1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 27 #include "internal.h" 28 29 bool can_do_mlock(void) 30 { 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return true; 33 if (capable(CAP_IPC_LOCK)) 34 return true; 35 return false; 36 } 37 EXPORT_SYMBOL(can_do_mlock); 38 39 /* 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing 41 * in vmscan and, possibly, the fault path; and to support semi-accurate 42 * statistics. 43 * 44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 46 * The unevictable list is an LRU sibling list to the [in]active lists. 47 * PageUnevictable is set to indicate the unevictable state. 48 * 49 * When lazy mlocking via vmscan, it is important to ensure that the 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 51 * may have mlocked a page that is being munlocked. So lazy mlock must take 52 * the mmap_sem for read, and verify that the vma really is locked 53 * (see mm/rmap.c). 54 */ 55 56 /* 57 * LRU accounting for clear_page_mlock() 58 */ 59 void clear_page_mlock(struct page *page) 60 { 61 if (!TestClearPageMlocked(page)) 62 return; 63 64 mod_zone_page_state(page_zone(page), NR_MLOCK, 65 -hpage_nr_pages(page)); 66 count_vm_event(UNEVICTABLE_PGCLEARED); 67 /* 68 * The previous TestClearPageMlocked() corresponds to the smp_mb() 69 * in __pagevec_lru_add_fn(). 70 * 71 * See __pagevec_lru_add_fn for more explanation. 72 */ 73 if (!isolate_lru_page(page)) { 74 putback_lru_page(page); 75 } else { 76 /* 77 * We lost the race. the page already moved to evictable list. 78 */ 79 if (PageUnevictable(page)) 80 count_vm_event(UNEVICTABLE_PGSTRANDED); 81 } 82 } 83 84 /* 85 * Mark page as mlocked if not already. 86 * If page on LRU, isolate and putback to move to unevictable list. 87 */ 88 void mlock_vma_page(struct page *page) 89 { 90 /* Serialize with page migration */ 91 BUG_ON(!PageLocked(page)); 92 93 VM_BUG_ON_PAGE(PageTail(page), page); 94 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 95 96 if (!TestSetPageMlocked(page)) { 97 mod_zone_page_state(page_zone(page), NR_MLOCK, 98 hpage_nr_pages(page)); 99 count_vm_event(UNEVICTABLE_PGMLOCKED); 100 if (!isolate_lru_page(page)) 101 putback_lru_page(page); 102 } 103 } 104 105 /* 106 * Isolate a page from LRU with optional get_page() pin. 107 * Assumes lru_lock already held and page already pinned. 108 */ 109 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 110 { 111 if (PageLRU(page)) { 112 struct lruvec *lruvec; 113 114 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 115 if (getpage) 116 get_page(page); 117 ClearPageLRU(page); 118 del_page_from_lru_list(page, lruvec, page_lru(page)); 119 return true; 120 } 121 122 return false; 123 } 124 125 /* 126 * Finish munlock after successful page isolation 127 * 128 * Page must be locked. This is a wrapper for try_to_munlock() 129 * and putback_lru_page() with munlock accounting. 130 */ 131 static void __munlock_isolated_page(struct page *page) 132 { 133 /* 134 * Optimization: if the page was mapped just once, that's our mapping 135 * and we don't need to check all the other vmas. 136 */ 137 if (page_mapcount(page) > 1) 138 try_to_munlock(page); 139 140 /* Did try_to_unlock() succeed or punt? */ 141 if (!PageMlocked(page)) 142 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 143 144 putback_lru_page(page); 145 } 146 147 /* 148 * Accounting for page isolation fail during munlock 149 * 150 * Performs accounting when page isolation fails in munlock. There is nothing 151 * else to do because it means some other task has already removed the page 152 * from the LRU. putback_lru_page() will take care of removing the page from 153 * the unevictable list, if necessary. vmscan [page_referenced()] will move 154 * the page back to the unevictable list if some other vma has it mlocked. 