xref: /linux/mm/mlock.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 #ifdef CONFIG_UNEVICTABLE_LRU
35 /*
36  * Mlocked pages are marked with PageMlocked() flag for efficient testing
37  * in vmscan and, possibly, the fault path; and to support semi-accurate
38  * statistics.
39  *
40  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
41  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42  * The unevictable list is an LRU sibling list to the [in]active lists.
43  * PageUnevictable is set to indicate the unevictable state.
44  *
45  * When lazy mlocking via vmscan, it is important to ensure that the
46  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47  * may have mlocked a page that is being munlocked. So lazy mlock must take
48  * the mmap_sem for read, and verify that the vma really is locked
49  * (see mm/rmap.c).
50  */
51 
52 /*
53  *  LRU accounting for clear_page_mlock()
54  */
55 void __clear_page_mlock(struct page *page)
56 {
57 	VM_BUG_ON(!PageLocked(page));
58 
59 	if (!page->mapping) {	/* truncated ? */
60 		return;
61 	}
62 
63 	dec_zone_page_state(page, NR_MLOCK);
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * Page not on the LRU yet.  Flush all pagevecs and retry.
70 		 */
71 		lru_add_drain_all();
72 		if (!isolate_lru_page(page))
73 			putback_lru_page(page);
74 		else if (PageUnevictable(page))
75 			count_vm_event(UNEVICTABLE_PGSTRANDED);
76 
77 	}
78 }
79 
80 /*
81  * Mark page as mlocked if not already.
82  * If page on LRU, isolate and putback to move to unevictable list.
83  */
84 void mlock_vma_page(struct page *page)
85 {
86 	BUG_ON(!PageLocked(page));
87 
88 	if (!TestSetPageMlocked(page)) {
89 		inc_zone_page_state(page, NR_MLOCK);
90 		count_vm_event(UNEVICTABLE_PGMLOCKED);
91 		if (!isolate_lru_page(page))
92 			putback_lru_page(page);
93 	}
94 }
95 
96 /*
97  * called from munlock()/munmap() path with page supposedly on the LRU.
98  *
99  * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
100  * [in try_to_munlock()] and then attempt to isolate the page.  We must
101  * isolate the page to keep others from messing with its unevictable
102  * and mlocked state while trying to munlock.  However, we pre-clear the
103  * mlocked state anyway as we might lose the isolation race and we might
104  * not get another chance to clear PageMlocked.  If we successfully
105  * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
106  * mapping the page, it will restore the PageMlocked state, unless the page
107  * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
108  * perhaps redundantly.
109  * If we lose the isolation race, and the page is mapped by other VM_LOCKED
110  * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
111  * either of which will restore the PageMlocked state by calling
112  * mlock_vma_page() above, if it can grab the vma's mmap sem.
113  */
114 static void munlock_vma_page(struct page *page)
115 {
116 	BUG_ON(!PageLocked(page));
117 
118 	if (TestClearPageMlocked(page)) {
119 		dec_zone_page_state(page, NR_MLOCK);
120 		if (!isolate_lru_page(page)) {
121 			int ret = try_to_munlock(page);
122 			/*
123 			 * did try_to_unlock() succeed or punt?
124 			 */
125 			if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
126 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
127 
128 			putback_lru_page(page);
129 		} else {
130 			/*
131 			 * We lost the race.  let try_to_unmap() deal
132 			 * with it.  At least we get the page state and
133 			 * mlock stats right.  However, page is still on
134 			 * the noreclaim list.  We'll fix that up when
135 			 * the page is eventually freed or we scan the
136 			 * noreclaim list.
137 			 */
138 			if (PageUnevictable(page))
139 				count_vm_event(UNEVICTABLE_PGSTRANDED);
140 			else
141 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142 		}
143 	}
144 }
145 
146 /**
147  * __mlock_vma_pages_range() -  mlock/munlock a range of pages in the vma.
148  * @vma:   target vma
149  * @start: start address
150  * @end:   end address
151  * @mlock: 0 indicate munlock, otherwise mlock.
