1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/pagewalk.h> 18 #include <linux/mempolicy.h> 19 #include <linux/syscalls.h> 20 #include <linux/sched.h> 21 #include <linux/export.h> 22 #include <linux/rmap.h> 23 #include <linux/mmzone.h> 24 #include <linux/hugetlb.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/secretmem.h> 28 29 #include "internal.h" 30 31 struct mlock_fbatch { 32 local_lock_t lock; 33 struct folio_batch fbatch; 34 }; 35 36 static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = { 37 .lock = INIT_LOCAL_LOCK(lock), 38 }; 39 40 bool can_do_mlock(void) 41 { 42 if (rlimit(RLIMIT_MEMLOCK) != 0) 43 return true; 44 if (capable(CAP_IPC_LOCK)) 45 return true; 46 return false; 47 } 48 EXPORT_SYMBOL(can_do_mlock); 49 50 /* 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing 52 * in vmscan and, possibly, the fault path; and to support semi-accurate 53 * statistics. 54 * 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such 57 * list exists), rather than the [in]active lists. PG_unevictable is set to 58 * indicate the unevictable state. 59 */ 60 61 static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec) 62 { 63 /* There is nothing more we can do while it's off LRU */ 64 if (!folio_test_clear_lru(folio)) 65 return lruvec; 66 67 lruvec = folio_lruvec_relock_irq(folio, lruvec); 68 69 if (unlikely(folio_evictable(folio))) { 70 /* 71 * This is a little surprising, but quite possible: PG_mlocked 72 * must have got cleared already by another CPU. Could this 73 * folio be unevictable? I'm not sure, but move it now if so. 74 */ 75 if (folio_test_unevictable(folio)) { 76 lruvec_del_folio(lruvec, folio); 77 folio_clear_unevictable(folio); 78 lruvec_add_folio(lruvec, folio); 79 80 __count_vm_events(UNEVICTABLE_PGRESCUED, 81 folio_nr_pages(folio)); 82 } 83 goto out; 84 } 85 86 if (folio_test_unevictable(folio)) { 87 if (folio_test_mlocked(folio)) 88 folio->mlock_count++; 89 goto out; 90 } 91 92 lruvec_del_folio(lruvec, folio); 93 folio_clear_active(folio); 94 folio_set_unevictable(folio); 95 folio->mlock_count = !!folio_test_mlocked(folio); 96 lruvec_add_folio(lruvec, folio); 97 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 98 out: 99 folio_set_lru(folio); 100 return lruvec; 101 } 102 103 static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec) 104 { 105 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 106 107 lruvec = folio_lruvec_relock_irq(folio, lruvec); 108 109 /* As above, this is a little surprising, but possible */ 110 if (unlikely(folio_evictable(folio))) 111 goto out; 112 113 folio_set_unevictable(folio); 114 folio->mlock_count = !!folio_test_mlocked(folio); 115 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 116 out: 117 lruvec_add_folio(lruvec, folio); 118 folio_set_lru(folio); 119 return lruvec; 120 } 121 122 static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec) 123 { 124 int nr_pages = folio_nr_pages(folio); 125 bool isolated = false; 126 127 if (!folio_test_clear_lru(folio)) 128 goto munlock; 129 130 isolated = true; 131 lruvec = folio_lruvec_relock_irq(folio, lruvec); 132 133 if (folio_test_unevictable(folio)) { 134 /* Then mlock_count is maintained, but might undercount */ 135 if (folio->mlock_count) 136 folio->mlock_count--; 137 if (folio->mlock_count) 138 goto out; 139 } 140 /* else assume that was the last mlock: reclaim will fix it if not */ 141 142 munlock: 143 if (folio_test_clear_mlocked(folio)) { 144 __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 145 if (isolated || !folio_test_unevictable(folio)) 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 else 148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 149 } 150 151 /* folio_evictable() has to be checked *after* clearing Mlocked */ 152 if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) { 153 lruvec_del_folio(lruvec, folio); 154 folio_clear_unevictable(folio); 155 lruvec_add_folio(lruvec, folio); 156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 157 } 158 out: 159 if (isolated) 160 folio_set_lru(folio); 161 return lruvec; 162 } 163 164 /* 165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch. 166 */ 167 #define LRU_FOLIO 0x1 168 #define NEW_FOLIO 0x2 169 static inline struct folio *mlock_lru(struct folio *folio) 170 { 171 return (struct folio *)((unsigned long)folio + LRU_FOLIO); 172 } 173 174 static inline struct folio *mlock_new(struct folio *folio) 175 { 176 return (struct folio *)((unsigned long)folio + NEW_FOLIO); 177 } 178 179 /* 180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can 181 * make use of such folio pointer flags in future, but for now just keep it for 182 * mlock. We could use three separate folio batches instead, but one feels 183 * better (munlocking a full folio batch does not need to drain mlocking folio 184 * batches first). 