155 */ 156 static void __munlock_isolation_failed(struct page *page) 157 { 158 if (PageUnevictable(page)) 159 __count_vm_event(UNEVICTABLE_PGSTRANDED); 160 else 161 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 162 } 163 164 /** 165 * munlock_vma_page - munlock a vma page 166 * @page: page to be unlocked, either a normal page or THP page head 167 * 168 * returns the size of the page as a page mask (0 for normal page, 169 * HPAGE_PMD_NR - 1 for THP head page) 170 * 171 * called from munlock()/munmap() path with page supposedly on the LRU. 172 * When we munlock a page, because the vma where we found the page is being 173 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 174 * page locked so that we can leave it on the unevictable lru list and not 175 * bother vmscan with it. However, to walk the page's rmap list in 176 * try_to_munlock() we must isolate the page from the LRU. If some other 177 * task has removed the page from the LRU, we won't be able to do that. 178 * So we clear the PageMlocked as we might not get another chance. If we 179 * can't isolate the page, we leave it for putback_lru_page() and vmscan 180 * [page_referenced()/try_to_unmap()] to deal with. 181 */ 182 unsigned int munlock_vma_page(struct page *page) 183 { 184 int nr_pages; 185 pg_data_t *pgdat = page_pgdat(page); 186 187 /* For try_to_munlock() and to serialize with page migration */ 188 BUG_ON(!PageLocked(page)); 189 190 VM_BUG_ON_PAGE(PageTail(page), page); 191 192 /* 193 * Serialize with any parallel __split_huge_page_refcount() which 194 * might otherwise copy PageMlocked to part of the tail pages before 195 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 196 */ 197 spin_lock_irq(&pgdat->lru_lock); 198 199 if (!TestClearPageMlocked(page)) { 200 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 201 nr_pages = 1; 202 goto unlock_out; 203 } 204 205 nr_pages = hpage_nr_pages(page); 206 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 207 208 if (__munlock_isolate_lru_page(page, true)) { 209 spin_unlock_irq(&pgdat->lru_lock); 210 __munlock_isolated_page(page); 211 goto out; 212 } 213 __munlock_isolation_failed(page); 214 215 unlock_out: 216 spin_unlock_irq(&pgdat->lru_lock); 217 218 out: 219 return nr_pages - 1; 220 } 221 222 /* 223 * convert get_user_pages() return value to posix mlock() error 224 */ 225 static int __mlock_posix_error_return(long retval) 226 { 227 if (retval == -EFAULT) 228 retval = -ENOMEM; 229 else if (retval == -ENOMEM) 230 retval = -EAGAIN; 231 return retval; 232 } 233 234 /* 235 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 236 * 237 * The fast path is available only for evictable pages with single mapping. 238 * Then we can bypass the per-cpu pvec and get better performance. 239 * when mapcount > 1 we need try_to_munlock() which can fail. 240 * when !page_evictable(), we need the full redo logic of putback_lru_page to 241 * avoid leaving evictable page in unevictable list. 242 * 243 * In case of success, @page is added to @pvec and @pgrescued is incremented 244 * in case that the page was previously unevictable. @page is also unlocked. 245 */ 246 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 247 int *pgrescued) 248 { 249 VM_BUG_ON_PAGE(PageLRU(page), page); 250 VM_BUG_ON_PAGE(!PageLocked(page), page); 251 252 if (page_mapcount(page) <= 1 && page_evictable(page)) { 253 pagevec_add(pvec, page); 254 if (TestClearPageUnevictable(page)) 255 (*pgrescued)++; 256 unlock_page(page); 257 return true; 258 } 259 260 return false; 261 } 262 263 /* 264 * Putback multiple evictable pages to the LRU 265 * 266 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 267 * the pages might have meanwhile become unevictable but that is OK. 268 */ 269 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 270 { 271 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 272 /* 273 *__pagevec_lru_add() calls release_pages() so we don't call 274 * put_page() explicitly 275 */ 276 __pagevec_lru_add(pvec); 277 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 278 } 279 280 /* 281 * Munlock a batch of pages from the same zone 282 * 283 * The work is split to two main phases. First phase clears the Mlocked flag 284 * and attempts to isolate the pages, all under a single zone lru lock. 285 * The second phase finishes the munlock only for pages where isolation 286 * succeeded. 