xref: /linux/mm/migrate.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 
50 #include <asm/tlbflush.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
54 
55 #include "internal.h"
56 
57 /*
58  * migrate_prep() needs to be called before we start compiling a list of pages
59  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60  * undesirable, use migrate_prep_local()
61  */
62 int migrate_prep(void)
63 {
64 	/*
65 	 * Clear the LRU lists so pages can be isolated.
66 	 * Note that pages may be moved off the LRU after we have
67 	 * drained them. Those pages will fail to migrate like other
68 	 * pages that may be busy.
69 	 */
70 	lru_add_drain_all();
71 
72 	return 0;
73 }
74 
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
77 {
78 	lru_add_drain();
79 
80 	return 0;
81 }
82 
83 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 {
85 	struct address_space *mapping;
86 
87 	/*
88 	 * Avoid burning cycles with pages that are yet under __free_pages(),
89 	 * or just got freed under us.
90 	 *
91 	 * In case we 'win' a race for a movable page being freed under us and
92 	 * raise its refcount preventing __free_pages() from doing its job
93 	 * the put_page() at the end of this block will take care of
94 	 * release this page, thus avoiding a nasty leakage.
95 	 */
96 	if (unlikely(!get_page_unless_zero(page)))
97 		goto out;
98 
99 	/*
100 	 * Check PageMovable before holding a PG_lock because page's owner
101 	 * assumes anybody doesn't touch PG_lock of newly allocated page
102 	 * so unconditionally grapping the lock ruins page's owner side.
103 	 */
104 	if (unlikely(!__PageMovable(page)))
105 		goto out_putpage;
106 	/*
107 	 * As movable pages are not isolated from LRU lists, concurrent
108 	 * compaction threads can race against page migration functions
109 	 * as well as race against the releasing a page.
110 	 *
111 	 * In order to avoid having an already isolated movable page
112 	 * being (wrongly) re-isolated while it is under migration,
113 	 * or to avoid attempting to isolate pages being released,
114 	 * lets be sure we have the page lock
115 	 * before proceeding with the movable page isolation steps.
116 	 */
117 	if (unlikely(!trylock_page(page)))
118 		goto out_putpage;
119 
120 	if (!PageMovable(page) || PageIsolated(page))
121 		goto out_no_isolated;
122 
123 	mapping = page_mapping(page);
124 	VM_BUG_ON_PAGE(!mapping, page);
125 
126 	if (!mapping->a_ops->isolate_page(page, mode))
127 		goto out_no_isolated;
128 
129 	/* Driver shouldn't use PG_isolated bit of page->flags */
130 	WARN_ON_ONCE(PageIsolated(page));
131 	__SetPageIsolated(page);
132 	unlock_page(page);
133 
134 	return 0;
135 
136 out_no_isolated:
137 	unlock_page(page);
138 out_putpage:
139 	put_page(page);
140 out:
141 	return -EBUSY;
142 }
143 
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page *page)
146 {
147 	struct address_space *mapping;
148 
149 	VM_BUG_ON_PAGE(!PageLocked(page), page);
150 	VM_BUG_ON_PAGE(!PageMovable(page), page);
151 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
152 
153 	mapping = page_mapping(page);
154 	mapping->a_ops->putback_page(page);
155 	__ClearPageIsolated(page);
156 }
157 
158 /*
159  * Put previously isolated pages back onto the appropriate lists
160  * from where they were once taken off for compaction/migration.
161  *
162  * This function shall be used whenever the isolated pageset has been
163  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164  * and isolate_huge_page().
165  */
166 void putback_movable_pages(struct list_head *l)
167 {
168 	struct page *page;
169 	struct page *page2;
170 
171 	list_for_each_entry_safe(page, page2, l, lru) {
172 		if (unlikely(PageHuge(page))) {
173 			putback_active_hugepage(page);
174 			continue;
175 		}
176 		list_del(&page->lru);
177 		/*
178 		 * We isolated non-lru movable page so here we can use
179 		 * __PageMovable because LRU page's mapping cannot have
180 		 * PAGE_MAPPING_MOVABLE.
181 		 */
182 		if (unlikely(__PageMovable(page))) {
183 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
184 			lock_page(page);
185 			if (PageMovable(page))
186 				putback_movable_page(page);
187 			else
188 				__ClearPageIsolated(page);
189 			unlock_page(page);
190 			put_page(page);
191 		} else {
192 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193 					page_is_file_cache(page), -hpage_nr_pages(page));
194 			putback_lru_page(page);
195 		}
196 	}
197 }
198 
199 /*
200  * Restore a potential migration pte to a working pte entry
201  */
202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203 				 unsigned long addr, void *old)
204 {
205 	struct page_vma_mapped_walk pvmw = {
206 		.page = old,
207 		.vma = vma,
208 		.address = addr,
209 		.flags = PVMW_SYNC | PVMW_MIGRATION,
210 	};
211 	struct page *new;
212 	pte_t pte;
213 	swp_entry_t entry;
214 
215 	VM_BUG_ON_PAGE(PageTail(page), page);
216 	while (page_vma_mapped_walk(&pvmw)) {
217 		if (PageKsm(page))
218 			new = page;
219 		else
220 			new = page - pvmw.page->index +
221 				linear_page_index(vma, pvmw.address);
222 
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 		/* PMD-mapped THP migration entry */
225 		if (!pvmw.pte) {
226 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227 			remove_migration_pmd(&pvmw, new);
228 			continue;
229 		}
230 #endif
231 
232 		get_page(new);
233 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234 		if (pte_swp_soft_dirty(*pvmw.pte))
235 			pte = pte_mksoft_dirty(pte);
236 
237 		/*
238 		 * Recheck VMA as permissions can change since migration started
239 		 */
240 		entry = pte_to_swp_entry(*pvmw.pte);
241 		if (is_write_migration_entry(entry))
242 			pte = maybe_mkwrite(pte, vma);
243 
244 		if (unlikely(is_zone_device_page(new))) {
245 			if (is_device_private_page(new)) {
246 				entry = make_device_private_entry(new, pte_write(pte));
247 				pte = swp_entry_to_pte(entry);
248 			} else if (is_device_public_page(new)) {
249 				pte = pte_mkdevmap(pte);
250 				flush_dcache_page(new);
251 			}
252 		} else
253 			flush_dcache_page(new);
254 
255 #ifdef CONFIG_HUGETLB_PAGE
256 		if (PageHuge(new)) {
257 			pte = pte_mkhuge(pte);
258 			pte = arch_make_huge_pte(pte, vma, new, 0);
259 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260 			if (PageAnon(new))
261 				hugepage_add_anon_rmap(new, vma, pvmw.address);
262 			else
263 				page_dup_rmap(new, true);
264 		} else
265 #endif
266 		{
267 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 
269 			if (PageAnon(new))
270 				page_add_anon_rmap(new, vma, pvmw.address, false);
271 			else
272 				page_add_file_rmap(new, false);
273 		}
274 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
275 			mlock_vma_page(new);
276 
277 		/* No need to invalidate - it was non-present before */
278 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 	}
280 
281 	return true;
282 }
283 
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289 {
290 	struct rmap_walk_control rwc = {
291 		.rmap_one = remove_migration_pte,
292 		.arg = old,
293 	};
294 
295 	if (locked)
296 		rmap_walk_locked(new, &rwc);
297 	else
298 		rmap_walk(new, &rwc);
299 }
300 
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307 				spinlock_t *ptl)
308 {
309 	pte_t pte;
310 	swp_entry_t entry;
311 	struct page *page;
312 
313 	spin_lock(ptl);
314 	pte = *ptep;
315 	if (!is_swap_pte(pte))
316 		goto out;
317 
318 	entry = pte_to_swp_entry(pte);
319 	if (!is_migration_entry(entry))
320 		goto out;
321 
322 	page = migration_entry_to_page(entry);
323 
324 	/*
325 	 * Once radix-tree replacement of page migration started, page_count
326 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
327 	 * against a page without get_page().
328 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
329 	 * will occur again.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	wait_on_page_locked(page);
335 	put_page(page);
336 	return;
337 out:
338 	pte_unmap_unlock(ptep, ptl);
339 }
340 
341 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
342 				unsigned long address)
343 {
344 	spinlock_t *ptl = pte_lockptr(mm, pmd);
345 	pte_t *ptep = pte_offset_map(pmd, address);
346 	__migration_entry_wait(mm, ptep, ptl);
347 }
348 
349 void migration_entry_wait_huge(struct vm_area_struct *vma,
350 		struct mm_struct *mm, pte_t *pte)
351 {
352 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
353 	__migration_entry_wait(mm, pte, ptl);
354 }
355 
356 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
357 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
358 {
359 	spinlock_t *ptl;
360 	struct page *page;
361 
362 	ptl = pmd_lock(mm, pmd);
363 	if (!is_pmd_migration_entry(*pmd))
364 		goto unlock;
365 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
366 	if (!get_page_unless_zero(page))
367 		goto unlock;
368 	spin_unlock(ptl);
369 	wait_on_page_locked(page);
370 	put_page(page);
371 	return;
372 unlock:
373 	spin_unlock(ptl);
374 }
375 #endif
376 
377 #ifdef CONFIG_BLOCK
378 /* Returns true if all buffers are successfully locked */
379 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
380 							enum migrate_mode mode)
381 {
382 	struct buffer_head *bh = head;
383 
384 	/* Simple case, sync compaction */
385 	if (mode != MIGRATE_ASYNC) {
386 		do {
387 			get_bh(bh);
388 			lock_buffer(bh);
389 			bh = bh->b_this_page;
390 
391 		} while (bh != head);
392 
393 		return true;
394 	}
395 
396 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
397 	do {
398 		get_bh(bh);
399 		if (!trylock_buffer(bh)) {
400 			/*
401 			 * We failed to lock the buffer and cannot stall in
402 			 * async migration. Release the taken locks
403 			 */
404 			struct buffer_head *failed_bh = bh;
405 			put_bh(failed_bh);
406 			bh = head;
407 			while (bh != failed_bh) {
408 				unlock_buffer(bh);
409 				put_bh(bh);
410 				bh = bh->b_this_page;
411 			}
412 			return false;
413 		}
414 
415 		bh = bh->b_this_page;
416 	} while (bh != head);
417 	return true;
418 }
419 #else
420 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
421 							enum migrate_mode mode)
422 {
423 	return true;
424 }
425 #endif /* CONFIG_BLOCK */
426 
427 /*
428  * Replace the page in the mapping.
429  *
430  * The number of remaining references must be:
431  * 1 for anonymous pages without a mapping
432  * 2 for pages with a mapping
433  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
434  */
435 int migrate_page_move_mapping(struct address_space *mapping,
436 		struct page *newpage, struct page *page,
437 		struct buffer_head *head, enum migrate_mode mode,
438 		int extra_count)
439 {
440 	struct zone *oldzone, *newzone;
441 	int dirty;
442 	int expected_count = 1 + extra_count;
443 	void **pslot;
444 
445 	/*
446 	 * Device public or private pages have an extra refcount as they are
447 	 * ZONE_DEVICE pages.
