xref: /linux/mm/migrate.c (revision f86d1fbbe7858884d6754534a0afbb74fc30bc26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	const struct movable_operations *mops;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mops = page_movable_ops(page);
101 	VM_BUG_ON_PAGE(!mops, page);
102 
103 	if (!mops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	const struct movable_operations *mops = page_movable_ops(page);
124 
125 	mops->putback_page(page);
126 	ClearPageIsolated(page);
127 }
128 
129 /*
130  * Put previously isolated pages back onto the appropriate lists
131  * from where they were once taken off for compaction/migration.
132  *
133  * This function shall be used whenever the isolated pageset has been
134  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
135  * and isolate_huge_page().
136  */
137 void putback_movable_pages(struct list_head *l)
138 {
139 	struct page *page;
140 	struct page *page2;
141 
142 	list_for_each_entry_safe(page, page2, l, lru) {
143 		if (unlikely(PageHuge(page))) {
144 			putback_active_hugepage(page);
145 			continue;
146 		}
147 		list_del(&page->lru);
148 		/*
149 		 * We isolated non-lru movable page so here we can use
150 		 * __PageMovable because LRU page's mapping cannot have
151 		 * PAGE_MAPPING_MOVABLE.
152 		 */
153 		if (unlikely(__PageMovable(page))) {
154 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 			lock_page(page);
156 			if (PageMovable(page))
157 				putback_movable_page(page);
158 			else
159 				ClearPageIsolated(page);
160 			unlock_page(page);
161 			put_page(page);
162 		} else {
163 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
164 					page_is_file_lru(page), -thp_nr_pages(page));
165 			putback_lru_page(page);
166 		}
167 	}
168 }
169 
170 /*
171  * Restore a potential migration pte to a working pte entry
172  */
173 static bool remove_migration_pte(struct folio *folio,
174 		struct vm_area_struct *vma, unsigned long addr, void *old)
175 {
176 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
177 
178 	while (page_vma_mapped_walk(&pvmw)) {
179 		rmap_t rmap_flags = RMAP_NONE;
180 		pte_t pte;
181 		swp_entry_t entry;
182 		struct page *new;
183 		unsigned long idx = 0;
184 
185 		/* pgoff is invalid for ksm pages, but they are never large */
186 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 		new = folio_page(folio, idx);
189 
190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 		/* PMD-mapped THP migration entry */
192 		if (!pvmw.pte) {
193 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 					!folio_test_pmd_mappable(folio), folio);
195 			remove_migration_pmd(&pvmw, new);
196 			continue;
197 		}
198 #endif
199 
200 		folio_get(folio);
201 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
202 		if (pte_swp_soft_dirty(*pvmw.pte))
203 			pte = pte_mksoft_dirty(pte);
204 
205 		/*
206 		 * Recheck VMA as permissions can change since migration started
207 		 */
208 		entry = pte_to_swp_entry(*pvmw.pte);
209 		if (is_writable_migration_entry(entry))
210 			pte = maybe_mkwrite(pte, vma);
211 		else if (pte_swp_uffd_wp(*pvmw.pte))
212 			pte = pte_mkuffd_wp(pte);
213 
214 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
215 			rmap_flags |= RMAP_EXCLUSIVE;
216 
217 		if (unlikely(is_device_private_page(new))) {
218 			if (pte_write(pte))
219 				entry = make_writable_device_private_entry(
220 							page_to_pfn(new));
221 			else
222 				entry = make_readable_device_private_entry(
223 							page_to_pfn(new));
224 			pte = swp_entry_to_pte(entry);
225 			if (pte_swp_soft_dirty(*pvmw.pte))
226 				pte = pte_swp_mksoft_dirty(pte);
227 			if (pte_swp_uffd_wp(*pvmw.pte))
228 				pte = pte_swp_mkuffd_wp(pte);
229 		}
230 
231 #ifdef CONFIG_HUGETLB_PAGE
232 		if (folio_test_hugetlb(folio)) {
233 			unsigned int shift = huge_page_shift(hstate_vma(vma));
234 
235 			pte = pte_mkhuge(pte);
236 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
237 			if (folio_test_anon(folio))
238 				hugepage_add_anon_rmap(new, vma, pvmw.address,
239 						       rmap_flags);
240 			else
241 				page_dup_file_rmap(new, true);
242 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
243 		} else
244 #endif
245 		{
246 			if (folio_test_anon(folio))
247 				page_add_anon_rmap(new, vma, pvmw.address,
248 						   rmap_flags);
249 			else
250 				page_add_file_rmap(new, vma, false);
251 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
252 		}
253 		if (vma->vm_flags & VM_LOCKED)
254 			mlock_page_drain_local();
255 
256 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
257 					   compound_order(new));
258 
259 		/* No need to invalidate - it was non-present before */
260 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 	}
262 
263 	return true;
264 }
265 
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
271 {
272 	struct rmap_walk_control rwc = {
273 		.rmap_one = remove_migration_pte,
274 		.arg = src,
275 	};
276 
277 	if (locked)
278 		rmap_walk_locked(dst, &rwc);
279 	else
280 		rmap_walk(dst, &rwc);
281 }
282 
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 				spinlock_t *ptl)
290 {
291 	pte_t pte;
292 	swp_entry_t entry;
293 
294 	spin_lock(ptl);
295 	pte = *ptep;
296 	if (!is_swap_pte(pte))
297 		goto out;
298 
299 	entry = pte_to_swp_entry(pte);
300 	if (!is_migration_entry(entry))
301 		goto out;
302 
303 	migration_entry_wait_on_locked(entry, ptep, ptl);
304 	return;
305 out:
306 	pte_unmap_unlock(ptep, ptl);
307 }
308 
309 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
310 				unsigned long address)
311 {
312 	spinlock_t *ptl = pte_lockptr(mm, pmd);
313 	pte_t *ptep = pte_offset_map(pmd, address);
314 	__migration_entry_wait(mm, ptep, ptl);
315 }
316 
317 void migration_entry_wait_huge(struct vm_area_struct *vma,
318 		struct mm_struct *mm, pte_t *pte)
319 {
320 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
321 	__migration_entry_wait(mm, pte, ptl);
322 }
323 
324 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
325 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
326 {
327 	spinlock_t *ptl;
328 
329 	ptl = pmd_lock(mm, pmd);
330 	if (!is_pmd_migration_entry(*pmd))
331 		goto unlock;
332 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
333 	return;
334 unlock:
335 	spin_unlock(ptl);
336 }
337 #endif
338 
339 static int folio_expected_refs(struct address_space *mapping,
340 		struct folio *folio)
341 {
342 	int refs = 1;
343 	if (!mapping)
344 		return refs;
345 
346 	refs += folio_nr_pages(folio);
347 	if (folio_test_private(folio))
348 		refs++;
349 
350 	return refs;
351 }
352 
353 /*
354  * Replace the page in the mapping.
355  *
356  * The number of remaining references must be:
357  * 1 for anonymous pages without a mapping
358  * 2 for pages with a mapping
359  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
360  */
361 int folio_migrate_mapping(struct address_space *mapping,
362 		struct folio *newfolio, struct folio *folio, int extra_count)
363 {
364 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
365 	struct zone *oldzone, *newzone;
366 	int dirty;
367 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
368 	long nr = folio_nr_pages(folio);
369 
370 	if (!mapping) {
371 		/* Anonymous page without mapping */
372 		if (folio_ref_count(folio) != expected_count)
373 			return -EAGAIN;
374 
375 		/* No turning back from here */
376 		newfolio->index = folio->index;
377 		newfolio->mapping = folio->mapping;
378 		if (folio_test_swapbacked(folio))
379 			__folio_set_swapbacked(newfolio);
380 
381 		return MIGRATEPAGE_SUCCESS;
382 	}
383 
384 	oldzone = folio_zone(folio);
385 	newzone = folio_zone(newfolio);
386 
387 	xas_lock_irq(&xas);
388 	if (!folio_ref_freeze(folio, expected_count)) {
389 		xas_unlock_irq(&xas);
390 		return -EAGAIN;
391 	}
392 
393 	/*
394 	 * Now we know that no one else is looking at the folio:
395 	 * no turning back from here.
