(start, end);
382 	end = pud_addr_end(start, end);
383 	end = pmd_addr_end(start, end);
384 
385 	/* The page next to the pinned page is the first we will try to get */
386 	start += PAGE_SIZE;
387 	while (start < end) {
388 		struct page *page = NULL;
389 		pte++;
390 		if (pte_present(*pte))
391 			page = vm_normal_page(vma, start, *pte);
392 		/*
393 		 * Break if page could not be obtained or the page's node+zone does not
394 		 * match
395 		 */
396 		if (!page || page_zone_id(page) != zoneid)
397 			break;
398 
399 		/*
400 		 * Do not use pagevec for PTE-mapped THP,
401 		 * munlock_vma_pages_range() will handle them.
402 		 */
403 		if (PageTransCompound(page))
404 			break;
405 
406 		get_page(page);
407 		/*
408 		 * Increase the address that will be returned *before* the
409 		 * eventual break due to pvec becoming full by adding the page
410 		 */
411 		start += PAGE_SIZE;
412 		if (pagevec_add(pvec, page) == 0)
413 			break;
414 	}
415 	pte_unmap_unlock(pte, ptl);
416 	return start;
417 }
418 
419 /*
420  * munlock_vma_pages_range() - munlock all pages in the vma range.'
421  * @vma - vma containing range to be munlock()ed.
422  * @start - start address in @vma of the range
423  * @end - end of range in @vma.
424  *
425  *  For mremap(), munmap() and exit().
426  *
427  * Called with @vma VM_LOCKED.
428  *
429  * Returns with VM_LOCKED cleared.  Callers must be prepared to
430  * deal with this.
431  *
432  * We don't save and restore VM_LOCKED here because pages are
433  * still on lru.  In unmap path, pages might be scanned by reclaim
434  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
435  * free them.  This will result in freeing mlocked pages.
436  */
437 void munlock_vma_pages_range(struct vm_area_struct *vma,
438 			     unsigned long start, unsigned long end)
439 {
440 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
441 
442 	while (start < end) {
443 		struct page *page;
444 		unsigned int page_mask = 0;
445 		unsigned long page_increm;
446 		struct pagevec pvec;
447 		struct zone *zone;
448 		int zoneid;
449 
450 		pagevec_init(&pvec, 0);
451 		/*
452 		 * Although FOLL_DUMP is intended for get_dump_page(),
453 		 * it just so happens that its special treatment of the
454 		 * ZERO_PAGE (returning an error instead of doing get_page)
455 		 * suits munlock very well (and if somehow an abnormal page
456 		 * has sneaked into the range, we won't oops here: great).
457 		 */
458 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
459 
460 		if (page && !IS_ERR(page)) {
461 			if (PageTransTail(page)) {
462 				VM_BUG_ON_PAGE(PageMlocked(page), page);
463 				put_page(page); /* follow_page_mask() */
464 			} else if (PageTransHuge(page)) {
465 				lock_page(page);
466 				/*
467 				 * Any THP page found by follow_page_mask() may
468 				 * have gotten split before reaching
469 				 * munlock_vma_page(), so we need to compute
470 				 * the page_mask here instead.
471 				 */
472 				page_mask = munlock_vma_page(page);
473 				unlock_page(page);
474 				put_page(page); /* follow_page_mask() */
475 			} else {
476 				/*
477 				 * Non-huge pages are handled in batches via
478 				 * pagevec. The pin from follow_page_mask()
479 				 * prevents them from collapsing by THP.
480 				 */
481 				pagevec_add(&pvec, page);
482 				zone = page_zone(page);
483 				zoneid = page_zone_id(page);
484 
485 				/*
486 				 * Try to fill the rest of pagevec using fast
487 				 * pte walk. This will also update start to
488 				 * the next page to process. Then munlock the
489 				 * pagevec.
490 				 */
491 				start = __munlock_pagevec_fill(&pvec, vma,
492 						zoneid, start, end);
493 				__munlock_pagevec(&pvec, zone);
494 				goto next;
495 			}
496 		}
497 		page_increm = 1 + page_mask;
498 		start += page_increm * PAGE_SIZE;
499 next:
500 		cond_resched();
501 	}
502 }
503 
504 /*
505  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
506  *
507  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
508  * munlock is a no-op.  However, for some special vmas, we go ahead and
509  * populate the ptes.
510  *
511  * For vmas that pass the filters, merge/split as appropriate.
