xref: /linux/mm/migrate_device.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
20 static int migrate_vma_collect_skip(unsigned long start,
21 				    unsigned long end,
22 				    struct mm_walk *walk)
23 {
24 	struct migrate_vma *migrate = walk->private;
25 	unsigned long addr;
26 
27 	for (addr = start; addr < end; addr += PAGE_SIZE) {
28 		migrate->dst[migrate->npages] = 0;
29 		migrate->src[migrate->npages++] = 0;
30 	}
31 
32 	return 0;
33 }
34 
35 static int migrate_vma_collect_hole(unsigned long start,
36 				    unsigned long end,
37 				    __always_unused int depth,
38 				    struct mm_walk *walk)
39 {
40 	struct migrate_vma *migrate = walk->private;
41 	unsigned long addr;
42 
43 	/* Only allow populating anonymous memory. */
44 	if (!vma_is_anonymous(walk->vma))
45 		return migrate_vma_collect_skip(start, end, walk);
46 
47 	for (addr = start; addr < end; addr += PAGE_SIZE) {
48 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 		migrate->dst[migrate->npages] = 0;
50 		migrate->npages++;
51 		migrate->cpages++;
52 	}
53 
54 	return 0;
55 }
56 
57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 				   unsigned long start,
59 				   unsigned long end,
60 				   struct mm_walk *walk)
61 {
62 	struct migrate_vma *migrate = walk->private;
63 	struct vm_area_struct *vma = walk->vma;
64 	struct mm_struct *mm = vma->vm_mm;
65 	unsigned long addr = start, unmapped = 0;
66 	spinlock_t *ptl;
67 	pte_t *ptep;
68 
69 again:
70 	if (pmd_none(*pmdp))
71 		return migrate_vma_collect_hole(start, end, -1, walk);
72 
73 	if (pmd_trans_huge(*pmdp)) {
74 		struct folio *folio;
75 
76 		ptl = pmd_lock(mm, pmdp);
77 		if (unlikely(!pmd_trans_huge(*pmdp))) {
78 			spin_unlock(ptl);
79 			goto again;
80 		}
81 
82 		folio = pmd_folio(*pmdp);
83 		if (is_huge_zero_folio(folio)) {
84 			spin_unlock(ptl);
85 			split_huge_pmd(vma, pmdp, addr);
86 		} else {
87 			int ret;
88 
89 			folio_get(folio);
90 			spin_unlock(ptl);
91 			if (unlikely(!folio_trylock(folio)))
92 				return migrate_vma_collect_skip(start, end,
93 								walk);
94 			ret = split_folio(folio);
95 			folio_unlock(folio);
96 			folio_put(folio);
97 			if (ret)
98 				return migrate_vma_collect_skip(start, end,
99 								walk);
100 		}
101 	}
102 
103 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
104 	if (!ptep)
105 		goto again;
106 	arch_enter_lazy_mmu_mode();
107 
108 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
109 		unsigned long mpfn = 0, pfn;
110 		struct folio *folio;
111 		struct page *page;
112 		swp_entry_t entry;
113 		pte_t pte;
114 
115 		pte = ptep_get(ptep);
116 
117 		if (pte_none(pte)) {
118 			if (vma_is_anonymous(vma)) {
119 				mpfn = MIGRATE_PFN_MIGRATE;
120 				migrate->cpages++;
121 			}
122 			goto next;
123 		}
124 
125 		if (!pte_present(pte)) {
126 			/*
127 			 * Only care about unaddressable device page special
128 			 * page table entry. Other special swap entries are not
129 			 * migratable, and we ignore regular swapped page.