396 	 */
397 	newfolio->index = folio->index;
398 	newfolio->mapping = folio->mapping;
399 	folio_ref_add(newfolio, nr); /* add cache reference */
400 	if (folio_test_swapbacked(folio)) {
401 		__folio_set_swapbacked(newfolio);
402 		if (folio_test_swapcache(folio)) {
403 			folio_set_swapcache(newfolio);
404 			newfolio->private = folio_get_private(folio);
405 		}
406 	} else {
407 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
408 	}
409 
410 	/* Move dirty while page refs frozen and newpage not yet exposed */
411 	dirty = folio_test_dirty(folio);
412 	if (dirty) {
413 		folio_clear_dirty(folio);
414 		folio_set_dirty(newfolio);
415 	}
416 
417 	xas_store(&xas, newfolio);
418 
419 	/*
420 	 * Drop cache reference from old page by unfreezing
421 	 * to one less reference.
422 	 * We know this isn't the last reference.
423 	 */
424 	folio_ref_unfreeze(folio, expected_count - nr);
425 
426 	xas_unlock(&xas);
427 	/* Leave irq disabled to prevent preemption while updating stats */
428 
429 	/*
430 	 * If moved to a different zone then also account
431 	 * the page for that zone. Other VM counters will be
432 	 * taken care of when we establish references to the
433 	 * new page and drop references to the old page.
434 	 *
435 	 * Note that anonymous pages are accounted for
436 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
437 	 * are mapped to swap space.
438 	 */
439 	if (newzone != oldzone) {
440 		struct lruvec *old_lruvec, *new_lruvec;
441 		struct mem_cgroup *memcg;
442 
443 		memcg = folio_memcg(folio);
444 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
445 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
446 
447 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
448 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
449 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
450 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
451 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
452 		}
453 #ifdef CONFIG_SWAP
454 		if (folio_test_swapcache(folio)) {
455 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
456 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
457 		}
458 #endif
459 		if (dirty && mapping_can_writeback(mapping)) {
460 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
461 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
462 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
463 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
464 		}
465 	}
466 	local_irq_enable();
467 
468 	return MIGRATEPAGE_SUCCESS;
469 }
470 EXPORT_SYMBOL(folio_migrate_mapping);
471 
472 /*
473  * The expected number of remaining references is the same as that
474  * of folio_migrate_mapping().
475  */
476 int migrate_huge_page_move_mapping(struct address_space *mapping,
477 				   struct folio *dst, struct folio *src)
478 {
479 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
480 	int expected_count;
481 
482 	xas_lock_irq(&xas);
483 	expected_count = 2 + folio_has_private(src);
484 	if (!folio_ref_freeze(src, expected_count)) {
485 		xas_unlock_irq(&xas);
486 		return -EAGAIN;
487 	}
488 
489 	dst->index = src->index;
490 	dst->mapping = src->mapping;
491 
492 	folio_get(dst);
493 
494 	xas_store(&xas, dst);
495 
496 	folio_ref_unfreeze(src, expected_count - 1);
497 
498 	xas_unlock_irq(&xas);
499 
500 	return MIGRATEPAGE_SUCCESS;
501 }
502 
503 /*
504  * Copy the flags and some other ancillary information
505  */
506 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
507 {
508 	int cpupid;
509 
510 	if (folio_test_error(folio))
511 		folio_set_error(newfolio);
512 	if (folio_test_referenced(folio))
513 		folio_set_referenced(newfolio);
514 	if (folio_test_uptodate(folio))
515 		folio_mark_uptodate(newfolio);
516 	if (folio_test_clear_active(folio)) {
517 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
518 		folio_set_active(newfolio);
519 	} else if (folio_test_clear_unevictable(folio))
520 		folio_set_unevictable(newfolio);
521 	if (folio_test_workingset(folio))
522 		folio_set_workingset(newfolio);
523 	if (folio_test_checked(folio))
524 		folio_set_checked(newfolio);
525 	/*
526 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
527 	 * migration entries. We can still have PG_anon_exclusive set on an
528 	 * effectively unmapped and unreferenced first sub-pages of an
529 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
530 	 */
531 	if (folio_test_mappedtodisk(folio))
532 		folio_set_mappedtodisk(newfolio);
533 
534 	/* Move dirty on pages not done by folio_migrate_mapping() */
535 	if (folio_test_dirty(folio))
536 		folio_set_dirty(newfolio);
537 
538 	if (folio_test_young(folio))
539 		folio_set_young(newfolio);
540 	if (folio_test_idle(folio))
541 		folio_set_idle(newfolio);
542 
543 	/*
544 	 * Copy NUMA information to the new page, to prevent over-eager
545 	 * future migrations of this same page.
546 	 */
547 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
548 	page_cpupid_xchg_last(&newfolio->page, cpupid);
549 
550 	folio_migrate_ksm(newfolio, folio);
551 	/*
552 	 * Please do not reorder this without considering how mm/ksm.c's
553 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
554 	 */
555 	if (folio_test_swapcache(folio))
556 		folio_clear_swapcache(folio);
557 	folio_clear_private(folio);
558 
559 	/* page->private contains hugetlb specific flags */
560 	if (!folio_test_hugetlb(folio))
561 		folio->private = NULL;
562 
563 	/*
564 	 * If any waiters have accumulated on the new page then
565 	 * wake them up.
566 	 */
567 	if (folio_test_writeback(newfolio))
568 		folio_end_writeback(newfolio);
569 
570 	/*
571 	 * PG_readahead shares the same bit with PG_reclaim.  The above
572 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
573 	 * bit after that.
574 	 */
575 	if (folio_test_readahead(folio))
576 		folio_set_readahead(newfolio);
577 
578 	folio_copy_owner(newfolio, folio);
579 
580 	if (!folio_test_hugetlb(folio))
581 		mem_cgroup_migrate(folio, newfolio);
582 }
583 EXPORT_SYMBOL(folio_migrate_flags);
584 
585 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
586 {
587 	folio_copy(newfolio, folio);
588 	folio_migrate_flags(newfolio, folio);
589 }
590 EXPORT_SYMBOL(folio_migrate_copy);
591 
592 /************************************************************
593  *                    Migration functions
594  ***********************************************************/
595 
596 /**
597  * migrate_folio() - Simple folio migration.
598  * @mapping: The address_space containing the folio.
599  * @dst: The folio to migrate the data to.
600  * @src: The folio containing the current data.
601  * @mode: How to migrate the page.
602  *
603  * Common logic to directly migrate a single LRU folio suitable for
604  * folios that do not use PagePrivate/PagePrivate2.
605  *
606  * Folios are locked upon entry and exit.
