1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct page *page; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 page = pmd_page(*pmdp); 83 if (is_huge_zero_page(page)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 } else { 87 int ret; 88 89 get_page(page); 90 spin_unlock(ptl); 91 if (unlikely(!trylock_page(page))) 92 return migrate_vma_collect_skip(start, end, 93 walk); 94 ret = split_huge_page(page); 95 unlock_page(page); 96 put_page(page); 97 if (ret) 98 return migrate_vma_collect_skip(start, end, 99 walk); 100 } 101 } 102 103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 104 if (!ptep) 105 goto again; 106 arch_enter_lazy_mmu_mode(); 107 108 for (; addr < end; addr += PAGE_SIZE, ptep++) { 109 unsigned long mpfn = 0, pfn; 110 struct folio *folio; 111 struct page *page; 112 swp_entry_t entry; 113 pte_t pte; 114 115 pte = ptep_get(ptep); 116 117 if (pte_none(pte)) { 118 if (vma_is_anonymous(vma)) { 119 mpfn = MIGRATE_PFN_MIGRATE; 120 migrate->cpages++; 121 } 122 goto next; 123 } 124 125 if (!pte_present(pte)) { 126 /* 127 * Only care about unaddressable device page special 128 * page table entry. Other special swap entries are not 129 * migratable, and we ignore regular swapped page. 130 */ 131 entry = pte_to_swp_entry(pte); 132 if (!is_device_private_entry(entry)) 133 goto next; 134 135 page = pfn_swap_entry_to_page(entry); 136 if (!(migrate->flags & 137 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 138 page->pgmap->owner != migrate->pgmap_owner) 139 goto next; 140 141 mpfn = migrate_pfn(page_to_pfn(page)) | 142 MIGRATE_PFN_MIGRATE; 143 if (is_writable_device_private_entry(entry)) 144 mpfn |= MIGRATE_PFN_WRITE; 145 } else { 146 pfn = pte_pfn(pte); 147 if (is_zero_pfn(pfn) && 148 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 149 mpfn = MIGRATE_PFN_MIGRATE; 150 migrate->cpages++; 151 goto next; 152 } 153 page = vm_normal_page(migrate->vma, addr, pte); 154 if (page && !is_zone_device_page(page) && 155 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 156 goto next; 157 else if (page && is_device_coherent_page(page) && 158 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 159 page->pgmap->owner != migrate->pgmap_owner)) 160 goto next; 161 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 162 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 163 } 164 165 /* FIXME support THP */ 166 if (!page || !page->mapping || PageTransCompound(page)) { 167 mpfn = 0; 168 goto next; 169 } 170 171 /* 172 * By getting a reference on the folio we pin it and that blocks 173 * any kind of migration. Side effect is that it "freezes" the 174 * pte. 175 * 176 * We drop this reference after isolating the folio from the lru 177 * for non device folio (device folio are not on the lru and thus 178 * can't be dropped from it). 179 */ 180 folio = page_folio(page); 181 folio_get(folio); 182 183 /* 184 * We rely on folio_trylock() to avoid deadlock between 185 * concurrent migrations where each is waiting on the others 186 * folio lock. If we can't immediately lock the folio we fail this 187 * migration as it is only best effort anyway. 188 * 189 * If we can lock the folio it's safe to set up a migration entry 190 * now. In the common case where the folio is mapped once in a 191 * single process setting up the migration entry now is an 192 * optimisation to avoid walking the rmap later with 193 * try_to_migrate(). 