130 			 */
131 			entry = pte_to_swp_entry(pte);
132 			if (!is_device_private_entry(entry))
133 				goto next;
134 
135 			page = pfn_swap_entry_to_page(entry);
136 			if (!(migrate->flags &
137 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
138 			    page->pgmap->owner != migrate->pgmap_owner)
139 				goto next;
140 
141 			mpfn = migrate_pfn(page_to_pfn(page)) |
142 					MIGRATE_PFN_MIGRATE;
143 			if (is_writable_device_private_entry(entry))
144 				mpfn |= MIGRATE_PFN_WRITE;
145 		} else {
146 			pfn = pte_pfn(pte);
147 			if (is_zero_pfn(pfn) &&
148 			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
149 				mpfn = MIGRATE_PFN_MIGRATE;
150 				migrate->cpages++;
151 				goto next;
152 			}
153 			page = vm_normal_page(migrate->vma, addr, pte);
154 			if (page && !is_zone_device_page(page) &&
155 			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
156 				goto next;
157 			else if (page && is_device_coherent_page(page) &&
158 			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
159 			     page->pgmap->owner != migrate->pgmap_owner))
160 				goto next;
161 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
162 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
163 		}
164 
165 		/* FIXME support THP */
166 		if (!page || !page->mapping || PageTransCompound(page)) {
167 			mpfn = 0;
168 			goto next;
169 		}
170 
171 		/*
172 		 * By getting a reference on the folio we pin it and that blocks
173 		 * any kind of migration. Side effect is that it "freezes" the
174 		 * pte.
175 		 *
176 		 * We drop this reference after isolating the folio from the lru
177 		 * for non device folio (device folio are not on the lru and thus
178 		 * can't be dropped from it).
179 		 */
180 		folio = page_folio(page);
181 		folio_get(folio);
182 
183 		/*
184 		 * We rely on folio_trylock() to avoid deadlock between
185 		 * concurrent migrations where each is waiting on the others
186 		 * folio lock. If we can't immediately lock the folio we fail this
187 		 * migration as it is only best effort anyway.
188 		 *
189 		 * If we can lock the folio it's safe to set up a migration entry
190 		 * now. In the common case where the folio is mapped once in a
191 		 * single process setting up the migration entry now is an
192 		 * optimisation to avoid walking the rmap later with
193 		 * try_to_migrate().
194 		 */
195 		if (folio_trylock(folio)) {
196 			bool anon_exclusive;
197 			pte_t swp_pte;
198 
199 			flush_cache_page(vma, addr, pte_pfn(pte));
200 			anon_exclusive = folio_test_anon(folio) &&
201 					  PageAnonExclusive(page);
202 			if (anon_exclusive) {
203 				pte = ptep_clear_flush(vma, addr, ptep);
204 
205 				if (folio_try_share_anon_rmap_pte(folio, page)) {
206 					set_pte_at(mm, addr, ptep, pte);
207 					folio_unlock(folio);
208 					folio_put(folio);
209 					mpfn = 0;
210 					goto next;
211 				}
212 			} else {
213 				pte = ptep_get_and_clear(mm, addr, ptep);
214 			}
215 
216 			migrate->cpages++;
217 
218 			/* Set the dirty flag on the folio now the pte is gone. */
219 			if (pte_dirty(pte))
220 				folio_mark_dirty(folio);
221 
222 			/* Setup special migration page table entry */
223 			if (mpfn & MIGRATE_PFN_WRITE)
224 				entry = make_writable_migration_entry(
225 							page_to_pfn(page));
226 			else if (anon_exclusive)
227 				entry = make_readable_exclusive_migration_entry(
228 							page_to_pfn(page));
229 			else
230 				entry = make_readable_migration_entry(
231 							page_to_pfn(page));
232 			if (pte_present(pte)) {
233 				if (pte_young(pte))
234 					entry = make_migration_entry_young(entry);
235 				if (pte_dirty(pte))
236 					entry = make_migration_entry_dirty(entry);
237 			}
238 			swp_pte = swp_entry_to_pte(entry);
239 			if (pte_present(pte)) {
240 				if (pte_soft_dirty(pte))
241 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
242 				if (pte_uffd_wp(pte))
243 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
244 			} else {
245 				if (pte_swp_soft_dirty(pte))
246 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
247 				if (pte_swp_uffd_wp(pte))
248 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
249 			}
250 			set_pte_at(mm, addr, ptep, swp_pte);
251 
252 			/*
253 			 * This is like regular unmap: we remove the rmap and
254 			 * drop the folio refcount. The folio won't be freed, as
255 			 * we took a reference just above.