185 */ 186 static void mlock_folio_batch(struct folio_batch *fbatch) 187 { 188 struct lruvec *lruvec = NULL; 189 unsigned long mlock; 190 struct folio *folio; 191 int i; 192 193 for (i = 0; i < folio_batch_count(fbatch); i++) { 194 folio = fbatch->folios[i]; 195 mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO); 196 folio = (struct folio *)((unsigned long)folio - mlock); 197 fbatch->folios[i] = folio; 198 199 if (mlock & LRU_FOLIO) 200 lruvec = __mlock_folio(folio, lruvec); 201 else if (mlock & NEW_FOLIO) 202 lruvec = __mlock_new_folio(folio, lruvec); 203 else 204 lruvec = __munlock_folio(folio, lruvec); 205 } 206 207 if (lruvec) 208 unlock_page_lruvec_irq(lruvec); 209 folios_put(fbatch->folios, folio_batch_count(fbatch)); 210 folio_batch_reinit(fbatch); 211 } 212 213 void mlock_drain_local(void) 214 { 215 struct folio_batch *fbatch; 216 217 local_lock(&mlock_fbatch.lock); 218 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 219 if (folio_batch_count(fbatch)) 220 mlock_folio_batch(fbatch); 221 local_unlock(&mlock_fbatch.lock); 222 } 223 224 void mlock_drain_remote(int cpu) 225 { 226 struct folio_batch *fbatch; 227 228 WARN_ON_ONCE(cpu_online(cpu)); 229 fbatch = &per_cpu(mlock_fbatch.fbatch, cpu); 230 if (folio_batch_count(fbatch)) 231 mlock_folio_batch(fbatch); 232 } 233 234 bool need_mlock_drain(int cpu) 235 { 236 return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu)); 237 } 238 239 /** 240 * mlock_folio - mlock a folio already on (or temporarily off) LRU 241 * @folio: folio to be mlocked. 242 */ 243 void mlock_folio(struct folio *folio) 244 { 245 struct folio_batch *fbatch; 246 247 local_lock(&mlock_fbatch.lock); 248 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 249 250 if (!folio_test_set_mlocked(folio)) { 251 int nr_pages = folio_nr_pages(folio); 252 253 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 254 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 255 } 256 257 folio_get(folio); 258 if (!folio_batch_add(fbatch, mlock_lru(folio)) || 259 folio_test_large(folio) || lru_cache_disabled()) 260 mlock_folio_batch(fbatch); 261 local_unlock(&mlock_fbatch.lock); 262 } 263 264 /** 265 * mlock_new_folio - mlock a newly allocated folio not yet on LRU 266 * @folio: folio to be mlocked, either normal or a THP head. 267 */ 268 void mlock_new_folio(struct folio *folio) 269 { 270 struct folio_batch *fbatch; 271 int nr_pages = folio_nr_pages(folio); 272 273 local_lock(&mlock_fbatch.lock); 274 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 275 folio_set_mlocked(folio); 276 277 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 278 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 279 280 folio_get(folio); 281 if (!folio_batch_add(fbatch, mlock_new(folio)) || 282 folio_test_large(folio) || lru_cache_disabled()) 283 mlock_folio_batch(fbatch); 284 local_unlock(&mlock_fbatch.lock); 285 } 286 287 /** 288 * munlock_folio - munlock a folio 289 * @folio: folio to be munlocked, either normal or a THP head. 290 */ 291 void munlock_folio(struct folio *folio) 292 { 293 struct folio_batch *fbatch; 294 295 local_lock(&mlock_fbatch.lock); 296 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 297 /* 298 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(), 299 * which will check whether the folio is multiply mlocked. 