1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/syscalls.h> 16 #include <linux/sched.h> 17 #include <linux/module.h> 18 #include <linux/rmap.h> 19 #include <linux/mmzone.h> 20 #include <linux/hugetlb.h> 21 22 #include "internal.h" 23 24 int can_do_mlock(void) 25 { 26 if (capable(CAP_IPC_LOCK)) 27 return 1; 28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 29 return 1; 30 return 0; 31 } 32 EXPORT_SYMBOL(can_do_mlock); 33 34 #ifdef CONFIG_UNEVICTABLE_LRU 35 /* 36 * Mlocked pages are marked with PageMlocked() flag for efficient testing 37 * in vmscan and, possibly, the fault path; and to support semi-accurate 38 * statistics. 39 * 40 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 41 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 42 * The unevictable list is an LRU sibling list to the [in]active lists. 43 * PageUnevictable is set to indicate the unevictable state. 44 * 45 * When lazy mlocking via vmscan, it is important to ensure that the 46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 47 * may have mlocked a page that is being munlocked. So lazy mlock must take 48 * the mmap_sem for read, and verify that the vma really is locked 49 * (see mm/rmap.c). 50 */ 51 52 /* 53 * LRU accounting for clear_page_mlock() 54 */ 55 void __clear_page_mlock(struct page *page) 56 { 57 VM_BUG_ON(!PageLocked(page)); 58 59 if (!page->mapping) { /* truncated ? */ 60 return; 61 } 62 63 dec_zone_page_state(page, NR_MLOCK); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * Page not on the LRU yet. Flush all pagevecs and retry. 70 */ 71 lru_add_drain_all(); 72 if (!isolate_lru_page(page)) 73 putback_lru_page(page); 74 else if (PageUnevictable(page)) 75 count_vm_event(UNEVICTABLE_PGSTRANDED); 76 77 } 78 } 79 80 /* 81 * Mark page as mlocked if not already. 82 * If page on LRU, isolate and putback to move to unevictable list. 83 */ 84 void mlock_vma_page(struct page *page) 85 { 86 BUG_ON(!PageLocked(page)); 87 88 if (!TestSetPageMlocked(page)) { 89 inc_zone_page_state(page, NR_MLOCK); 90 count_vm_event(UNEVICTABLE_PGMLOCKED); 91 if (!isolate_lru_page(page)) 92 putback_lru_page(page); 93 } 94 } 95 96 /* 97 * called from munlock()/munmap() path with page supposedly on the LRU. 98 * 99 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked 100 * [in try_to_munlock()] and then attempt to isolate the page. We must 101 * isolate the page to keep others from messing with its unevictable 102 * and mlocked state while trying to munlock. However, we pre-clear the 103 * mlocked state anyway as we might lose the isolation race and we might 104 * not get another chance to clear PageMlocked. If we successfully 105 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas 106 * mapping the page, it will restore the PageMlocked state, unless the page 107 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(), 108 * perhaps redundantly. 109 * If we lose the isolation race, and the page is mapped by other VM_LOCKED 110 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap() 111 * either of which will restore the PageMlocked state by calling 112 * mlock_vma_page() above, if it can grab the vma's mmap sem. 113 */ 114 static void munlock_vma_page(struct page *page) 115 { 116 BUG_ON(!PageLocked(page)); 117 118 if (TestClearPageMlocked(page)) { 119 dec_zone_page_state(page, NR_MLOCK); 120 if (!isolate_lru_page(page)) { 121 int ret = try_to_munlock(page); 122 /* 123 * did try_to_unlock() succeed or punt? 124 */ 125 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN) 126 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 127 128 putback_lru_page(page); 129 } else { 130 /* 131 * We lost the race. let try_to_unmap() deal 132 * with