1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct page *page; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 page = pmd_page(*pmdp); 83 if (is_huge_zero_page(page)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 } else { 87 int ret; 88 89 get_page(page); 90 spin_unlock(ptl); 91 if (unlikely(!trylock_page(page))) 92 return migrate_vma_collect_skip(start, end, 93 walk); 94 ret = split_huge_page(page); 95 unlock_page(page); 96 put_page(page); 97 if (ret) 98 return migrate_vma_collect_skip(start, end, 99 walk); 100 } 101 } 102 103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 104 if (!ptep) 105 goto again; 106 arch_enter_lazy_mmu_mode(); 107 108 for (; addr < end; addr += PAGE_SIZE, ptep++) { 109 unsigned long mpfn = 0, pfn; 110 struct page *page; 111 swp_entry_t entry; 112 pte_t pte; 113 114 pte = ptep_get(ptep); 115 116 if (pte_none(pte)) { 117 if (vma_is_anonymous(vma)) { 118 mpfn = MIGRATE_PFN_MIGRATE; 119 migrate->cpages++; 120 } 121 goto next; 122 } 123 124 if (!pte_present(pte)) { 125 /* 126 * Only care about unaddressable device page special 127 * page table entry. Other special swap entries are not 128 * migratable, and we ignore regular swapped page. 129 */ 130 entry = pte_to_swp_entry(pte); 131 if (!is_device_private_entry(entry)) 132 goto next; 133 134 page = pfn_swap_entry_to_page(entry); 135 if (!(migrate->flags & 136 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 137 page->pgmap->owner != migrate->pgmap_owner) 138 goto next; 139 140 mpfn = migrate_pfn(page_to_pfn(page)) | 141 MIGRATE_PFN_MIGRATE; 142 if (is_writable_device_private_entry(entry)) 143 mpfn |= MIGRATE_PFN_WRITE; 144 } else { 145 pfn = pte_pfn(pte); 146 if (is_zero_pfn(pfn) && 147 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 148 mpfn = MIGRATE_PFN_MIGRATE; 149 migrate->cpages++; 150 goto next; 151 } 152 page = vm_normal_page(migrate->vma, addr, pte); 153 if (page && !is_zone_device_page(page) && 154 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 155 goto next; 156 else if (page && is_device_coherent_page(page) && 157 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 158 page->pgmap->owner != migrate->pgmap_owner)) 159 goto next; 160 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 161 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 162 } 163 164 /* FIXME support THP */ 165 if (!page || !page->mapping || PageTransCompound(page)) { 166 mpfn = 0; 167 goto next; 168 } 169 170 /* 171 * By getting a reference on the page we pin it and that blocks 172 * any kind of migration. Side effect is that it "freezes" the 173 * pte. 174 * 175 * We drop this reference after isolating the page from the lru 176 * for non device page (device page are not on the lru and thus 177 * can't be dropped from it). 178 */ 179 get_page(page); 180 181 /* 182 * We rely on trylock_page() to avoid deadlock between 183 * concurrent migrations where each is waiting on the others 184 * page lock. If we can't immediately lock the page we fail this 185 * migration as it is only best effort anyway. 186 * 187 * If we can lock the page it's safe to set up a migration entry 188 * now. In the common case where the page is mapped once in a 189 * single process setting up the migration entry now is an 190 * optimisation to avoid walking the rmap later with 191 * try_to_migrate(). 