xref: /linux/mm/mlock.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 /* Is the vma a continuation of the stack vma above it? */
139 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
140 {
141 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
142 }
143 
144 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
145 {
146 	return (vma->vm_flags & VM_GROWSDOWN) &&
147 		(vma->vm_start == addr) &&
148 		!vma_stack_continue(vma->vm_prev, addr);
149 }
150 
151 /**
152  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
153  * @vma:   target vma
154  * @start: start address
155  * @end:   end address
156  *
157  * This takes care of making the pages present too.
158  *
159  * return 0 on success, negative error code on error.
160  *
161  * vma->vm_mm->mmap_sem must be held for at least read.
162  */
163 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
164 				    unsigned long start, unsigned long end)
165 {
166 	struct mm_struct *mm = vma->vm_mm;
167 	unsigned long addr = start;
168 	struct page *pages[16]; /* 16 gives a reasonable batch */
169 	int nr_pages = (end - start) / PAGE_SIZE;
170 	int ret = 0;
171 	int gup_flags;
172 
173 	VM_BUG_ON(start & ~PAGE_MASK);
174 	VM_BUG_ON(end   & ~PAGE_MASK);
175 	VM_BUG_ON(start < vma->vm_start);
176 	VM_BUG_ON(end   > vma->vm_end);
177 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
178 
179 	gup_flags = FOLL_TOUCH | FOLL_GET;
180 	if (vma->vm_flags & VM_WRITE)
181 		gup_flags |= FOLL_WRITE;
182 
183 	/* We don't try to access the guard page of a stack vma */
184 	if (stack_guard_page(vma, start)) {
185 		addr += PAGE_SIZE;
186 		nr_pages--;
187 	}
188 
189 	while (nr_pages > 0) {
190 		int i;
191 
192 		cond_resched();
193 
194 		/*
195 		 * get_user_pages makes pages present if we are
196 		 * setting mlock. and this extra reference count will
197 		 * disable migration of this page.  However, page may
198 		 * still be truncated out from under us.
199 		 */
200 		ret = __get_user_pages(current, mm, addr,
201 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
202 				gup_flags, pages, NULL);
203 		/*
204 		 * This can happen for, e.g., VM_NONLINEAR regions before
205 		 * a page has been allocated and mapped at a given offset,
206 		 * or for addresses that map beyond end of a file.
207 		 * We'll mlock the pages if/when they get faulted in.
208 		 */
209 		if (ret < 0)
210 			break;
211 
212 		lru_add_drain();	/* push cached pages to LRU */
213 
214 		for (i = 0; i < ret; i++) {
215 			struct page *page = pages[i];
216 
217 			if (page->mapping) {
218 				/*
219 				 * That preliminary check is mainly to avoid
220 				 * the pointless overhead of lock_page on the
221 				 * ZERO_PAGE: which might bounce very badly if
222 				 * there is contention.  However, we're still
223 				 * dirtying its cacheline with get/put_page:
224 				 * we'll add another __get_user_pages flag to
225 				 * avoid it if that case turns out to matter.
226 				 */
227 				lock_page(page);
228 				/*
229 				 * Because we lock page here and migration is
230 				 * blocked by the elevated reference, we need
231 				 * only check for file-cache page truncation.
232 				 */
233 				if (page->mapping)
234 					mlock_vma_page(page);
235 				unlock_page(page);
236 			}
237 			put_page(page);	/* ref from get_user_pages() */
238 		}
239 
240 		addr += ret * PAGE_SIZE;
241 		nr_pages -= ret;
242 		ret = 0;
243 	}
244 
245 	return ret;	/* 0 or negative error code */
246 }
247 
248 /*
249  * convert get_user_pages() return value to posix mlock() error
250  */
251 static int __mlock_posix_error_return(long retval)
252 {
253 	if (retval == -EFAULT)
254 		retval = -ENOMEM;
255 	else if (retval == -ENOMEM)
256 		retval = -EAGAIN;
257 	return retval;
258 }
259 
260 /**
261  * mlock_vma_pages_range() - mlock pages in specified vma range.
262  * @vma - the vma containing the specfied address range
263  * @start - starting address in @vma to mlock
264  * @end   - end address [+1] in @vma to mlock
265  *
266  * For mmap()/mremap()/expansion of mlocked vma.
267  *
268  * return 0 on success for "normal" vmas.
269  *
270  * return number of pages [> 0] to be removed from locked_vm on success
271  * of "special" vmas.
272  */
273 long mlock_vma_pages_range(struct vm_area_struct *vma,
274 			unsigned long start, unsigned long end)
275 {
276 	int nr_pages = (end - start) / PAGE_SIZE;
277 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
278 
279 	/*
280 	 * filter unlockable vmas
281 	 */
282 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
283 		goto no_mlock;
284 
285 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
286 			is_vm_hugetlb_page(vma) ||
287 			vma == get_gate_vma(current))) {
288 
289 		__mlock_vma_pages_range(vma, start, end);
290 
291 		/* Hide errors from mmap() and other callers */
292 		return 0;
293 	}
294 
295 	/*
296 	 * User mapped kernel pages or huge pages:
297 	 * make these pages present to populate the ptes, but
298 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
299 	 * return nr_pages so these don't get counted against task's
300 	 * locked limit.  huge pages are already counted against
301 	 * locked vm limit.