448 	 */
449 	expected_count += is_device_private_page(page);
450 	expected_count += is_device_public_page(page);
451 
452 	if (!mapping) {
453 		/* Anonymous page without mapping */
454 		if (page_count(page) != expected_count)
455 			return -EAGAIN;
456 
457 		/* No turning back from here */
458 		newpage->index = page->index;
459 		newpage->mapping = page->mapping;
460 		if (PageSwapBacked(page))
461 			__SetPageSwapBacked(newpage);
462 
463 		return MIGRATEPAGE_SUCCESS;
464 	}
465 
466 	oldzone = page_zone(page);
467 	newzone = page_zone(newpage);
468 
469 	spin_lock_irq(&mapping->tree_lock);
470 
471 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
472  					page_index(page));
473 
474 	expected_count += 1 + page_has_private(page);
475 	if (page_count(page) != expected_count ||
476 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
477 		spin_unlock_irq(&mapping->tree_lock);
478 		return -EAGAIN;
479 	}
480 
481 	if (!page_ref_freeze(page, expected_count)) {
482 		spin_unlock_irq(&mapping->tree_lock);
483 		return -EAGAIN;
484 	}
485 
486 	/*
487 	 * In the async migration case of moving a page with buffers, lock the
488 	 * buffers using trylock before the mapping is moved. If the mapping
489 	 * was moved, we later failed to lock the buffers and could not move
490 	 * the mapping back due to an elevated page count, we would have to
491 	 * block waiting on other references to be dropped.
492 	 */
493 	if (mode == MIGRATE_ASYNC && head &&
494 			!buffer_migrate_lock_buffers(head, mode)) {
495 		page_ref_unfreeze(page, expected_count);
496 		spin_unlock_irq(&mapping->tree_lock);
497 		return -EAGAIN;
498 	}
499 
500 	/*
501 	 * Now we know that no one else is looking at the page:
502 	 * no turning back from here.
503 	 */
504 	newpage->index = page->index;
505 	newpage->mapping = page->mapping;
506 	get_page(newpage);	/* add cache reference */
507 	if (PageSwapBacked(page)) {
508 		__SetPageSwapBacked(newpage);
509 		if (PageSwapCache(page)) {
510 			SetPageSwapCache(newpage);
511 			set_page_private(newpage, page_private(page));
512 		}
513 	} else {
514 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
515 	}
516 
517 	/* Move dirty while page refs frozen and newpage not yet exposed */
518 	dirty = PageDirty(page);
519 	if (dirty) {
520 		ClearPageDirty(page);
521 		SetPageDirty(newpage);
522 	}
523 
524 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
525 
526 	/*
527 	 * Drop cache reference from old page by unfreezing
528 	 * to one less reference.
529 	 * We know this isn't the last reference.
530 	 */
531 	page_ref_unfreeze(page, expected_count - 1);
532 
533 	spin_unlock(&mapping->tree_lock);
534 	/* Leave irq disabled to prevent preemption while updating stats */
535 
536 	/*
537 	 * If moved to a different zone then also account
538 	 * the page for that zone. Other VM counters will be
539 	 * taken care of when we establish references to the
540 	 * new page and drop references to the old page.
541 	 *
542 	 * Note that anonymous pages are accounted for
543 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
544 	 * are mapped to swap space.
545 	 */
546 	if (newzone != oldzone) {
547 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
548 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
549 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
550 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
551 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
552 		}
553 		if (dirty && mapping_cap_account_dirty(mapping)) {
554 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
555 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
556 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
557 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
558 		}
559 	}
560 	local_irq_enable();
561 
562 	return MIGRATEPAGE_SUCCESS;
563 }
564 EXPORT_SYMBOL(migrate_page_move_mapping);
565 
566 /*
567  * The expected number of remaining references is the same as that
568  * of migrate_page_move_mapping().
569  */
570 int migrate_huge_page_move_mapping(struct address_space *mapping,
571 				   struct page *newpage, struct page *page)
572 {
573 	int expected_count;
574 	void **pslot;
575 
576 	spin_lock_irq(&mapping->tree_lock);
577 
578 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
579 					page_index(page));
580 
581 	expected_count = 2 + page_has_private(page);
582 	if (page_count(page) != expected_count ||
583 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
584 		spin_unlock_irq(&mapping->tree_lock);
585 		return -EAGAIN;
586 	}
587 
588 	if (!page_ref_freeze(page, expected_count)) {
589 		spin_unlock_irq(&mapping->tree_lock);
590 		return -EAGAIN;
591 	}
592 
593 	newpage->index = page->index;
594 	newpage->mapping = page->mapping;
595 
596 	get_page(newpage);
597 
598 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
599 
600 	page_ref_unfreeze(page, expected_count - 1);
601 
602 	spin_unlock_irq(&mapping->tree_lock);
603 
604 	return MIGRATEPAGE_SUCCESS;
605 }
606 
607 /*
608  * Gigantic pages are so large that we do not guarantee that page++ pointer
609  * arithmetic will work across the entire page.  We need something more
610  * specialized.
611  */
612 static void __copy_gigantic_page(struct page *dst, struct page *src,
613 				int nr_pages)
614 {
615 	int i;
616 	struct page *dst_base = dst;
617 	struct page *src_base = src;
618 
619 	for (i = 0; i < nr_pages; ) {
620 		cond_resched();
621 		copy_highpage(dst, src);
622 
623 		i++;
624 		dst = mem_map_next(dst, dst_base, i);
625 		src = mem_map_next(src, src_base, i);
626 	}
627 }
628 
629 static void copy_huge_page(struct page *dst, struct page *src)
630 {
631 	int i;
632 	int nr_pages;
633 
634 	if (PageHuge(src)) {
635 		/* hugetlbfs page */
636 		struct hstate *h = page_hstate(src);
637 		nr_pages = pages_per_huge_page(h);
638 
639 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
640 			__copy_gigantic_page(dst, src, nr_pages);
641 			return;
642 		}
643 	} else {
644 		/* thp page */
645 		BUG_ON(!PageTransHuge(src));
646 		nr_pages = hpage_nr_pages(src);
647 	}
648 
649 	for (i = 0; i < nr_pages; i++) {
650 		cond_resched();
651 		copy_highpage(dst + i, src + i);
652 	}
653 }
654 
655 /*
656  * Copy the page to its new location
657  */
658 void migrate_page_states(struct page *newpage, struct page *page)
659 {
660 	int cpupid;
661 
662 	if (PageError(page))
663 		SetPageError(newpage);
664 	if (PageReferenced(page))
665 		SetPageReferenced(newpage);
666 	if (PageUptodate(page))
667 		SetPageUptodate(newpage);
668 	if (TestClearPageActive(page)) {
669 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
670 		SetPageActive(newpage);
671 	} else if (TestClearPageUnevictable(page))
672 		SetPageUnevictable(newpage);
673 	if (PageChecked(page))
674 		SetPageChecked(newpage);
675 	if (PageMappedToDisk(page))
676 		SetPageMappedToDisk(newpage);
677 
678 	/* Move dirty on pages not done by migrate_page_move_mapping() */
679 	if (PageDirty(page))
680 		SetPageDirty(newpage);
681 
682 	if (page_is_young(page))
683 		set_page_young(newpage);
684 	if (page_is_idle(page))
685 		set_page_idle(newpage);
686 
687 	/*
688 	 * Copy NUMA information to the new page, to prevent over-eager
689 	 * future migrations of this same page.
690 	 */
691 	cpupid = page_cpupid_xchg_last(page, -1);
692 	page_cpupid_xchg_last(newpage, cpupid);
693 
694 	ksm_migrate_page(newpage, page);
695 	/*
696 	 * Please do not reorder this without considering how mm/ksm.c's
697 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
698 	 */
699 	if (PageSwapCache(page))
700 		ClearPageSwapCache(page);
701 	ClearPagePrivate(page);
702 	set_page_private(page, 0);
703 
704 	/*
705 	 * If any waiters have accumulated on the new page then
706 	 * wake them up.
707 	 */
708 	if (PageWriteback(newpage))
709 		end_page_writeback(newpage);
710 
711 	copy_page_owner(page, newpage);
712 
713 	mem_cgroup_migrate(page, newpage);
714 }
715 EXPORT_SYMBOL(migrate_page_states);
716 
717 void migrate_page_copy(struct page *newpage, struct page *page)
718 {
719 	if (PageHuge(page) || PageTransHuge(page))
720 		copy_huge_page(newpage, page);
721 	else
722 		copy_highpage(newpage, page);
723 
724 	migrate_page_states(newpage, page);
725 }
726 EXPORT_SYMBOL(migrate_page_copy);
727 
728 /************************************************************
729  *                    Migration functions
730  ***********************************************************/
731 
732 /*
733  * Common logic to directly migrate a single LRU page suitable for
734  * pages that do not use PagePrivate/PagePrivate2.
735  *
736  * Pages are locked upon entry and exit.
737  */
738 int migrate_page(struct address_space *mapping,
739 		struct page *newpage, struct page *page,
740 		enum migrate_mode mode)
741 {
742 	int rc;
743 
744 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
745 
746 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
747 
748 	if (rc != MIGRATEPAGE_SUCCESS)
749 		return rc;
750 
751 	if (mode != MIGRATE_SYNC_NO_COPY)
752 		migrate_page_copy(newpage, page);
753 	else
754 		migrate_page_states(newpage, page);
755 	return MIGRATEPAGE_SUCCESS;
756 }
757 EXPORT_SYMBOL(migrate_page);
758 
759 #ifdef CONFIG_BLOCK
760 /*
761  * Migration function for pages with buffers. This function can only be used
762  * if the underlying filesystem guarantees that no other references to "page"
763  * exist.
764  */
765 int buffer_migrate_page(struct address_space *mapping,
766 		struct page *newpage, struct page *page, enum migrate_mode mode)
767 {
768 	struct buffer_head *bh, *head;
769 	int rc;
770 
771 	if (!page_has_buffers(page))
772 		return migrate_page(mapping, newpage, page, mode);
773 
774 	head = page_buffers(page);
775 
776 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
777 
778 	if (rc != MIGRATEPAGE_SUCCESS)
779 		return rc;
780 
781 	/*
782 	 * In the async case, migrate_page_move_mapping locked the buffers
783 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
784 	 * need to be locked now
785 	 */
786 	if (mode != MIGRATE_ASYNC)
787 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
788 
789 	ClearPagePrivate(page);
790 	set_page_private(newpage, page_private(page));
791 	set_page_private(page, 0);
792 	put_page(page);
793 	get_page(newpage);
794 
795 	bh = head;
796 	do {
797 		set_bh_page(bh, newpage, bh_offset(bh));
798 		bh = bh->b_this_page;
799 
800 	} while (bh != head);
801 
802 	SetPagePrivate(newpage);
803 
804 	if (mode != MIGRATE_SYNC_NO_COPY)
805 		migrate_page_copy(newpage, page);
806 	else
807 		migrate_page_states(newpage, page);
808 
809 	bh = head;
810 	do {
811 		unlock_buffer(bh);
812 		put_bh(bh);
813 		bh = bh->b_this_page;
814 
815 	} while (bh != head);
816 
817 	return MIGRATEPAGE_SUCCESS;
818 }
819 EXPORT_SYMBOL(buffer_migrate_page);
820 #endif
821 
822 /*
823  * Writeback a page to clean the dirty state
824  */
825 static int writeout(struct address_space *mapping, struct page *page)
826 {
827 	struct writeback_control wbc = {
828 		.sync_mode = WB_SYNC_NONE,
829 		.nr_to_write = 1,
830 		.range_start = 0,
831 		.range_end = LLONG_MAX,
832 		.for_reclaim = 1
833 	};
834 	int rc;
835 
836 	if (!mapping->a_ops->writepage)
837 		/* No write method for the address space */
838 		return -EINVAL;
839 
840 	if (!clear_page_dirty_for_io(page))
841 		/* Someone else already triggered a write */
842 		return -EAGAIN;
843 
844 	/*
845 	 * A dirty page may imply that the underlying filesystem has
846 	 * the page on some queue. So the page must be clean for
847 	 * migration. Writeout may mean we loose the lock and the
848 	 * page state is no longer what we checked for earlier.