192 */ 193 if (trylock_page(page)) { 194 bool anon_exclusive; 195 pte_t swp_pte; 196 197 flush_cache_page(vma, addr, pte_pfn(pte)); 198 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 199 if (anon_exclusive) { 200 pte = ptep_clear_flush(vma, addr, ptep); 201 202 if (page_try_share_anon_rmap(page)) { 203 set_pte_at(mm, addr, ptep, pte); 204 unlock_page(page); 205 put_page(page); 206 mpfn = 0; 207 goto next; 208 } 209 } else { 210 pte = ptep_get_and_clear(mm, addr, ptep); 211 } 212 213 migrate->cpages++; 214 215 /* Set the dirty flag on the folio now the pte is gone. */ 216 if (pte_dirty(pte)) 217 folio_mark_dirty(page_folio(page)); 218 219 /* Setup special migration page table entry */ 220 if (mpfn & MIGRATE_PFN_WRITE) 221 entry = make_writable_migration_entry( 222 page_to_pfn(page)); 223 else if (anon_exclusive) 224 entry = make_readable_exclusive_migration_entry( 225 page_to_pfn(page)); 226 else 227 entry = make_readable_migration_entry( 228 page_to_pfn(page)); 229 if (pte_present(pte)) { 230 if (pte_young(pte)) 231 entry = make_migration_entry_young(entry); 232 if (pte_dirty(pte)) 233 entry = make_migration_entry_dirty(entry); 234 } 235 swp_pte = swp_entry_to_pte(entry); 236 if (pte_present(pte)) { 237 if (pte_soft_dirty(pte)) 238 swp_pte = pte_swp_mksoft_dirty(swp_pte); 239 if (pte_uffd_wp(pte)) 240 swp_pte = pte_swp_mkuffd_wp(swp_pte); 241 } else { 242 if (pte_swp_soft_dirty(pte)) 243 swp_pte = pte_swp_mksoft_dirty(swp_pte); 244 if (pte_swp_uffd_wp(pte)) 245 swp_pte = pte_swp_mkuffd_wp(swp_pte); 246 } 247 set_pte_at(mm, addr, ptep, swp_pte); 248 249 /* 250 * This is like regular unmap: we remove the rmap and 251 * drop page refcount. Page won't be freed, as we took 252 * a reference just above. 253 */ 254 page_remove_rmap(page, vma, false); 255 put_page(page); 256 257 if (pte_present(pte)) 258 unmapped++; 259 } else { 260 put_page(page); 261 mpfn = 0; 262 } 263 264 next: 265 migrate->dst[migrate->npages] = 0; 266 migrate->src[migrate->npages++] = mpfn; 267 } 268 269 /* Only flush the TLB if we actually modified any entries */ 270 if (unmapped) 271 flush_tlb_range(walk->vma, start, end); 272 273 arch_leave_lazy_mmu_mode(); 274 pte_unmap_unlock(ptep - 1, ptl); 275 276 return 0; 277 } 278 279 static const struct mm_walk_ops migrate_vma_walk_ops = { 280 .pmd_entry = migrate_vma_collect_pmd, 281 .pte_hole = migrate_vma_collect_hole, 282 .walk_lock = PGWALK_RDLOCK, 283 }; 284 285 /* 286 * migrate_vma_collect() - collect pages over a range of virtual addresses 287 * @migrate: migrate struct containing all migration information 288 * 289 * This will walk the CPU page table. For each virtual address backed by a 290 * valid page, it updates the src array and takes a reference on the page, in 291 * order to pin the page until we lock it and unmap it. 292 */ 293 static void migrate_vma_collect(struct migrate_vma *migrate) 294 { 295 struct mmu_notifier_range range; 296 297 /* 298 * Note that the pgmap_owner is passed to the mmu notifier callback so 299 * that the registered device driver can skip invalidating device 300 * private page mappings that won't be migrated. 301 */ 302 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 303 migrate->vma->vm_mm, migrate->start, migrate->end, 304 migrate->pgmap_owner); 305 mmu_notifier_invalidate_range_start(&range); 306 307 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 308 &migrate_vma_walk_ops, migrate); 309 310 mmu_notifier_invalidate_range_end(&range); 311 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 312 } 313 314 /* 315 * migrate_vma_check_page() - check if page is pinned or not 316 * @page: struct page to check 317 * 318 * Pinned pages cannot be migrated. This is the same test as in 319 * folio_migrate_mapping(), except that here we allow migration of a 320 * ZONE_DEVICE page. 321 */ 322 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 323 { 324 /* 325 * One extra ref because caller holds an extra reference, either from 326 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 327 * a device page. 328 */ 329 int extra = 1 + (page == fault_page); 330 331 /* 332 * FIXME support THP (transparent huge page), it is bit more complex to 333 * check them than regular pages, because they can be mapped with a pmd 334 * or with a pte (split pte mapping). 