it. At least we get the page state and 133 * mlock stats right. However, page is still on 134 * the noreclaim list. We'll fix that up when 135 * the page is eventually freed or we scan the 136 * noreclaim list. 137 */ 138 if (PageUnevictable(page)) 139 count_vm_event(UNEVICTABLE_PGSTRANDED); 140 else 141 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 142 } 143 } 144 } 145 146 /** 147 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma. 148 * @vma: target vma 149 * @start: start address 150 * @end: end address 151 * @mlock: 0 indicate munlock, otherwise mlock. 152 * 153 * If @mlock == 0, unlock an mlocked range; 154 * else mlock the range of pages. This takes care of making the pages present , 155 * too. 156 * 157 * return 0 on success, negative error code on error. 158 * 159 * vma->vm_mm->mmap_sem must be held for at least read. 160 */ 161 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 162 unsigned long start, unsigned long end, 163 int mlock) 164 { 165 struct mm_struct *mm = vma->vm_mm; 166 unsigned long addr = start; 167 struct page *pages[16]; /* 16 gives a reasonable batch */ 168 int nr_pages = (end - start) / PAGE_SIZE; 169 int ret; 170 int gup_flags = 0; 171 172 VM_BUG_ON(start & ~PAGE_MASK); 173 VM_BUG_ON(end & ~PAGE_MASK); 174 VM_BUG_ON(start < vma->vm_start); 175 VM_BUG_ON(end > vma->vm_end); 176 VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) && 177 (atomic_read(&mm->mm_users) != 0)); 178 179 /* 180 * mlock: don't page populate if page has PROT_NONE permission. 181 * munlock: the pages always do munlock althrough 182 * its has PROT_NONE permission. 183 */ 184 if (!mlock) 185 gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS; 186 187 if (vma->vm_flags & VM_WRITE) 188 gup_flags |= GUP_FLAGS_WRITE; 189 190 lru_add_drain_all(); /* push cached pages to LRU */ 191 192 while (nr_pages > 0) { 193 int i; 194 195 cond_resched(); 196 197 /* 198 * get_user_pages makes pages present if we are 199 * setting mlock. and this extra reference count will 200 * disable migration of this page. However, page may 201 * still be truncated out from under us. 202 */ 203 ret = __get_user_pages(current, mm, addr, 204 min_t(int, nr_pages, ARRAY_SIZE(pages)), 205 gup_flags, pages, NULL); 206 /* 207 * This can happen for, e.g., VM_NONLINEAR regions before 208 * a page has been allocated and mapped at a given offset, 209 * or for addresses that map beyond end of a file. 210 * We'll mlock the the pages if/when they get faulted in. 211 */ 212 if (ret < 0) 213 break; 214 if (ret == 0) { 215 /* 216 * We know the vma is there, so the only time 217 * we cannot get a single page should be an 218 * error (ret < 0) case. 219 */ 220 WARN_ON(1); 221 break; 222 } 223 224 lru_add_drain(); /* push cached pages to LRU */ 225 226 for (i = 0; i < ret; i++) { 227 struct page *page = pages[i]; 228 229 lock_page(page); 230 /* 231 * Because we lock page here and migration is blocked 232 * by the elevated reference, we need only check for 233 * page truncation (file-cache only). 234 */ 235 if (page->mapping) { 236 if (mlock) 237 mlock_vma_page(page); 238 else 239 munlock_vma_page(page); 240 } 241 unlock_page(page); 242 put_page(page); /* ref from get_user_pages() */ 243 244 /* 245 * here we assume that get_user_pages() has given us 246 * a list of virtually contiguous pages. 247 */ 248 addr += PAGE_SIZE; /* for next get_user_pages() */ 249 nr_pages--; 250 } 251 ret = 0; 252 } 253 254 lru_add_drain_all(); /* to update stats */ 255 256 return ret; /* count entire vma as locked_vm */ 257 } 258 259 /* 260 * convert get_user_pages() return value to posix mlock() error 261 */ 262 static int __mlock_posix_error_return(long retval) 263 { 264 if (retval == -EFAULT) 265 retval = -ENOMEM; 266 else if (retval == -ENOMEM) 267 retval = -EAGAIN; 268 return retval; 269 } 270 271 #else /* CONFIG_UNEVICTABLE_LRU */ 272 273 /* 274 * Just make pages present if VM_LOCKED. No-op if unlocking. 