849 	 * At this point we know that the migration attempt cannot
850 	 * be successful.
851 	 */
852 	remove_migration_ptes(page, page, false);
853 
854 	rc = mapping->a_ops->writepage(page, &wbc);
855 
856 	if (rc != AOP_WRITEPAGE_ACTIVATE)
857 		/* unlocked. Relock */
858 		lock_page(page);
859 
860 	return (rc < 0) ? -EIO : -EAGAIN;
861 }
862 
863 /*
864  * Default handling if a filesystem does not provide a migration function.
865  */
866 static int fallback_migrate_page(struct address_space *mapping,
867 	struct page *newpage, struct page *page, enum migrate_mode mode)
868 {
869 	if (PageDirty(page)) {
870 		/* Only writeback pages in full synchronous migration */
871 		switch (mode) {
872 		case MIGRATE_SYNC:
873 		case MIGRATE_SYNC_NO_COPY:
874 			break;
875 		default:
876 			return -EBUSY;
877 		}
878 		return writeout(mapping, page);
879 	}
880 
881 	/*
882 	 * Buffers may be managed in a filesystem specific way.
883 	 * We must have no buffers or drop them.
884 	 */
885 	if (page_has_private(page) &&
886 	    !try_to_release_page(page, GFP_KERNEL))
887 		return -EAGAIN;
888 
889 	return migrate_page(mapping, newpage, page, mode);
890 }
891 
892 /*
893  * Move a page to a newly allocated page
894  * The page is locked and all ptes have been successfully removed.
895  *
896  * The new page will have replaced the old page if this function
897  * is successful.
898  *
899  * Return value:
900  *   < 0 - error code
901  *  MIGRATEPAGE_SUCCESS - success
902  */
903 static int move_to_new_page(struct page *newpage, struct page *page,
904 				enum migrate_mode mode)
905 {
906 	struct address_space *mapping;
907 	int rc = -EAGAIN;
908 	bool is_lru = !__PageMovable(page);
909 
910 	VM_BUG_ON_PAGE(!PageLocked(page), page);
911 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
912 
913 	mapping = page_mapping(page);
914 
915 	if (likely(is_lru)) {
916 		if (!mapping)
917 			rc = migrate_page(mapping, newpage, page, mode);
918 		else if (mapping->a_ops->migratepage)
919 			/*
920 			 * Most pages have a mapping and most filesystems
921 			 * provide a migratepage callback. Anonymous pages
922 			 * are part of swap space which also has its own
923 			 * migratepage callback. This is the most common path
924 			 * for page migration.
925 			 */
926 			rc = mapping->a_ops->migratepage(mapping, newpage,
927 							page, mode);
928 		else
929 			rc = fallback_migrate_page(mapping, newpage,
930 							page, mode);
931 	} else {
932 		/*
933 		 * In case of non-lru page, it could be released after
934 		 * isolation step. In that case, we shouldn't try migration.
935 		 */
936 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
937 		if (!PageMovable(page)) {
938 			rc = MIGRATEPAGE_SUCCESS;
939 			__ClearPageIsolated(page);
940 			goto out;
941 		}
942 
943 		rc = mapping->a_ops->migratepage(mapping, newpage,
944 						page, mode);
945 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
946 			!PageIsolated(page));
947 	}
948 
949 	/*
950 	 * When successful, old pagecache page->mapping must be cleared before
951 	 * page is freed; but stats require that PageAnon be left as PageAnon.
952 	 */
953 	if (rc == MIGRATEPAGE_SUCCESS) {
954 		if (__PageMovable(page)) {
955 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
956 
957 			/*
958 			 * We clear PG_movable under page_lock so any compactor
959 			 * cannot try to migrate this page.
960 			 */
961 			__ClearPageIsolated(page);
962 		}
963 
964 		/*
965 		 * Anonymous and movable page->mapping will be cleard by
966 		 * free_pages_prepare so don't reset it here for keeping
967 		 * the type to work PageAnon, for example.
968 		 */
969 		if (!PageMappingFlags(page))
970 			page->mapping = NULL;
971 	}
972 out:
973 	return rc;
974 }
975 
976 static int __unmap_and_move(struct page *page, struct page *newpage,
977 				int force, enum migrate_mode mode)
978 {
979 	int rc = -EAGAIN;
980 	int page_was_mapped = 0;
981 	struct anon_vma *anon_vma = NULL;
982 	bool is_lru = !__PageMovable(page);
983 
984 	if (!trylock_page(page)) {
985 		if (!force || mode == MIGRATE_ASYNC)
986 			goto out;
987 
988 		/*
989 		 * It's not safe for direct compaction to call lock_page.
990 		 * For example, during page readahead pages are added locked
991 		 * to the LRU. Later, when the IO completes the pages are
992 		 * marked uptodate and unlocked. However, the queueing
993 		 * could be merging multiple pages for one bio (e.g.
994 		 * mpage_readpages). If an allocation happens for the
995 		 * second or third page, the process can end up locking
996 		 * the same page twice and deadlocking. Rather than
997 		 * trying to be clever about what pages can be locked,
998 		 * avoid the use of lock_page for direct compaction
999 		 * altogether.
1000 		 */
1001 		if (current->flags & PF_MEMALLOC)
1002 			goto out;
1003 
1004 		lock_page(page);
1005 	}
1006 
1007 	if (PageWriteback(page)) {
1008 		/*
1009 		 * Only in the case of a full synchronous migration is it
1010 		 * necessary to wait for PageWriteback. In the async case,
1011 		 * the retry loop is too short and in the sync-light case,
1012 		 * the overhead of stalling is too much
1013 		 */
1014 		switch (mode) {
1015 		case MIGRATE_SYNC:
1016 		case MIGRATE_SYNC_NO_COPY:
1017 			break;
1018 		default:
1019 			rc = -EBUSY;
1020 			goto out_unlock;
1021 		}
1022 		if (!force)
1023 			goto out_unlock;
1024 		wait_on_page_writeback(page);
1025 	}
1026 
1027 	/*
1028 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1029 	 * we cannot notice that anon_vma is freed while we migrates a page.
1030 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1031 	 * of migration. File cache pages are no problem because of page_lock()
1032 	 * File Caches may use write_page() or lock_page() in migration, then,
1033 	 * just care Anon page here.
1034 	 *
1035 	 * Only page_get_anon_vma() understands the subtleties of
1036 	 * getting a hold on an anon_vma from outside one of its mms.
1037 	 * But if we cannot get anon_vma, then we won't need it anyway,
1038 	 * because that implies that the anon page is no longer mapped
1039 	 * (and cannot be remapped so long as we hold the page lock).
1040 	 */
1041 	if (PageAnon(page) && !PageKsm(page))
1042 		anon_vma = page_get_anon_vma(page);
1043 
1044 	/*
1045 	 * Block others from accessing the new page when we get around to
1046 	 * establishing additional references. We are usually the only one
1047 	 * holding a reference to newpage at this point. We used to have a BUG
1048 	 * here if trylock_page(newpage) fails, but would like to allow for
1049 	 * cases where there might be a race with the previous use of newpage.
1050 	 * This is much like races on refcount of oldpage: just don't BUG().
1051 	 */
1052 	if (unlikely(!trylock_page(newpage)))
1053 		goto out_unlock;
1054 
1055 	if (unlikely(!is_lru)) {
1056 		rc = move_to_new_page(newpage, page, mode);
1057 		goto out_unlock_both;
1058 	}
1059 
1060 	/*
1061 	 * Corner case handling:
1062 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1063 	 * and treated as swapcache but it has no rmap yet.
1064 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1065 	 * trigger a BUG.  So handle it here.
1066 	 * 2. An orphaned page (see truncate_complete_page) might have
1067 	 * fs-private metadata. The page can be picked up due to memory
1068 	 * offlining.  Everywhere else except page reclaim, the page is
1069 	 * invisible to the vm, so the page can not be migrated.  So try to
1070 	 * free the metadata, so the page can be freed.
1071 	 */
1072 	if (!page->mapping) {
1073 		VM_BUG_ON_PAGE(PageAnon(page), page);
1074 		if (page_has_private(page)) {
1075 			try_to_free_buffers(page);
1076 			goto out_unlock_both;
1077 		}
1078 	} else if (page_mapped(page)) {
1079 		/* Establish migration ptes */
1080 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1081 				page);
1082 		try_to_unmap(page,
1083 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1084 		page_was_mapped = 1;
1085 	}
1086 
1087 	if (!page_mapped(page))
1088 		rc = move_to_new_page(newpage, page, mode);
1089 
1090 	if (page_was_mapped)
1091 		remove_migration_ptes(page,
1092 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1093 
1094 out_unlock_both:
1095 	unlock_page(newpage);
1096 out_unlock:
1097 	/* Drop an anon_vma reference if we took one */
1098 	if (anon_vma)
1099 		put_anon_vma(anon_vma);
1100 	unlock_page(page);
1101 out:
1102 	/*
1103 	 * If migration is successful, decrease refcount of the newpage
1104 	 * which will not free the page because new page owner increased
1105 	 * refcounter. As well, if it is LRU page, add the page to LRU
1106 	 * list in here.
1107 	 */
1108 	if (rc == MIGRATEPAGE_SUCCESS) {
1109 		if (unlikely(__PageMovable(newpage)))
1110 			put_page(newpage);
1111 		else
1112 			putback_lru_page(newpage);
1113 	}
1114 
1115 	return rc;
1116 }
1117 
1118 /*
1119  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1120  * around it.
1121  */
1122 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1123 #define ICE_noinline noinline
1124 #else
1125 #define ICE_noinline
1126 #endif
1127 
1128 /*
1129  * Obtain the lock on page, remove all ptes and migrate the page
1130  * to the newly allocated page in newpage.
1131  */
1132 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1133 				   free_page_t put_new_page,
1134 				   unsigned long private, struct page *page,
1135 				   int force, enum migrate_mode mode,
1136 				   enum migrate_reason reason)
1137 {
1138 	int rc = MIGRATEPAGE_SUCCESS;
1139 	int *result = NULL;
1140 	struct page *newpage;
1141 
1142 	newpage = get_new_page(page, private, &result);
1143 	if (!newpage)
1144 		return -ENOMEM;
1145 
1146 	if (page_count(page) == 1) {
1147 		/* page was freed from under us. So we are done. */
1148 		ClearPageActive(page);
1149 		ClearPageUnevictable(page);
1150 		if (unlikely(__PageMovable(page))) {
1151 			lock_page(page);
1152 			if (!PageMovable(page))
1153 				__ClearPageIsolated(page);
1154 			unlock_page(page);
1155 		}
1156 		if (put_new_page)
1157 			put_new_page(newpage, private);
1158 		else
1159 			put_page(newpage);
1160 		goto out;
1161 	}
1162 
1163 	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1164 		lock_page(page);
1165 		rc = split_huge_page(page);
1166 		unlock_page(page);
1167 		if (rc)
1168 			goto out;
1169 	}
1170 
1171 	rc = __unmap_and_move(page, newpage, force, mode);
1172 	if (rc == MIGRATEPAGE_SUCCESS)
1173 		set_page_owner_migrate_reason(newpage, reason);
1174 
1175 out:
1176 	if (rc != -EAGAIN) {
1177 		/*
1178 		 * A page that has been migrated has all references
1179 		 * removed and will be freed. A page that has not been
1180 		 * migrated will have kepts its references and be
1181 		 * restored.