335 */ 336 if (PageCompound(page)) 337 return false; 338 339 /* Page from ZONE_DEVICE have one extra reference */ 340 if (is_zone_device_page(page)) 341 extra++; 342 343 /* For file back page */ 344 if (page_mapping(page)) 345 extra += 1 + page_has_private(page); 346 347 if ((page_count(page) - extra) > page_mapcount(page)) 348 return false; 349 350 return true; 351 } 352 353 /* 354 * Unmaps pages for migration. Returns number of source pfns marked as 355 * migrating. 356 */ 357 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 358 unsigned long npages, 359 struct page *fault_page) 360 { 361 unsigned long i, restore = 0; 362 bool allow_drain = true; 363 unsigned long unmapped = 0; 364 365 lru_add_drain(); 366 367 for (i = 0; i < npages; i++) { 368 struct page *page = migrate_pfn_to_page(src_pfns[i]); 369 struct folio *folio; 370 371 if (!page) { 372 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) 373 unmapped++; 374 continue; 375 } 376 377 /* ZONE_DEVICE pages are not on LRU */ 378 if (!is_zone_device_page(page)) { 379 if (!PageLRU(page) && allow_drain) { 380 /* Drain CPU's lru cache */ 381 lru_add_drain_all(); 382 allow_drain = false; 383 } 384 385 if (!isolate_lru_page(page)) { 386 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 387 restore++; 388 continue; 389 } 390 391 /* Drop the reference we took in collect */ 392 put_page(page); 393 } 394 395 folio = page_folio(page); 396 if (folio_mapped(folio)) 397 try_to_migrate(folio, 0); 398 399 if (page_mapped(page) || 400 !migrate_vma_check_page(page, fault_page)) { 401 if (!is_zone_device_page(page)) { 402 get_page(page); 403 putback_lru_page(page); 404 } 405 406 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 407 restore++; 408 continue; 409 } 410 411 unmapped++; 412 } 413 414 for (i = 0; i < npages && restore; i++) { 415 struct page *page = migrate_pfn_to_page(src_pfns[i]); 416 struct folio *folio; 417 418 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 419 continue; 420 421 folio = page_folio(page); 422 remove_migration_ptes(folio, folio, false); 423 424 src_pfns[i] = 0; 425 folio_unlock(folio); 426 folio_put(folio); 427 restore--; 428 } 429 430 return unmapped; 431 } 432 433 /* 434 * migrate_vma_unmap() - replace page mapping with special migration pte entry 435 * @migrate: migrate struct containing all migration information 436 * 437 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 438 * special migration pte entry and check if it has been pinned. Pinned pages are 439 * restored because we cannot migrate them. 440 * 441 * This is the last step before we call the device driver callback to allocate 442 * destination memory and copy contents of original page over to new page. 443 */ 444 static void migrate_vma_unmap(struct migrate_vma *migrate) 445 { 446 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 447 migrate->fault_page); 448 } 449 450 /** 451 * migrate_vma_setup() - prepare to migrate a range of memory 452 * @args: contains the vma, start, and pfns arrays for the migration 453 * 454 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 455 * without an error. 456 * 457 * Prepare to migrate a range of memory virtual address range by collecting all 458 * the pages backing each virtual address in the range, saving them inside the 459 * src array. Then lock those pages and unmap them. Once the pages are locked 460 * and unmapped, check whether each page is pinned or not. Pages that aren't 461 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 462 * corresponding src array entry. Then restores any pages that are pinned, by 463 * remapping and unlocking those pages. 464 * 465 * The caller should then allocate destination memory and copy source memory to 466 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 467 * flag set). Once these are allocated and copied, the caller must update each 468 * corresponding entry in the dst array with the pfn value of the destination 469 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 470 * lock_page(). 