194 */ 195 if (folio_trylock(folio)) { 196 bool anon_exclusive; 197 pte_t swp_pte; 198 199 flush_cache_page(vma, addr, pte_pfn(pte)); 200 anon_exclusive = folio_test_anon(folio) && 201 PageAnonExclusive(page); 202 if (anon_exclusive) { 203 pte = ptep_clear_flush(vma, addr, ptep); 204 205 if (folio_try_share_anon_rmap_pte(folio, page)) { 206 set_pte_at(mm, addr, ptep, pte); 207 folio_unlock(folio); 208 folio_put(folio); 209 mpfn = 0; 210 goto next; 211 } 212 } else { 213 pte = ptep_get_and_clear(mm, addr, ptep); 214 } 215 216 migrate->cpages++; 217 218 /* Set the dirty flag on the folio now the pte is gone. */ 219 if (pte_dirty(pte)) 220 folio_mark_dirty(folio); 221 222 /* Setup special migration page table entry */ 223 if (mpfn & MIGRATE_PFN_WRITE) 224 entry = make_writable_migration_entry( 225 page_to_pfn(page)); 226 else if (anon_exclusive) 227 entry = make_readable_exclusive_migration_entry( 228 page_to_pfn(page)); 229 else 230 entry = make_readable_migration_entry( 231 page_to_pfn(page)); 232 if (pte_present(pte)) { 233 if (pte_young(pte)) 234 entry = make_migration_entry_young(entry); 235 if (pte_dirty(pte)) 236 entry = make_migration_entry_dirty(entry); 237 } 238 swp_pte = swp_entry_to_pte(entry); 239 if (pte_present(pte)) { 240 if (pte_soft_dirty(pte)) 241 swp_pte = pte_swp_mksoft_dirty(swp_pte); 242 if (pte_uffd_wp(pte)) 243 swp_pte = pte_swp_mkuffd_wp(swp_pte); 244 } else { 245 if (pte_swp_soft_dirty(pte)) 246 swp_pte = pte_swp_mksoft_dirty(swp_pte); 247 if (pte_swp_uffd_wp(pte)) 248 swp_pte = pte_swp_mkuffd_wp(swp_pte); 249 } 250 set_pte_at(mm, addr, ptep, swp_pte); 251 252 /* 253 * This is like regular unmap: we remove the rmap and 254 * drop the folio refcount. The folio won't be freed, as 255 * we took a reference just above. 256 */ 257 folio_remove_rmap_pte(folio, page, vma); 258 folio_put(folio); 259 260 if (pte_present(pte)) 261 unmapped++; 262 } else { 263 folio_put(folio); 264 mpfn = 0; 265 } 266 267 next: 268 migrate->dst[migrate->npages] = 0; 269 migrate->src[migrate->npages++] = mpfn; 270 } 271 272 /* Only flush the TLB if we actually modified any entries */ 273 if (unmapped) 274 flush_tlb_range(walk->vma, start, end); 275 276 arch_leave_lazy_mmu_mode(); 277 pte_unmap_unlock(ptep - 1, ptl); 278 279 return 0; 280 } 281 282 static const struct mm_walk_ops migrate_vma_walk_ops = { 283 .pmd_entry = migrate_vma_collect_pmd, 284 .pte_hole = migrate_vma_collect_hole, 285 .walk_lock = PGWALK_RDLOCK, 286 }; 287 288 /* 289 * migrate_vma_collect() - collect pages over a range of virtual addresses 290 * @migrate: migrate struct containing all migration information 291 * 292 * This will walk the CPU page table. For each virtual address backed by a 293 * valid page, it updates the src array and takes a reference on the page, in 294 * order to pin the page until we lock it and unmap it. 295 */ 296 static void migrate_vma_collect(struct migrate_vma *migrate) 297 { 298 struct mmu_notifier_range range; 299 300 /* 301 * Note that the pgmap_owner is passed to the mmu notifier callback so 302 * that the registered device driver can skip invalidating device 303 * private page mappings that won't be migrated. 304 */ 305 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 306 migrate->vma->vm_mm, migrate->start, migrate->end, 307 migrate->pgmap_owner); 308 mmu_notifier_invalidate_range_start(&range); 309 310 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 311 &migrate_vma_walk_ops, migrate); 312 313 mmu_notifier_invalidate_range_end(&range); 314 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 315 } 316 317 /* 318 * migrate_vma_check_page() - check if page is pinned or not 319 * @page: struct page to check 320 * 321 * Pinned pages cannot be migrated. This is the same test as in 322 * folio_migrate_mapping(), except that here we allow migration of a 323 * ZONE_DEVICE page. 324 */ 325 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 326 { 327 /* 328 * One extra ref because caller holds an extra reference, either from 329 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 330 * a device page. 331 */ 332 int extra = 1 + (page == fault_page); 333 334 /* 335 * FIXME support THP (transparent huge page), it is bit more complex to 336 * check them than regular pages, because they can be mapped with a pmd 337 * or with a pte (split pte mapping). 