1182 		 */
1183 		list_del(&page->lru);
1184 
1185 		/*
1186 		 * Compaction can migrate also non-LRU pages which are
1187 		 * not accounted to NR_ISOLATED_*. They can be recognized
1188 		 * as __PageMovable
1189 		 */
1190 		if (likely(!__PageMovable(page)))
1191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1192 					page_is_file_cache(page), -hpage_nr_pages(page));
1193 	}
1194 
1195 	/*
1196 	 * If migration is successful, releases reference grabbed during
1197 	 * isolation. Otherwise, restore the page to right list unless
1198 	 * we want to retry.
1199 	 */
1200 	if (rc == MIGRATEPAGE_SUCCESS) {
1201 		put_page(page);
1202 		if (reason == MR_MEMORY_FAILURE) {
1203 			/*
1204 			 * Set PG_HWPoison on just freed page
1205 			 * intentionally. Although it's rather weird,
1206 			 * it's how HWPoison flag works at the moment.
1207 			 */
1208 			if (!test_set_page_hwpoison(page))
1209 				num_poisoned_pages_inc();
1210 		}
1211 	} else {
1212 		if (rc != -EAGAIN) {
1213 			if (likely(!__PageMovable(page))) {
1214 				putback_lru_page(page);
1215 				goto put_new;
1216 			}
1217 
1218 			lock_page(page);
1219 			if (PageMovable(page))
1220 				putback_movable_page(page);
1221 			else
1222 				__ClearPageIsolated(page);
1223 			unlock_page(page);
1224 			put_page(page);
1225 		}
1226 put_new:
1227 		if (put_new_page)
1228 			put_new_page(newpage, private);
1229 		else
1230 			put_page(newpage);
1231 	}
1232 
1233 	if (result) {
1234 		if (rc)
1235 			*result = rc;
1236 		else
1237 			*result = page_to_nid(newpage);
1238 	}
1239 	return rc;
1240 }
1241 
1242 /*
1243  * Counterpart of unmap_and_move_page() for hugepage migration.
1244  *
1245  * This function doesn't wait the completion of hugepage I/O
1246  * because there is no race between I/O and migration for hugepage.
1247  * Note that currently hugepage I/O occurs only in direct I/O
1248  * where no lock is held and PG_writeback is irrelevant,
1249  * and writeback status of all subpages are counted in the reference
1250  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251  * under direct I/O, the reference of the head page is 512 and a bit more.)
1252  * This means that when we try to migrate hugepage whose subpages are
1253  * doing direct I/O, some references remain after try_to_unmap() and
1254  * hugepage migration fails without data corruption.
1255  *
1256  * There is also no race when direct I/O is issued on the page under migration,
1257  * because then pte is replaced with migration swap entry and direct I/O code
1258  * will wait in the page fault for migration to complete.
1259  */
1260 static int unmap_and_move_huge_page(new_page_t get_new_page,
1261 				free_page_t put_new_page, unsigned long private,
1262 				struct page *hpage, int force,
1263 				enum migrate_mode mode, int reason)
1264 {
1265 	int rc = -EAGAIN;
1266 	int *result = NULL;
1267 	int page_was_mapped = 0;
1268 	struct page *new_hpage;
1269 	struct anon_vma *anon_vma = NULL;
1270 
1271 	/*
1272 	 * Movability of hugepages depends on architectures and hugepage size.
1273 	 * This check is necessary because some callers of hugepage migration
1274 	 * like soft offline and memory hotremove don't walk through page
1275 	 * tables or check whether the hugepage is pmd-based or not before
1276 	 * kicking migration.
1277 	 */
1278 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 		putback_active_hugepage(hpage);
1280 		return -ENOSYS;
1281 	}
1282 
1283 	new_hpage = get_new_page(hpage, private, &result);
1284 	if (!new_hpage)
1285 		return -ENOMEM;
1286 
1287 	if (!trylock_page(hpage)) {
1288 		if (!force)
1289 			goto out;
1290 		switch (mode) {
1291 		case MIGRATE_SYNC:
1292 		case MIGRATE_SYNC_NO_COPY:
1293 			break;
1294 		default:
1295 			goto out;
1296 		}
1297 		lock_page(hpage);
1298 	}
1299 
1300 	if (PageAnon(hpage))
1301 		anon_vma = page_get_anon_vma(hpage);
1302 
1303 	if (unlikely(!trylock_page(new_hpage)))
1304 		goto put_anon;
1305 
1306 	if (page_mapped(hpage)) {
1307 		try_to_unmap(hpage,
1308 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1309 		page_was_mapped = 1;
1310 	}
1311 
1312 	if (!page_mapped(hpage))
1313 		rc = move_to_new_page(new_hpage, hpage, mode);
1314 
1315 	if (page_was_mapped)
1316 		remove_migration_ptes(hpage,
1317 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1318 
1319 	unlock_page(new_hpage);
1320 
1321 put_anon:
1322 	if (anon_vma)
1323 		put_anon_vma(anon_vma);
1324 
1325 	if (rc == MIGRATEPAGE_SUCCESS) {
1326 		hugetlb_cgroup_migrate(hpage, new_hpage);
1327 		put_new_page = NULL;
1328 		set_page_owner_migrate_reason(new_hpage, reason);
1329 	}
1330 
1331 	unlock_page(hpage);
1332 out:
1333 	if (rc != -EAGAIN)
1334 		putback_active_hugepage(hpage);
1335 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 		num_poisoned_pages_inc();
1337 
1338 	/*
1339 	 * If migration was not successful and there's a freeing callback, use
1340 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1341 	 * isolation.
1342 	 */
1343 	if (put_new_page)
1344 		put_new_page(new_hpage, private);
1345 	else
1346 		putback_active_hugepage(new_hpage);
1347 
1348 	if (result) {
1349 		if (rc)
1350 			*result = rc;
1351 		else
1352 			*result = page_to_nid(new_hpage);
1353 	}
1354 	return rc;
1355 }
1356 
1357 /*
1358  * migrate_pages - migrate the pages specified in a list, to the free pages
1359  *		   supplied as the target for the page migration
1360  *
1361  * @from:		The list of pages to be migrated.
1362  * @get_new_page:	The function used to allocate free pages to be used
1363  *			as the target of the page migration.
1364  * @put_new_page:	The function used to free target pages if migration
1365  *			fails, or NULL if no special handling is necessary.
1366  * @private:		Private data to be passed on to get_new_page()
1367  * @mode:		The migration mode that specifies the constraints for
1368  *			page migration, if any.
1369  * @reason:		The reason for page migration.
1370  *
1371  * The function returns after 10 attempts or if no pages are movable any more
1372  * because the list has become empty or no retryable pages exist any more.
1373  * The caller should call putback_movable_pages() to return pages to the LRU
1374  * or free list only if ret != 0.
1375  *
1376  * Returns the number of pages that were not migrated, or an error code.
1377  */
1378 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1379 		free_page_t put_new_page, unsigned long private,
1380 		enum migrate_mode mode, int reason)
1381 {
1382 	int retry = 1;
1383 	int nr_failed = 0;
1384 	int nr_succeeded = 0;
1385 	int pass = 0;
1386 	struct page *page;
1387 	struct page *page2;
1388 	int swapwrite = current->flags & PF_SWAPWRITE;
1389 	int rc;
1390 
1391 	if (!swapwrite)
1392 		current->flags |= PF_SWAPWRITE;
1393 
1394 	for(pass = 0; pass < 10 && retry; pass++) {
1395 		retry = 0;
1396 
1397 		list_for_each_entry_safe(page, page2, from, lru) {
1398 			cond_resched();
1399 
1400 			if (PageHuge(page))
1401 				rc = unmap_and_move_huge_page(get_new_page,
1402 						put_new_page, private, page,
1403 						pass > 2, mode, reason);
1404 			else
1405 				rc = unmap_and_move(get_new_page, put_new_page,
1406 						private, page, pass > 2, mode,
1407 						reason);
1408 
1409 			switch(rc) {
1410 			case -ENOMEM:
1411 				nr_failed++;
1412 				goto out;
1413 			case -EAGAIN:
1414 				retry++;
1415 				break;
1416 			case MIGRATEPAGE_SUCCESS:
1417 				nr_succeeded++;
1418 				break;
1419 			default:
1420 				/*
1421 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 				 * unlike -EAGAIN case, the failed page is
1423 				 * removed from migration page list and not
1424 				 * retried in the next outer loop.
1425 				 */
1426 				nr_failed++;
1427 				break;
1428 			}
1429 		}
1430 	}
1431 	nr_failed += retry;
1432 	rc = nr_failed;
1433 out:
1434 	if (nr_succeeded)
1435 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436 	if (nr_failed)
1437 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1439 
1440 	if (!swapwrite)
1441 		current->flags &= ~PF_SWAPWRITE;
1442 
1443 	return rc;
1444 }
1445 
1446 #ifdef CONFIG_NUMA
1447 /*
1448  * Move a list of individual pages
1449  */
1450 struct page_to_node {
1451 	unsigned long addr;
1452 	struct page *page;
1453 	int node;
1454 	int status;
1455 };
1456 
1457 static struct page *new_page_node(struct page *p, unsigned long private,
1458 		int **result)
1459 {
1460 	struct page_to_node *pm = (struct page_to_node *)private;
1461 
1462 	while (pm->node != MAX_NUMNODES && pm->page != p)
1463 		pm++;
1464 
1465 	if (pm->node == MAX_NUMNODES)
1466 		return NULL;
1467 
1468 	*result = &pm->status;
1469 
1470 	if (PageHuge(p))
1471 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1472 					pm->node);
1473 	else if (thp_migration_supported() && PageTransHuge(p)) {
1474 		struct page *thp;
1475 
1476 		thp = alloc_pages_node(pm->node,
1477 			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1478 			HPAGE_PMD_ORDER);
1479 		if (!thp)
1480 			return NULL;
1481 		prep_transhuge_page(thp);
1482 		return thp;
1483 	} else
1484 		return __alloc_pages_node(pm->node,
1485 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1486 }
1487 
1488 /*
1489  * Move a set of pages as indicated in the pm array. The addr
1490  * field must be set to the virtual address of the page to be moved
1491  * and the node number must contain a valid target node.
1492  * The pm array ends with node = MAX_NUMNODES.