256 			 */
257 			folio_remove_rmap_pte(folio, page, vma);
258 			folio_put(folio);
259 
260 			if (pte_present(pte))
261 				unmapped++;
262 		} else {
263 			folio_put(folio);
264 			mpfn = 0;
265 		}
266 
267 next:
268 		migrate->dst[migrate->npages] = 0;
269 		migrate->src[migrate->npages++] = mpfn;
270 	}
271 
272 	/* Only flush the TLB if we actually modified any entries */
273 	if (unmapped)
274 		flush_tlb_range(walk->vma, start, end);
275 
276 	arch_leave_lazy_mmu_mode();
277 	pte_unmap_unlock(ptep - 1, ptl);
278 
279 	return 0;
280 }
281 
282 static const struct mm_walk_ops migrate_vma_walk_ops = {
283 	.pmd_entry		= migrate_vma_collect_pmd,
284 	.pte_hole		= migrate_vma_collect_hole,
285 	.walk_lock		= PGWALK_RDLOCK,
286 };
287 
288 /*
289  * migrate_vma_collect() - collect pages over a range of virtual addresses
290  * @migrate: migrate struct containing all migration information
291  *
292  * This will walk the CPU page table. For each virtual address backed by a
293  * valid page, it updates the src array and takes a reference on the page, in
294  * order to pin the page until we lock it and unmap it.
295  */
296 static void migrate_vma_collect(struct migrate_vma *migrate)
297 {
298 	struct mmu_notifier_range range;
299 
300 	/*
301 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
302 	 * that the registered device driver can skip invalidating device
303 	 * private page mappings that won't be migrated.
304 	 */
305 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
306 		migrate->vma->vm_mm, migrate->start, migrate->end,
307 		migrate->pgmap_owner);
308 	mmu_notifier_invalidate_range_start(&range);
309 
310 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
311 			&migrate_vma_walk_ops, migrate);
312 
313 	mmu_notifier_invalidate_range_end(&range);
314 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
315 }
316 
317 /*
318  * migrate_vma_check_page() - check if page is pinned or not
319  * @page: struct page to check
320  *
321  * Pinned pages cannot be migrated. This is the same test as in
322  * folio_migrate_mapping(), except that here we allow migration of a
323  * ZONE_DEVICE page.
324  */
325 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
326 {
327 	struct folio *folio = page_folio(page);
328 
329 	/*
330 	 * One extra ref because caller holds an extra reference, either from
331 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
332 	 * a device page.
333 	 */
334 	int extra = 1 + (page == fault_page);
335 
336 	/*
337 	 * FIXME support THP (transparent huge page), it is bit more complex to
338 	 * check them than regular pages, because they can be mapped with a pmd
339 	 * or with a pte (split pte mapping).
340 	 */
341 	if (folio_test_large(folio))
342 		return false;
343 
344 	/* Page from ZONE_DEVICE have one extra reference */
345 	if (folio_is_zone_device(folio))
346 		extra++;
347 
348 	/* For file back page */
349 	if (folio_mapping(folio))
350 		extra += 1 + folio_has_private(folio);
351 
352 	if ((folio_ref_count(folio) - extra) > folio_mapcount(folio))
353 		return false;
354 
355 	return true;
356 }
357 
358 /*
359  * Unmaps pages for migration. Returns number of source pfns marked as
360  * migrating.