287 * 288 * Note that the pagevec may be modified during the process. 289 */ 290 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 291 { 292 int i; 293 int nr = pagevec_count(pvec); 294 int delta_munlocked = -nr; 295 struct pagevec pvec_putback; 296 int pgrescued = 0; 297 298 pagevec_init(&pvec_putback); 299 300 /* Phase 1: page isolation */ 301 spin_lock_irq(&zone->zone_pgdat->lru_lock); 302 for (i = 0; i < nr; i++) { 303 struct page *page = pvec->pages[i]; 304 305 if (TestClearPageMlocked(page)) { 306 /* 307 * We already have pin from follow_page_mask() 308 * so we can spare the get_page() here. 309 */ 310 if (__munlock_isolate_lru_page(page, false)) 311 continue; 312 else 313 __munlock_isolation_failed(page); 314 } else { 315 delta_munlocked++; 316 } 317 318 /* 319 * We won't be munlocking this page in the next phase 320 * but we still need to release the follow_page_mask() 321 * pin. We cannot do it under lru_lock however. If it's 322 * the last pin, __page_cache_release() would deadlock. 323 */ 324 pagevec_add(&pvec_putback, pvec->pages[i]); 325 pvec->pages[i] = NULL; 326 } 327 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 328 spin_unlock_irq(&zone->zone_pgdat->lru_lock); 329 330 /* Now we can release pins of pages that we are not munlocking */ 331 pagevec_release(&pvec_putback); 332 333 /* Phase 2: page munlock */ 334 for (i = 0; i < nr; i++) { 335 struct page *page = pvec->pages[i]; 336 337 if (page) { 338 lock_page(page); 339 if (!__putback_lru_fast_prepare(page, &pvec_putback, 340 &pgrescued)) { 341 /* 342 * Slow path. We don't want to lose the last 343 * pin before unlock_page() 344 */ 345 get_page(page); /* for putback_lru_page() */ 346 __munlock_isolated_page(page); 347 unlock_page(page); 348 put_page(page); /* from follow_page_mask() */ 349 } 350 } 351 } 352 353 /* 354 * Phase 3: page putback for pages that qualified for the fast path 355 * This will also call put_page() to return pin from follow_page_mask() 356 */ 357 if (pagevec_count(&pvec_putback)) 358 __putback_lru_fast(&pvec_putback, pgrescued); 359 } 360 361 /* 362 * Fill up pagevec for __munlock_pagevec using pte walk 363 * 364 * The function expects that the struct page corresponding to @start address is 365 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 366 * 367 * The rest of @pvec is filled by subsequent pages within the same pmd and same 368 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 369 * pages also get pinned. 370 * 371 * Returns the address of the next page that should be scanned. This equals 372 * @start + PAGE_SIZE when no page could be added by the pte walk. 373 */ 374 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 375 struct vm_area_struct *vma, struct zone *zone, 376 unsigned long start, unsigned long end) 377 { 378 pte_t *pte; 379 spinlock_t *ptl; 380 381 /* 382 * Initialize pte walk starting at the already pinned page where we 383 * are sure that there is a pte, as it was pinned under the same 384 * mmap_sem write op. 385 */ 386 pte = get_locked_pte(vma->vm_mm, start, &ptl); 387 /* Make sure we do not cross the page table boundary */ 388 end = pgd_addr_end(start, end); 389 end = p4d_addr_end(start, end); 390 end = pud_addr_end(start, end); 391 end = pmd_addr_end(start, end); 392 393 /* The page next to the pinned page is the first we will try to get */ 394 start += PAGE_SIZE; 395 while (start < end) { 396 struct page *page = NULL; 397 pte++; 398 if (pte_present(*pte)) 399 page = vm_normal_page(vma, start, *pte); 400 /* 401 * Break if page could not be obtained or the page's node+zone does not 402 * match 403 */ 404 if (!page || page_zone(page) != zone) 405 break; 406 407 /* 408 * Do not use pagevec for PTE-mapped THP, 409 * munlock_vma_pages_range() will handle them. 410 */ 411 if (PageTransCompound(page)) 412 break; 413 414 get_page(page); 415 /* 416 * Increase the address that will be returned *before* the 417 * eventual break due to pvec becoming full by adding the page 418 */ 419 start += PAGE_SIZE; 420 if (pagevec_add(pvec, page) == 0) 421 break; 422 } 423 pte_unmap_unlock(pte, ptl); 424 return start; 425 } 426 427 /* 428 * munlock_vma_pages_range() - munlock all pages in the vma range.' 