607  */
608 int migrate_folio(struct address_space *mapping, struct folio *dst,
609 		struct folio *src, enum migrate_mode mode)
610 {
611 	int rc;
612 
613 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
614 
615 	rc = folio_migrate_mapping(mapping, dst, src, 0);
616 
617 	if (rc != MIGRATEPAGE_SUCCESS)
618 		return rc;
619 
620 	if (mode != MIGRATE_SYNC_NO_COPY)
621 		folio_migrate_copy(dst, src);
622 	else
623 		folio_migrate_flags(dst, src);
624 	return MIGRATEPAGE_SUCCESS;
625 }
626 EXPORT_SYMBOL(migrate_folio);
627 
628 #ifdef CONFIG_BLOCK
629 /* Returns true if all buffers are successfully locked */
630 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
631 							enum migrate_mode mode)
632 {
633 	struct buffer_head *bh = head;
634 
635 	/* Simple case, sync compaction */
636 	if (mode != MIGRATE_ASYNC) {
637 		do {
638 			lock_buffer(bh);
639 			bh = bh->b_this_page;
640 
641 		} while (bh != head);
642 
643 		return true;
644 	}
645 
646 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
647 	do {
648 		if (!trylock_buffer(bh)) {
649 			/*
650 			 * We failed to lock the buffer and cannot stall in
651 			 * async migration. Release the taken locks
652 			 */
653 			struct buffer_head *failed_bh = bh;
654 			bh = head;
655 			while (bh != failed_bh) {
656 				unlock_buffer(bh);
657 				bh = bh->b_this_page;
658 			}
659 			return false;
660 		}
661 
662 		bh = bh->b_this_page;
663 	} while (bh != head);
664 	return true;
665 }
666 
667 static int __buffer_migrate_folio(struct address_space *mapping,
668 		struct folio *dst, struct folio *src, enum migrate_mode mode,
669 		bool check_refs)
670 {
671 	struct buffer_head *bh, *head;
672 	int rc;
673 	int expected_count;
674 
675 	head = folio_buffers(src);
676 	if (!head)
677 		return migrate_folio(mapping, dst, src, mode);
678 
679 	/* Check whether page does not have extra refs before we do more work */
680 	expected_count = folio_expected_refs(mapping, src);
681 	if (folio_ref_count(src) != expected_count)
682 		return -EAGAIN;
683 
684 	if (!buffer_migrate_lock_buffers(head, mode))
685 		return -EAGAIN;
686 
687 	if (check_refs) {
688 		bool busy;
689 		bool invalidated = false;
690 
691 recheck_buffers:
692 		busy = false;
693 		spin_lock(&mapping->private_lock);
694 		bh = head;
695 		do {
696 			if (atomic_read(&bh->b_count)) {
697 				busy = true;
698 				break;
699 			}
700 			bh = bh->b_this_page;
701 		} while (bh != head);
702 		if (busy) {
703 			if (invalidated) {
704 				rc = -EAGAIN;
705 				goto unlock_buffers;
706 			}
707 			spin_unlock(&mapping->private_lock);
708 			invalidate_bh_lrus();
709 			invalidated = true;
710 			goto recheck_buffers;
711 		}
712 	}
713 
714 	rc = folio_migrate_mapping(mapping, dst, src, 0);
715 	if (rc != MIGRATEPAGE_SUCCESS)
716 		goto unlock_buffers;
717 
718 	folio_attach_private(dst, folio_detach_private(src));
719 
720 	bh = head;
721 	do {
722 		set_bh_page(bh, &dst->page, bh_offset(bh));
723 		bh = bh->b_this_page;
724 	} while (bh != head);
725 
726 	if (mode != MIGRATE_SYNC_NO_COPY)
727 		folio_migrate_copy(dst, src);
728 	else
729 		folio_migrate_flags(dst, src);
730 
731 	rc = MIGRATEPAGE_SUCCESS;
732 unlock_buffers:
733 	if (check_refs)
734 		spin_unlock(&mapping->private_lock);
735 	bh = head;
736 	do {
737 		unlock_buffer(bh);
738 		bh = bh->b_this_page;
739 	} while (bh != head);
740 
741 	return rc;
742 }
743 
744 /**
745  * buffer_migrate_folio() - Migration function for folios with buffers.
746  * @mapping: The address space containing @src.
747  * @dst: The folio to migrate to.
748  * @src: The folio to migrate from.
749  * @mode: How to migrate the folio.
750  *
751  * This function can only be used if the underlying filesystem guarantees
752  * that no other references to @src exist. For example attached buffer
753  * heads are accessed only under the folio lock.  If your filesystem cannot
754  * provide this guarantee, buffer_migrate_folio_norefs() may be more
755  * appropriate.
756  *
757  * Return: 0 on success or a negative errno on failure.
758  */
759 int buffer_migrate_folio(struct address_space *mapping,
760 		struct folio *dst, struct folio *src, enum migrate_mode mode)
761 {
762 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
763 }
764 EXPORT_SYMBOL(buffer_migrate_folio);
765 
766 /**
767  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
768  * @mapping: The address space containing @src.
769  * @dst: The folio to migrate to.
770  * @src: The folio to migrate from.
771  * @mode: How to migrate the folio.
772  *
773  * Like buffer_migrate_folio() except that this variant is more careful
774  * and checks that there are also no buffer head references. This function
775  * is the right one for mappings where buffer heads are directly looked
776  * up and referenced (such as block device mappings).
777  *
778  * Return: 0 on success or a negative errno on failure.
779  */
780 int buffer_migrate_folio_norefs(struct address_space *mapping,
781 		struct folio *dst, struct folio *src, enum migrate_mode mode)
782 {
783 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
784 }
785 #endif
786 
787 int filemap_migrate_folio(struct address_space *mapping,
788 		struct folio *dst, struct folio *src, enum migrate_mode mode)
789 {
790 	int ret;
791 
792 	ret = folio_migrate_mapping(mapping, dst, src, 0);
793 	if (ret != MIGRATEPAGE_SUCCESS)
794 		return ret;
795 
796 	if (folio_get_private(src))
797 		folio_attach_private(dst, folio_detach_private(src));
798 
799 	if (mode != MIGRATE_SYNC_NO_COPY)
800 		folio_migrate_copy(dst, src);
801 	else
802 		folio_migrate_flags(dst, src);
803 	return MIGRATEPAGE_SUCCESS;
804 }
805 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
806 
807 /*
808  * Writeback a folio to clean the dirty state
809  */
810 static int writeout(struct address_space *mapping, struct folio *folio)
811 {
812 	struct writeback_control wbc = {
813 		.sync_mode = WB_SYNC_NONE,
814 		.nr_to_write = 1,
815 		.range_start = 0,
816 		.range_end = LLONG_MAX,
817 		.for_reclaim = 1
818 	};
819 	int rc;
820 
821 	if (!mapping->a_ops->writepage)
822 		/* No write method for the address space */
823 		return -EINVAL;
824 
825 	if (!folio_clear_dirty_for_io(folio))
826 		/* Someone else already triggered a write */
827 		return -EAGAIN;
828 
829 	/*
830 	 * A dirty folio may imply that the underlying filesystem has
831 	 * the folio on some queue. So the folio must be clean for
832 	 * migration. Writeout may mean we lose the lock and the
833 	 * folio state is no longer what we checked for earlier.
834 	 * At this point we know that the migration attempt cannot
835 	 * be successful.
836 	 */
837 	remove_migration_ptes(folio, folio, false);
838 
839 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
840 
841 	if (rc != AOP_WRITEPAGE_ACTIVATE)
842 		/* unlocked. Relock */
843 		folio_lock(folio);
844 
845 	return (rc < 0) ? -EIO : -EAGAIN;
846 }
847 
848 /*
849  * Default handling if a filesystem does not provide a migration function.
850  */
851 static int fallback_migrate_folio(struct address_space *mapping,
852 		struct folio *dst, struct folio *src, enum migrate_mode mode)
853 {
854 	if (folio_test_dirty(src)) {
855 		/* Only writeback folios in full synchronous migration */
856 		switch (mode) {
857 		case MIGRATE_SYNC:
858 		case MIGRATE_SYNC_NO_COPY:
859 			break;
860 		default:
861 			return -EBUSY;
862 		}
863 		return writeout(mapping, src);
864 	}
865 
866 	/*
867 	 * Buffers may be managed in a filesystem specific way.
868 	 * We must have no buffers or drop them.
869 	 */
870 	if (folio_test_private(src) &&
871 	    !filemap_release_folio(src, GFP_KERNEL))
872 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
873 
874 	return migrate_folio(mapping, dst, src, mode);
875 }
876 
877 /*
878  * Move a page to a newly allocated page
879  * The page is locked and all ptes have been successfully removed.
880  *
881  * The new page will have replaced the old page if this function
882  * is successful.