338 */ 339 if (PageCompound(page)) 340 return false; 341 342 /* Page from ZONE_DEVICE have one extra reference */ 343 if (is_zone_device_page(page)) 344 extra++; 345 346 /* For file back page */ 347 if (page_mapping(page)) 348 extra += 1 + page_has_private(page); 349 350 if ((page_count(page) - extra) > page_mapcount(page)) 351 return false; 352 353 return true; 354 } 355 356 /* 357 * Unmaps pages for migration. Returns number of source pfns marked as 358 * migrating. 359 */ 360 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 361 unsigned long npages, 362 struct page *fault_page) 363 { 364 unsigned long i, restore = 0; 365 bool allow_drain = true; 366 unsigned long unmapped = 0; 367 368 lru_add_drain(); 369 370 for (i = 0; i < npages; i++) { 371 struct page *page = migrate_pfn_to_page(src_pfns[i]); 372 struct folio *folio; 373 374 if (!page) { 375 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) 376 unmapped++; 377 continue; 378 } 379 380 /* ZONE_DEVICE pages are not on LRU */ 381 if (!is_zone_device_page(page)) { 382 if (!PageLRU(page) && allow_drain) { 383 /* Drain CPU's lru cache */ 384 lru_add_drain_all(); 385 allow_drain = false; 386 } 387 388 if (!isolate_lru_page(page)) { 389 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 390 restore++; 391 continue; 392 } 393 394 /* Drop the reference we took in collect */ 395 put_page(page); 396 } 397 398 folio = page_folio(page); 399 if (folio_mapped(folio)) 400 try_to_migrate(folio, 0); 401 402 if (page_mapped(page) || 403 !migrate_vma_check_page(page, fault_page)) { 404 if (!is_zone_device_page(page)) { 405 get_page(page); 406 putback_lru_page(page); 407 } 408 409 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 410 restore++; 411 continue; 412 } 413 414 unmapped++; 415 } 416 417 for (i = 0; i < npages && restore; i++) { 418 struct page *page = migrate_pfn_to_page(src_pfns[i]); 419 struct folio *folio; 420 421 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 422 continue; 423 424 folio = page_folio(page); 425 remove_migration_ptes(folio, folio, false); 426 427 src_pfns[i] = 0; 428 folio_unlock(folio); 429 folio_put(folio); 430 restore--; 431 } 432 433 return unmapped; 434 } 435 436 /* 437 * migrate_vma_unmap() - replace page mapping with special migration pte entry 438 * @migrate: migrate struct containing all migration information 439 * 440 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 441 * special migration pte entry and check if it has been pinned. Pinned pages are 442 * restored because we cannot migrate them. 443 * 444 * This is the last step before we call the device driver callback to allocate 445 * destination memory and copy contents of original page over to new page. 446 */ 447 static void migrate_vma_unmap(struct migrate_vma *migrate) 448 { 449 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 450 migrate->fault_page); 451 } 452 453 /** 454 * migrate_vma_setup() - prepare to migrate a range of memory 455 * @args: contains the vma, start, and pfns arrays for the migration 456 * 457 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 458 * without an error. 459 * 460 * Prepare to migrate a range of memory virtual address range by collecting all 461 * the pages backing each virtual address in the range, saving them inside the 462 * src array. Then lock those pages and unmap them. Once the pages are locked 463 * and unmapped, check whether each page is pinned or not. Pages that aren't 464 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 465 * corresponding src array entry. Then restores any pages that are pinned, by 466 * remapping and unlocking those pages. 467 * 468 * The caller should then allocate destination memory and copy source memory to 469 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 470 * flag set). Once these are allocated and copied, the caller must update each 471 * corresponding entry in the dst array with the pfn value of the destination 472 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 473 * lock_page(). 