471 * 472 * Note that the caller does not have to migrate all the pages that are marked 473 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 474 * device memory to system memory. If the caller cannot migrate a device page 475 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 476 * consequences for the userspace process, so it must be avoided if at all 477 * possible. 478 * 479 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 480 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 481 * allowing the caller to allocate device memory for those unbacked virtual 482 * addresses. For this the caller simply has to allocate device memory and 483 * properly set the destination entry like for regular migration. Note that 484 * this can still fail, and thus inside the device driver you must check if the 485 * migration was successful for those entries after calling migrate_vma_pages(), 486 * just like for regular migration. 487 * 488 * After that, the callers must call migrate_vma_pages() to go over each entry 489 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 490 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 491 * then migrate_vma_pages() to migrate struct page information from the source 492 * struct page to the destination struct page. If it fails to migrate the 493 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 494 * src array. 495 * 496 * At this point all successfully migrated pages have an entry in the src 497 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 498 * array entry with MIGRATE_PFN_VALID flag set. 499 * 500 * Once migrate_vma_pages() returns the caller may inspect which pages were 501 * successfully migrated, and which were not. Successfully migrated pages will 502 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 503 * 504 * It is safe to update device page table after migrate_vma_pages() because 505 * both destination and source page are still locked, and the mmap_lock is held 506 * in read mode (hence no one can unmap the range being migrated). 507 * 508 * Once the caller is done cleaning up things and updating its page table (if it 509 * chose to do so, this is not an obligation) it finally calls 510 * migrate_vma_finalize() to update the CPU page table to point to new pages 511 * for successfully migrated pages or otherwise restore the CPU page table to 512 * point to the original source pages. 513 */ 514 int migrate_vma_setup(struct migrate_vma *args) 515 { 516 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 517 518 args->start &= PAGE_MASK; 519 args->end &= PAGE_MASK; 520 if (!args->vma || is_vm_hugetlb_page(args->vma) || 521 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 522 return -EINVAL; 523 if (nr_pages <= 0) 524 return -EINVAL; 525 if (args->start < args->vma->vm_start || 526 args->start >= args->vma->vm_end) 527 return -EINVAL; 528 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 529 return -EINVAL; 530 if (!args->src || !args->dst) 531 return -EINVAL; 532 if (args->fault_page && !is_device_private_page(args->fault_page)) 533 return -EINVAL; 534 535 memset(args->src, 0, sizeof(*args->src) * nr_pages); 536 args->cpages = 0; 537 args->npages = 0; 538 539 migrate_vma_collect(args); 540 541 if (args->cpages) 542 migrate_vma_unmap(args); 543 544 /* 545 * At this point pages are locked and unmapped, and thus they have 546 * stable content and can safely be copied to destination memory that 547 * is allocated by the drivers. 