1493  */
1494 static int do_move_page_to_node_array(struct mm_struct *mm,
1495 				      struct page_to_node *pm,
1496 				      int migrate_all)
1497 {
1498 	int err;
1499 	struct page_to_node *pp;
1500 	LIST_HEAD(pagelist);
1501 
1502 	down_read(&mm->mmap_sem);
1503 
1504 	/*
1505 	 * Build a list of pages to migrate
1506 	 */
1507 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1508 		struct vm_area_struct *vma;
1509 		struct page *page;
1510 		struct page *head;
1511 		unsigned int follflags;
1512 
1513 		err = -EFAULT;
1514 		vma = find_vma(mm, pp->addr);
1515 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1516 			goto set_status;
1517 
1518 		/* FOLL_DUMP to ignore special (like zero) pages */
1519 		follflags = FOLL_GET | FOLL_DUMP;
1520 		if (!thp_migration_supported())
1521 			follflags |= FOLL_SPLIT;
1522 		page = follow_page(vma, pp->addr, follflags);
1523 
1524 		err = PTR_ERR(page);
1525 		if (IS_ERR(page))
1526 			goto set_status;
1527 
1528 		err = -ENOENT;
1529 		if (!page)
1530 			goto set_status;
1531 
1532 		err = page_to_nid(page);
1533 
1534 		if (err == pp->node)
1535 			/*
1536 			 * Node already in the right place
1537 			 */
1538 			goto put_and_set;
1539 
1540 		err = -EACCES;
1541 		if (page_mapcount(page) > 1 &&
1542 				!migrate_all)
1543 			goto put_and_set;
1544 
1545 		if (PageHuge(page)) {
1546 			if (PageHead(page)) {
1547 				isolate_huge_page(page, &pagelist);
1548 				err = 0;
1549 				pp->page = page;
1550 			}
1551 			goto put_and_set;
1552 		}
1553 
1554 		pp->page = compound_head(page);
1555 		head = compound_head(page);
1556 		err = isolate_lru_page(head);
1557 		if (!err) {
1558 			list_add_tail(&head->lru, &pagelist);
1559 			mod_node_page_state(page_pgdat(head),
1560 				NR_ISOLATED_ANON + page_is_file_cache(head),
1561 				hpage_nr_pages(head));
1562 		}
1563 put_and_set:
1564 		/*
1565 		 * Either remove the duplicate refcount from
1566 		 * isolate_lru_page() or drop the page ref if it was
1567 		 * not isolated.
1568 		 */
1569 		put_page(page);
1570 set_status:
1571 		pp->status = err;
1572 	}
1573 
1574 	err = 0;
1575 	if (!list_empty(&pagelist)) {
1576 		err = migrate_pages(&pagelist, new_page_node, NULL,
1577 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1578 		if (err)
1579 			putback_movable_pages(&pagelist);
1580 	}
1581 
1582 	up_read(&mm->mmap_sem);
1583 	return err;
1584 }
1585 
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 			 unsigned long nr_pages,
1592 			 const void __user * __user *pages,
1593 			 const int __user *nodes,
1594 			 int __user *status, int flags)
1595 {
1596 	struct page_to_node *pm;
1597 	unsigned long chunk_nr_pages;
1598 	unsigned long chunk_start;
1599 	int err;
1600 
1601 	err = -ENOMEM;
1602 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1603 	if (!pm)
1604 		goto out;
1605 
1606 	migrate_prep();
1607 
1608 	/*
1609 	 * Store a chunk of page_to_node array in a page,
1610 	 * but keep the last one as a marker
1611 	 */
1612 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1613 
1614 	for (chunk_start = 0;
1615 	     chunk_start < nr_pages;
1616 	     chunk_start += chunk_nr_pages) {
1617 		int j;
1618 
1619 		if (chunk_start + chunk_nr_pages > nr_pages)
1620 			chunk_nr_pages = nr_pages - chunk_start;
1621 
1622 		/* fill the chunk pm with addrs and nodes from user-space */
1623 		for (j = 0; j < chunk_nr_pages; j++) {
1624 			const void __user *p;
1625 			int node;
1626 
1627 			err = -EFAULT;
1628 			if (get_user(p, pages + j + chunk_start))
1629 				goto out_pm;
1630 			pm[j].addr = (unsigned long) p;
1631 
1632 			if (get_user(node, nodes + j + chunk_start))
1633 				goto out_pm;
1634 
1635 			err = -ENODEV;
1636 			if (node < 0 || node >= MAX_NUMNODES)
1637 				goto out_pm;
1638 
1639 			if (!node_state(node, N_MEMORY))
1640 				goto out_pm;
1641 
1642 			err = -EACCES;
1643 			if (!node_isset(node, task_nodes))
1644 				goto out_pm;
1645 
1646 			pm[j].node = node;
1647 		}
1648 
1649 		/* End marker for this chunk */
1650 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1651 
1652 		/* Migrate this chunk */
1653 		err = do_move_page_to_node_array(mm, pm,
1654 						 flags & MPOL_MF_MOVE_ALL);
1655 		if (err < 0)
1656 			goto out_pm;
1657 
1658 		/* Return status information */
1659 		for (j = 0; j < chunk_nr_pages; j++)
1660 			if (put_user(pm[j].status, status + j + chunk_start)) {
1661 				err = -EFAULT;
1662 				goto out_pm;
1663 			}
1664 	}
1665 	err = 0;
1666 
1667 out_pm:
1668 	free_page((unsigned long)pm);
1669 out:
1670 	return err;
1671 }
1672 
1673 /*
1674  * Determine the nodes of an array of pages and store it in an array of status.
1675  */
1676 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1677 				const void __user **pages, int *status)
1678 {
1679 	unsigned long i;
1680 
1681 	down_read(&mm->mmap_sem);
1682 
1683 	for (i = 0; i < nr_pages; i++) {
1684 		unsigned long addr = (unsigned long)(*pages);
1685 		struct vm_area_struct *vma;
1686 		struct page *page;
1687 		int err = -EFAULT;
1688 
1689 		vma = find_vma(mm, addr);
1690 		if (!vma || addr < vma->vm_start)
1691 			goto set_status;
1692 
1693 		/* FOLL_DUMP to ignore special (like zero) pages */
1694 		page = follow_page(vma, addr, FOLL_DUMP);
1695 
1696 		err = PTR_ERR(page);
1697 		if (IS_ERR(page))
1698 			goto set_status;
1699 
1700 		err = page ? page_to_nid(page) : -ENOENT;
1701 set_status:
1702 		*status = err;
1703 
1704 		pages++;
1705 		status++;
1706 	}
1707 
1708 	up_read(&mm->mmap_sem);
1709 }
1710 
1711 /*
1712  * Determine the nodes of a user array of pages and store it in
1713  * a user array of status.
1714  */
1715 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1716 			 const void __user * __user *pages,
1717 			 int __user *status)
1718 {
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1721 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1722 
1723 	while (nr_pages) {
1724 		unsigned long chunk_nr;
1725 
1726 		chunk_nr = nr_pages;
1727 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1728 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1729 
1730 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1731 			break;
1732 
1733 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1734 
1735 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1736 			break;
1737 
1738 		pages += chunk_nr;
1739 		status += chunk_nr;
1740 		nr_pages -= chunk_nr;
1741 	}
1742 	return nr_pages ? -EFAULT : 0;
1743 }
1744 
1745 /*
1746  * Move a list of pages in the address space of the currently executing
1747  * process.
1748  */
1749 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1750 		const void __user * __user *, pages,
1751 		const int __user *, nodes,
1752 		int __user *, status, int, flags)
1753 {
1754 	struct task_struct *task;
1755 	struct mm_struct *mm;
1756 	int err;
1757 	nodemask_t task_nodes;
1758 
1759 	/* Check flags */
1760 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1761 		return -EINVAL;
1762 
1763 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1764 		return -EPERM;
1765 
1766 	/* Find the mm_struct */
1767 	rcu_read_lock();
1768 	task = pid ? find_task_by_vpid(pid) : current;
1769 	if (!task) {
1770 		rcu_read_unlock();
1771 		return -ESRCH;
1772 	}
1773 	get_task_struct(task);
1774 
1775 	/*
1776 	 * Check if this process has the right to modify the specified
1777 	 * process. Use the regular "ptrace_may_access()" checks.
1778 	 */
1779 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1780 		rcu_read_unlock();
1781 		err = -EPERM;
1782 		goto out;
1783 	}
1784 	rcu_read_unlock();
1785 
1786  	err = security_task_movememory(task);
1787  	if (err)
1788 		goto out;
1789 
1790 	task_nodes = cpuset_mems_allowed(task);
1791 	mm = get_task_mm(task);
1792 	put_task_struct(task);
1793 
1794 	if (!mm)
1795 		return -EINVAL;
1796 
1797 	if (nodes)
1798 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1799 				    nodes, status, flags);
1800 	else
1801 		err = do_pages_stat(mm, nr_pages, pages, status);
1802 
1803 	mmput(mm);
1804 	return err;
1805 
1806 out:
1807 	put_task_struct(task);
1808 	return err;
1809 }
1810 
1811 #ifdef CONFIG_NUMA_BALANCING
1812 /*
1813  * Returns true if this is a safe migration target node for misplaced NUMA
1814  * pages. Currently it only checks the watermarks which crude
1815  */
1816 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1817 				   unsigned long nr_migrate_pages)
1818 {
1819 	int z;
1820 
1821 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1822 		struct zone *zone = pgdat->node_zones + z;
1823 
1824 		if (!populated_zone(zone))
1825 			continue;
1826 
1827 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1828 		if (!zone_watermark_ok(zone, 0,
1829 				       high_wmark_pages(zone) +
1830 				       nr_migrate_pages,
1831 				       0, 0))
1832 			continue;
1833 		return true;
1834 	}
1835 	return false;
1836 }
1837 
1838 static struct page *alloc_misplaced_dst_page(struct page *page,
1839 					   unsigned long data,
1840 					   int **result)
1841 {
1842 	int nid = (int) data;
1843 	struct page *newpage;
1844 
1845 	newpage = __alloc_pages_node(nid,
1846 					 (GFP_HIGHUSER_MOVABLE |
1847 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1848 					  __GFP_NORETRY | __GFP_NOWARN) &
1849 					 ~__GFP_RECLAIM, 0);
1850 
1851 	return newpage;
1852 }
1853 
1854 /*
1855  * page migration rate limiting control.
1856  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1857  * window of time. Default here says do not migrate more than 1280M per second.
1858  */
1859 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1860 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1861 
1862 /* Returns true if the node is migrate rate-limited after the update */
1863 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1864 					unsigned long nr_pages)
1865 {
1866 	/*
1867 	 * Rate-limit the amount of data that is being migrated to a node.
1868 	 * Optimal placement is no good if the memory bus is saturated and
1869 	 * all the time is being spent migrating!
1870 	 */
1871 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1872 		spin_lock(&pgdat->numabalancing_migrate_lock);
1873 		pgdat->numabalancing_migrate_nr_pages = 0;
1874 		pgdat->numabalancing_migrate_next_window = jiffies +
1875 			msecs_to_jiffies(migrate_interval_millisecs);
1876 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1877 	}
1878 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1879 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1880 								nr_pages);
1881 		return true;
1882 	}
1883 
1884 	/*
1885 	 * This is an unlocked non-atomic update so errors are possible.
1886 	 * The consequences are failing to migrate when we potentiall should
1887 	 * have which is not severe enough to warrant locking. If it is ever
1888 	 * a problem, it can be converted to a per-cpu counter.
1889 	 */
1890 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1891 	return false;
1892 }
1893 
1894 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1895 {
1896 	int page_lru;
1897 
1898 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1899 
1900 	/* Avoid migrating to a node that is nearly full */
1901 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1902 		return 0;
1903 
1904 	if (isolate_lru_page(page))
1905 		return 0;
1906 
1907 	/*
1908 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1909 	 * check on page_count(), so we must do it here, now that the page
1910 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1911 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1912 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1913 	 */
1914 	if (PageTransHuge(page) && page_count(page) != 3) {
1915 		putback_lru_page(page);
1916 		return 0;
1917 	}
1918 
1919 	page_lru = page_is_file_cache(page);
1920 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1921 				hpage_nr_pages(page));
1922 
1923 	/*
1924 	 * Isolating the page has taken another reference, so the
1925 	 * caller's reference can be safely dropped without the page
1926 	 * disappearing underneath us during migration.