302 	 */
303 	make_pages_present(start, end);
304 
305 no_mlock:
306 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
307 	return nr_pages;		/* error or pages NOT mlocked */
308 }
309 
310 /*
311  * munlock_vma_pages_range() - munlock all pages in the vma range.'
312  * @vma - vma containing range to be munlock()ed.
313  * @start - start address in @vma of the range
314  * @end - end of range in @vma.
315  *
316  *  For mremap(), munmap() and exit().
317  *
318  * Called with @vma VM_LOCKED.
319  *
320  * Returns with VM_LOCKED cleared.  Callers must be prepared to
321  * deal with this.
322  *
323  * We don't save and restore VM_LOCKED here because pages are
324  * still on lru.  In unmap path, pages might be scanned by reclaim
325  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
326  * free them.  This will result in freeing mlocked pages.
327  */
328 void munlock_vma_pages_range(struct vm_area_struct *vma,
329 			     unsigned long start, unsigned long end)
330 {
331 	unsigned long addr;
332 
333 	lru_add_drain();
334 	vma->vm_flags &= ~VM_LOCKED;
335 
336 	for (addr = start; addr < end; addr += PAGE_SIZE) {
337 		struct page *page;
338 		/*
339 		 * Although FOLL_DUMP is intended for get_dump_page(),
340 		 * it just so happens that its special treatment of the
341 		 * ZERO_PAGE (returning an error instead of doing get_page)
342 		 * suits munlock very well (and if somehow an abnormal page
343 		 * has sneaked into the range, we won't oops here: great).
344 		 */
345 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
346 		if (page && !IS_ERR(page)) {
347 			lock_page(page);
348 			/*
349 			 * Like in __mlock_vma_pages_range(),
350 			 * because we lock page here and migration is
351 			 * blocked by the elevated reference, we need
352 			 * only check for file-cache page truncation.
353 			 */
354 			if (page->mapping)
355 				munlock_vma_page(page);
356 			unlock_page(page);
357 			put_page(page);
358 		}
359 		cond_resched();
360 	}
361 }
362 
363 /*
364  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
365  *
366  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
367  * munlock is a no-op.  However, for some special vmas, we go ahead and
368  * populate the ptes via make_pages_present().
369  *
370  * For vmas that pass the filters, merge/split as appropriate.
371  */
372 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
373 	unsigned long start, unsigned long end, unsigned int newflags)
374 {
375 	struct mm_struct *mm = vma->vm_mm;
376 	pgoff_t pgoff;
377 	int nr_pages;
378 	int ret = 0;
379 	int lock = newflags & VM_LOCKED;
380 
381 	if (newflags == vma->vm_flags ||
382 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
383 		goto out;	/* don't set VM_LOCKED,  don't count */
384 
385 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
386 			is_vm_hugetlb_page(vma) ||
387 			vma == get_gate_vma(current)) {
388 		if (lock)
389 			make_pages_present(start, end);
390 		goto out;	/* don't set VM_LOCKED,  don't count */
391 	}
392 
393 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
394 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
395 			  vma->vm_file, pgoff, vma_policy(vma));
396 	if (*prev) {
397 		vma = *prev;
398 		goto success;
399 	}
400 
401 	if (start != vma->vm_start) {
402 		ret = split_vma(mm, vma, start, 1);
403 		if (ret)
404 			goto out;
405 	}
406 
407 	if (end != vma->vm_end) {
408 		ret = split_vma(mm, vma, end, 0);
409 		if (ret)
410 			goto out;
411 	}
412 
413 success:
414 	/*
415 	 * Keep track of amount of locked VM.
416 	 */
417 	nr_pages = (end - start) >> PAGE_SHIFT;
418 	if (!lock)
419 		nr_pages = -nr_pages;
420 	mm->locked_vm += nr_pages;
421 
422 	/*
423 	 * vm_flags is protected by the mmap_sem held in write mode.