512  */
513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
514 	unsigned long start, unsigned long end, vm_flags_t newflags)
515 {
516 	struct mm_struct *mm = vma->vm_mm;
517 	pgoff_t pgoff;
518 	int nr_pages;
519 	int ret = 0;
520 	int lock = !!(newflags & VM_LOCKED);
521 	vm_flags_t old_flags = vma->vm_flags;
522 
523 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
524 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
525 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
526 		goto out;
527 
528 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
529 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
530 			  vma->vm_file, pgoff, vma_policy(vma),
531 			  vma->vm_userfaultfd_ctx);
532 	if (*prev) {
533 		vma = *prev;
534 		goto success;
535 	}
536 
537 	if (start != vma->vm_start) {
538 		ret = split_vma(mm, vma, start, 1);
539 		if (ret)
540 			goto out;
541 	}
542 
543 	if (end != vma->vm_end) {
544 		ret = split_vma(mm, vma, end, 0);
545 		if (ret)
546 			goto out;
547 	}
548 
549 success:
550 	/*
551 	 * Keep track of amount of locked VM.
552 	 */
553 	nr_pages = (end - start) >> PAGE_SHIFT;
554 	if (!lock)
555 		nr_pages = -nr_pages;
556 	else if (old_flags & VM_LOCKED)
557 		nr_pages = 0;
558 	mm->locked_vm += nr_pages;
559 
560 	/*
561 	 * vm_flags is protected by the mmap_sem held in write mode.
562 	 * It's okay if try_to_unmap_one unmaps a page just after we
563 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
564 	 */
565 
566 	if (lock)
567 		vma->vm_flags = newflags;
568 	else
569 		munlock_vma_pages_range(vma, start, end);
570 
571 out:
572 	*prev = vma;
573 	return ret;
574 }
575 
576 static int apply_vma_lock_flags(unsigned long start, size_t len,
577 				vm_flags_t flags)
578 {
579 	unsigned long nstart, end, tmp;
580 	struct vm_area_struct * vma, * prev;
581 	int error;
582 
583 	VM_BUG_ON(offset_in_page(start));
584 	VM_BUG_ON(len != PAGE_ALIGN(len));
585 	end = start + len;
586 	if (end < start)
587 		return -EINVAL;
588 	if (end == start)
589 		return 0;
590 	vma = find_vma(current->mm, start);
591 	if (!vma || vma->vm_start > start)
592 		return -ENOMEM;
593 
594 	prev = vma->vm_prev;
595 	if (start > vma->vm_start)
596 		prev = vma;
597 
598 	for (nstart = start ; ; ) {
599 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
600 
601 		newflags |= flags;
602 
603 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
604 		tmp = vma->vm_end;
605 		if (tmp > end)
606 			tmp = end;
607 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
608 		if (error)
609 			break;
610 		nstart = tmp;
611 		if (nstart < prev->vm_end)
612 			nstart = prev->vm_end;
613 		if (nstart >= end)
614 			break;
615 
616 		vma = prev->vm_next;
617 		if (!vma || vma->vm_start != nstart) {
618 			error = -ENOMEM;
619 			break;
620 		}
621 	}
622 	return error;
623 }
624 
625 /*
626  * Go through vma areas and sum size of mlocked
627  * vma pages, as return value.
628  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
629  * is also counted.
630  * Return value: previously mlocked page counts
631  */
632 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
633 		unsigned long start, size_t len)
634 {
635 	struct vm_area_struct *vma;
636 	int count = 0;
637 
638 	if (mm == NULL)
639 		mm = current->mm;
640 
641 	vma = find_vma(mm, start);
642 	if (vma == NULL)
643 		vma = mm->mmap;
644 
645 	for (; vma ; vma = vma->vm_next) {
646 		if (start >= vma->vm_end)
647 			continue;
648 		if (start + len <=  vma->vm_start)
649 			break;
650 		if (vma->vm_flags & VM_LOCKED) {
651 			if (start > vma->vm_start)
652 				count -= (start - vma->vm_start);
653 			if (start + len < vma->vm_end) {
654 				count += start + len - vma->vm_start;
655 				break;
656 			}
657 			count += vma->vm_end - vma->vm_start;
658 		}
659 	}
660 
661 	return count >> PAGE_SHIFT;
662 }
663 
664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
665 {
666 	unsigned long locked;
667 	unsigned long lock_limit;
668 	int error = -ENOMEM;
669 
670 	if (!can_do_mlock())
671 		return -EPERM;
672 
673 	lru_add_drain_all();	/* flush pagevec */
674 
675 	len = PAGE_ALIGN(len + (offset_in_page(start)));
676 	start &= PAGE_MASK;
677 
678 	lock_limit = rlimit(RLIMIT_MEMLOCK);
679 	lock_limit >>= PAGE_SHIFT;
680 	locked = len >> PAGE_SHIFT;
681 
682 	if (down_write_killable(&current->mm->mmap_sem))
683 		return -EINTR;
684 
685 	locked += current->mm->locked_vm;
686 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
687 		/*
688 		 * It is possible that the regions requested intersect with
689 		 * previously mlocked areas, that part area in "mm->locked_vm"
690 		 * should not be counted to new mlock increment count. So check
691 		 * and adjust locked count if necessary.