883  *
884  * Return value:
885  *   < 0 - error code
886  *  MIGRATEPAGE_SUCCESS - success
887  */
888 static int move_to_new_folio(struct folio *dst, struct folio *src,
889 				enum migrate_mode mode)
890 {
891 	int rc = -EAGAIN;
892 	bool is_lru = !__PageMovable(&src->page);
893 
894 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
895 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
896 
897 	if (likely(is_lru)) {
898 		struct address_space *mapping = folio_mapping(src);
899 
900 		if (!mapping)
901 			rc = migrate_folio(mapping, dst, src, mode);
902 		else if (mapping->a_ops->migrate_folio)
903 			/*
904 			 * Most folios have a mapping and most filesystems
905 			 * provide a migrate_folio callback. Anonymous folios
906 			 * are part of swap space which also has its own
907 			 * migrate_folio callback. This is the most common path
908 			 * for page migration.
909 			 */
910 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
911 								mode);
912 		else
913 			rc = fallback_migrate_folio(mapping, dst, src, mode);
914 	} else {
915 		const struct movable_operations *mops;
916 
917 		/*
918 		 * In case of non-lru page, it could be released after
919 		 * isolation step. In that case, we shouldn't try migration.
920 		 */
921 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
922 		if (!folio_test_movable(src)) {
923 			rc = MIGRATEPAGE_SUCCESS;
924 			folio_clear_isolated(src);
925 			goto out;
926 		}
927 
928 		mops = page_movable_ops(&src->page);
929 		rc = mops->migrate_page(&dst->page, &src->page, mode);
930 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
931 				!folio_test_isolated(src));
932 	}
933 
934 	/*
935 	 * When successful, old pagecache src->mapping must be cleared before
936 	 * src is freed; but stats require that PageAnon be left as PageAnon.
937 	 */
938 	if (rc == MIGRATEPAGE_SUCCESS) {
939 		if (__PageMovable(&src->page)) {
940 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
941 
942 			/*
943 			 * We clear PG_movable under page_lock so any compactor
944 			 * cannot try to migrate this page.
945 			 */
946 			folio_clear_isolated(src);
947 		}
948 
949 		/*
950 		 * Anonymous and movable src->mapping will be cleared by
951 		 * free_pages_prepare so don't reset it here for keeping
952 		 * the type to work PageAnon, for example.
953 		 */
954 		if (!folio_mapping_flags(src))
955 			src->mapping = NULL;
956 
957 		if (likely(!folio_is_zone_device(dst)))
958 			flush_dcache_folio(dst);
959 	}
960 out:
961 	return rc;
962 }
963 
964 static int __unmap_and_move(struct page *page, struct page *newpage,
965 				int force, enum migrate_mode mode)
966 {
967 	struct folio *folio = page_folio(page);
968 	struct folio *dst = page_folio(newpage);
969 	int rc = -EAGAIN;
970 	bool page_was_mapped = false;
971 	struct anon_vma *anon_vma = NULL;
972 	bool is_lru = !__PageMovable(page);
973 
974 	if (!trylock_page(page)) {
975 		if (!force || mode == MIGRATE_ASYNC)
976 			goto out;
977 
978 		/*
979 		 * It's not safe for direct compaction to call lock_page.
980 		 * For example, during page readahead pages are added locked
981 		 * to the LRU. Later, when the IO completes the pages are
982 		 * marked uptodate and unlocked. However, the queueing
983 		 * could be merging multiple pages for one bio (e.g.
984 		 * mpage_readahead). If an allocation happens for the
985 		 * second or third page, the process can end up locking
986 		 * the same page twice and deadlocking. Rather than
987 		 * trying to be clever about what pages can be locked,
988 		 * avoid the use of lock_page for direct compaction
989 		 * altogether.
990 		 */
991 		if (current->flags & PF_MEMALLOC)
992 			goto out;
993 
994 		lock_page(page);
995 	}
996 
997 	if (PageWriteback(page)) {
998 		/*
999 		 * Only in the case of a full synchronous migration is it
1000 		 * necessary to wait for PageWriteback. In the async case,
1001 		 * the retry loop is too short and in the sync-light case,
1002 		 * the overhead of stalling is too much
1003 		 */
1004 		switch (mode) {
1005 		case MIGRATE_SYNC:
1006 		case MIGRATE_SYNC_NO_COPY:
1007 			break;
1008 		default:
1009 			rc = -EBUSY;
1010 			goto out_unlock;
1011 		}
1012 		if (!force)
1013 			goto out_unlock;
1014 		wait_on_page_writeback(page);
1015 	}
1016 
1017 	/*
1018 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1019 	 * we cannot notice that anon_vma is freed while we migrates a page.
1020 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1021 	 * of migration. File cache pages are no problem because of page_lock()
1022 	 * File Caches may use write_page() or lock_page() in migration, then,
1023 	 * just care Anon page here.
1024 	 *
1025 	 * Only page_get_anon_vma() understands the subtleties of
1026 	 * getting a hold on an anon_vma from outside one of its mms.
1027 	 * But if we cannot get anon_vma, then we won't need it anyway,
1028 	 * because that implies that the anon page is no longer mapped
1029 	 * (and cannot be remapped so long as we hold the page lock).
1030 	 */
1031 	if (PageAnon(page) && !PageKsm(page))
1032 		anon_vma = page_get_anon_vma(page);
1033 
1034 	/*
1035 	 * Block others from accessing the new page when we get around to
1036 	 * establishing additional references. We are usually the only one
1037 	 * holding a reference to newpage at this point. We used to have a BUG
1038 	 * here if trylock_page(newpage) fails, but would like to allow for
1039 	 * cases where there might be a race with the previous use of newpage.
1040 	 * This is much like races on refcount of oldpage: just don't BUG().
1041 	 */
1042 	if (unlikely(!trylock_page(newpage)))
1043 		goto out_unlock;
1044 
1045 	if (unlikely(!is_lru)) {
1046 		rc = move_to_new_folio(dst, folio, mode);
1047 		goto out_unlock_both;
1048 	}
1049 
1050 	/*
1051 	 * Corner case handling:
1052 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1053 	 * and treated as swapcache but it has no rmap yet.
1054 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1055 	 * trigger a BUG.  So handle it here.
1056 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1057 	 * fs-private metadata. The page can be picked up due to memory
1058 	 * offlining.  Everywhere else except page reclaim, the page is
1059 	 * invisible to the vm, so the page can not be migrated.  So try to
1060 	 * free the metadata, so the page can be freed.
1061 	 */
1062 	if (!page->mapping) {
1063 		VM_BUG_ON_PAGE(PageAnon(page), page);
1064 		if (page_has_private(page)) {
1065 			try_to_free_buffers(folio);
1066 			goto out_unlock_both;
1067 		}
1068 	} else if (page_mapped(page)) {
1069 		/* Establish migration ptes */
1070 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1071 				page);
1072 		try_to_migrate(folio, 0);
1073 		page_was_mapped = true;
1074 	}
1075 
1076 	if (!page_mapped(page))
1077 		rc = move_to_new_folio(dst, folio, mode);
1078 
1079 	/*
1080 	 * When successful, push newpage to LRU immediately: so that if it
1081 	 * turns out to be an mlocked page, remove_migration_ptes() will
1082 	 * automatically build up the correct newpage->mlock_count for it.
1083 	 *
1084 	 * We would like to do something similar for the old page, when
1085 	 * unsuccessful, and other cases when a page has been temporarily
1086 	 * isolated from the unevictable LRU: but this case is the easiest.