424 	 * It's okay if try_to_unmap_one unmaps a page just after we
425 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
426 	 */
427 
428 	if (lock) {
429 		vma->vm_flags = newflags;
430 		ret = __mlock_vma_pages_range(vma, start, end);
431 		if (ret < 0)
432 			ret = __mlock_posix_error_return(ret);
433 	} else {
434 		munlock_vma_pages_range(vma, start, end);
435 	}
436 
437 out:
438 	*prev = vma;
439 	return ret;
440 }
441 
442 static int do_mlock(unsigned long start, size_t len, int on)
443 {
444 	unsigned long nstart, end, tmp;
445 	struct vm_area_struct * vma, * prev;
446 	int error;
447 
448 	len = PAGE_ALIGN(len);
449 	end = start + len;
450 	if (end < start)
451 		return -EINVAL;
452 	if (end == start)
453 		return 0;
454 	vma = find_vma_prev(current->mm, start, &prev);
455 	if (!vma || vma->vm_start > start)
456 		return -ENOMEM;
457 
458 	if (start > vma->vm_start)
459 		prev = vma;
460 
461 	for (nstart = start ; ; ) {
462 		unsigned int newflags;
463 
464 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
465 
466 		newflags = vma->vm_flags | VM_LOCKED;
467 		if (!on)
468 			newflags &= ~VM_LOCKED;
469 
470 		tmp = vma->vm_end;
471 		if (tmp > end)
472 			tmp = end;
473 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
474 		if (error)
475 			break;
476 		nstart = tmp;
477 		if (nstart < prev->vm_end)
478 			nstart = prev->vm_end;
479 		if (nstart >= end)
480 			break;
481 
482 		vma = prev->vm_next;
483 		if (!vma || vma->vm_start != nstart) {
484 			error = -ENOMEM;
485 			break;
486 		}
487 	}
488 	return error;
489 }
490 
491 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
492 {
493 	unsigned long locked;
494 	unsigned long lock_limit;
495 	int error = -ENOMEM;
496 
497 	if (!can_do_mlock())
498 		return -EPERM;
499 
500 	lru_add_drain_all();	/* flush pagevec */
501 
502 	down_write(&current->mm->mmap_sem);
503 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
504 	start &= PAGE_MASK;
505 
506 	locked = len >> PAGE_SHIFT;
507 	locked += current->mm->locked_vm;
508 
509 	lock_limit = rlimit(RLIMIT_MEMLOCK);
510 	lock_limit >>= PAGE_SHIFT;
511 
512 	/* check against resource limits */
513 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
514 		error = do_mlock(start, len, 1);
515 	up_write(&current->mm->mmap_sem);
516 	return error;
517 }
518 
519 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
520 {
521 	int ret;
522 
523 	down_write(&current->mm->mmap_sem);
524 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
525 	start &= PAGE_MASK;
526 	ret = do_mlock(start, len, 0);
527 	up_write(&current->mm->mmap_sem);
528 	return ret;
529 }
530 
531 static int do_mlockall(int flags)
532 {
533 	struct vm_area_struct * vma, * prev = NULL;
534 	unsigned int def_flags = 0;
535 
536 	if (flags & MCL_FUTURE)
537 		def_flags = VM_LOCKED;
538 	current->mm->def_flags = def_flags;
539 	if (flags == MCL_FUTURE)
540 		goto out;
541 
542 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
543 		unsigned int newflags;
544 
545 		newflags = vma->vm_flags | VM_LOCKED;
546 		if (!(flags & MCL_CURRENT))
547 			newflags &= ~VM_LOCKED;
548 
549 		/* Ignore errors */
550 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
551 	}
552 out:
553 	return 0;
554 }
555 
556 SYSCALL_DEFINE1(mlockall, int, flags)
557 {
558 	unsigned long lock_limit;
559 	int ret = -EINVAL;
560 
561 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
562 		goto out;
563 
564 	ret = -EPERM;
565 	if (!can_do_mlock())
566 		goto out;
567 
568 	lru_add_drain_all();	/* flush pagevec */
569 
570 	down_write(&current->mm->mmap_sem);
571 
572 	lock_limit = rlimit(RLIMIT_MEMLOCK);
573 	lock_limit >>= PAGE_SHIFT;
574 
575 	ret = -ENOMEM;
576 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
577 	    capable(CAP_IPC_LOCK))
578 		ret = do_mlockall(flags);
579 	up_write(&current->mm->mmap_sem);
580 out:
581 	return ret;
582 }
583 
584 SYSCALL_DEFINE0(munlockall)
585 {
586 	int ret;
587 
588 	down_write(&current->mm->mmap_sem);
589 	ret = do_mlockall(0);
590 	up_write(&current->mm->mmap_sem);
591 	return ret;
592 }
593 
594 /*
595  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
596  * shm segments) get accounted against the user_struct instead.
597  */
598 static DEFINE_SPINLOCK(shmlock_user_lock);
599 
600 int user_shm_lock(size_t size, struct user_struct *user)
601 {
602 	unsigned long lock_limit, locked;
603 	int allowed = 0;
604 
605 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
606 	lock_limit = rlimit(RLIMIT_MEMLOCK);
607 	if (lock_limit == RLIM_INFINITY)
608 		allowed = 1;
609 	lock_limit >>= PAGE_SHIFT;
610 	spin_lock(&shmlock_user_lock);
611 	if (!allowed &&
612 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
613 		goto out;
614 	get_uid(user);
615 	user->locked_shm += locked;
616 	allowed = 1;
617 out:
618 	spin_unlock(&shmlock_user_lock);
619 	return allowed;
620 }
621 
622 void user_shm_unlock(size_t size, struct user_struct *user)
623 {
624 	spin_lock(&shmlock_user_lock);
625 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
626 	spin_unlock(&shmlock_user_lock);
627 	free_uid(user);
628 }
629