474 * 475 * Note that the caller does not have to migrate all the pages that are marked 476 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 477 * device memory to system memory. If the caller cannot migrate a device page 478 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 479 * consequences for the userspace process, so it must be avoided if at all 480 * possible. 481 * 482 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 483 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 484 * allowing the caller to allocate device memory for those unbacked virtual 485 * addresses. For this the caller simply has to allocate device memory and 486 * properly set the destination entry like for regular migration. Note that 487 * this can still fail, and thus inside the device driver you must check if the 488 * migration was successful for those entries after calling migrate_vma_pages(), 489 * just like for regular migration. 490 * 491 * After that, the callers must call migrate_vma_pages() to go over each entry 492 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 493 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 494 * then migrate_vma_pages() to migrate struct page information from the source 495 * struct page to the destination struct page. If it fails to migrate the 496 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 497 * src array. 498 * 499 * At this point all successfully migrated pages have an entry in the src 500 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 501 * array entry with MIGRATE_PFN_VALID flag set. 502 * 503 * Once migrate_vma_pages() returns the caller may inspect which pages were 504 * successfully migrated, and which were not. Successfully migrated pages will 505 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 506 * 507 * It is safe to update device page table after migrate_vma_pages() because 508 * both destination and source page are still locked, and the mmap_lock is held 509 * in read mode (hence no one can unmap the range being migrated). 510 * 511 * Once the caller is done cleaning up things and updating its page table (if it 512 * chose to do so, this is not an obligation) it finally calls 513 * migrate_vma_finalize() to update the CPU page table to point to new pages 514 * for successfully migrated pages or otherwise restore the CPU page table to 515 * point to the original source pages. 516 */ 517 int migrate_vma_setup(struct migrate_vma *args) 518 { 519 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 520 521 args->start &= PAGE_MASK; 522 args->end &= PAGE_MASK; 523 if (!args->vma || is_vm_hugetlb_page(args->vma) || 524 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 525 return -EINVAL; 526 if (nr_pages <= 0) 527 return -EINVAL; 528 if (args->start < args->vma->vm_start || 529 args->start >= args->vma->vm_end) 530 return -EINVAL; 531 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 532 return -EINVAL; 533 if (!args->src || !args->dst) 534 return -EINVAL; 535 if (args->fault_page && !is_device_private_page(args->fault_page)) 536 return -EINVAL; 537 538 memset(args->src, 0, sizeof(*args->src) * nr_pages); 539 args->cpages = 0; 540 args->npages = 0; 541 542 migrate_vma_collect(args); 543 544 if (args->cpages) 545 migrate_vma_unmap(args); 546 547 /* 548 * At this point pages are locked and unmapped, and thus they have 549 * stable content and can safely be copied to destination memory that 550 * is allocated by the drivers. 