361  */
362 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
363 					  unsigned long npages,
364 					  struct page *fault_page)
365 {
366 	unsigned long i, restore = 0;
367 	bool allow_drain = true;
368 	unsigned long unmapped = 0;
369 
370 	lru_add_drain();
371 
372 	for (i = 0; i < npages; i++) {
373 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
374 		struct folio *folio;
375 
376 		if (!page) {
377 			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
378 				unmapped++;
379 			continue;
380 		}
381 
382 		/* ZONE_DEVICE pages are not on LRU */
383 		if (!is_zone_device_page(page)) {
384 			if (!PageLRU(page) && allow_drain) {
385 				/* Drain CPU's lru cache */
386 				lru_add_drain_all();
387 				allow_drain = false;
388 			}
389 
390 			if (!isolate_lru_page(page)) {
391 				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
392 				restore++;
393 				continue;
394 			}
395 
396 			/* Drop the reference we took in collect */
397 			put_page(page);
398 		}
399 
400 		folio = page_folio(page);
401 		if (folio_mapped(folio))
402 			try_to_migrate(folio, 0);
403 
404 		if (page_mapped(page) ||
405 		    !migrate_vma_check_page(page, fault_page)) {
406 			if (!is_zone_device_page(page)) {
407 				get_page(page);
408 				putback_lru_page(page);
409 			}
410 
411 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
412 			restore++;
413 			continue;
414 		}
415 
416 		unmapped++;
417 	}
418 
419 	for (i = 0; i < npages && restore; i++) {
420 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
421 		struct folio *folio;
422 
423 		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
424 			continue;
425 
426 		folio = page_folio(page);
427 		remove_migration_ptes(folio, folio, false);
428 
429 		src_pfns[i] = 0;
430 		folio_unlock(folio);
431 		folio_put(folio);
432 		restore--;
433 	}
434 
435 	return unmapped;
436 }
437 
438 /*
439  * migrate_vma_unmap() - replace page mapping with special migration pte entry
440  * @migrate: migrate struct containing all migration information
441  *
442  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
443  * special migration pte entry and check if it has been pinned. Pinned pages are
444  * restored because we cannot migrate them.
445  *
446  * This is the last step before we call the device driver callback to allocate
447  * destination memory and copy contents of original page over to new page.
448  */
449 static void migrate_vma_unmap(struct migrate_vma *migrate)
450 {
451 	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
452 					migrate->fault_page);
453 }
454 
455 /**
456  * migrate_vma_setup() - prepare to migrate a range of memory
457  * @args: contains the vma, start, and pfns arrays for the migration
458  *
459  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
460  * without an error.
461  *
462  * Prepare to migrate a range of memory virtual address range by collecting all
463  * the pages backing each virtual address in the range, saving them inside the
464  * src array.  Then lock those pages and unmap them. Once the pages are locked
465  * and unmapped, check whether each page is pinned or not.  Pages that aren't
466  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
467  * corresponding src array entry.  Then restores any pages that are pinned, by
468  * remapping and unlocking those pages.
469  *
470  * The caller should then allocate destination memory and copy source memory to
471  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
472  * flag set).  Once these are allocated and copied, the caller must update each
473  * corresponding entry in the dst array with the pfn value of the destination
474  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
475  * lock_page().
476  *
477  * Note that the caller does not have to migrate all the pages that are marked
478  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
479  * device memory to system memory.  If the caller cannot migrate a device page
480  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
481  * consequences for the userspace process, so it must be avoided if at all
482  * possible.
483  *
484  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
485  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
486  * allowing the caller to allocate device memory for those unbacked virtual
487  * addresses.  For this the caller simply has to allocate device memory and
488  * properly set the destination entry like for regular migration.  Note that
489  * this can still fail, and thus inside the device driver you must check if the
490  * migration was successful for those entries after calling migrate_vma_pages(),
491  * just like for regular migration.