429 * @vma - vma containing range to be munlock()ed. 430 * @start - start address in @vma of the range 431 * @end - end of range in @vma. 432 * 433 * For mremap(), munmap() and exit(). 434 * 435 * Called with @vma VM_LOCKED. 436 * 437 * Returns with VM_LOCKED cleared. Callers must be prepared to 438 * deal with this. 439 * 440 * We don't save and restore VM_LOCKED here because pages are 441 * still on lru. In unmap path, pages might be scanned by reclaim 442 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 443 * free them. This will result in freeing mlocked pages. 444 */ 445 void munlock_vma_pages_range(struct vm_area_struct *vma, 446 unsigned long start, unsigned long end) 447 { 448 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 449 450 while (start < end) { 451 struct page *page; 452 unsigned int page_mask = 0; 453 unsigned long page_increm; 454 struct pagevec pvec; 455 struct zone *zone; 456 457 pagevec_init(&pvec); 458 /* 459 * Although FOLL_DUMP is intended for get_dump_page(), 460 * it just so happens that its special treatment of the 461 * ZERO_PAGE (returning an error instead of doing get_page) 462 * suits munlock very well (and if somehow an abnormal page 463 * has sneaked into the range, we won't oops here: great). 464 */ 465 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 466 467 if (page && !IS_ERR(page)) { 468 if (PageTransTail(page)) { 469 VM_BUG_ON_PAGE(PageMlocked(page), page); 470 put_page(page); /* follow_page_mask() */ 471 } else if (PageTransHuge(page)) { 472 lock_page(page); 473 /* 474 * Any THP page found by follow_page_mask() may 475 * have gotten split before reaching 476 * munlock_vma_page(), so we need to compute 477 * the page_mask here instead. 478 */ 479 page_mask = munlock_vma_page(page); 480 unlock_page(page); 481 put_page(page); /* follow_page_mask() */ 482 } else { 483 /* 484 * Non-huge pages are handled in batches via 485 * pagevec. The pin from follow_page_mask() 486 * prevents them from collapsing by THP. 487 */ 488 pagevec_add(&pvec, page); 489 zone = page_zone(page); 490 491 /* 492 * Try to fill the rest of pagevec using fast 493 * pte walk. This will also update start to 494 * the next page to process. Then munlock the 495 * pagevec. 496 */ 497 start = __munlock_pagevec_fill(&pvec, vma, 498 zone, start, end); 499 __munlock_pagevec(&pvec, zone); 500 goto next; 501 } 502 } 503 page_increm = 1 + page_mask; 504 start += page_increm * PAGE_SIZE; 505 next: 506 cond_resched(); 507 } 508 } 509 510 /* 511 * mlock_fixup - handle mlock[all]/munlock[all] requests. 512 * 513 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 514 * munlock is a no-op. However, for some special vmas, we go ahead and 515 * populate the ptes. 516 * 517 * For vmas that pass the filters, merge/split as appropriate. 518 */ 519 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 520 unsigned long start, unsigned long end, vm_flags_t newflags) 521 { 522 struct mm_struct *mm = vma->vm_mm; 523 pgoff_t pgoff; 524 int nr_pages; 525 int ret = 0; 526 int lock = !!(newflags & VM_LOCKED); 527 vm_flags_t old_flags = vma->vm_flags; 528 529 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 530 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 531 vma_is_dax(vma)) 532 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 533 goto out; 534 535 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 536 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 537 vma->vm_file, pgoff, vma_policy(vma), 538 vma->vm_userfaultfd_ctx); 539 if (*prev) { 540 vma = *prev; 541 goto success; 542 } 543 544 if (start != vma->vm_start) { 545 ret = split_vma(mm, vma, start, 1); 546 if (ret) 547 goto out; 548 } 549 550 if (end != vma->vm_end) { 551 