1087 	 */
1088 	if (rc == MIGRATEPAGE_SUCCESS) {
1089 		lru_cache_add(newpage);
1090 		if (page_was_mapped)
1091 			lru_add_drain();
1092 	}
1093 
1094 	if (page_was_mapped)
1095 		remove_migration_ptes(folio,
1096 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1097 
1098 out_unlock_both:
1099 	unlock_page(newpage);
1100 out_unlock:
1101 	/* Drop an anon_vma reference if we took one */
1102 	if (anon_vma)
1103 		put_anon_vma(anon_vma);
1104 	unlock_page(page);
1105 out:
1106 	/*
1107 	 * If migration is successful, decrease refcount of the newpage,
1108 	 * which will not free the page because new page owner increased
1109 	 * refcounter.
1110 	 */
1111 	if (rc == MIGRATEPAGE_SUCCESS)
1112 		put_page(newpage);
1113 
1114 	return rc;
1115 }
1116 
1117 /*
1118  * Obtain the lock on page, remove all ptes and migrate the page
1119  * to the newly allocated page in newpage.
1120  */
1121 static int unmap_and_move(new_page_t get_new_page,
1122 				   free_page_t put_new_page,
1123 				   unsigned long private, struct page *page,
1124 				   int force, enum migrate_mode mode,
1125 				   enum migrate_reason reason,
1126 				   struct list_head *ret)
1127 {
1128 	int rc = MIGRATEPAGE_SUCCESS;
1129 	struct page *newpage = NULL;
1130 
1131 	if (!thp_migration_supported() && PageTransHuge(page))
1132 		return -ENOSYS;
1133 
1134 	if (page_count(page) == 1) {
1135 		/* page was freed from under us. So we are done. */
1136 		ClearPageActive(page);
1137 		ClearPageUnevictable(page);
1138 		if (unlikely(__PageMovable(page))) {
1139 			lock_page(page);
1140 			if (!PageMovable(page))
1141 				ClearPageIsolated(page);
1142 			unlock_page(page);
1143 		}
1144 		goto out;
1145 	}
1146 
1147 	newpage = get_new_page(page, private);
1148 	if (!newpage)
1149 		return -ENOMEM;
1150 
1151 	newpage->private = 0;
1152 	rc = __unmap_and_move(page, newpage, force, mode);
1153 	if (rc == MIGRATEPAGE_SUCCESS)
1154 		set_page_owner_migrate_reason(newpage, reason);
1155 
1156 out:
1157 	if (rc != -EAGAIN) {
1158 		/*
1159 		 * A page that has been migrated has all references
1160 		 * removed and will be freed. A page that has not been
1161 		 * migrated will have kept its references and be restored.
1162 		 */
1163 		list_del(&page->lru);
1164 	}
1165 
1166 	/*
1167 	 * If migration is successful, releases reference grabbed during
1168 	 * isolation. Otherwise, restore the page to right list unless
1169 	 * we want to retry.
1170 	 */
1171 	if (rc == MIGRATEPAGE_SUCCESS) {
1172 		/*
1173 		 * Compaction can migrate also non-LRU pages which are
1174 		 * not accounted to NR_ISOLATED_*. They can be recognized
1175 		 * as __PageMovable
1176 		 */
1177 		if (likely(!__PageMovable(page)))
1178 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1179 					page_is_file_lru(page), -thp_nr_pages(page));
1180 
1181 		if (reason != MR_MEMORY_FAILURE)
1182 			/*
1183 			 * We release the page in page_handle_poison.
1184 			 */
1185 			put_page(page);
1186 	} else {
1187 		if (rc != -EAGAIN)
1188 			list_add_tail(&page->lru, ret);
1189 
1190 		if (put_new_page)
1191 			put_new_page(newpage, private);
1192 		else
1193 			put_page(newpage);
1194 	}
1195 
1196 	return rc;
1197 }
1198 
1199 /*
1200  * Counterpart of unmap_and_move_page() for hugepage migration.
1201  *
1202  * This function doesn't wait the completion of hugepage I/O
1203  * because there is no race between I/O and migration for hugepage.
1204  * Note that currently hugepage I/O occurs only in direct I/O
1205  * where no lock is held and PG_writeback is irrelevant,
1206  * and writeback status of all subpages are counted in the reference
1207  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1208  * under direct I/O, the reference of the head page is 512 and a bit more.)
1209  * This means that when we try to migrate hugepage whose subpages are
1210  * doing direct I/O, some references remain after try_to_unmap() and
1211  * hugepage migration fails without data corruption.
1212  *
1213  * There is also no race when direct I/O is issued on the page under migration,
1214  * because then pte is replaced with migration swap entry and direct I/O code
1215  * will wait in the page fault for migration to complete.
1216  */
1217 static int unmap_and_move_huge_page(new_page_t get_new_page,
1218 				free_page_t put_new_page, unsigned long private,
1219 				struct page *hpage, int force,
1220 				enum migrate_mode mode, int reason,
1221 				struct list_head *ret)
1222 {
1223 	struct folio *dst, *src = page_folio(hpage);
1224 	int rc = -EAGAIN;
1225 	int page_was_mapped = 0;
1226 	struct page *new_hpage;
1227 	struct anon_vma *anon_vma = NULL;
1228 	struct address_space *mapping = NULL;
1229 
1230 	/*
1231 	 * Migratability of hugepages depends on architectures and their size.
1232 	 * This check is necessary because some callers of hugepage migration
1233 	 * like soft offline and memory hotremove don't walk through page
1234 	 * tables or check whether the hugepage is pmd-based or not before
1235 	 * kicking migration.
1236 	 */
1237 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1238 		list_move_tail(&hpage->lru, ret);
1239 		return -ENOSYS;
1240 	}
1241 
1242 	if (page_count(hpage) == 1) {
1243 		/* page was freed from under us. So we are done. */
1244 		putback_active_hugepage(hpage);
1245 		return MIGRATEPAGE_SUCCESS;
1246 	}
1247 
1248 	new_hpage = get_new_page(hpage, private);
1249 	if (!new_hpage)
1250 		return -ENOMEM;
1251 	dst = page_folio(new_hpage);
1252 
1253 	if (!trylock_page(hpage)) {
1254 		if (!force)
1255 			goto out;
1256 		switch (mode) {
1257 		case MIGRATE_SYNC:
1258 		case MIGRATE_SYNC_NO_COPY:
1259 			break;
1260 		default:
1261 			goto out;
1262 		}
1263 		lock_page(hpage);
1264 	}
1265 
1266 	/*
1267 	 * Check for pages which are in the process of being freed.  Without
1268 	 * page_mapping() set, hugetlbfs specific move page routine will not
1269 	 * be called and we could leak usage counts for subpools.
1270 	 */
1271 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1272 		rc = -EBUSY;
1273 		goto out_unlock;
1274 	}
1275 
1276 	if (PageAnon(hpage))
1277 		anon_vma = page_get_anon_vma(hpage);
1278 
1279 	if (unlikely(!trylock_page(new_hpage)))
1280 		goto put_anon;
1281 
1282 	if (page_mapped(hpage)) {
1283 		enum ttu_flags ttu = 0;
1284 
1285 		if (!PageAnon(hpage)) {
1286 			/*
1287 			 * In shared mappings, try_to_unmap could potentially
1288 			 * call huge_pmd_unshare.  Because of this, take
1289 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1290 			 * to let lower levels know we have taken the lock.
1291 			 */
1292 			mapping = hugetlb_page_mapping_lock_write(hpage);
1293 			if (unlikely(!mapping))
1294 				goto unlock_put_anon;
1295 
1296 			ttu = TTU_RMAP_LOCKED;
1297 		}
1298 
1299 		try_to_migrate(src, ttu);
1300 		page_was_mapped = 1;
1301 
1302 		if (ttu & TTU_RMAP_LOCKED)
1303 			i_mmap_unlock_write(mapping);
1304 	}
1305 
1306 	if (!page_mapped(hpage))
1307 		rc = move_to_new_folio(dst, src, mode);
1308 
1309 	if (page_was_mapped)
1310 		remove_migration_ptes(src,
1311 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1312 
1313 unlock_put_anon:
1314 	unlock_page(new_hpage);
1315 
1316 put_anon:
1317 	if (anon_vma)
1318 		put_anon_vma(anon_vma);
1319 
1320 	if (rc == MIGRATEPAGE_SUCCESS) {
1321 		move_hugetlb_state(hpage, new_hpage, reason);
1322 		put_new_page = NULL;
1323 	}
1324 
1325 out_unlock:
1326 	unlock_page(hpage);
1327 out:
1328 	if (rc == MIGRATEPAGE_SUCCESS)
1329 		putback_active_hugepage(hpage);
1330 	else if (rc != -EAGAIN)
1331 		list_move_tail(&hpage->lru, ret);
1332 
1333 	/*
1334 	 * If migration was not successful and there's a freeing callback, use
1335 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1336 	 * isolation.