692 		 */
693 		locked -= count_mm_mlocked_page_nr(current->mm,
694 				start, len);
695 	}
696 
697 	/* check against resource limits */
698 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
699 		error = apply_vma_lock_flags(start, len, flags);
700 
701 	up_write(&current->mm->mmap_sem);
702 	if (error)
703 		return error;
704 
705 	error = __mm_populate(start, len, 0);
706 	if (error)
707 		return __mlock_posix_error_return(error);
708 	return 0;
709 }
710 
711 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
712 {
713 	return do_mlock(start, len, VM_LOCKED);
714 }
715 
716 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
717 {
718 	vm_flags_t vm_flags = VM_LOCKED;
719 
720 	if (flags & ~MLOCK_ONFAULT)
721 		return -EINVAL;
722 
723 	if (flags & MLOCK_ONFAULT)
724 		vm_flags |= VM_LOCKONFAULT;
725 
726 	return do_mlock(start, len, vm_flags);
727 }
728 
729 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
730 {
731 	int ret;
732 
733 	len = PAGE_ALIGN(len + (offset_in_page(start)));
734 	start &= PAGE_MASK;
735 
736 	if (down_write_killable(&current->mm->mmap_sem))
737 		return -EINTR;
738 	ret = apply_vma_lock_flags(start, len, 0);
739 	up_write(&current->mm->mmap_sem);
740 
741 	return ret;
742 }
743 
744 /*
745  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
746  * and translate into the appropriate modifications to mm->def_flags and/or the
747  * flags for all current VMAs.
748  *
749  * There are a couple of subtleties with this.  If mlockall() is called multiple
750  * times with different flags, the values do not necessarily stack.  If mlockall
751  * is called once including the MCL_FUTURE flag and then a second time without
752  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
753  */
754 static int apply_mlockall_flags(int flags)
755 {
756 	struct vm_area_struct * vma, * prev = NULL;
757 	vm_flags_t to_add = 0;
758 
759 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
760 	if (flags & MCL_FUTURE) {
761 		current->mm->def_flags |= VM_LOCKED;
762 
763 		if (flags & MCL_ONFAULT)
764 			current->mm->def_flags |= VM_LOCKONFAULT;
765 
766 		if (!(flags & MCL_CURRENT))
767 			goto out;
768 	}
769 
770 	if (flags & MCL_CURRENT) {
771 		to_add |= VM_LOCKED;
772 		if (flags & MCL_ONFAULT)
773 			to_add |= VM_LOCKONFAULT;
774 	}
775 
776 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777 		vm_flags_t newflags;
778 
779 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
780 		newflags |= to_add;
781 
782 		/* Ignore errors */
783 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
784 		cond_resched_rcu_qs();
785 	}
786 out:
787 	return 0;
788 }
789 
790 SYSCALL_DEFINE1(mlockall, int, flags)
791 {
792 	unsigned long lock_limit;
793 	int ret;
794 
795 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
796 		return -EINVAL;
797 
798 	if (!can_do_mlock())
799 		return -EPERM;
800 
801 	if (flags & MCL_CURRENT)
802 		lru_add_drain_all();	/* flush pagevec */
803 
804 	lock_limit = rlimit(RLIMIT_MEMLOCK);
805 	lock_limit >>= PAGE_SHIFT;
806 
807 	if (down_write_killable(&current->mm->mmap_sem))
808 		return -EINTR;
809 
810 	ret = -ENOMEM;
811 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
812 	    capable(CAP_IPC_LOCK))
813 		ret = apply_mlockall_flags(flags);
814 	up_write(&current->mm->mmap_sem);
815 	if (!ret && (flags & MCL_CURRENT))
816 		mm_populate(0, TASK_SIZE);
817 
818 	return ret;
819 }
820 
821 SYSCALL_DEFINE0(munlockall)
822 {
823 	int ret;
824 
825 	if (down_write_killable(&current->mm->mmap_sem))
826 		return -EINTR;
827 	ret = apply_mlockall_flags(0);
828 	up_write(&current->mm->mmap_sem);
829 	return ret;
830 }
831 
832 /*
833  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834  * shm segments) get accounted against the user_struct instead.
835  */
836 static DEFINE_SPINLOCK(shmlock_user_lock);
837 
838 int user_shm_lock(size_t size, struct user_struct *user)
839 {
840 	unsigned long lock_limit, locked;
841 	int allowed = 0;
842 
843 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 	lock_limit = rlimit(RLIMIT_MEMLOCK);
845 	if (lock_limit == RLIM_INFINITY)
846 		allowed = 1;
847 	lock_limit >>= PAGE_SHIFT;
848 	spin_lock(&shmlock_user_lock);
849 	if (!allowed &&
850 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851 		goto out;
852 	get_uid(user);
853 	user->locked_shm += locked;
854 	allowed = 1;
855 out:
856 	spin_unlock(&shmlock_user_lock);
857 	return allowed;
858 }
859 
860 void user_shm_unlock(size_t size, struct user_struct *user)
861 {
862 	spin_lock(&shmlock_user_lock);
863 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 	spin_unlock(&shmlock_user_lock);
865 	free_uid(user);
866 }
867