ret = split_vma(mm, vma, end, 0); 552 if (ret) 553 goto out; 554 } 555 556 success: 557 /* 558 * Keep track of amount of locked VM. 559 */ 560 nr_pages = (end - start) >> PAGE_SHIFT; 561 if (!lock) 562 nr_pages = -nr_pages; 563 else if (old_flags & VM_LOCKED) 564 nr_pages = 0; 565 mm->locked_vm += nr_pages; 566 567 /* 568 * vm_flags is protected by the mmap_sem held in write mode. 569 * It's okay if try_to_unmap_one unmaps a page just after we 570 * set VM_LOCKED, populate_vma_page_range will bring it back. 571 */ 572 573 if (lock) 574 vma->vm_flags = newflags; 575 else 576 munlock_vma_pages_range(vma, start, end); 577 578 out: 579 *prev = vma; 580 return ret; 581 } 582 583 static int apply_vma_lock_flags(unsigned long start, size_t len, 584 vm_flags_t flags) 585 { 586 unsigned long nstart, end, tmp; 587 struct vm_area_struct * vma, * prev; 588 int error; 589 590 VM_BUG_ON(offset_in_page(start)); 591 VM_BUG_ON(len != PAGE_ALIGN(len)); 592 end = start + len; 593 if (end < start) 594 return -EINVAL; 595 if (end == start) 596 return 0; 597 vma = find_vma(current->mm, start); 598 if (!vma || vma->vm_start > start) 599 return -ENOMEM; 600 601 prev = vma->vm_prev; 602 if (start > vma->vm_start) 603 prev = vma; 604 605 for (nstart = start ; ; ) { 606 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 607 608 newflags |= flags; 609 610 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 611 tmp = vma->vm_end; 612 if (tmp > end) 613 tmp = end; 614 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 615 if (error) 616 break; 617 nstart = tmp; 618 if (nstart < prev->vm_end) 619 nstart = prev->vm_end; 620 if (nstart >= end) 621 break; 622 623 vma = prev->vm_next; 624 if (!vma || vma->vm_start != nstart) { 625 error = -ENOMEM; 626 break; 627 } 628 } 629 return error; 630 } 631 632 /* 633 * Go through vma areas and sum size of mlocked 634 * vma pages, as return value. 635 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 636 * is also counted. 637 * Return value: previously mlocked page counts 638 */ 639 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 640 unsigned long start, size_t len) 641 { 642 struct vm_area_struct *vma; 643 unsigned long count = 0; 644 645 if (mm == NULL) 646 mm = current->mm; 647 648 vma = find_vma(mm, start); 649 if (vma == NULL) 650 vma = mm->mmap; 651 652 for (; vma ; vma = vma->vm_next) { 653 if (start >= vma->vm_end) 654 continue; 655 if (start + len <= vma->vm_start) 656 break; 657 if (vma->vm_flags & VM_LOCKED) { 658 if (start > vma->vm_start) 659 count -= (start - vma->vm_start); 660 if (start + len < vma->vm_end) { 661 count += start + len - vma->vm_start; 662 break; 663 } 664 count += vma->vm_end - vma->vm_start; 665 } 666 } 667 668 return count >> PAGE_SHIFT; 669 } 670 671 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 672 { 673 unsigned long locked; 674 unsigned long lock_limit; 675 int error = -ENOMEM; 676 677 start = untagged_addr(start); 678 679 if (!can_do_mlock()) 680 return -EPERM; 681 682 len = PAGE_ALIGN(len + (offset_in_page(start))); 683 start &= PAGE_MASK; 684 685 lock_limit = rlimit(RLIMIT_MEMLOCK); 686 lock_limit >>= PAGE_SHIFT; 687 locked = len >> PAGE_SHIFT; 688 689 if (down_write_killable(¤t->mm->mmap_sem)) 690 return -EINTR; 691 692 locked += current->mm->locked_vm; 693 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 694 /* 695 * It is possible that the regions requested intersect with 696 * previously mlocked areas, that part area in "mm->locked_vm" 697 * should not be counted to new mlock increment count. So check 698 * and adjust locked count if necessary. 