1337 	 */
1338 	if (put_new_page)
1339 		put_new_page(new_hpage, private);
1340 	else
1341 		putback_active_hugepage(new_hpage);
1342 
1343 	return rc;
1344 }
1345 
1346 static inline int try_split_thp(struct page *page, struct page **page2,
1347 				struct list_head *from)
1348 {
1349 	int rc = 0;
1350 
1351 	lock_page(page);
1352 	rc = split_huge_page_to_list(page, from);
1353 	unlock_page(page);
1354 	if (!rc)
1355 		list_safe_reset_next(page, *page2, lru);
1356 
1357 	return rc;
1358 }
1359 
1360 /*
1361  * migrate_pages - migrate the pages specified in a list, to the free pages
1362  *		   supplied as the target for the page migration
1363  *
1364  * @from:		The list of pages to be migrated.
1365  * @get_new_page:	The function used to allocate free pages to be used
1366  *			as the target of the page migration.
1367  * @put_new_page:	The function used to free target pages if migration
1368  *			fails, or NULL if no special handling is necessary.
1369  * @private:		Private data to be passed on to get_new_page()
1370  * @mode:		The migration mode that specifies the constraints for
1371  *			page migration, if any.
1372  * @reason:		The reason for page migration.
1373  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1374  *			the caller passes a non-NULL pointer.
1375  *
1376  * The function returns after 10 attempts or if no pages are movable any more
1377  * because the list has become empty or no retryable pages exist any more.
1378  * It is caller's responsibility to call putback_movable_pages() to return pages
1379  * to the LRU or free list only if ret != 0.
1380  *
1381  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1382  * an error code. The number of THP splits will be considered as the number of
1383  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1384  */
1385 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1386 		free_page_t put_new_page, unsigned long private,
1387 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1388 {
1389 	int retry = 1;
1390 	int thp_retry = 1;
1391 	int nr_failed = 0;
1392 	int nr_failed_pages = 0;
1393 	int nr_succeeded = 0;
1394 	int nr_thp_succeeded = 0;
1395 	int nr_thp_failed = 0;
1396 	int nr_thp_split = 0;
1397 	int pass = 0;
1398 	bool is_thp = false;
1399 	struct page *page;
1400 	struct page *page2;
1401 	int rc, nr_subpages;
1402 	LIST_HEAD(ret_pages);
1403 	LIST_HEAD(thp_split_pages);
1404 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1405 	bool no_subpage_counting = false;
1406 
1407 	trace_mm_migrate_pages_start(mode, reason);
1408 
1409 thp_subpage_migration:
1410 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1411 		retry = 0;
1412 		thp_retry = 0;
1413 
1414 		list_for_each_entry_safe(page, page2, from, lru) {
1415 retry:
1416 			/*
1417 			 * THP statistics is based on the source huge page.
1418 			 * Capture required information that might get lost
1419 			 * during migration.
1420 			 */
1421 			is_thp = PageTransHuge(page) && !PageHuge(page);
1422 			nr_subpages = compound_nr(page);
1423 			cond_resched();
1424 
1425 			if (PageHuge(page))
1426 				rc = unmap_and_move_huge_page(get_new_page,
1427 						put_new_page, private, page,
1428 						pass > 2, mode, reason,
1429 						&ret_pages);
1430 			else
1431 				rc = unmap_and_move(get_new_page, put_new_page,
1432 						private, page, pass > 2, mode,
1433 						reason, &ret_pages);
1434 			/*
1435 			 * The rules are:
1436 			 *	Success: non hugetlb page will be freed, hugetlb
1437 			 *		 page will be put back
1438 			 *	-EAGAIN: stay on the from list
1439 			 *	-ENOMEM: stay on the from list
1440 			 *	Other errno: put on ret_pages list then splice to
1441 			 *		     from list
1442 			 */
1443 			switch(rc) {
1444 			/*
1445 			 * THP migration might be unsupported or the
1446 			 * allocation could've failed so we should
1447 			 * retry on the same page with the THP split
1448 			 * to base pages.
1449 			 *
1450 			 * Head page is retried immediately and tail
1451 			 * pages are added to the tail of the list so
1452 			 * we encounter them after the rest of the list
1453 			 * is processed.
1454 			 */
1455 			case -ENOSYS:
1456 				/* THP migration is unsupported */
1457 				if (is_thp) {
1458 					nr_thp_failed++;
1459 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1460 						nr_thp_split++;
1461 						goto retry;
1462 					}
1463 				/* Hugetlb migration is unsupported */
1464 				} else if (!no_subpage_counting) {
1465 					nr_failed++;
1466 				}
1467 
1468 				nr_failed_pages += nr_subpages;
1469 				break;
1470 			case -ENOMEM:
1471 				/*
1472 				 * When memory is low, don't bother to try to migrate
1473 				 * other pages, just exit.
1474 				 * THP NUMA faulting doesn't split THP to retry.
1475 				 */
1476 				if (is_thp && !nosplit) {
1477 					nr_thp_failed++;
1478 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1479 						nr_thp_split++;
1480 						goto retry;
1481 					}
1482 				} else if (!no_subpage_counting) {
1483 					nr_failed++;
1484 				}
1485 
1486 				nr_failed_pages += nr_subpages;
1487 				/*
1488 				 * There might be some subpages of fail-to-migrate THPs
1489 				 * left in thp_split_pages list. Move them back to migration
1490 				 * list so that they could be put back to the right list by
1491 				 * the caller otherwise the page refcnt will be leaked.
1492 				 */
1493 				list_splice_init(&thp_split_pages, from);
1494 				nr_thp_failed += thp_retry;
1495 				goto out;
1496 			case -EAGAIN:
1497 				if (is_thp)
1498 					thp_retry++;
1499 				else
1500 					retry++;
1501 				break;
1502 			case MIGRATEPAGE_SUCCESS:
1503 				nr_succeeded += nr_subpages;
1504 				if (is_thp)
1505 					nr_thp_succeeded++;
1506 				break;
1507 			default:
1508 				/*
1509 				 * Permanent failure (-EBUSY, etc.):
1510 				 * unlike -EAGAIN case, the failed page is
1511 				 * removed from migration page list and not
1512 				 * retried in the next outer loop.
1513 				 */
1514 				if (is_thp)
1515 					nr_thp_failed++;
1516 				else if (!no_subpage_counting)
1517 					nr_failed++;
1518 
1519 				nr_failed_pages += nr_subpages;
1520 				break;
1521 			}
1522 		}
1523 	}
1524 	nr_failed += retry;
1525 	nr_thp_failed += thp_retry;
1526 	/*
1527 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1528 	 * counting in this round, since all subpages of a THP is counted
1529 	 * as 1 failure in the first round.
1530 	 */
1531 	if (!list_empty(&thp_split_pages)) {
1532 		/*
1533 		 * Move non-migrated pages (after 10 retries) to ret_pages
1534 		 * to avoid migrating them again.