548 */ 549 return 0; 550 551 } 552 EXPORT_SYMBOL(migrate_vma_setup); 553 554 /* 555 * This code closely matches the code in: 556 * __handle_mm_fault() 557 * handle_pte_fault() 558 * do_anonymous_page() 559 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 560 * private or coherent page. 561 */ 562 static void migrate_vma_insert_page(struct migrate_vma *migrate, 563 unsigned long addr, 564 struct page *page, 565 unsigned long *src) 566 { 567 struct vm_area_struct *vma = migrate->vma; 568 struct mm_struct *mm = vma->vm_mm; 569 bool flush = false; 570 spinlock_t *ptl; 571 pte_t entry; 572 pgd_t *pgdp; 573 p4d_t *p4dp; 574 pud_t *pudp; 575 pmd_t *pmdp; 576 pte_t *ptep; 577 pte_t orig_pte; 578 579 /* Only allow populating anonymous memory */ 580 if (!vma_is_anonymous(vma)) 581 goto abort; 582 583 pgdp = pgd_offset(mm, addr); 584 p4dp = p4d_alloc(mm, pgdp, addr); 585 if (!p4dp) 586 goto abort; 587 pudp = pud_alloc(mm, p4dp, addr); 588 if (!pudp) 589 goto abort; 590 pmdp = pmd_alloc(mm, pudp, addr); 591 if (!pmdp) 592 goto abort; 593 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 594 goto abort; 595 if (pte_alloc(mm, pmdp)) 596 goto abort; 597 if (unlikely(anon_vma_prepare(vma))) 598 goto abort; 599 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 600 goto abort; 601 602 /* 603 * The memory barrier inside __SetPageUptodate makes sure that 604 * preceding stores to the page contents become visible before 605 * the set_pte_at() write. 606 */ 607 __SetPageUptodate(page); 608 609 if (is_device_private_page(page)) { 610 swp_entry_t swp_entry; 611 612 if (vma->vm_flags & VM_WRITE) 613 swp_entry = make_writable_device_private_entry( 614 page_to_pfn(page)); 615 else 616 swp_entry = make_readable_device_private_entry( 617 page_to_pfn(page)); 618 entry = swp_entry_to_pte(swp_entry); 619 } else { 620 if (is_zone_device_page(page) && 621 !is_device_coherent_page(page)) { 622 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 623 goto abort; 624 } 625 entry = mk_pte(page, vma->vm_page_prot); 626 if (vma->vm_flags & VM_WRITE) 627 entry = pte_mkwrite(pte_mkdirty(entry), vma); 628 } 629 630 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 631 if (!ptep) 632 goto abort; 633 orig_pte = ptep_get(ptep); 634 635 if (check_stable_address_space(mm)) 636 goto unlock_abort; 637 638 if (pte_present(orig_pte)) { 639 unsigned long pfn = pte_pfn(orig_pte); 640 641 if (!is_zero_pfn(pfn)) 642 goto unlock_abort; 643 flush = true; 644 } else if (!pte_none(orig_pte)) 645 goto unlock_abort; 646 647 /* 648 * Check for userfaultfd but do not deliver the fault. Instead, 649 * just back off. 650 */ 651 if (userfaultfd_missing(vma)) 652 goto unlock_abort; 653 654 inc_mm_counter(mm, MM_ANONPAGES); 655 page_add_new_anon_rmap(page, vma, addr); 656 if (!is_zone_device_page(page)) 657 lru_cache_add_inactive_or_unevictable(page, vma); 658 get_page(page); 659 660 if (flush) { 661 flush_cache_page(vma, addr, pte_pfn(orig_pte)); 662 ptep_clear_flush(vma, addr, ptep); 663 set_pte_at_notify(mm, addr, ptep, entry); 664 update_mmu_cache(vma, addr, ptep); 665 } else { 666 /* No need to invalidate - it was non-present before */ 667 set_pte_at(mm, addr, ptep, entry); 668 update_mmu_cache(vma, addr, ptep); 669 } 670 671 pte_unmap_unlock(ptep, ptl); 672 *src = MIGRATE_PFN_MIGRATE; 673 return; 674 675 unlock_abort: 676 pte_unmap_unlock(ptep, ptl); 677 abort: 678 *src &= ~MIGRATE_PFN_MIGRATE; 679 } 680 681 static void __migrate_device_pages(unsigned long *src_pfns, 682 unsigned long *dst_pfns, unsigned long npages, 683 struct migrate_vma *migrate) 684 { 685 struct mmu_notifier_range range; 686 unsigned long i; 687 bool notified = false; 688 689 for (i = 0; i < npages; i++) { 690 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 691 struct page *page = migrate_pfn_to_page(src_pfns[i]); 692 struct address_space *mapping; 693 int r; 694 695 if (!newpage) { 696 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 697 continue; 698 } 699 700 if (!page) { 701 unsigned long addr; 702 703 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 704 continue; 705 706 /* 707 * The only time there is no vma is when called from 708 * migrate_device_coherent_page(). However this isn't 709 * called if the page could not be unmapped. 