275 */ 276 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 277 unsigned long start, unsigned long end, 278 int mlock) 279 { 280 if (mlock && (vma->vm_flags & VM_LOCKED)) 281 return make_pages_present(start, end); 282 return 0; 283 } 284 285 static inline int __mlock_posix_error_return(long retval) 286 { 287 return 0; 288 } 289 290 #endif /* CONFIG_UNEVICTABLE_LRU */ 291 292 /** 293 * mlock_vma_pages_range() - mlock pages in specified vma range. 294 * @vma - the vma containing the specfied address range 295 * @start - starting address in @vma to mlock 296 * @end - end address [+1] in @vma to mlock 297 * 298 * For mmap()/mremap()/expansion of mlocked vma. 299 * 300 * return 0 on success for "normal" vmas. 301 * 302 * return number of pages [> 0] to be removed from locked_vm on success 303 * of "special" vmas. 304 * 305 * return negative error if vma spanning @start-@range disappears while 306 * mmap semaphore is dropped. Unlikely? 307 */ 308 long mlock_vma_pages_range(struct vm_area_struct *vma, 309 unsigned long start, unsigned long end) 310 { 311 struct mm_struct *mm = vma->vm_mm; 312 int nr_pages = (end - start) / PAGE_SIZE; 313 BUG_ON(!(vma->vm_flags & VM_LOCKED)); 314 315 /* 316 * filter unlockable vmas 317 */ 318 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 319 goto no_mlock; 320 321 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 322 is_vm_hugetlb_page(vma) || 323 vma == get_gate_vma(current))) { 324 long error; 325 downgrade_write(&mm->mmap_sem); 326 327 error = __mlock_vma_pages_range(vma, start, end, 1); 328 329 up_read(&mm->mmap_sem); 330 /* vma can change or disappear */ 331 down_write(&mm->mmap_sem); 332 vma = find_vma(mm, start); 333 /* non-NULL vma must contain @start, but need to check @end */ 334 if (!vma || end > vma->vm_end) 335 return -ENOMEM; 336 337 return 0; /* hide other errors from mmap(), et al */ 338 } 339 340 /* 341 * User mapped kernel pages or huge pages: 342 * make these pages present to populate the ptes, but 343 * fall thru' to reset VM_LOCKED--no need to unlock, and 344 * return nr_pages so these don't get counted against task's 345 * locked limit. huge pages are already counted against 346 * locked vm limit. 347 */ 348 make_pages_present(start, end); 349 350 no_mlock: 351 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */ 352 return nr_pages; /* error or pages NOT mlocked */ 353 } 354 355 356 /* 357 * munlock_vma_pages_range() - munlock all pages in the vma range.' 358 * @vma - vma containing range to be munlock()ed. 359 * @start - start address in @vma of the range 360 * @end - end of range in @vma. 361 * 362 * For mremap(), munmap() and exit(). 363 * 364 * Called with @vma VM_LOCKED. 365 * 366 * Returns with VM_LOCKED cleared. Callers must be prepared to 367 * deal with this. 368 * 369 * We don't save and restore VM_LOCKED here because pages are 370 * still on lru. In unmap path, pages might be scanned by reclaim 371 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 372 * free them. This will result in freeing mlocked pages. 373 */ 374 void munlock_vma_pages_range(struct vm_area_struct *vma, 375 unsigned long start, unsigned long end) 376 { 377 vma->vm_flags &= ~VM_LOCKED; 378 __mlock_vma_pages_range(vma, start, end, 0); 379 } 380 381 /* 382 * mlock_fixup - handle mlock[all]/munlock[all] requests. 383 * 384 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 385 * munlock is a no-op. However, for some special vmas, we go ahead and 386 * populate the ptes via make_pages_present(). 