1535 		 */
1536 		list_splice_init(from, &ret_pages);
1537 		list_splice_init(&thp_split_pages, from);
1538 		no_subpage_counting = true;
1539 		retry = 1;
1540 		goto thp_subpage_migration;
1541 	}
1542 
1543 	rc = nr_failed + nr_thp_failed;
1544 out:
1545 	/*
1546 	 * Put the permanent failure page back to migration list, they
1547 	 * will be put back to the right list by the caller.
1548 	 */
1549 	list_splice(&ret_pages, from);
1550 
1551 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1552 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1553 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1554 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1555 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1556 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1557 			       nr_thp_failed, nr_thp_split, mode, reason);
1558 
1559 	if (ret_succeeded)
1560 		*ret_succeeded = nr_succeeded;
1561 
1562 	return rc;
1563 }
1564 
1565 struct page *alloc_migration_target(struct page *page, unsigned long private)
1566 {
1567 	struct folio *folio = page_folio(page);
1568 	struct migration_target_control *mtc;
1569 	gfp_t gfp_mask;
1570 	unsigned int order = 0;
1571 	struct folio *new_folio = NULL;
1572 	int nid;
1573 	int zidx;
1574 
1575 	mtc = (struct migration_target_control *)private;
1576 	gfp_mask = mtc->gfp_mask;
1577 	nid = mtc->nid;
1578 	if (nid == NUMA_NO_NODE)
1579 		nid = folio_nid(folio);
1580 
1581 	if (folio_test_hugetlb(folio)) {
1582 		struct hstate *h = page_hstate(&folio->page);
1583 
1584 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1585 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1586 	}
1587 
1588 	if (folio_test_large(folio)) {
1589 		/*
1590 		 * clear __GFP_RECLAIM to make the migration callback
1591 		 * consistent with regular THP allocations.
1592 		 */
1593 		gfp_mask &= ~__GFP_RECLAIM;
1594 		gfp_mask |= GFP_TRANSHUGE;
1595 		order = folio_order(folio);
1596 	}
1597 	zidx = zone_idx(folio_zone(folio));
1598 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1599 		gfp_mask |= __GFP_HIGHMEM;
1600 
1601 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1602 
1603 	return &new_folio->page;
1604 }
1605 
1606 #ifdef CONFIG_NUMA
1607 
1608 static int store_status(int __user *status, int start, int value, int nr)
1609 {
1610 	while (nr-- > 0) {
1611 		if (put_user(value, status + start))
1612 			return -EFAULT;
1613 		start++;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static int do_move_pages_to_node(struct mm_struct *mm,
1620 		struct list_head *pagelist, int node)
1621 {
1622 	int err;
1623 	struct migration_target_control mtc = {
1624 		.nid = node,
1625 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1626 	};
1627 
1628 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1629 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1630 	if (err)
1631 		putback_movable_pages(pagelist);
1632 	return err;
1633 }
1634 
1635 /*
1636  * Resolves the given address to a struct page, isolates it from the LRU and
1637  * puts it to the given pagelist.
1638  * Returns:
1639  *     errno - if the page cannot be found/isolated
1640  *     0 - when it doesn't have to be migrated because it is already on the
1641  *         target node
1642  *     1 - when it has been queued
1643  */
1644 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1645 		int node, struct list_head *pagelist, bool migrate_all)
1646 {
1647 	struct vm_area_struct *vma;
1648 	struct page *page;
1649 	int err;
1650 
1651 	mmap_read_lock(mm);
1652 	err = -EFAULT;
1653 	vma = vma_lookup(mm, addr);
1654 	if (!vma || !vma_migratable(vma))
1655 		goto out;
1656 
1657 	/* FOLL_DUMP to ignore special (like zero) pages */
1658 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1659 
1660 	err = PTR_ERR(page);
1661 	if (IS_ERR(page))
1662 		goto out;
1663 
1664 	err = -ENOENT;
1665 	if (!page)
1666 		goto out;
1667 
1668 	err = 0;
1669 	if (page_to_nid(page) == node)
1670 		goto out_putpage;
1671 
1672 	err = -EACCES;
1673 	if (page_mapcount(page) > 1 && !migrate_all)
1674 		goto out_putpage;
1675 
1676 	if (PageHuge(page)) {
1677 		if (PageHead(page)) {
1678 			isolate_huge_page(page, pagelist);
1679 			err = 1;
1680 		}
1681 	} else {
1682 		struct page *head;
1683 
1684 		head = compound_head(page);
1685 		err = isolate_lru_page(head);
1686 		if (err)
1687 			goto out_putpage;
1688 
1689 		err = 1;
1690 		list_add_tail(&head->lru, pagelist);
1691 		mod_node_page_state(page_pgdat(head),
1692 			NR_ISOLATED_ANON + page_is_file_lru(head),
1693 			thp_nr_pages(head));
1694 	}
1695 out_putpage:
1696 	/*
1697 	 * Either remove the duplicate refcount from
1698 	 * isolate_lru_page() or drop the page ref if it was
1699 	 * not isolated.
1700 	 */
1701 	put_page(page);
1702 out:
1703 	mmap_read_unlock(mm);
1704 	return err;
1705 }
1706 
1707 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1708 		struct list_head *pagelist, int __user *status,
1709 		int start, int i, unsigned long nr_pages)
1710 {
1711 	int err;
1712 
1713 	if (list_empty(pagelist))
1714 		return 0;
1715 
1716 	err = do_move_pages_to_node(mm, pagelist, node);
1717 	if (err) {
1718 		/*
1719 		 * Positive err means the number of failed
1720 		 * pages to migrate.  Since we are going to
1721 		 * abort and return the number of non-migrated
1722 		 * pages, so need to include the rest of the
1723 		 * nr_pages that have not been attempted as
1724 		 * well.
1725 		 */
1726 		if (err > 0)
1727 			err += nr_pages - i - 1;
1728 		return err;
1729 	}
1730 	return store_status(status, start, node, i - start);
1731 }
1732 
1733 /*
1734  * Migrate an array of page address onto an array of nodes and fill
1735  * the corresponding array of status.
1736  */
1737 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1738 			 unsigned long nr_pages,
1739 			 const void __user * __user *pages,
1740 			 const int __user *nodes,
1741 			 int __user *status, int flags)
1742 {
1743 	int current_node = NUMA_NO_NODE;
1744 	LIST_HEAD(pagelist);
1745 	int start, i;
1746 	int err = 0, err1;
1747 
1748 	lru_cache_disable();
1749 
1750 	for (i = start = 0; i < nr_pages; i++) {
1751 		const void __user *p;
1752 		unsigned long addr;
1753 		int node;
1754 
1755 		err = -EFAULT;
1756 		if (get_user(p, pages + i))
1757 			goto out_flush;
1758 		if (get_user(node, nodes + i))
1759 			goto out_flush;
1760 		addr = (unsigned long)untagged_addr(p);
1761 
1762 		err = -ENODEV;
1763 		if (node < 0 || node >= MAX_NUMNODES)
1764 			goto out_flush;
1765 		if (!node_state(node, N_MEMORY))
1766 			goto out_flush;
1767 
1768 		err = -EACCES;
1769 		if (!node_isset(node, task_nodes))
1770 			goto out_flush;
1771 
1772 		if (current_node == NUMA_NO_NODE) {
1773 			current_node = node;
1774 			start = i;
1775 		} else if (node != current_node) {
1776 			err = move_pages_and_store_status(mm, current_node,
1777 					&pagelist, status, start, i, nr_pages);
1778 			if (err)
1779 				goto out;
1780 			start = i;
1781 			current_node = node;
1782 		}
1783 
1784 		/*
1785 		 * Errors in the page lookup or isolation are not fatal and we simply
1786 		 * report them via status
1787 		 */
1788 		err = add_page_for_migration(mm, addr, current_node,
1789 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1790 
1791 		if (err > 0) {
1792 			/* The page is successfully queued for migration */
1793 			continue;
1794 		}
1795 
1796 		/*
1797 		 * The move_pages() man page does not have an -EEXIST choice, so
1798 		 * use -EFAULT instead.