1927 	 */
1928 	put_page(page);
1929 	return 1;
1930 }
1931 
1932 bool pmd_trans_migrating(pmd_t pmd)
1933 {
1934 	struct page *page = pmd_page(pmd);
1935 	return PageLocked(page);
1936 }
1937 
1938 /*
1939  * Attempt to migrate a misplaced page to the specified destination
1940  * node. Caller is expected to have an elevated reference count on
1941  * the page that will be dropped by this function before returning.
1942  */
1943 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1944 			   int node)
1945 {
1946 	pg_data_t *pgdat = NODE_DATA(node);
1947 	int isolated;
1948 	int nr_remaining;
1949 	LIST_HEAD(migratepages);
1950 
1951 	/*
1952 	 * Don't migrate file pages that are mapped in multiple processes
1953 	 * with execute permissions as they are probably shared libraries.
1954 	 */
1955 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1956 	    (vma->vm_flags & VM_EXEC))
1957 		goto out;
1958 
1959 	/*
1960 	 * Rate-limit the amount of data that is being migrated to a node.
1961 	 * Optimal placement is no good if the memory bus is saturated and
1962 	 * all the time is being spent migrating!
1963 	 */
1964 	if (numamigrate_update_ratelimit(pgdat, 1))
1965 		goto out;
1966 
1967 	isolated = numamigrate_isolate_page(pgdat, page);
1968 	if (!isolated)
1969 		goto out;
1970 
1971 	list_add(&page->lru, &migratepages);
1972 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1973 				     NULL, node, MIGRATE_ASYNC,
1974 				     MR_NUMA_MISPLACED);
1975 	if (nr_remaining) {
1976 		if (!list_empty(&migratepages)) {
1977 			list_del(&page->lru);
1978 			dec_node_page_state(page, NR_ISOLATED_ANON +
1979 					page_is_file_cache(page));
1980 			putback_lru_page(page);
1981 		}
1982 		isolated = 0;
1983 	} else
1984 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1985 	BUG_ON(!list_empty(&migratepages));
1986 	return isolated;
1987 
1988 out:
1989 	put_page(page);
1990 	return 0;
1991 }
1992 #endif /* CONFIG_NUMA_BALANCING */
1993 
1994 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1995 /*
1996  * Migrates a THP to a given target node. page must be locked and is unlocked
1997  * before returning.
1998  */
1999 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2000 				struct vm_area_struct *vma,
2001 				pmd_t *pmd, pmd_t entry,
2002 				unsigned long address,
2003 				struct page *page, int node)
2004 {
2005 	spinlock_t *ptl;
2006 	pg_data_t *pgdat = NODE_DATA(node);
2007 	int isolated = 0;
2008 	struct page *new_page = NULL;
2009 	int page_lru = page_is_file_cache(page);
2010 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2011 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2012 
2013 	/*
2014 	 * Rate-limit the amount of data that is being migrated to a node.
2015 	 * Optimal placement is no good if the memory bus is saturated and
2016 	 * all the time is being spent migrating!
2017 	 */
2018 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2019 		goto out_dropref;
2020 
2021 	new_page = alloc_pages_node(node,
2022 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2023 		HPAGE_PMD_ORDER);
2024 	if (!new_page)
2025 		goto out_fail;
2026 	prep_transhuge_page(new_page);
2027 
2028 	isolated = numamigrate_isolate_page(pgdat, page);
2029 	if (!isolated) {
2030 		put_page(new_page);
2031 		goto out_fail;
2032 	}
2033 
2034 	/* Prepare a page as a migration target */
2035 	__SetPageLocked(new_page);
2036 	if (PageSwapBacked(page))
2037 		__SetPageSwapBacked(new_page);
2038 
2039 	/* anon mapping, we can simply copy page->mapping to the new page: */
2040 	new_page->mapping = page->mapping;
2041 	new_page->index = page->index;
2042 	migrate_page_copy(new_page, page);
2043 	WARN_ON(PageLRU(new_page));
2044 
2045 	/* Recheck the target PMD */
2046 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2047 	ptl = pmd_lock(mm, pmd);
2048 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2049 		spin_unlock(ptl);
2050 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2051 
2052 		/* Reverse changes made by migrate_page_copy() */
2053 		if (TestClearPageActive(new_page))
2054 			SetPageActive(page);
2055 		if (TestClearPageUnevictable(new_page))
2056 			SetPageUnevictable(page);
2057 
2058 		unlock_page(new_page);
2059 		put_page(new_page);		/* Free it */
2060 
2061 		/* Retake the callers reference and putback on LRU */
2062 		get_page(page);
2063 		putback_lru_page(page);
2064 		mod_node_page_state(page_pgdat(page),
2065 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2066 
2067 		goto out_unlock;
2068 	}
2069 
2070 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2071 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2072 
2073 	/*
2074 	 * Clear the old entry under pagetable lock and establish the new PTE.
2075 	 * Any parallel GUP will either observe the old page blocking on the
2076 	 * page lock, block on the page table lock or observe the new page.
2077 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2078 	 * guarantee the copy is visible before the pagetable update.
2079 	 */
2080 	flush_cache_range(vma, mmun_start, mmun_end);
2081 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2082 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2083 	set_pmd_at(mm, mmun_start, pmd, entry);
2084 	update_mmu_cache_pmd(vma, address, &entry);
2085 
2086 	page_ref_unfreeze(page, 2);
2087 	mlock_migrate_page(new_page, page);
2088 	page_remove_rmap(page, true);
2089 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2090 
2091 	spin_unlock(ptl);
2092 	/*
2093 	 * No need to double call mmu_notifier->invalidate_range() callback as
2094 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2095 	 */
2096 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2097 
2098 	/* Take an "isolate" reference and put new page on the LRU. */
2099 	get_page(new_page);
2100 	putback_lru_page(new_page);
2101 
2102 	unlock_page(new_page);
2103 	unlock_page(page);
2104 	put_page(page);			/* Drop the rmap reference */
2105 	put_page(page);			/* Drop the LRU isolation reference */
2106 
2107 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2108 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2109 
2110 	mod_node_page_state(page_pgdat(page),
2111 			NR_ISOLATED_ANON + page_lru,
2112 			-HPAGE_PMD_NR);
2113 	return isolated;
2114 
2115 out_fail:
2116 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2117 out_dropref:
2118 	ptl = pmd_lock(mm, pmd);
2119 	if (pmd_same(*pmd, entry)) {
2120 		entry = pmd_modify(entry, vma->vm_page_prot);
2121 		set_pmd_at(mm, mmun_start, pmd, entry);
2122 		update_mmu_cache_pmd(vma, address, &entry);
2123 	}
2124 	spin_unlock(ptl);
2125 
2126 out_unlock:
2127 	unlock_page(page);
2128 	put_page(page);
2129 	return 0;
2130 }
2131 #endif /* CONFIG_NUMA_BALANCING */
2132 
2133 #endif /* CONFIG_NUMA */
2134 
2135 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2136 struct migrate_vma {
2137 	struct vm_area_struct	*vma;
2138 	unsigned long		*dst;
2139 	unsigned long		*src;
2140 	unsigned long		cpages;
2141 	unsigned long		npages;
2142 	unsigned long		start;
2143 	unsigned long		end;
2144 };
2145 
2146 static int migrate_vma_collect_hole(unsigned long start,
2147 				    unsigned long end,
2148 				    struct mm_walk *walk)
2149 {
2150 	struct migrate_vma *migrate = walk->private;
2151 	unsigned long addr;
2152 
2153 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2154 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2155 		migrate->dst[migrate->npages] = 0;
2156 		migrate->npages++;
2157 		migrate->cpages++;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int migrate_vma_collect_skip(unsigned long start,
2164 				    unsigned long end,
2165 				    struct mm_walk *walk)
2166 {
2167 	struct migrate_vma *migrate = walk->private;
2168 	unsigned long addr;
2169 
2170 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2171 		migrate->dst[migrate->npages] = 0;
2172 		migrate->src[migrate->npages++] = 0;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2179 				   unsigned long start,
2180 				   unsigned long end,
2181 				   struct mm_walk *walk)
2182 {
2183 	struct migrate_vma *migrate = walk->private;
2184 	struct vm_area_struct *vma = walk->vma;
2185 	struct mm_struct *mm = vma->vm_mm;
2186 	unsigned long addr = start, unmapped = 0;
2187 	spinlock_t *ptl;
2188 	pte_t *ptep;
2189 
2190 again:
2191 	if (pmd_none(*pmdp))
2192 		return migrate_vma_collect_hole(start, end, walk);
2193 
2194 	if (pmd_trans_huge(*pmdp)) {
2195 		struct page *page;
2196 
2197 		ptl = pmd_lock(mm, pmdp);
2198 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2199 			spin_unlock(ptl);
2200 			goto again;
2201 		}
2202 
2203 		page = pmd_page(*pmdp);
2204 		if (is_huge_zero_page(page)) {
2205 			spin_unlock(ptl);
2206 			split_huge_pmd(vma, pmdp, addr);
2207 			if (pmd_trans_unstable(pmdp))
2208 				return migrate_vma_collect_skip(start, end,
2209 								walk);
2210 		} else {
2211 			int ret;
2212 
2213 			get_page(page);
2214 			spin_unlock(ptl);
2215 			if (unlikely(!trylock_page(page)))
2216 				return migrate_vma_collect_skip(start, end,
2217 								walk);
2218 			ret = split_huge_page(page);
2219 			unlock_page(page);
2220 			put_page(page);
2221 			if (ret)
2222 				return migrate_vma_collect_skip(start, end,
2223 								walk);
2224 			if (pmd_none(*pmdp))
2225 				return migrate_vma_collect_hole(start, end,
2226 								walk);
2227 		}
2228 	}
2229 
2230 	if (unlikely(pmd_bad(*pmdp)))
2231 		return migrate_vma_collect_skip(start, end, walk);
2232 
2233 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2234 	arch_enter_lazy_mmu_mode();
2235 
2236 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2237 		unsigned long mpfn, pfn;
2238 		struct page *page;
2239 		swp_entry_t entry;
2240 		pte_t pte;
2241 
2242 		pte = *ptep;
2243 		pfn = pte_pfn(pte);
2244 
2245 		if (pte_none(pte)) {
2246 			mpfn = MIGRATE_PFN_MIGRATE;
2247 			migrate->cpages++;
2248 			pfn = 0;
2249 			goto next;
2250 		}
2251 
2252 		if (!pte_present(pte)) {
2253 			mpfn = pfn = 0;
2254 
2255 			/*
2256 			 * Only care about unaddressable device page special
2257 			 * page table entry. Other special swap entries are not
2258 			 * migratable, and we ignore regular swapped page.
2259 			 */
2260 			entry = pte_to_swp_entry(pte);
2261 			if (!is_device_private_entry(entry))
2262 				goto next;
2263 
2264 			page = device_private_entry_to_page(entry);
2265 			mpfn = migrate_pfn(page_to_pfn(page))|
2266 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2267 			if (is_write_device_private_entry(entry))
2268 				mpfn |= MIGRATE_PFN_WRITE;
2269 		} else {
2270 			if (is_zero_pfn(pfn)) {
2271 				mpfn = MIGRATE_PFN_MIGRATE;
2272 				migrate->cpages++;
2273 				pfn = 0;
2274 				goto next;
2275 			}
2276 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2277 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2278 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2279 		}
2280 
2281 		/* FIXME support THP */
2282 		if (!page || !page->mapping || PageTransCompound(page)) {
2283 			mpfn = pfn = 0;
2284 			goto next;
2285 		}
2286 		pfn = page_to_pfn(page);
2287 
2288 		/*
2289 		 * By getting a reference on the page we pin it and that blocks
2290 		 * any kind of migration. Side effect is that it "freezes" the
2291 		 * pte.