492  *
493  * After that, the callers must call migrate_vma_pages() to go over each entry
494  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
495  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
496  * then migrate_vma_pages() to migrate struct page information from the source
497  * struct page to the destination struct page.  If it fails to migrate the
498  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
499  * src array.
500  *
501  * At this point all successfully migrated pages have an entry in the src
502  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
503  * array entry with MIGRATE_PFN_VALID flag set.
504  *
505  * Once migrate_vma_pages() returns the caller may inspect which pages were
506  * successfully migrated, and which were not.  Successfully migrated pages will
507  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
508  *
509  * It is safe to update device page table after migrate_vma_pages() because
510  * both destination and source page are still locked, and the mmap_lock is held
511  * in read mode (hence no one can unmap the range being migrated).
512  *
513  * Once the caller is done cleaning up things and updating its page table (if it
514  * chose to do so, this is not an obligation) it finally calls
515  * migrate_vma_finalize() to update the CPU page table to point to new pages
516  * for successfully migrated pages or otherwise restore the CPU page table to
517  * point to the original source pages.
518  */
519 int migrate_vma_setup(struct migrate_vma *args)
520 {
521 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
522 
523 	args->start &= PAGE_MASK;
524 	args->end &= PAGE_MASK;
525 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
526 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
527 		return -EINVAL;
528 	if (nr_pages <= 0)
529 		return -EINVAL;
530 	if (args->start < args->vma->vm_start ||
531 	    args->start >= args->vma->vm_end)
532 		return -EINVAL;
533 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
534 		return -EINVAL;
535 	if (!args->src || !args->dst)
536 		return -EINVAL;
537 	if (args->fault_page && !is_device_private_page(args->fault_page))
538 		return -EINVAL;
539 
540 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
541 	args->cpages = 0;
542 	args->npages = 0;
543 
544 	migrate_vma_collect(args);
545 
546 	if (args->cpages)
547 		migrate_vma_unmap(args);
548 
549 	/*
550 	 * At this point pages are locked and unmapped, and thus they have
551 	 * stable content and can safely be copied to destination memory that
552 	 * is allocated by the drivers.
553 	 */
554 	return 0;
555 
556 }
557 EXPORT_SYMBOL(migrate_vma_setup);
558 
559 /*
560  * This code closely matches the code in:
561  *   __handle_mm_fault()
562  *     handle_pte_fault()
563  *       do_anonymous_page()
564  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
565  * private or coherent page.
566  */
567 static void migrate_vma_insert_page(struct migrate_vma *migrate,
568 				    unsigned long addr,
569 				    struct page *page,
570 				    unsigned long *src)
571 {
572 	struct folio *folio = page_folio(page);
573 	struct vm_area_struct *vma = migrate->vma;
574 	struct mm_struct *mm = vma->vm_mm;
575 	bool flush = false;
576 	spinlock_t *ptl;
577 	pte_t entry;
578 	pgd_t *pgdp;
579 	p4d_t *p4dp;
580 	pud_t *pudp;
581 	pmd_t *pmdp;
582 	pte_t *ptep;
583 	pte_t orig_pte;
584 
585 	/* Only allow populating anonymous memory */
586 	if (!vma_is_anonymous(vma))
587 		goto abort;
588 
589 	pgdp = pgd_offset(mm, addr);
590 	p4dp = p4d_alloc(mm, pgdp, addr);
591 	if (!p4dp)
592 		goto abort;
593 	pudp = pud_alloc(mm, p4dp, addr);
594 	if (!pudp)
595 		goto abort;
596 	pmdp = pmd_alloc(mm, pudp, addr);
597 	if (!pmdp)
598 		goto abort;
599 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
600 		goto abort;
601 	if (pte_alloc(mm, pmdp))
602 		goto abort;
603 	if (unlikely(anon_vma_prepare(vma)))
604 		goto abort;
605 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
606 		goto abort;
607 
608 	/*
609 	 * The memory barrier inside __folio_mark_uptodate makes sure that
610 	 * preceding stores to the folio contents become visible before
611 	 * the set_pte_at() write.