152  *
153  * If @mlock == 0, unlock an mlocked range;
154  * else mlock the range of pages.  This takes care of making the pages present ,
155  * too.
156  *
157  * return 0 on success, negative error code on error.
158  *
159  * vma->vm_mm->mmap_sem must be held for at least read.
160  */
161 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
162 				   unsigned long start, unsigned long end,
163 				   int mlock)
164 {
165 	struct mm_struct *mm = vma->vm_mm;
166 	unsigned long addr = start;
167 	struct page *pages[16]; /* 16 gives a reasonable batch */
168 	int nr_pages = (end - start) / PAGE_SIZE;
169 	int ret;
170 	int gup_flags = 0;
171 
172 	VM_BUG_ON(start & ~PAGE_MASK);
173 	VM_BUG_ON(end   & ~PAGE_MASK);
174 	VM_BUG_ON(start < vma->vm_start);
175 	VM_BUG_ON(end   > vma->vm_end);
176 	VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
177 		  (atomic_read(&mm->mm_users) != 0));
178 
179 	/*
180 	 * mlock:   don't page populate if page has PROT_NONE permission.
181 	 * munlock: the pages always do munlock althrough
182 	 *          its has PROT_NONE permission.
183 	 */
184 	if (!mlock)
185 		gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS;
186 
187 	if (vma->vm_flags & VM_WRITE)
188 		gup_flags |= GUP_FLAGS_WRITE;
189 
190 	lru_add_drain_all();	/* push cached pages to LRU */
191 
192 	while (nr_pages > 0) {
193 		int i;
194 
195 		cond_resched();
196 
197 		/*
198 		 * get_user_pages makes pages present if we are
199 		 * setting mlock. and this extra reference count will
200 		 * disable migration of this page.  However, page may
201 		 * still be truncated out from under us.
202 		 */
203 		ret = __get_user_pages(current, mm, addr,
204 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
205 				gup_flags, pages, NULL);
206 		/*
207 		 * This can happen for, e.g., VM_NONLINEAR regions before
208 		 * a page has been allocated and mapped at a given offset,
209 		 * or for addresses that map beyond end of a file.
210 		 * We'll mlock the the pages if/when they get faulted in.
211 		 */
212 		if (ret < 0)
213 			break;
214 		if (ret == 0) {
215 			/*
216 			 * We know the vma is there, so the only time
217 			 * we cannot get a single page should be an
218 			 * error (ret < 0) case.
219 			 */
220 			WARN_ON(1);
221 			break;
222 		}
223 
224 		lru_add_drain();	/* push cached pages to LRU */
225 
226 		for (i = 0; i < ret; i++) {
227 			struct page *page = pages[i];
228 
229 			lock_page(page);
230 			/*
231 			 * Because we lock page here and migration is blocked
232 			 * by the elevated reference, we need only check for
233 			 * page truncation (file-cache only).
234 			 */
235 			if (page->mapping) {
236 				if (mlock)
237 					mlock_vma_page(page);
238 				else
239 					munlock_vma_page(page);
240 			}
241 			unlock_page(page);
242 			put_page(page);		/* ref from get_user_pages() */
243 
244 			/*
245 			 * here we assume that get_user_pages() has given us
246 			 * a list of virtually contiguous pages.
247 			 */
248 			addr += PAGE_SIZE;	/* for next get_user_pages() */
249 			nr_pages--;
250 		}
251 		ret = 0;
252 	}
253 
254 	lru_add_drain_all();	/* to update stats */
255 
256 	return ret;	/* count entire vma as locked_vm */
257 }
258 
259 /*
260  * convert get_user_pages() return value to posix mlock() error
261  */
262 static int __mlock_posix_error_return(long retval)
263 {
264 	if (retval == -EFAULT)
265 		retval = -ENOMEM;
266 	else if (retval == -ENOMEM)
267 		retval = -EAGAIN;
268 	return retval;
269 }
270 
271 #else /* CONFIG_UNEVICTABLE_LRU */
272 
273 /*
274  * Just make pages present if VM_LOCKED.  No-op if unlocking.