2292 		 *
2293 		 * We drop this reference after isolating the page from the lru
2294 		 * for non device page (device page are not on the lru and thus
2295 		 * can't be dropped from it).
2296 		 */
2297 		get_page(page);
2298 		migrate->cpages++;
2299 
2300 		/*
2301 		 * Optimize for the common case where page is only mapped once
2302 		 * in one process. If we can lock the page, then we can safely
2303 		 * set up a special migration page table entry now.
2304 		 */
2305 		if (trylock_page(page)) {
2306 			pte_t swp_pte;
2307 
2308 			mpfn |= MIGRATE_PFN_LOCKED;
2309 			ptep_get_and_clear(mm, addr, ptep);
2310 
2311 			/* Setup special migration page table entry */
2312 			entry = make_migration_entry(page, pte_write(pte));
2313 			swp_pte = swp_entry_to_pte(entry);
2314 			if (pte_soft_dirty(pte))
2315 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2316 			set_pte_at(mm, addr, ptep, swp_pte);
2317 
2318 			/*
2319 			 * This is like regular unmap: we remove the rmap and
2320 			 * drop page refcount. Page won't be freed, as we took
2321 			 * a reference just above.
2322 			 */
2323 			page_remove_rmap(page, false);
2324 			put_page(page);
2325 
2326 			if (pte_present(pte))
2327 				unmapped++;
2328 		}
2329 
2330 next:
2331 		migrate->dst[migrate->npages] = 0;
2332 		migrate->src[migrate->npages++] = mpfn;
2333 	}
2334 	arch_leave_lazy_mmu_mode();
2335 	pte_unmap_unlock(ptep - 1, ptl);
2336 
2337 	/* Only flush the TLB if we actually modified any entries */
2338 	if (unmapped)
2339 		flush_tlb_range(walk->vma, start, end);
2340 
2341 	return 0;
2342 }
2343 
2344 /*
2345  * migrate_vma_collect() - collect pages over a range of virtual addresses
2346  * @migrate: migrate struct containing all migration information
2347  *
2348  * This will walk the CPU page table. For each virtual address backed by a
2349  * valid page, it updates the src array and takes a reference on the page, in
2350  * order to pin the page until we lock it and unmap it.
2351  */
2352 static void migrate_vma_collect(struct migrate_vma *migrate)
2353 {
2354 	struct mm_walk mm_walk;
2355 
2356 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2357 	mm_walk.pte_entry = NULL;
2358 	mm_walk.pte_hole = migrate_vma_collect_hole;
2359 	mm_walk.hugetlb_entry = NULL;
2360 	mm_walk.test_walk = NULL;
2361 	mm_walk.vma = migrate->vma;
2362 	mm_walk.mm = migrate->vma->vm_mm;
2363 	mm_walk.private = migrate;
2364 
2365 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2366 					    migrate->start,
2367 					    migrate->end);
2368 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2369 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2370 					  migrate->start,
2371 					  migrate->end);
2372 
2373 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2374 }
2375 
2376 /*
2377  * migrate_vma_check_page() - check if page is pinned or not
2378  * @page: struct page to check
2379  *
2380  * Pinned pages cannot be migrated. This is the same test as in
2381  * migrate_page_move_mapping(), except that here we allow migration of a
2382  * ZONE_DEVICE page.
2383  */
2384 static bool migrate_vma_check_page(struct page *page)
2385 {
2386 	/*
2387 	 * One extra ref because caller holds an extra reference, either from
2388 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2389 	 * a device page.
2390 	 */
2391 	int extra = 1;
2392 
2393 	/*
2394 	 * FIXME support THP (transparent huge page), it is bit more complex to
2395 	 * check them than regular pages, because they can be mapped with a pmd
2396 	 * or with a pte (split pte mapping).
2397 	 */
2398 	if (PageCompound(page))
2399 		return false;
2400 
2401 	/* Page from ZONE_DEVICE have one extra reference */
2402 	if (is_zone_device_page(page)) {
2403 		/*
2404 		 * Private page can never be pin as they have no valid pte and
2405 		 * GUP will fail for those. Yet if there is a pending migration
2406 		 * a thread might try to wait on the pte migration entry and
2407 		 * will bump the page reference count. Sadly there is no way to
2408 		 * differentiate a regular pin from migration wait. Hence to
2409 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2410 		 * infinite loop (one stoping migration because the other is
2411 		 * waiting on pte migration entry). We always return true here.
2412 		 *
2413 		 * FIXME proper solution is to rework migration_entry_wait() so
2414 		 * it does not need to take a reference on page.
2415 		 */
2416 		if (is_device_private_page(page))
2417 			return true;
2418 
2419 		/*
2420 		 * Only allow device public page to be migrated and account for
2421 		 * the extra reference count imply by ZONE_DEVICE pages.
2422 		 */
2423 		if (!is_device_public_page(page))
2424 			return false;
2425 		extra++;
2426 	}
2427 
2428 	/* For file back page */
2429 	if (page_mapping(page))
2430 		extra += 1 + page_has_private(page);
2431 
2432 	if ((page_count(page) - extra) > page_mapcount(page))
2433 		return false;
2434 
2435 	return true;
2436 }
2437 
2438 /*
2439  * migrate_vma_prepare() - lock pages and isolate them from the lru
2440  * @migrate: migrate struct containing all migration information
2441  *
2442  * This locks pages that have been collected by migrate_vma_collect(). Once each
2443  * page is locked it is isolated from the lru (for non-device pages). Finally,
2444  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2445  * migrated by concurrent kernel threads.
2446  */
2447 static void migrate_vma_prepare(struct migrate_vma *migrate)
2448 {
2449 	const unsigned long npages = migrate->npages;
2450 	const unsigned long start = migrate->start;
2451 	unsigned long addr, i, restore = 0;
2452 	bool allow_drain = true;
2453 
2454 	lru_add_drain();
2455 
2456 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2457 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2458 		bool remap = true;
2459 
2460 		if (!page)
2461 			continue;
2462 
2463 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2464 			/*
2465 			 * Because we are migrating several pages there can be
2466 			 * a deadlock between 2 concurrent migration where each
2467 			 * are waiting on each other page lock.
2468 			 *
2469 			 * Make migrate_vma() a best effort thing and backoff
2470 			 * for any page we can not lock right away.
2471 			 */
2472 			if (!trylock_page(page)) {
2473 				migrate->src[i] = 0;
2474 				migrate->cpages--;
2475 				put_page(page);
2476 				continue;
2477 			}
2478 			remap = false;
2479 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2480 		}
2481 
2482 		/* ZONE_DEVICE pages are not on LRU */
2483 		if (!is_zone_device_page(page)) {
2484 			if (!PageLRU(page) && allow_drain) {
2485 				/* Drain CPU's pagevec */
2486 				lru_add_drain_all();
2487 				allow_drain = false;
2488 			}
2489 
2490 			if (isolate_lru_page(page)) {
2491 				if (remap) {
2492 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2493 					migrate->cpages--;
2494 					restore++;
2495 				} else {
2496 					migrate->src[i] = 0;
2497 					unlock_page(page);
2498 					migrate->cpages--;
2499 					put_page(page);
2500 				}
2501 				continue;
2502 			}
2503 
2504 			/* Drop the reference we took in collect */
2505 			put_page(page);
2506 		}
2507 
2508 		if (!migrate_vma_check_page(page)) {
2509 			if (remap) {
2510 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 				migrate->cpages--;
2512 				restore++;
2513 
2514 				if (!is_zone_device_page(page)) {
2515 					get_page(page);
2516 					putback_lru_page(page);
2517 				}
2518 			} else {
2519 				migrate->src[i] = 0;
2520 				unlock_page(page);
2521 				migrate->cpages--;
2522 
2523 				if (!is_zone_device_page(page))
2524 					putback_lru_page(page);
2525 				else
2526 					put_page(page);
2527 			}
2528 		}
2529 	}
2530 
2531 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2532 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2533 
2534 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2535 			continue;
2536 
2537 		remove_migration_pte(page, migrate->vma, addr, page);
2538 
2539 		migrate->src[i] = 0;
2540 		unlock_page(page);
2541 		put_page(page);
2542 		restore--;
2543 	}
2544 }
2545 
2546 /*
2547  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2548  * @migrate: migrate struct containing all migration information
2549  *
2550  * Replace page mapping (CPU page table pte) with a special migration pte entry
2551  * and check again if it has been pinned. Pinned pages are restored because we
2552  * cannot migrate them.
2553  *
2554  * This is the last step before we call the device driver callback to allocate
2555  * destination memory and copy contents of original page over to new page.
2556  */
2557 static void migrate_vma_unmap(struct migrate_vma *migrate)
2558 {
2559 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2560 	const unsigned long npages = migrate->npages;
2561 	const unsigned long start = migrate->start;
2562 	unsigned long addr, i, restore = 0;
2563 
2564 	for (i = 0; i < npages; i++) {
2565 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566 
2567 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568 			continue;
2569 
2570 		if (page_mapped(page)) {
2571 			try_to_unmap(page, flags);
2572 			if (page_mapped(page))
2573 				goto restore;
2574 		}
2575 
2576 		if (migrate_vma_check_page(page))
2577 			continue;
2578 
2579 restore:
2580 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2581 		migrate->cpages--;
2582 		restore++;
2583 	}
2584 
2585 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2586 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2587 
2588 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2589 			continue;
2590 
2591 		remove_migration_ptes(page, page, false);
2592 
2593 		migrate->src[i] = 0;
2594 		unlock_page(page);
2595 		restore--;
2596 
2597 		if (is_zone_device_page(page))
2598 			put_page(page);
2599 		else
2600 			putback_lru_page(page);
2601 	}
2602 }
2603 
2604 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2605 				    unsigned long addr,
2606 				    struct page *page,
2607 				    unsigned long *src,
2608 				    unsigned long *dst)
2609 {
2610 	struct vm_area_struct *vma = migrate->vma;
2611 	struct mm_struct *mm = vma->vm_mm;
2612 	struct mem_cgroup *memcg;
2613 	bool flush = false;
2614 	spinlock_t *ptl;
2615 	pte_t entry;
2616 	pgd_t *pgdp;
2617 	p4d_t *p4dp;
2618 	pud_t *pudp;
2619 	pmd_t *pmdp;
2620 	pte_t *ptep;
2621 
2622 	/* Only allow populating anonymous memory */
2623 	if (!vma_is_anonymous(vma))
2624 		goto abort;
2625 
2626 	pgdp = pgd_offset(mm, addr);
2627 	p4dp = p4d_alloc(mm, pgdp, addr);
2628 	if (!p4dp)
2629 		goto abort;
2630 	pudp = pud_alloc(mm, p4dp, addr);
2631 	if (!pudp)
2632 		goto abort;
2633 	pmdp = pmd_alloc(mm, pudp, addr);
2634 	if (!pmdp)
2635 		goto abort;
2636 
2637 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2638 		goto abort;
2639 
2640 	/*
2641 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2642 	 * pte_offset_map() on pmds where a huge pmd might be created
2643 	 * from a different thread.
2644 	 *
2645 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2646 	 * parallel threads are excluded by other means.
2647 	 *
2648 	 * Here we only have down_read(mmap_sem).