387 * 388 * For vmas that pass the filters, merge/split as appropriate. 389 */ 390 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 391 unsigned long start, unsigned long end, unsigned int newflags) 392 { 393 struct mm_struct *mm = vma->vm_mm; 394 pgoff_t pgoff; 395 int nr_pages; 396 int ret = 0; 397 int lock = newflags & VM_LOCKED; 398 399 if (newflags == vma->vm_flags || 400 (vma->vm_flags & (VM_IO | VM_PFNMAP))) 401 goto out; /* don't set VM_LOCKED, don't count */ 402 403 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 404 is_vm_hugetlb_page(vma) || 405 vma == get_gate_vma(current)) { 406 if (lock) 407 make_pages_present(start, end); 408 goto out; /* don't set VM_LOCKED, don't count */ 409 } 410 411 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 412 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 413 vma->vm_file, pgoff, vma_policy(vma)); 414 if (*prev) { 415 vma = *prev; 416 goto success; 417 } 418 419 if (start != vma->vm_start) { 420 ret = split_vma(mm, vma, start, 1); 421 if (ret) 422 goto out; 423 } 424 425 if (end != vma->vm_end) { 426 ret = split_vma(mm, vma, end, 0); 427 if (ret) 428 goto out; 429 } 430 431 success: 432 /* 433 * Keep track of amount of locked VM. 434 */ 435 nr_pages = (end - start) >> PAGE_SHIFT; 436 if (!lock) 437 nr_pages = -nr_pages; 438 mm->locked_vm += nr_pages; 439 440 /* 441 * vm_flags is protected by the mmap_sem held in write mode. 442 * It's okay if try_to_unmap_one unmaps a page just after we 443 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 444 */ 445 vma->vm_flags = newflags; 446 447 if (lock) { 448 /* 449 * mmap_sem is currently held for write. Downgrade the write 450 * lock to a read lock so that other faults, mmap scans, ... 451 * while we fault in all pages. 452 */ 453 downgrade_write(&mm->mmap_sem); 454 455 ret = __mlock_vma_pages_range(vma, start, end, 1); 456 457 /* 458 * Need to reacquire mmap sem in write mode, as our callers 459 * expect this. We have no support for atomically upgrading 460 * a sem to write, so we need to check for ranges while sem 461 * is unlocked. 462 */ 463 up_read(&mm->mmap_sem); 464 /* vma can change or disappear */ 465 down_write(&mm->mmap_sem); 466 *prev = find_vma(mm, start); 467 /* non-NULL *prev must contain @start, but need to check @end */ 468 if (!(*prev) || end > (*prev)->vm_end) 469 ret = -ENOMEM; 470 else if (ret > 0) { 471 mm->locked_vm -= ret; 472 ret = 0; 473 } else 474 ret = __mlock_posix_error_return(ret); /* translate if needed */ 475 } else { 476 /* 477 * TODO: for unlocking, pages will already be resident, so 478 * we don't need to wait for allocations/reclaim/pagein, ... 479 * However, unlocking a very large region can still take a 480 * while. Should we downgrade the semaphore for both lock 481 * AND unlock ? 482 */ 483 __mlock_vma_pages_range(vma, start, end, 0); 484 } 485 486 out: 487 *prev = vma; 488 return ret; 489 } 490 491 static int do_mlock(unsigned long start, size_t len, int on) 492 { 493 unsigned long nstart, end, tmp; 494 struct vm_area_struct * vma, * prev; 495 int error; 496 497 len = PAGE_ALIGN(len); 498 end = start + len; 499 if (end < start) 500 return -EINVAL; 501 if (end == start) 502 return 0; 503 vma = find_vma_prev(current->mm, start, &prev); 504 if (!vma || vma->vm_start > start) 505 return -ENOMEM; 506 507 if (start > vma->vm_start) 508 prev = vma; 509 510 for (nstart = start ; ; ) { 511 unsigned int newflags; 512 513 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 514 515 newflags = vma->vm_flags | VM_LOCKED; 516 if (!on) 517 newflags &= ~VM_LOCKED; 518 519 tmp = vma->vm_end; 520 if (tmp > end) 521 tmp = end; 522 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 523 if (error) 524 break; 525 nstart = tmp; 526 if (nstart < prev->vm_end) 527 nstart = prev->vm_end; 528 if (nstart >= end) 529 break; 530 531 vma = prev->vm_next; 532 if (!vma || vma->vm_start != nstart) { 533 error = -ENOMEM; 534 break; 535 } 536 } 537 return error; 538 } 539 540 asmlinkage long sys_mlock(unsigned long start, size_t len) 541 { 542 unsigned long locked; 543 unsigned long lock_limit; 544 int error = -ENOMEM; 545 546 if (!can_do_mlock()) 547 return -EPERM; 548 549 down_write(¤t->mm->mmap_sem); 550 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 551 start &= PAGE_MASK; 552 553 locked = len >> PAGE_SHIFT; 554 locked += current->mm->locked_vm; 555 556 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 557 lock_limit >>= PAGE_SHIFT; 558 559 /* check against resource limits */ 560 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 561 error = do_mlock(start, len, 1); 562 up_write(¤t->mm->mmap_sem); 563 return error; 564 } 565 566 asmlinkage long sys_munlock(unsigned long start, size_t len) 567 { 568 int ret; 569 570 down_write(¤t->mm->mmap_sem); 571 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 572 start &= PAGE_MASK; 573 ret = do_mlock(start, len, 0); 574 up_write(¤t->mm->mmap_sem); 575 return ret; 576 } 577 578 static int do_mlockall(int flags) 579 { 580 struct vm_area_struct * vma, * prev = NULL; 581 unsigned int def_flags = 0; 582 583 if (flags & MCL_FUTURE) 584 def_flags = VM_LOCKED; 585 current->mm->def_flags = def_flags; 586 if (flags == MCL_FUTURE) 587 goto out; 588 589 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 590 unsigned int newflags; 591 592 newflags = vma->vm_flags | VM_LOCKED; 593 if (!(flags & MCL_CURRENT)) 594 newflags &= ~VM_LOCKED; 595 596 /* Ignore errors */ 597 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 598 } 599 out: 600 return 0; 601 } 602 603 asmlinkage long sys_mlockall(int flags) 604 { 605 unsigned long lock_limit; 606 int ret = -EINVAL; 607 608 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 609 goto out; 610 611 ret = -EPERM; 612 if (!can_do_mlock()) 613 goto out; 614 615 down_write(¤t->mm->mmap_sem); 616 617 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 618 lock_limit >>= PAGE_SHIFT; 619 620 ret = -ENOMEM; 621 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 622 capable(CAP_IPC_LOCK)) 623 ret = do_mlockall(flags); 624 up_write(¤t->mm->mmap_sem); 625 out: 626 return ret; 627 } 628 629 asmlinkage long sys_munlockall(void) 630 { 631 int ret; 632 633 down_write(¤t->mm->mmap_sem); 634 ret = do_mlockall(0); 635 up_write(¤t->mm->mmap_sem); 636 return ret; 637 } 638 639 /* 640 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 641 * shm segments) get accounted against the user_struct instead. 642 */ 643 static DEFINE_SPINLOCK(shmlock_user_lock); 644 645 int user_shm_lock(size_t size, struct user_struct *user) 646 { 647 unsigned long lock_limit, locked; 648 int allowed = 0; 649 650 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 651 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 652 if (lock_limit == RLIM_INFINITY) 653 allowed = 1; 654 lock_limit >>= PAGE_SHIFT; 655 spin_lock(&shmlock_user_lock); 656 if (!allowed && 657 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 658 goto out; 659 get_uid(user); 660 user->locked_shm += locked; 661 allowed = 1; 662 out: 663 spin_unlock(&shmlock_user_lock); 664 return allowed; 665 } 666 667 void user_shm_unlock(size_t size, struct user_struct *user) 668 { 669 spin_lock(&shmlock_user_lock); 670 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 671 spin_unlock(&shmlock_user_lock); 672 free_uid(user); 673 } 674