612 	 */
613 	__folio_mark_uptodate(folio);
614 
615 	if (folio_is_device_private(folio)) {
616 		swp_entry_t swp_entry;
617 
618 		if (vma->vm_flags & VM_WRITE)
619 			swp_entry = make_writable_device_private_entry(
620 						page_to_pfn(page));
621 		else
622 			swp_entry = make_readable_device_private_entry(
623 						page_to_pfn(page));
624 		entry = swp_entry_to_pte(swp_entry);
625 	} else {
626 		if (folio_is_zone_device(folio) &&
627 		    !folio_is_device_coherent(folio)) {
628 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
629 			goto abort;
630 		}
631 		entry = mk_pte(page, vma->vm_page_prot);
632 		if (vma->vm_flags & VM_WRITE)
633 			entry = pte_mkwrite(pte_mkdirty(entry), vma);
634 	}
635 
636 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
637 	if (!ptep)
638 		goto abort;
639 	orig_pte = ptep_get(ptep);
640 
641 	if (check_stable_address_space(mm))
642 		goto unlock_abort;
643 
644 	if (pte_present(orig_pte)) {
645 		unsigned long pfn = pte_pfn(orig_pte);
646 
647 		if (!is_zero_pfn(pfn))
648 			goto unlock_abort;
649 		flush = true;
650 	} else if (!pte_none(orig_pte))
651 		goto unlock_abort;
652 
653 	/*
654 	 * Check for userfaultfd but do not deliver the fault. Instead,
655 	 * just back off.
656 	 */
657 	if (userfaultfd_missing(vma))
658 		goto unlock_abort;
659 
660 	inc_mm_counter(mm, MM_ANONPAGES);
661 	folio_add_new_anon_rmap(folio, vma, addr);
662 	if (!folio_is_zone_device(folio))
663 		folio_add_lru_vma(folio, vma);
664 	folio_get(folio);
665 
666 	if (flush) {
667 		flush_cache_page(vma, addr, pte_pfn(orig_pte));
668 		ptep_clear_flush(vma, addr, ptep);
669 		set_pte_at_notify(mm, addr, ptep, entry);
670 		update_mmu_cache(vma, addr, ptep);
671 	} else {
672 		/* No need to invalidate - it was non-present before */
673 		set_pte_at(mm, addr, ptep, entry);
674 		update_mmu_cache(vma, addr, ptep);
675 	}
676 
677 	pte_unmap_unlock(ptep, ptl);
678 	*src = MIGRATE_PFN_MIGRATE;
679 	return;
680 
681 unlock_abort:
682 	pte_unmap_unlock(ptep, ptl);
683 abort:
684 	*src &= ~MIGRATE_PFN_MIGRATE;
685 }
686 
687 static void __migrate_device_pages(unsigned long *src_pfns,
688 				unsigned long *dst_pfns, unsigned long npages,
689 				struct migrate_vma *migrate)
690 {
691 	struct mmu_notifier_range range;
692 	unsigned long i;
693 	bool notified = false;
694 
695 	for (i = 0; i < npages; i++) {
696 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
697 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
698 		struct address_space *mapping;
699 		struct folio *folio;
700 		int r;
701 
702 		if (!newpage) {
703 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
704 			continue;
705 		}
706 
707 		if (!page) {
708 			unsigned long addr;
709 
710 			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
711 				continue;
712 
713 			/*
714 			 * The only time there is no vma is when called from
715 			 * migrate_device_coherent_page(). However this isn't
716 			 * called if the page could not be unmapped.