2649 	 */
2650 	if (pte_alloc(mm, pmdp, addr))
2651 		goto abort;
2652 
2653 	/* See the comment in pte_alloc_one_map() */
2654 	if (unlikely(pmd_trans_unstable(pmdp)))
2655 		goto abort;
2656 
2657 	if (unlikely(anon_vma_prepare(vma)))
2658 		goto abort;
2659 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2660 		goto abort;
2661 
2662 	/*
2663 	 * The memory barrier inside __SetPageUptodate makes sure that
2664 	 * preceding stores to the page contents become visible before
2665 	 * the set_pte_at() write.
2666 	 */
2667 	__SetPageUptodate(page);
2668 
2669 	if (is_zone_device_page(page)) {
2670 		if (is_device_private_page(page)) {
2671 			swp_entry_t swp_entry;
2672 
2673 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2674 			entry = swp_entry_to_pte(swp_entry);
2675 		} else if (is_device_public_page(page)) {
2676 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2677 			if (vma->vm_flags & VM_WRITE)
2678 				entry = pte_mkwrite(pte_mkdirty(entry));
2679 			entry = pte_mkdevmap(entry);
2680 		}
2681 	} else {
2682 		entry = mk_pte(page, vma->vm_page_prot);
2683 		if (vma->vm_flags & VM_WRITE)
2684 			entry = pte_mkwrite(pte_mkdirty(entry));
2685 	}
2686 
2687 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2688 
2689 	if (pte_present(*ptep)) {
2690 		unsigned long pfn = pte_pfn(*ptep);
2691 
2692 		if (!is_zero_pfn(pfn)) {
2693 			pte_unmap_unlock(ptep, ptl);
2694 			mem_cgroup_cancel_charge(page, memcg, false);
2695 			goto abort;
2696 		}
2697 		flush = true;
2698 	} else if (!pte_none(*ptep)) {
2699 		pte_unmap_unlock(ptep, ptl);
2700 		mem_cgroup_cancel_charge(page, memcg, false);
2701 		goto abort;
2702 	}
2703 
2704 	/*
2705 	 * Check for usefaultfd but do not deliver the fault. Instead,
2706 	 * just back off.
2707 	 */
2708 	if (userfaultfd_missing(vma)) {
2709 		pte_unmap_unlock(ptep, ptl);
2710 		mem_cgroup_cancel_charge(page, memcg, false);
2711 		goto abort;
2712 	}
2713 
2714 	inc_mm_counter(mm, MM_ANONPAGES);
2715 	page_add_new_anon_rmap(page, vma, addr, false);
2716 	mem_cgroup_commit_charge(page, memcg, false, false);
2717 	if (!is_zone_device_page(page))
2718 		lru_cache_add_active_or_unevictable(page, vma);
2719 	get_page(page);
2720 
2721 	if (flush) {
2722 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2723 		ptep_clear_flush_notify(vma, addr, ptep);
2724 		set_pte_at_notify(mm, addr, ptep, entry);
2725 		update_mmu_cache(vma, addr, ptep);
2726 	} else {
2727 		/* No need to invalidate - it was non-present before */
2728 		set_pte_at(mm, addr, ptep, entry);
2729 		update_mmu_cache(vma, addr, ptep);
2730 	}
2731 
2732 	pte_unmap_unlock(ptep, ptl);
2733 	*src = MIGRATE_PFN_MIGRATE;
2734 	return;
2735 
2736 abort:
2737 	*src &= ~MIGRATE_PFN_MIGRATE;
2738 }
2739 
2740 /*
2741  * migrate_vma_pages() - migrate meta-data from src page to dst page
2742  * @migrate: migrate struct containing all migration information
2743  *
2744  * This migrates struct page meta-data from source struct page to destination
2745  * struct page. This effectively finishes the migration from source page to the
2746  * destination page.
2747  */
2748 static void migrate_vma_pages(struct migrate_vma *migrate)
2749 {
2750 	const unsigned long npages = migrate->npages;
2751 	const unsigned long start = migrate->start;
2752 	struct vm_area_struct *vma = migrate->vma;
2753 	struct mm_struct *mm = vma->vm_mm;
2754 	unsigned long addr, i, mmu_start;
2755 	bool notified = false;
2756 
2757 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2758 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2759 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2760 		struct address_space *mapping;
2761 		int r;
2762 
2763 		if (!newpage) {
2764 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2765 			continue;
2766 		}
2767 
2768 		if (!page) {
2769 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2770 				continue;
2771 			}
2772 			if (!notified) {
2773 				mmu_start = addr;
2774 				notified = true;
2775 				mmu_notifier_invalidate_range_start(mm,
2776 								mmu_start,
2777 								migrate->end);
2778 			}
2779 			migrate_vma_insert_page(migrate, addr, newpage,
2780 						&migrate->src[i],
2781 						&migrate->dst[i]);
2782 			continue;
2783 		}
2784 
2785 		mapping = page_mapping(page);
2786 
2787 		if (is_zone_device_page(newpage)) {
2788 			if (is_device_private_page(newpage)) {
2789 				/*
2790 				 * For now only support private anonymous when
2791 				 * migrating to un-addressable device memory.
2792 				 */
2793 				if (mapping) {
2794 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 					continue;
2796 				}
2797 			} else if (!is_device_public_page(newpage)) {
2798 				/*
2799 				 * Other types of ZONE_DEVICE page are not
2800 				 * supported.
2801 				 */
2802 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2803 				continue;
2804 			}
2805 		}
2806 
2807 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2808 		if (r != MIGRATEPAGE_SUCCESS)
2809 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 	}
2811 
2812 	/*
2813 	 * No need to double call mmu_notifier->invalidate_range() callback as
2814 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2815 	 * did already call it.
2816 	 */
2817 	if (notified)
2818 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2819 						       migrate->end);
2820 }
2821 
2822 /*
2823  * migrate_vma_finalize() - restore CPU page table entry
2824  * @migrate: migrate struct containing all migration information
2825  *
2826  * This replaces the special migration pte entry with either a mapping to the
2827  * new page if migration was successful for that page, or to the original page
2828  * otherwise.
2829  *
2830  * This also unlocks the pages and puts them back on the lru, or drops the extra
2831  * refcount, for device pages.
2832  */
2833 static void migrate_vma_finalize(struct migrate_vma *migrate)
2834 {
2835 	const unsigned long npages = migrate->npages;
2836 	unsigned long i;
2837 
2838 	for (i = 0; i < npages; i++) {
2839 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2840 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2841 
2842 		if (!page) {
2843 			if (newpage) {
2844 				unlock_page(newpage);
2845 				put_page(newpage);
2846 			}
2847 			continue;
2848 		}
2849 
2850 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2851 			if (newpage) {
2852 				unlock_page(newpage);
2853 				put_page(newpage);
2854 			}
2855 			newpage = page;
2856 		}
2857 
2858 		remove_migration_ptes(page, newpage, false);
2859 		unlock_page(page);
2860 		migrate->cpages--;
2861 
2862 		if (is_zone_device_page(page))
2863 			put_page(page);
2864 		else
2865 			putback_lru_page(page);
2866 
2867 		if (newpage != page) {
2868 			unlock_page(newpage);
2869 			if (is_zone_device_page(newpage))
2870 				put_page(newpage);
2871 			else
2872 				putback_lru_page(newpage);
2873 		}
2874 	}
2875 }
2876 
2877 /*
2878  * migrate_vma() - migrate a range of memory inside vma
2879  *
2880  * @ops: migration callback for allocating destination memory and copying
2881  * @vma: virtual memory area containing the range to be migrated
2882  * @start: start address of the range to migrate (inclusive)
2883  * @end: end address of the range to migrate (exclusive)
2884  * @src: array of hmm_pfn_t containing source pfns
2885  * @dst: array of hmm_pfn_t containing destination pfns
2886  * @private: pointer passed back to each of the callback
2887  * Returns: 0 on success, error code otherwise
2888  *
2889  * This function tries to migrate a range of memory virtual address range, using
2890  * callbacks to allocate and copy memory from source to destination. First it
2891  * collects all the pages backing each virtual address in the range, saving this
2892  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2893  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2894  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2895  * in the corresponding src array entry. It then restores any pages that are
2896  * pinned, by remapping and unlocking those pages.
2897  *
2898  * At this point it calls the alloc_and_copy() callback. For documentation on
2899  * what is expected from that callback, see struct migrate_vma_ops comments in
2900  * include/linux/migrate.h
2901  *
2902  * After the alloc_and_copy() callback, this function goes over each entry in
2903  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2904  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2905  * then the function tries to migrate struct page information from the source
2906  * struct page to the destination struct page. If it fails to migrate the struct
2907  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2908  * array.
2909  *
2910  * At this point all successfully migrated pages have an entry in the src
2911  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2912  * array entry with MIGRATE_PFN_VALID flag set.
2913  *
2914  * It then calls the finalize_and_map() callback. See comments for "struct
2915  * migrate_vma_ops", in include/linux/migrate.h for details about
2916  * finalize_and_map() behavior.
2917  *
2918  * After the finalize_and_map() callback, for successfully migrated pages, this
2919  * function updates the CPU page table to point to new pages, otherwise it
2920  * restores the CPU page table to point to the original source pages.
2921  *
2922  * Function returns 0 after the above steps, even if no pages were migrated
2923  * (The function only returns an error if any of the arguments are invalid.)
2924  *
2925  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2926  * unsigned long entries.
2927  */
2928 int migrate_vma(const struct migrate_vma_ops *ops,
2929 		struct vm_area_struct *vma,
2930 		unsigned long start,
2931 		unsigned long end,
2932 		unsigned long *src,
2933 		unsigned long *dst,
2934 		void *private)
2935 {
2936 	struct migrate_vma migrate;
2937 
2938 	/* Sanity check the arguments */
2939 	start &= PAGE_MASK;
2940 	end &= PAGE_MASK;
2941 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2942 		return -EINVAL;
2943 	if (start < vma->vm_start || start >= vma->vm_end)
2944 		return -EINVAL;
2945 	if (end <= vma->vm_start || end > vma->vm_end)
2946 		return -EINVAL;
2947 	if (!ops || !src || !dst || start >= end)
2948 		return -EINVAL;
2949 
2950 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2951 	migrate.src = src;
2952 	migrate.dst = dst;
2953 	migrate.start = start;
2954 	migrate.npages = 0;
2955 	migrate.cpages = 0;
2956 	migrate.end = end;
2957 	migrate.vma = vma;
2958 
2959 	/* Collect, and try to unmap source pages */
2960 	migrate_vma_collect(&migrate);
2961 	if (!migrate.cpages)
2962 		return 0;
2963 
2964 	/* Lock and isolate page */
2965 	migrate_vma_prepare(&migrate);
2966 	if (!migrate.cpages)
2967 		return 0;
2968 
2969 	/* Unmap pages */
2970 	migrate_vma_unmap(&migrate);
2971 	if (!migrate.cpages)
2972 		return 0;
2973 
2974 	/*
2975 	 * At this point pages are locked and unmapped, and thus they have
2976 	 * stable content and can safely be copied to destination memory that
2977 	 * is allocated by the callback.
2978 	 *
2979 	 * Note that migration can fail in migrate_vma_struct_page() for each
2980 	 * individual page.
2981 	 */
2982 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2983 
2984 	/* This does the real migration of struct page */
2985 	migrate_vma_pages(&migrate);
2986 
2987 	ops->finalize_and_map(vma, src, dst, start, end, private);
2988 
2989 	/* Unlock and remap pages */
2990 	migrate_vma_finalize(&migrate);
2991 
2992 	return 0;
2993 }
2994 EXPORT_SYMBOL(migrate_vma);
2995 #endif /* defined(MIGRATE_VMA_HELPER) */
2996