275  */
276 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
277 				   unsigned long start, unsigned long end,
278 				   int mlock)
279 {
280 	if (mlock && (vma->vm_flags & VM_LOCKED))
281 		return make_pages_present(start, end);
282 	return 0;
283 }
284 
285 static inline int __mlock_posix_error_return(long retval)
286 {
287 	return 0;
288 }
289 
290 #endif /* CONFIG_UNEVICTABLE_LRU */
291 
292 /**
293  * mlock_vma_pages_range() - mlock pages in specified vma range.
294  * @vma - the vma containing the specfied address range
295  * @start - starting address in @vma to mlock
296  * @end   - end address [+1] in @vma to mlock
297  *
298  * For mmap()/mremap()/expansion of mlocked vma.
299  *
300  * return 0 on success for "normal" vmas.
301  *
302  * return number of pages [> 0] to be removed from locked_vm on success
303  * of "special" vmas.
304  *
305  * return negative error if vma spanning @start-@range disappears while
306  * mmap semaphore is dropped.  Unlikely?
307  */
308 long mlock_vma_pages_range(struct vm_area_struct *vma,
309 			unsigned long start, unsigned long end)
310 {
311 	struct mm_struct *mm = vma->vm_mm;
312 	int nr_pages = (end - start) / PAGE_SIZE;
313 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
314 
315 	/*
316 	 * filter unlockable vmas
317 	 */
318 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
319 		goto no_mlock;
320 
321 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
322 			is_vm_hugetlb_page(vma) ||
323 			vma == get_gate_vma(current))) {
324 		long error;
325 		downgrade_write(&mm->mmap_sem);
326 
327 		error = __mlock_vma_pages_range(vma, start, end, 1);
328 
329 		up_read(&mm->mmap_sem);
330 		/* vma can change or disappear */
331 		down_write(&mm->mmap_sem);
332 		vma = find_vma(mm, start);
333 		/* non-NULL vma must contain @start, but need to check @end */
334 		if (!vma ||  end > vma->vm_end)
335 			return -ENOMEM;
336 
337 		return 0;	/* hide other errors from mmap(), et al */
338 	}
339 
340 	/*
341 	 * User mapped kernel pages or huge pages:
342 	 * make these pages present to populate the ptes, but
343 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
344 	 * return nr_pages so these don't get counted against task's
345 	 * locked limit.  huge pages are already counted against
346 	 * locked vm limit.
347 	 */
348 	make_pages_present(start, end);
349 
350 no_mlock:
351 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
352 	return nr_pages;		/* error or pages NOT mlocked */
353 }
354 
355 
356 /*
357  * munlock_vma_pages_range() - munlock all pages in the vma range.'
358  * @vma - vma containing range to be munlock()ed.
359  * @start - start address in @vma of the range
360  * @end - end of range in @vma.
361  *
362  *  For mremap(), munmap() and exit().
363  *
364  * Called with @vma VM_LOCKED.
365  *
366  * Returns with VM_LOCKED cleared.  Callers must be prepared to
367  * deal with this.
368  *
369  * We don't save and restore VM_LOCKED here because pages are
370  * still on lru.  In unmap path, pages might be scanned by reclaim
371  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
372  * free them.  This will result in freeing mlocked pages.
373  */
374 void munlock_vma_pages_range(struct vm_area_struct *vma,
375 			   unsigned long start, unsigned long end)
376 {
377 	vma->vm_flags &= ~VM_LOCKED;
378 	__mlock_vma_pages_range(vma, start, end, 0);
379 }
380 
381 /*
382  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
383  *
384  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
385  * munlock is a no-op.  However, for some special vmas, we go ahead and
386  * populate the ptes via make_pages_present().
387  *
388  * For vmas that pass the filters, merge/split as appropriate.