710 */ 711 VM_BUG_ON(!migrate); 712 addr = migrate->start + i*PAGE_SIZE; 713 if (!notified) { 714 notified = true; 715 716 mmu_notifier_range_init_owner(&range, 717 MMU_NOTIFY_MIGRATE, 0, 718 migrate->vma->vm_mm, addr, migrate->end, 719 migrate->pgmap_owner); 720 mmu_notifier_invalidate_range_start(&range); 721 } 722 migrate_vma_insert_page(migrate, addr, newpage, 723 &src_pfns[i]); 724 continue; 725 } 726 727 mapping = page_mapping(page); 728 729 if (is_device_private_page(newpage) || 730 is_device_coherent_page(newpage)) { 731 if (mapping) { 732 struct folio *folio; 733 734 folio = page_folio(page); 735 736 /* 737 * For now only support anonymous memory migrating to 738 * device private or coherent memory. 739 * 740 * Try to get rid of swap cache if possible. 741 */ 742 if (!folio_test_anon(folio) || 743 !folio_free_swap(folio)) { 744 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 745 continue; 746 } 747 } 748 } else if (is_zone_device_page(newpage)) { 749 /* 750 * Other types of ZONE_DEVICE page are not supported. 751 */ 752 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 753 continue; 754 } 755 756 if (migrate && migrate->fault_page == page) 757 r = migrate_folio_extra(mapping, page_folio(newpage), 758 page_folio(page), 759 MIGRATE_SYNC_NO_COPY, 1); 760 else 761 r = migrate_folio(mapping, page_folio(newpage), 762 page_folio(page), MIGRATE_SYNC_NO_COPY); 763 if (r != MIGRATEPAGE_SUCCESS) 764 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 765 } 766 767 if (notified) 768 mmu_notifier_invalidate_range_end(&range); 769 } 770 771 /** 772 * migrate_device_pages() - migrate meta-data from src page to dst page 773 * @src_pfns: src_pfns returned from migrate_device_range() 774 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 775 * @npages: number of pages in the range 776 * 777 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 778 * meta-data from source struct page to destination. 779 */ 780 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 781 unsigned long npages) 782 { 783 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 784 } 785 EXPORT_SYMBOL(migrate_device_pages); 786 787 /** 788 * migrate_vma_pages() - migrate meta-data from src page to dst page 789 * @migrate: migrate struct containing all migration information 790 * 791 * This migrates struct page meta-data from source struct page to destination 792 * struct page. This effectively finishes the migration from source page to the 793 * destination page. 794 */ 795 void migrate_vma_pages(struct migrate_vma *migrate) 796 { 797 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 798 } 799 EXPORT_SYMBOL(migrate_vma_pages); 800 801 /* 802 * migrate_device_finalize() - complete page migration 803 * @src_pfns: src_pfns returned from migrate_device_range() 804 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 805 * @npages: number of pages in the range 806 * 807 * Completes migration of the page by removing special migration entries. 808 * Drivers must ensure copying of page data is complete and visible to the CPU 809 * before calling this. 810 */ 811 void migrate_device_finalize(unsigned long *src_pfns, 812 unsigned long *dst_pfns, unsigned long npages) 813 { 814 unsigned long i; 815 816 for (i = 0; i < npages; i++) { 817 struct folio *dst, *src; 818 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 819 struct page *page = migrate_pfn_to_page(src_pfns[i]); 820 821 if (!page) { 822 if (newpage) { 823 unlock_page(newpage); 824 put_page(newpage); 825 } 826 continue; 827 } 828 829 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 830 if (newpage) { 831 unlock_page(newpage); 832 put_page(newpage); 833 } 834 newpage = page; 835 } 836 837 src = page_folio(page); 838 dst = page_folio(newpage); 839 remove_migration_ptes(src, dst, false); 