717 			 */
718 			VM_BUG_ON(!migrate);
719 			addr = migrate->start + i*PAGE_SIZE;
720 			if (!notified) {
721 				notified = true;
722 
723 				mmu_notifier_range_init_owner(&range,
724 					MMU_NOTIFY_MIGRATE, 0,
725 					migrate->vma->vm_mm, addr, migrate->end,
726 					migrate->pgmap_owner);
727 				mmu_notifier_invalidate_range_start(&range);
728 			}
729 			migrate_vma_insert_page(migrate, addr, newpage,
730 						&src_pfns[i]);
731 			continue;
732 		}
733 
734 		folio = page_folio(page);
735 		mapping = folio_mapping(folio);
736 
737 		if (is_device_private_page(newpage) ||
738 		    is_device_coherent_page(newpage)) {
739 			if (mapping) {
740 				/*
741 				 * For now only support anonymous memory migrating to
742 				 * device private or coherent memory.
743 				 *
744 				 * Try to get rid of swap cache if possible.
745 				 */
746 				if (!folio_test_anon(folio) ||
747 				    !folio_free_swap(folio)) {
748 					src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
749 					continue;
750 				}
751 			}
752 		} else if (is_zone_device_page(newpage)) {
753 			/*
754 			 * Other types of ZONE_DEVICE page are not supported.
755 			 */
756 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
757 			continue;
758 		}
759 
760 		if (migrate && migrate->fault_page == page)
761 			r = migrate_folio_extra(mapping, page_folio(newpage),
762 						folio, MIGRATE_SYNC_NO_COPY, 1);
763 		else
764 			r = migrate_folio(mapping, page_folio(newpage),
765 					folio, MIGRATE_SYNC_NO_COPY);
766 		if (r != MIGRATEPAGE_SUCCESS)
767 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
768 	}
769 
770 	if (notified)
771 		mmu_notifier_invalidate_range_end(&range);
772 }
773 
774 /**
775  * migrate_device_pages() - migrate meta-data from src page to dst page
776  * @src_pfns: src_pfns returned from migrate_device_range()
777  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
778  * @npages: number of pages in the range
779  *
780  * Equivalent to migrate_vma_pages(). This is called to migrate struct page
781  * meta-data from source struct page to destination.
782  */
783 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
784 			unsigned long npages)
785 {
786 	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
787 }
788 EXPORT_SYMBOL(migrate_device_pages);
789 
790 /**
791  * migrate_vma_pages() - migrate meta-data from src page to dst page
792  * @migrate: migrate struct containing all migration information
793  *
794  * This migrates struct page meta-data from source struct page to destination
795  * struct page. This effectively finishes the migration from source page to the
796  * destination page.
797  */
798 void migrate_vma_pages(struct migrate_vma *migrate)
799 {
800 	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
801 }
802 EXPORT_SYMBOL(migrate_vma_pages);
803 
804 /*
805  * migrate_device_finalize() - complete page migration
806  * @src_pfns: src_pfns returned from migrate_device_range()
807  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
808  * @npages: number of pages in the range
809  *
810  * Completes migration of the page by removing special migration entries.
811  * Drivers must ensure copying of page data is complete and visible to the CPU
812  * before calling this.
813  */
814 void migrate_device_finalize(unsigned long *src_pfns,
815 			unsigned long *dst_pfns, unsigned long npages)
816 {
817 	unsigned long i;
818 
819 	for (i = 0; i < npages; i++) {
820 		struct folio *dst, *src;
821 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
822 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
823 
824 		if (!page) {
825 			if (newpage) {
826 				unlock_page(newpage);
827 				put_page(newpage);
828 			}
829 			continue;
830 		}
831 
832 		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
833 			if (newpage) {
834 				unlock_page(newpage);
835 				put_page(newpage);
836 			}
837 			newpage = page;
838 		}
839 
840 		src = page_folio(page);
841 		dst = page_folio(newpage);
842 		remove_migration_ptes(src, dst, false);
843 		folio_unlock(src);
844 
845 		if (is_zone_device_page(page))
846 			put_page(page);
847 		else
848 			putback_lru_page(page);
849 
850 		if (newpage != page) {
851 			unlock_page(newpage);
852 			if (is_zone_device_page(newpage))
853 				put_page(newpage);
854 			else
855 				putback_lru_page(newpage);
856 		}
857 	}
858 }
859 EXPORT_SYMBOL(migrate_device_finalize);
860 
861 /**
862  * migrate_vma_finalize() - restore CPU page table entry
863  * @migrate: migrate struct containing all migration information
864  *
865  * This replaces the special migration pte entry with either a mapping to the
866  * new page if migration was successful for that page, or to the original page
867  * otherwise.