300 */ 301 folio_get(folio); 302 if (!folio_batch_add(fbatch, folio) || 303 folio_test_large(folio) || lru_cache_disabled()) 304 mlock_folio_batch(fbatch); 305 local_unlock(&mlock_fbatch.lock); 306 } 307 308 static int mlock_pte_range(pmd_t *pmd, unsigned long addr, 309 unsigned long end, struct mm_walk *walk) 310 311 { 312 struct vm_area_struct *vma = walk->vma; 313 spinlock_t *ptl; 314 pte_t *start_pte, *pte; 315 pte_t ptent; 316 struct folio *folio; 317 318 ptl = pmd_trans_huge_lock(pmd, vma); 319 if (ptl) { 320 if (!pmd_present(*pmd)) 321 goto out; 322 if (is_huge_zero_pmd(*pmd)) 323 goto out; 324 folio = page_folio(pmd_page(*pmd)); 325 if (vma->vm_flags & VM_LOCKED) 326 mlock_folio(folio); 327 else 328 munlock_folio(folio); 329 goto out; 330 } 331 332 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 333 if (!start_pte) { 334 walk->action = ACTION_AGAIN; 335 return 0; 336 } 337 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) { 338 ptent = ptep_get(pte); 339 if (!pte_present(ptent)) 340 continue; 341 folio = vm_normal_folio(vma, addr, ptent); 342 if (!folio || folio_is_zone_device(folio)) 343 continue; 344 if (folio_test_large(folio)) 345 continue; 346 if (vma->vm_flags & VM_LOCKED) 347 mlock_folio(folio); 348 else 349 munlock_folio(folio); 350 } 351 pte_unmap(start_pte); 352 out: 353 spin_unlock(ptl); 354 cond_resched(); 355 return 0; 356 } 357 358 /* 359 * mlock_vma_pages_range() - mlock any pages already in the range, 360 * or munlock all pages in the range. 361 * @vma - vma containing range to be mlock()ed or munlock()ed 362 * @start - start address in @vma of the range 363 * @end - end of range in @vma 364 * @newflags - the new set of flags for @vma. 365 * 366 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED; 367 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma. 368 */ 369 static void mlock_vma_pages_range(struct vm_area_struct *vma, 370 unsigned long start, unsigned long end, vm_flags_t newflags) 371 { 372 static const struct mm_walk_ops mlock_walk_ops = { 373 .pmd_entry = mlock_pte_range, 374 .walk_lock = PGWALK_WRLOCK_VERIFY, 375 }; 376 377 /* 378 * There is a slight chance that concurrent page migration, 379 * or page reclaim finding a page of this now-VM_LOCKED vma, 380 * will call mlock_vma_folio() and raise page's mlock_count: 381 * double counting, leaving the page unevictable indefinitely. 382 * Communicate this danger to mlock_vma_folio() with VM_IO, 383 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. 384 * mmap_lock is held in write mode here, so this weird 385 * combination should not be visible to other mmap_lock users; 386 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED. 387 */ 388 if (newflags & VM_LOCKED) 389 newflags |= VM_IO; 390 vm_flags_reset_once(vma, newflags); 391 392 lru_add_drain(); 393 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL); 394 lru_add_drain(); 395 396 if (newflags & VM_IO) { 397 newflags &= ~VM_IO; 398 vm_flags_reset_once(vma, newflags); 399 } 400 } 401 402 /* 403 * mlock_fixup - handle mlock[all]/munlock[all] requests. 404 * 405 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 406 * munlock is a no-op. However, for some special vmas, we go ahead and 407 * populate the ptes. 408 * 409 * For vmas that pass the filters, merge/split as appropriate. 410 */ 411 static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, 412 struct vm_area_struct **prev, unsigned long start, 413 unsigned long end, vm_flags_t newflags) 414 { 415 struct mm_struct *mm = vma->vm_mm; 416 pgoff_t pgoff; 417 int nr_pages; 418 int ret = 0; 419 vm_flags_t oldflags = vma->vm_flags; 420 421 if (newflags == oldflags || (oldflags & VM_SPECIAL) || 422 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 423 vma_is_dax(vma) || vma_is_secretmem(vma)) 424 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 425 goto out; 426 427 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 428 *prev = vma_merge(vmi, mm, *prev, start, end, newflags, 429 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 430 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 431 if (*prev) { 432 vma = *prev; 433 goto success; 434 } 435 436 if (start != vma->vm_start) { 437 ret = split_vma(vmi, vma, start, 1); 438 if (ret) 439 goto out; 440 } 441 442 if (end != vma->vm_end) { 443 ret = split_vma(vmi, vma, end, 0); 444 if (ret) 445 goto out; 446 } 447 448 success: 449 /* 450 * Keep track of amount of locked VM. 451 */ 452 nr_pages = (end - start) >> PAGE_SHIFT; 453 if (!