840 folio_unlock(src); 841 842 if (is_zone_device_page(page)) 843 put_page(page); 844 else 845 putback_lru_page(page); 846 847 if (newpage != page) { 848 unlock_page(newpage); 849 if (is_zone_device_page(newpage)) 850 put_page(newpage); 851 else 852 putback_lru_page(newpage); 853 } 854 } 855 } 856 EXPORT_SYMBOL(migrate_device_finalize); 857 858 /** 859 * migrate_vma_finalize() - restore CPU page table entry 860 * @migrate: migrate struct containing all migration information 861 * 862 * This replaces the special migration pte entry with either a mapping to the 863 * new page if migration was successful for that page, or to the original page 864 * otherwise. 865 * 866 * This also unlocks the pages and puts them back on the lru, or drops the extra 867 * refcount, for device pages. 868 */ 869 void migrate_vma_finalize(struct migrate_vma *migrate) 870 { 871 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 872 } 873 EXPORT_SYMBOL(migrate_vma_finalize); 874 875 /** 876 * migrate_device_range() - migrate device private pfns to normal memory. 877 * @src_pfns: array large enough to hold migrating source device private pfns. 878 * @start: starting pfn in the range to migrate. 879 * @npages: number of pages to migrate. 880 * 881 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 882 * instead of looking up pages based on virtual address mappings a range of 883 * device pfns that should be migrated to system memory is used instead. 884 * 885 * This is useful when a driver needs to free device memory but doesn't know the 886 * virtual mappings of every page that may be in device memory. For example this 887 * is often the case when a driver is being unloaded or unbound from a device. 888 * 889 * Like migrate_vma_setup() this function will take a reference and lock any 890 * migrating pages that aren't free before unmapping them. Drivers may then 891 * allocate destination pages and start copying data from the device to CPU 892 * memory before calling migrate_device_pages(). 893 */ 894 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 895 unsigned long npages) 896 { 897 unsigned long i, pfn; 898 899 for (pfn = start, i = 0; i < npages; pfn++, i++) { 900 struct page *page = pfn_to_page(pfn); 901 902 if (!get_page_unless_zero(page)) { 903 src_pfns[i] = 0; 904 continue; 905 } 906 907 if (!trylock_page(page)) { 908 src_pfns[i] = 0; 909 put_page(page); 910 continue; 911 } 912 913 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 914 } 915 916 migrate_device_unmap(src_pfns, npages, NULL); 917 918 return 0; 919 } 920 EXPORT_SYMBOL(migrate_device_range); 921 922 /* 923 * Migrate a device coherent page back to normal memory. The caller should have 924 * a reference on page which will be copied to the new page if migration is 925 * successful or dropped on failure. 926 */ 927 int migrate_device_coherent_page(struct page *page) 928 { 929 unsigned long src_pfn, dst_pfn = 0; 930 struct page *dpage; 931 932 WARN_ON_ONCE(PageCompound(page)); 933 934 lock_page(page); 935 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 936 937 /* 938 * We don't have a VMA and don't need to walk the page tables to find 939 * the source page. So call migrate_vma_unmap() directly to unmap the 940 * page as migrate_vma_setup() will fail if args.vma == NULL. 941 */ 942 migrate_device_unmap(&src_pfn, 1, NULL); 943 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 944 return -EBUSY; 945 946 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 947 if (dpage) { 948 lock_page(dpage); 949 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 950 } 951 952 migrate_device_pages(&src_pfn, &dst_pfn, 1); 953 if (src_pfn & MIGRATE_PFN_MIGRATE) 954 copy_highpage(dpage, page); 955 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 956 957 if (src_pfn & MIGRATE_PFN_MIGRATE) 958 return 0; 959 return -EBUSY; 960 } 961