868  *
869  * This also unlocks the pages and puts them back on the lru, or drops the extra
870  * refcount, for device pages.
871  */
872 void migrate_vma_finalize(struct migrate_vma *migrate)
873 {
874 	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
875 }
876 EXPORT_SYMBOL(migrate_vma_finalize);
877 
878 /**
879  * migrate_device_range() - migrate device private pfns to normal memory.
880  * @src_pfns: array large enough to hold migrating source device private pfns.
881  * @start: starting pfn in the range to migrate.
882  * @npages: number of pages to migrate.
883  *
884  * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
885  * instead of looking up pages based on virtual address mappings a range of
886  * device pfns that should be migrated to system memory is used instead.
887  *
888  * This is useful when a driver needs to free device memory but doesn't know the
889  * virtual mappings of every page that may be in device memory. For example this
890  * is often the case when a driver is being unloaded or unbound from a device.
891  *
892  * Like migrate_vma_setup() this function will take a reference and lock any
893  * migrating pages that aren't free before unmapping them. Drivers may then
894  * allocate destination pages and start copying data from the device to CPU
895  * memory before calling migrate_device_pages().
896  */
897 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
898 			unsigned long npages)
899 {
900 	unsigned long i, pfn;
901 
902 	for (pfn = start, i = 0; i < npages; pfn++, i++) {
903 		struct page *page = pfn_to_page(pfn);
904 
905 		if (!get_page_unless_zero(page)) {
906 			src_pfns[i] = 0;
907 			continue;
908 		}
909 
910 		if (!trylock_page(page)) {
911 			src_pfns[i] = 0;
912 			put_page(page);
913 			continue;
914 		}
915 
916 		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
917 	}
918 
919 	migrate_device_unmap(src_pfns, npages, NULL);
920 
921 	return 0;
922 }
923 EXPORT_SYMBOL(migrate_device_range);
924 
925 /*
926  * Migrate a device coherent page back to normal memory. The caller should have
927  * a reference on page which will be copied to the new page if migration is
928  * successful or dropped on failure.
929  */
930 int migrate_device_coherent_page(struct page *page)
931 {
932 	unsigned long src_pfn, dst_pfn = 0;
933 	struct page *dpage;
934 
935 	WARN_ON_ONCE(PageCompound(page));
936 
937 	lock_page(page);
938 	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
939 
940 	/*
941 	 * We don't have a VMA and don't need to walk the page tables to find
942 	 * the source page. So call migrate_vma_unmap() directly to unmap the
943 	 * page as migrate_vma_setup() will fail if args.vma == NULL.
944 	 */
945 	migrate_device_unmap(&src_pfn, 1, NULL);
946 	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
947 		return -EBUSY;
948 
949 	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
950 	if (dpage) {
951 		lock_page(dpage);
952 		dst_pfn = migrate_pfn(page_to_pfn(dpage));
953 	}
954 
955 	migrate_device_pages(&src_pfn, &dst_pfn, 1);
956 	if (src_pfn & MIGRATE_PFN_MIGRATE)
957 		copy_highpage(dpage, page);
958 	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
959 
960 	if (src_pfn & MIGRATE_PFN_MIGRATE)
961 		return 0;
962 	return -EBUSY;
963 }
964