551 */ 552 return 0; 553 554 } 555 EXPORT_SYMBOL(migrate_vma_setup); 556 557 /* 558 * This code closely matches the code in: 559 * __handle_mm_fault() 560 * handle_pte_fault() 561 * do_anonymous_page() 562 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 563 * private or coherent page. 564 */ 565 static void migrate_vma_insert_page(struct migrate_vma *migrate, 566 unsigned long addr, 567 struct page *page, 568 unsigned long *src) 569 { 570 struct folio *folio = page_folio(page); 571 struct vm_area_struct *vma = migrate->vma; 572 struct mm_struct *mm = vma->vm_mm; 573 bool flush = false; 574 spinlock_t *ptl; 575 pte_t entry; 576 pgd_t *pgdp; 577 p4d_t *p4dp; 578 pud_t *pudp; 579 pmd_t *pmdp; 580 pte_t *ptep; 581 pte_t orig_pte; 582 583 /* Only allow populating anonymous memory */ 584 if (!vma_is_anonymous(vma)) 585 goto abort; 586 587 pgdp = pgd_offset(mm, addr); 588 p4dp = p4d_alloc(mm, pgdp, addr); 589 if (!p4dp) 590 goto abort; 591 pudp = pud_alloc(mm, p4dp, addr); 592 if (!pudp) 593 goto abort; 594 pmdp = pmd_alloc(mm, pudp, addr); 595 if (!pmdp) 596 goto abort; 597 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 598 goto abort; 599 if (pte_alloc(mm, pmdp)) 600 goto abort; 601 if (unlikely(anon_vma_prepare(vma))) 602 goto abort; 603 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 604 goto abort; 605 606 /* 607 * The memory barrier inside __folio_mark_uptodate makes sure that 608 * preceding stores to the folio contents become visible before 609 * the set_pte_at() write. 610 */ 611 __folio_mark_uptodate(folio); 612 613 if (folio_is_device_private(folio)) { 614 swp_entry_t swp_entry; 615 616 if (vma->vm_flags & VM_WRITE) 617 swp_entry = make_writable_device_private_entry( 618 page_to_pfn(page)); 619 else 620 swp_entry = make_readable_device_private_entry( 621 page_to_pfn(page)); 622 entry = swp_entry_to_pte(swp_entry); 623 } else { 624 if (folio_is_zone_device(folio) && 625 !folio_is_device_coherent(folio)) { 626 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 627 goto abort; 628 } 629 entry = mk_pte(page, vma->vm_page_prot); 630 if (vma->vm_flags & VM_WRITE) 631 entry = pte_mkwrite(pte_mkdirty(entry), vma); 632 } 633 634 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 635 if (!ptep) 636 goto abort; 637 orig_pte = ptep_get(ptep); 638 639 if (check_stable_address_space(mm)) 640 goto unlock_abort; 641 642 if (pte_present(orig_pte)) { 643 unsigned long pfn = pte_pfn(orig_pte); 644 645 if (!is_zero_pfn(pfn)) 646 goto unlock_abort; 647 flush = true; 648 } else if (!pte_none(orig_pte)) 649 goto unlock_abort; 650 651 /* 652 * Check for userfaultfd but do not deliver the fault. Instead, 653 * just back off. 654 */ 655 if (userfaultfd_missing(vma)) 656 goto unlock_abort; 657 658 inc_mm_counter(mm, MM_ANONPAGES); 659 folio_add_new_anon_rmap(folio, vma, addr); 660 if (!folio_is_zone_device(folio)) 661 folio_add_lru_vma(folio, vma); 662 folio_get(folio); 663 664 if (flush) { 665 flush_cache_page(vma, addr, pte_pfn(orig_pte)); 666 ptep_clear_flush(vma, addr, ptep); 667 set_pte_at_notify(mm, addr, ptep, entry); 668 update_mmu_cache(vma, addr, ptep); 669 } else { 670 /* No need to invalidate - it was non-present before */ 671 set_pte_at(mm, addr, ptep, entry); 672 update_mmu_cache(vma, addr, ptep); 673 } 674 675 pte_unmap_unlock(ptep, ptl); 676 *src = MIGRATE_PFN_MIGRATE; 677 return; 678 679 unlock_abort: 680 pte_unmap_unlock(ptep, ptl); 681 abort: 682 *src &= ~MIGRATE_PFN_MIGRATE; 683 } 684 685 static void __migrate_device_pages(unsigned long *src_pfns, 686 unsigned long *dst_pfns, unsigned long npages, 687 struct migrate_vma *migrate) 688 { 689 struct mmu_notifier_range range; 690 unsigned long i; 691 bool notified = false; 692 693 for (i = 0; i < npages; i++) { 694 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 695 struct page *page = migrate_pfn_to_page(src_pfns[i]); 696 struct address_space *mapping; 697 int r; 698 699 if (!newpage) { 700 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 701 continue; 702 } 703 704 if (!page) { 705 unsigned long addr; 706 707 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 708 continue; 709 710 /* 711 * The only time there is no vma is when called from 712 * migrate_device_coherent_page(). However this isn't 713 * called if the page could not be unmapped. 