699 */ 700 locked -= count_mm_mlocked_page_nr(current->mm, 701 start, len); 702 } 703 704 /* check against resource limits */ 705 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 706 error = apply_vma_lock_flags(start, len, flags); 707 708 up_write(¤t->mm->mmap_sem); 709 if (error) 710 return error; 711 712 error = __mm_populate(start, len, 0); 713 if (error) 714 return __mlock_posix_error_return(error); 715 return 0; 716 } 717 718 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 719 { 720 return do_mlock(start, len, VM_LOCKED); 721 } 722 723 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 724 { 725 vm_flags_t vm_flags = VM_LOCKED; 726 727 if (flags & ~MLOCK_ONFAULT) 728 return -EINVAL; 729 730 if (flags & MLOCK_ONFAULT) 731 vm_flags |= VM_LOCKONFAULT; 732 733 return do_mlock(start, len, vm_flags); 734 } 735 736 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 737 { 738 int ret; 739 740 start = untagged_addr(start); 741 742 len = PAGE_ALIGN(len + (offset_in_page(start))); 743 start &= PAGE_MASK; 744 745 if (down_write_killable(¤t->mm->mmap_sem)) 746 return -EINTR; 747 ret = apply_vma_lock_flags(start, len, 0); 748 up_write(¤t->mm->mmap_sem); 749 750 return ret; 751 } 752 753 /* 754 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 755 * and translate into the appropriate modifications to mm->def_flags and/or the 756 * flags for all current VMAs. 757 * 758 * There are a couple of subtleties with this. If mlockall() is called multiple 759 * times with different flags, the values do not necessarily stack. If mlockall 760 * is called once including the MCL_FUTURE flag and then a second time without 761 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 762 */ 763 static int apply_mlockall_flags(int flags) 764 { 765 struct vm_area_struct * vma, * prev = NULL; 766 vm_flags_t to_add = 0; 767 768 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 769 if (flags & MCL_FUTURE) { 770 current->mm->def_flags |= VM_LOCKED; 771 772 if (flags & MCL_ONFAULT) 773 current->mm->def_flags |= VM_LOCKONFAULT; 774 775 if (!(flags & MCL_CURRENT)) 776 goto out; 777 } 778 779 if (flags & MCL_CURRENT) { 780 to_add |= VM_LOCKED; 781 if (flags & MCL_ONFAULT) 782 to_add |= VM_LOCKONFAULT; 783 } 784 785 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 786 vm_flags_t newflags; 787 788 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 789 newflags |= to_add; 790 791 /* Ignore errors */ 792 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 793 cond_resched(); 794 } 795 out: 796 return 0; 797 } 798 799 SYSCALL_DEFINE1(mlockall, int, flags) 800 { 801 unsigned long lock_limit; 802 int ret; 803 804 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 805 flags == MCL_ONFAULT) 806 return -EINVAL; 807 808 if (!can_do_mlock()) 809 return -EPERM; 810 811 lock_limit = rlimit(RLIMIT_MEMLOCK); 812 lock_limit >>= PAGE_SHIFT; 813 814 if (down_write_killable(¤t->mm->mmap_sem)) 815 return -EINTR; 816 817 ret = -ENOMEM; 818 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 819 capable(CAP_IPC_LOCK)) 820 ret = apply_mlockall_flags(flags); 821 up_write(¤t->mm->mmap_sem); 822 if (!ret && (flags & MCL_CURRENT)) 823 mm_populate(0, TASK_SIZE); 824 825 return ret; 826 } 827 828 SYSCALL_DEFINE0(munlockall) 829 { 830 int ret; 831 832 if (down_write_killable(¤t->mm->mmap_sem)) 833 return -EINTR; 834 ret = apply_mlockall_flags(0); 835 up_write(¤t->mm->mmap_sem); 836 return ret; 837 } 838 839 /* 840 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 841 * shm segments) get accounted against the user_struct instead. 842 */ 843 static DEFINE_SPINLOCK(shmlock_user_lock); 844 845 int user_shm_lock(size_t size, struct user_struct *user) 846 { 847 unsigned long lock_limit, locked; 848 int allowed = 0; 849 850 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 851 lock_limit = rlimit(RLIMIT_MEMLOCK); 852 if (lock_limit == RLIM_INFINITY) 853 allowed = 1; 854 lock_limit >>= PAGE_SHIFT; 855 spin_lock(&shmlock_user_lock); 856 if (!allowed && 857 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 858 goto out; 859 get_uid(user); 860 user->locked_shm += locked; 861 allowed = 1; 862 out: 863 spin_unlock(&shmlock_user_lock); 864 return allowed; 865 } 866 867 void user_shm_unlock(size_t size, struct user_struct *user) 868 { 869 spin_lock(&shmlock_user_lock); 870 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 871 spin_unlock(&shmlock_user_lock); 872 free_uid(user); 873 } 874