(newflags & VM_LOCKED)) 454 nr_pages = -nr_pages; 455 else if (oldflags & VM_LOCKED) 456 nr_pages = 0; 457 mm->locked_vm += nr_pages; 458 459 /* 460 * vm_flags is protected by the mmap_lock held in write mode. 461 * It's okay if try_to_unmap_one unmaps a page just after we 462 * set VM_LOCKED, populate_vma_page_range will bring it back. 463 */ 464 465 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) { 466 /* No work to do, and mlocking twice would be wrong */ 467 vm_flags_reset(vma, newflags); 468 } else { 469 mlock_vma_pages_range(vma, start, end, newflags); 470 } 471 out: 472 *prev = vma; 473 return ret; 474 } 475 476 static int apply_vma_lock_flags(unsigned long start, size_t len, 477 vm_flags_t flags) 478 { 479 unsigned long nstart, end, tmp; 480 struct vm_area_struct *vma, *prev; 481 VMA_ITERATOR(vmi, current->mm, start); 482 483 VM_BUG_ON(offset_in_page(start)); 484 VM_BUG_ON(len != PAGE_ALIGN(len)); 485 end = start + len; 486 if (end < start) 487 return -EINVAL; 488 if (end == start) 489 return 0; 490 vma = vma_iter_load(&vmi); 491 if (!vma) 492 return -ENOMEM; 493 494 prev = vma_prev(&vmi); 495 if (start > vma->vm_start) 496 prev = vma; 497 498 nstart = start; 499 tmp = vma->vm_start; 500 for_each_vma_range(vmi, vma, end) { 501 int error; 502 vm_flags_t newflags; 503 504 if (vma->vm_start != tmp) 505 return -ENOMEM; 506 507 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 508 newflags |= flags; 509 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 510 tmp = vma->vm_end; 511 if (tmp > end) 512 tmp = end; 513 error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags); 514 if (error) 515 return error; 516 tmp = vma_iter_end(&vmi); 517 nstart = tmp; 518 } 519 520 if (tmp < end) 521 return -ENOMEM; 522 523 return 0; 524 } 525 526 /* 527 * Go through vma areas and sum size of mlocked 528 * vma pages, as return value. 529 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 530 * is also counted. 531 * Return value: previously mlocked page counts 532 */ 533 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 534 unsigned long start, size_t len) 535 { 536 struct vm_area_struct *vma; 537 unsigned long count = 0; 538 unsigned long end; 539 VMA_ITERATOR(vmi, mm, start); 540 541 /* Don't overflow past ULONG_MAX */ 542 if (unlikely(ULONG_MAX - len < start)) 543 end = ULONG_MAX; 544 else 545 end = start + len; 546 547 for_each_vma_range(vmi, vma, end) { 548 if (vma->vm_flags & VM_LOCKED) { 549 if (start > vma->vm_start) 550 count -= (start - vma->vm_start); 551 if (end < vma->vm_end) { 552 count += end - vma->vm_start; 553 break; 554 } 555 count += vma->vm_end - vma->vm_start; 556 } 557 } 558 559 return count >> PAGE_SHIFT; 560 } 561 562 /* 563 * convert get_user_pages() return value to posix mlock() error 564 */ 565 static int __mlock_posix_error_return(long retval) 566 { 567 if (retval == -EFAULT) 568 retval = -ENOMEM; 569 else if (retval == -ENOMEM) 570 retval = -EAGAIN; 571 return retval; 572 } 573 574 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 575 { 576 unsigned long locked; 577 unsigned long lock_limit; 578 int error = -ENOMEM; 579 580 start = untagged_addr(start); 581 582 if (!can_do_mlock()) 583 return -EPERM; 584 585 len = PAGE_ALIGN(len + (offset_in_page(start))); 586 start &= PAGE_MASK; 587 588 lock_limit = rlimit(RLIMIT_MEMLOCK); 589 lock_limit >>= PAGE_SHIFT; 590 locked = len >> PAGE_SHIFT; 591 592 if (mmap_write_lock_killable(current->mm)) 593 return -EINTR; 594 595 locked += current->mm->locked_vm; 596 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 597 /* 598 * It is possible that the regions requested intersect with 599 * previously mlocked areas, that part area in "mm->locked_vm" 600 * should not be counted to new mlock increment count. So check 601 * and adjust locked count if necessary. 