714 */ 715 VM_BUG_ON(!migrate); 716 addr = migrate->start + i*PAGE_SIZE; 717 if (!notified) { 718 notified = true; 719 720 mmu_notifier_range_init_owner(&range, 721 MMU_NOTIFY_MIGRATE, 0, 722 migrate->vma->vm_mm, addr, migrate->end, 723 migrate->pgmap_owner); 724 mmu_notifier_invalidate_range_start(&range); 725 } 726 migrate_vma_insert_page(migrate, addr, newpage, 727 &src_pfns[i]); 728 continue; 729 } 730 731 mapping = page_mapping(page); 732 733 if (is_device_private_page(newpage) || 734 is_device_coherent_page(newpage)) { 735 if (mapping) { 736 struct folio *folio; 737 738 folio = page_folio(page); 739 740 /* 741 * For now only support anonymous memory migrating to 742 * device private or coherent memory. 743 * 744 * Try to get rid of swap cache if possible. 745 */ 746 if (!folio_test_anon(folio) || 747 !folio_free_swap(folio)) { 748 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 749 continue; 750 } 751 } 752 } else if (is_zone_device_page(newpage)) { 753 /* 754 * Other types of ZONE_DEVICE page are not supported. 755 */ 756 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 757 continue; 758 } 759 760 if (migrate && migrate->fault_page == page) 761 r = migrate_folio_extra(mapping, page_folio(newpage), 762 page_folio(page), 763 MIGRATE_SYNC_NO_COPY, 1); 764 else 765 r = migrate_folio(mapping, page_folio(newpage), 766 page_folio(page), MIGRATE_SYNC_NO_COPY); 767 if (r != MIGRATEPAGE_SUCCESS) 768 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 769 } 770 771 if (notified) 772 mmu_notifier_invalidate_range_end(&range); 773 } 774 775 /** 776 * migrate_device_pages() - migrate meta-data from src page to dst page 777 * @src_pfns: src_pfns returned from migrate_device_range() 778 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 779 * @npages: number of pages in the range 780 * 781 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 782 * meta-data from source struct page to destination. 783 */ 784 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 785 unsigned long npages) 786 { 787 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 788 } 789 EXPORT_SYMBOL(migrate_device_pages); 790 791 /** 792 * migrate_vma_pages() - migrate meta-data from src page to dst page 793 * @migrate: migrate struct containing all migration information 794 * 795 * This migrates struct page meta-data from source struct page to destination 796 * struct page. This effectively finishes the migration from source page to the 797 * destination page. 798 */ 799 void migrate_vma_pages(struct migrate_vma *migrate) 800 { 801 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 802 } 803 EXPORT_SYMBOL(migrate_vma_pages); 804 805 /* 806 * migrate_device_finalize() - complete page migration 807 * @src_pfns: src_pfns returned from migrate_device_range() 808 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 809 * @npages: number of pages in the range 810 * 811 * Completes migration of the page by removing special migration entries. 812 * Drivers must ensure copying of page data is complete and visible to the CPU 813 * before calling this. 814 */ 815 void migrate_device_finalize(unsigned long *src_pfns, 816 unsigned long *dst_pfns, unsigned long npages) 817 { 818 unsigned long i; 819 820 for (i = 0; i < npages; i++) { 821 struct folio *dst, *src; 822 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 823 struct page *page = migrate_pfn_to_page(src_pfns[i]); 824 825 if (!page) { 826 if (newpage) { 827 unlock_page(newpage); 828 put_page(newpage); 829 } 830 continue; 831 } 832 833 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 834 if (newpage) { 835 unlock_page(newpage); 836 put_page(newpage); 837 } 838 newpage = page; 839 } 840 841 src = page_folio(page); 842 dst = page_folio(newpage); 843 