389  */
390 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
391 	unsigned long start, unsigned long end, unsigned int newflags)
392 {
393 	struct mm_struct *mm = vma->vm_mm;
394 	pgoff_t pgoff;
395 	int nr_pages;
396 	int ret = 0;
397 	int lock = newflags & VM_LOCKED;
398 
399 	if (newflags == vma->vm_flags ||
400 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
401 		goto out;	/* don't set VM_LOCKED,  don't count */
402 
403 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
404 			is_vm_hugetlb_page(vma) ||
405 			vma == get_gate_vma(current)) {
406 		if (lock)
407 			make_pages_present(start, end);
408 		goto out;	/* don't set VM_LOCKED,  don't count */
409 	}
410 
411 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
412 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
413 			  vma->vm_file, pgoff, vma_policy(vma));
414 	if (*prev) {
415 		vma = *prev;
416 		goto success;
417 	}
418 
419 	if (start != vma->vm_start) {
420 		ret = split_vma(mm, vma, start, 1);
421 		if (ret)
422 			goto out;
423 	}
424 
425 	if (end != vma->vm_end) {
426 		ret = split_vma(mm, vma, end, 0);
427 		if (ret)
428 			goto out;
429 	}
430 
431 success:
432 	/*
433 	 * Keep track of amount of locked VM.
434 	 */
435 	nr_pages = (end - start) >> PAGE_SHIFT;
436 	if (!lock)
437 		nr_pages = -nr_pages;
438 	mm->locked_vm += nr_pages;
439 
440 	/*
441 	 * vm_flags is protected by the mmap_sem held in write mode.
442 	 * It's okay if try_to_unmap_one unmaps a page just after we
443 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
444 	 */
445 	vma->vm_flags = newflags;
446 
447 	if (lock) {
448 		/*
449 		 * mmap_sem is currently held for write.  Downgrade the write
450 		 * lock to a read lock so that other faults, mmap scans, ...
451 		 * while we fault in all pages.
452 		 */
453 		downgrade_write(&mm->mmap_sem);
454 
455 		ret = __mlock_vma_pages_range(vma, start, end, 1);
456 
457 		/*
458 		 * Need to reacquire mmap sem in write mode, as our callers
459 		 * expect this.  We have no support for atomically upgrading
460 		 * a sem to write, so we need to check for ranges while sem
461 		 * is unlocked.
462 		 */
463 		up_read(&mm->mmap_sem);
464 		/* vma can change or disappear */
465 		down_write(&mm->mmap_sem);
466 		*prev = find_vma(mm, start);
467 		/* non-NULL *prev must contain @start, but need to check @end */
468 		if (!(*prev) || end > (*prev)->vm_end)
469 			ret = -ENOMEM;
470 		else if (ret > 0) {
471 			mm->locked_vm -= ret;
472 			ret = 0;
473 		} else
474 			ret = __mlock_posix_error_return(ret); /* translate if needed */
475 	} else {
476 		/*
477 		 * TODO:  for unlocking, pages will already be resident, so
478 		 * we don't need to wait for allocations/reclaim/pagein, ...
479 		 * However, unlocking a very large region can still take a
480 		 * while.  Should we downgrade the semaphore for both lock
481 		 * AND unlock ?
482 		 */
483 		__mlock_vma_pages_range(vma, start, end, 0);
484 	}
485 
486 out:
487 	*prev = vma;
488 	return ret;
489 }
490 
491 static int do_mlock(unsigned long start, size_t len, int on)
492 {
493 	unsigned long nstart, end, tmp;
494 	struct vm_area_struct * vma, * prev;
495 	int error;
496 
497 	len = PAGE_ALIGN(len);
498 	end = start + len;
499 	if (end < start)
500 		return -EINVAL;
501 	if (end == start)
502 		return 0;
503 	vma = find_vma_prev(current->mm, start, &prev);
504 	if (!vma || vma->vm_start > start)
505 		return -ENOMEM;
506 
507 	if (start > vma->vm_start)
508 		prev = vma;
509 
510 	for (nstart = start ; ; ) {
511 		unsigned int newflags;
512 
513 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
514 
515 		newflags = vma->vm_flags | VM_LOCKED;
516 		if (!on)
517 			newflags &= ~VM_LOCKED;
518 
519 		tmp = vma->vm_end;
520 		if (tmp > end)
521 			tmp = end;
522 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