602 */ 603 locked -= count_mm_mlocked_page_nr(current->mm, 604 start, len); 605 } 606 607 /* check against resource limits */ 608 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 609 error = apply_vma_lock_flags(start, len, flags); 610 611 mmap_write_unlock(current->mm); 612 if (error) 613 return error; 614 615 error = __mm_populate(start, len, 0); 616 if (error) 617 return __mlock_posix_error_return(error); 618 return 0; 619 } 620 621 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 622 { 623 return do_mlock(start, len, VM_LOCKED); 624 } 625 626 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 627 { 628 vm_flags_t vm_flags = VM_LOCKED; 629 630 if (flags & ~MLOCK_ONFAULT) 631 return -EINVAL; 632 633 if (flags & MLOCK_ONFAULT) 634 vm_flags |= VM_LOCKONFAULT; 635 636 return do_mlock(start, len, vm_flags); 637 } 638 639 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 640 { 641 int ret; 642 643 start = untagged_addr(start); 644 645 len = PAGE_ALIGN(len + (offset_in_page(start))); 646 start &= PAGE_MASK; 647 648 if (mmap_write_lock_killable(current->mm)) 649 return -EINTR; 650 ret = apply_vma_lock_flags(start, len, 0); 651 mmap_write_unlock(current->mm); 652 653 return ret; 654 } 655 656 /* 657 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 658 * and translate into the appropriate modifications to mm->def_flags and/or the 659 * flags for all current VMAs. 660 * 661 * There are a couple of subtleties with this. If mlockall() is called multiple 662 * times with different flags, the values do not necessarily stack. If mlockall 663 * is called once including the MCL_FUTURE flag and then a second time without 664 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 665 */ 666 static int apply_mlockall_flags(int flags) 667 { 668 VMA_ITERATOR(vmi, current->mm, 0); 669 struct vm_area_struct *vma, *prev = NULL; 670 vm_flags_t to_add = 0; 671 672 current->mm->def_flags &= ~VM_LOCKED_MASK; 673 if (flags & MCL_FUTURE) { 674 current->mm->def_flags |= VM_LOCKED; 675 676 if (flags & MCL_ONFAULT) 677 current->mm->def_flags |= VM_LOCKONFAULT; 678 679 if (!(flags & MCL_CURRENT)) 680 goto out; 681 } 682 683 if (flags & MCL_CURRENT) { 684 to_add |= VM_LOCKED; 685 if (flags & MCL_ONFAULT) 686 to_add |= VM_LOCKONFAULT; 687 } 688 689 for_each_vma(vmi, vma) { 690 vm_flags_t newflags; 691 692 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 693 newflags |= to_add; 694 695 /* Ignore errors */ 696 mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end, 697 newflags); 698 cond_resched(); 699 } 700 out: 701 return 0; 702 } 703 704 SYSCALL_DEFINE1(mlockall, int, flags) 705 { 706 unsigned long lock_limit; 707 int ret; 708 709 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 710 flags == MCL_ONFAULT) 711 return -EINVAL; 712 713 if (!can_do_mlock()) 714 return -EPERM; 715 716 lock_limit = rlimit(RLIMIT_MEMLOCK); 717 lock_limit >>= PAGE_SHIFT; 718 719 if (mmap_write_lock_killable(current->mm)) 720 return -EINTR; 721 722 ret = -ENOMEM; 723 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 724 capable(CAP_IPC_LOCK)) 725 ret = apply_mlockall_flags(flags); 726 mmap_write_unlock(current->mm); 727 if (!ret && (flags & MCL_CURRENT)) 728 mm_populate(0, TASK_SIZE); 729 730 return ret; 731 } 732 733 SYSCALL_DEFINE0(munlockall) 734 { 735 int ret; 736 737 if (mmap_write_lock_killable(current->mm)) 738 return -EINTR; 739 ret = apply_mlockall_flags(0); 740 mmap_write_unlock(current->mm); 741 return ret; 742 } 743 744 /* 745 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 746 * shm segments) get accounted against the user_struct instead. 747 */ 748 static DEFINE_SPINLOCK(shmlock_user_lock); 749 750 int user_shm_lock(size_t size, struct ucounts *ucounts) 751 { 752 unsigned long lock_limit, locked; 753 long memlock; 754 int allowed = 0; 755 756 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 757 lock_limit = rlimit(RLIMIT_MEMLOCK); 758 if (lock_limit != RLIM_INFINITY) 759 lock_limit >>= PAGE_SHIFT; 760 spin_lock(&shmlock_user_lock); 761 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 762 763 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { 764 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 765 goto out; 766 } 767 if (!get_ucounts(ucounts)) { 768 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 769 allowed = 0; 770 goto out; 771 } 772 allowed = 1; 773 out: 774 spin_unlock(&shmlock_user_lock); 775 return allowed; 776 } 777 778 void user_shm_unlock(size_t size, struct ucounts *ucounts) 779 { 780 spin_lock(&shmlock_user_lock); 781 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 782 spin_unlock(&shmlock_user_lock); 783 put_ucounts(ucounts); 784 } 785