remove_migration_ptes(src, dst, false); 844 folio_unlock(src); 845 846 if (is_zone_device_page(page)) 847 put_page(page); 848 else 849 putback_lru_page(page); 850 851 if (newpage != page) { 852 unlock_page(newpage); 853 if (is_zone_device_page(newpage)) 854 put_page(newpage); 855 else 856 putback_lru_page(newpage); 857 } 858 } 859 } 860 EXPORT_SYMBOL(migrate_device_finalize); 861 862 /** 863 * migrate_vma_finalize() - restore CPU page table entry 864 * @migrate: migrate struct containing all migration information 865 * 866 * This replaces the special migration pte entry with either a mapping to the 867 * new page if migration was successful for that page, or to the original page 868 * otherwise. 869 * 870 * This also unlocks the pages and puts them back on the lru, or drops the extra 871 * refcount, for device pages. 872 */ 873 void migrate_vma_finalize(struct migrate_vma *migrate) 874 { 875 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 876 } 877 EXPORT_SYMBOL(migrate_vma_finalize); 878 879 /** 880 * migrate_device_range() - migrate device private pfns to normal memory. 881 * @src_pfns: array large enough to hold migrating source device private pfns. 882 * @start: starting pfn in the range to migrate. 883 * @npages: number of pages to migrate. 884 * 885 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 886 * instead of looking up pages based on virtual address mappings a range of 887 * device pfns that should be migrated to system memory is used instead. 888 * 889 * This is useful when a driver needs to free device memory but doesn't know the 890 * virtual mappings of every page that may be in device memory. For example this 891 * is often the case when a driver is being unloaded or unbound from a device. 892 * 893 * Like migrate_vma_setup() this function will take a reference and lock any 894 * migrating pages that aren't free before unmapping them. Drivers may then 895 * allocate destination pages and start copying data from the device to CPU 896 * memory before calling migrate_device_pages(). 897 */ 898 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 899 unsigned long npages) 900 { 901 unsigned long i, pfn; 902 903 for (pfn = start, i = 0; i < npages; pfn++, i++) { 904 struct page *page = pfn_to_page(pfn); 905 906 if (!get_page_unless_zero(page)) { 907 src_pfns[i] = 0; 908 continue; 909 } 910 911 if (!trylock_page(page)) { 912 src_pfns[i] = 0; 913 put_page(page); 914 continue; 915 } 916 917 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 918 } 919 920 migrate_device_unmap(src_pfns, npages, NULL); 921 922 return 0; 923 } 924 EXPORT_SYMBOL(migrate_device_range); 925 926 /* 927 * Migrate a device coherent page back to normal memory. The caller should have 928 * a reference on page which will be copied to the new page if migration is 929 * successful or dropped on failure. 930 */ 931 int migrate_device_coherent_page(struct page *page) 932 { 933 unsigned long src_pfn, dst_pfn = 0; 934 struct page *dpage; 935 936 WARN_ON_ONCE(PageCompound(page)); 937 938 lock_page(page); 939 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 940 941 /* 942 * We don't have a VMA and don't need to walk the page tables to find 943 * the source page. So call migrate_vma_unmap() directly to unmap the 944 * page as migrate_vma_setup() will fail if args.vma == NULL. 945 */ 946 migrate_device_unmap(&src_pfn, 1, NULL); 947 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 948 return -EBUSY; 949 950 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 951 if (dpage) { 952 lock_page(dpage); 953 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 954 } 955 956 migrate_device_pages(&src_pfn, &dst_pfn, 1); 957 if (src_pfn & MIGRATE_PFN_MIGRATE) 958 copy_highpage(dpage, page); 959 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 960 961 if (src_pfn & MIGRATE_PFN_MIGRATE) 962 return 0; 963 return -EBUSY; 964 } 965