523 		if (error)
524 			break;
525 		nstart = tmp;
526 		if (nstart < prev->vm_end)
527 			nstart = prev->vm_end;
528 		if (nstart >= end)
529 			break;
530 
531 		vma = prev->vm_next;
532 		if (!vma || vma->vm_start != nstart) {
533 			error = -ENOMEM;
534 			break;
535 		}
536 	}
537 	return error;
538 }
539 
540 asmlinkage long sys_mlock(unsigned long start, size_t len)
541 {
542 	unsigned long locked;
543 	unsigned long lock_limit;
544 	int error = -ENOMEM;
545 
546 	if (!can_do_mlock())
547 		return -EPERM;
548 
549 	down_write(&current->mm->mmap_sem);
550 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
551 	start &= PAGE_MASK;
552 
553 	locked = len >> PAGE_SHIFT;
554 	locked += current->mm->locked_vm;
555 
556 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
557 	lock_limit >>= PAGE_SHIFT;
558 
559 	/* check against resource limits */
560 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
561 		error = do_mlock(start, len, 1);
562 	up_write(&current->mm->mmap_sem);
563 	return error;
564 }
565 
566 asmlinkage long sys_munlock(unsigned long start, size_t len)
567 {
568 	int ret;
569 
570 	down_write(&current->mm->mmap_sem);
571 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
572 	start &= PAGE_MASK;
573 	ret = do_mlock(start, len, 0);
574 	up_write(&current->mm->mmap_sem);
575 	return ret;
576 }
577 
578 static int do_mlockall(int flags)
579 {
580 	struct vm_area_struct * vma, * prev = NULL;
581 	unsigned int def_flags = 0;
582 
583 	if (flags & MCL_FUTURE)
584 		def_flags = VM_LOCKED;
585 	current->mm->def_flags = def_flags;
586 	if (flags == MCL_FUTURE)
587 		goto out;
588 
589 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
590 		unsigned int newflags;
591 
592 		newflags = vma->vm_flags | VM_LOCKED;
593 		if (!(flags & MCL_CURRENT))
594 			newflags &= ~VM_LOCKED;
595 
596 		/* Ignore errors */
597 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
598 	}
599 out:
600 	return 0;
601 }
602 
603 asmlinkage long sys_mlockall(int flags)
604 {
605 	unsigned long lock_limit;
606 	int ret = -EINVAL;
607 
608 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
609 		goto out;
610 
611 	ret = -EPERM;
612 	if (!can_do_mlock())
613 		goto out;
614 
615 	down_write(&current->mm->mmap_sem);
616 
617 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
618 	lock_limit >>= PAGE_SHIFT;
619 
620 	ret = -ENOMEM;
621 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
622 	    capable(CAP_IPC_LOCK))
623 		ret = do_mlockall(flags);
624 	up_write(&current->mm->mmap_sem);
625 out:
626 	return ret;
627 }
628 
629 asmlinkage long sys_munlockall(void)
630 {
631 	int ret;
632 
633 	down_write(&current->mm->mmap_sem);
634 	ret = do_mlockall(0);
635 	up_write(&current->mm->mmap_sem);
636 	return ret;
637 }
638 
639 /*
640  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
641  * shm segments) get accounted against the user_struct instead.
642  */
643 static DEFINE_SPINLOCK(shmlock_user_lock);
644 
645 int user_shm_lock(size_t size, struct user_struct *user)
646 {
647 	unsigned long lock_limit, locked;
648 	int allowed = 0;
649 
650 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
651 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
652 	if (lock_limit == RLIM_INFINITY)
653 		allowed = 1;
654 	lock_limit >>= PAGE_SHIFT;
655 	spin_lock(&shmlock_user_lock);
656 	if (!allowed &&
657 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
658 		goto out;
659 	get_uid(user);
660 	user->locked_shm += locked;
661 	allowed = 1;
662 out:
663 	spin_unlock(&shmlock_user_lock);
664 	return allowed;
665 }
666 
667 void user_shm_unlock(size_t size, struct user_struct *user)
668 {
669 	spin_lock(&shmlock_user_lock);
670 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
671 	spin_unlock(&shmlock_user_lock);
672 	free_uid(user);
673 }
674