1799 		 */
1800 		if (err == -EEXIST)
1801 			err = -EFAULT;
1802 
1803 		/*
1804 		 * If the page is already on the target node (!err), store the
1805 		 * node, otherwise, store the err.
1806 		 */
1807 		err = store_status(status, i, err ? : current_node, 1);
1808 		if (err)
1809 			goto out_flush;
1810 
1811 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1812 				status, start, i, nr_pages);
1813 		if (err)
1814 			goto out;
1815 		current_node = NUMA_NO_NODE;
1816 	}
1817 out_flush:
1818 	/* Make sure we do not overwrite the existing error */
1819 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1820 				status, start, i, nr_pages);
1821 	if (err >= 0)
1822 		err = err1;
1823 out:
1824 	lru_cache_enable();
1825 	return err;
1826 }
1827 
1828 /*
1829  * Determine the nodes of an array of pages and store it in an array of status.
1830  */
1831 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1832 				const void __user **pages, int *status)
1833 {
1834 	unsigned long i;
1835 
1836 	mmap_read_lock(mm);
1837 
1838 	for (i = 0; i < nr_pages; i++) {
1839 		unsigned long addr = (unsigned long)(*pages);
1840 		struct vm_area_struct *vma;
1841 		struct page *page;
1842 		int err = -EFAULT;
1843 
1844 		vma = vma_lookup(mm, addr);
1845 		if (!vma)
1846 			goto set_status;
1847 
1848 		/* FOLL_DUMP to ignore special (like zero) pages */
1849 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1850 
1851 		err = PTR_ERR(page);
1852 		if (IS_ERR(page))
1853 			goto set_status;
1854 
1855 		if (page) {
1856 			err = page_to_nid(page);
1857 			put_page(page);
1858 		} else {
1859 			err = -ENOENT;
1860 		}
1861 set_status:
1862 		*status = err;
1863 
1864 		pages++;
1865 		status++;
1866 	}
1867 
1868 	mmap_read_unlock(mm);
1869 }
1870 
1871 static int get_compat_pages_array(const void __user *chunk_pages[],
1872 				  const void __user * __user *pages,
1873 				  unsigned long chunk_nr)
1874 {
1875 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1876 	compat_uptr_t p;
1877 	int i;
1878 
1879 	for (i = 0; i < chunk_nr; i++) {
1880 		if (get_user(p, pages32 + i))
1881 			return -EFAULT;
1882 		chunk_pages[i] = compat_ptr(p);
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 /*
1889  * Determine the nodes of a user array of pages and store it in
1890  * a user array of status.
1891  */
1892 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1893 			 const void __user * __user *pages,
1894 			 int __user *status)
1895 {
1896 #define DO_PAGES_STAT_CHUNK_NR 16UL
1897 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1898 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1899 
1900 	while (nr_pages) {
1901 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1902 
1903 		if (in_compat_syscall()) {
1904 			if (get_compat_pages_array(chunk_pages, pages,
1905 						   chunk_nr))
1906 				break;
1907 		} else {
1908 			if (copy_from_user(chunk_pages, pages,
1909 				      chunk_nr * sizeof(*chunk_pages)))
1910 				break;
1911 		}
1912 
1913 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1914 
1915 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1916 			break;
1917 
1918 		pages += chunk_nr;
1919 		status += chunk_nr;
1920 		nr_pages -= chunk_nr;
1921 	}
1922 	return nr_pages ? -EFAULT : 0;
1923 }
1924 
1925 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1926 {
1927 	struct task_struct *task;
1928 	struct mm_struct *mm;
1929 
1930 	/*
1931 	 * There is no need to check if current process has the right to modify
1932 	 * the specified process when they are same.
1933 	 */
1934 	if (!pid) {
1935 		mmget(current->mm);
1936 		*mem_nodes = cpuset_mems_allowed(current);
1937 		return current->mm;
1938 	}
1939 
1940 	/* Find the mm_struct */
1941 	rcu_read_lock();
1942 	task = find_task_by_vpid(pid);
1943 	if (!task) {
1944 		rcu_read_unlock();
1945 		return ERR_PTR(-ESRCH);
1946 	}
1947 	get_task_struct(task);
1948 
1949 	/*
1950 	 * Check if this process has the right to modify the specified
1951 	 * process. Use the regular "ptrace_may_access()" checks.
1952 	 */
1953 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1954 		rcu_read_unlock();
1955 		mm = ERR_PTR(-EPERM);
1956 		goto out;
1957 	}
1958 	rcu_read_unlock();
1959 
1960 	mm = ERR_PTR(security_task_movememory(task));
1961 	if (IS_ERR(mm))
1962 		goto out;
1963 	*mem_nodes = cpuset_mems_allowed(task);
1964 	mm = get_task_mm(task);
1965 out:
1966 	put_task_struct(task);
1967 	if (!mm)
1968 		mm = ERR_PTR(-EINVAL);
1969 	return mm;
1970 }
1971 
1972 /*
1973  * Move a list of pages in the address space of the currently executing
1974  * process.
1975  */
1976 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1977 			     const void __user * __user *pages,
1978 			     const int __user *nodes,
1979 			     int __user *status, int flags)
1980 {
1981 	struct mm_struct *mm;
1982 	int err;
1983 	nodemask_t task_nodes;
1984 
1985 	/* Check flags */
1986 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1987 		return -EINVAL;
1988 
1989 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1990 		return -EPERM;
1991 
1992 	mm = find_mm_struct(pid, &task_nodes);
1993 	if (IS_ERR(mm))
1994 		return PTR_ERR(mm);
1995 
1996 	if (nodes)
1997 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1998 				    nodes, status, flags);
1999 	else
2000 		err = do_pages_stat(mm, nr_pages, pages, status);
2001 
2002 	mmput(mm);
2003 	return err;
2004 }
2005 
2006 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2007 		const void __user * __user *, pages,
2008 		const int __user *, nodes,
2009 		int __user *, status, int, flags)
2010 {
2011 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2012 }
2013 
2014 #ifdef CONFIG_NUMA_BALANCING
2015 /*
2016  * Returns true if this is a safe migration target node for misplaced NUMA
2017  * pages. Currently it only checks the watermarks which is crude.
2018  */
2019 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2020 				   unsigned long nr_migrate_pages)
2021 {
2022 	int z;
2023 
2024 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2025 		struct zone *zone = pgdat->node_zones + z;
2026 
2027 		if (!managed_zone(zone))
2028 			continue;
2029 
2030 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2031 		if (!zone_watermark_ok(zone, 0,
2032 				       high_wmark_pages(zone) +
2033 				       nr_migrate_pages,
2034 				       ZONE_MOVABLE, 0))
2035 			continue;
2036 		return true;
2037 	}
2038 	return false;
2039 }
2040 
2041 static struct page *alloc_misplaced_dst_page(struct page *page,
2042 					   unsigned long data)
2043 {
2044 	int nid = (int) data;
2045 	int order = compound_order(page);
2046 	gfp_t gfp = __GFP_THISNODE;
2047 	struct folio *new;
2048 
2049 	if (order > 0)
2050 		gfp |= GFP_TRANSHUGE_LIGHT;
2051 	else {
2052 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2053 			__GFP_NOWARN;
2054 		gfp &= ~__GFP_RECLAIM;
2055 	}
2056 	new = __folio_alloc_node(gfp, order, nid);
2057 
2058 	return &new->page;
2059 }
2060 
2061 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2062 {
2063 	int nr_pages = thp_nr_pages(page);
2064 	int order = compound_order(page);
2065 
2066 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2067 
2068 	/* Do not migrate THP mapped by multiple processes */
2069 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2070 		return 0;
2071 
2072 	/* Avoid migrating to a node that is nearly full */
2073 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2074 		int z;
2075 
2076 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2077 			return 0;
2078 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2079 			if (managed_zone(pgdat->node_zones + z))
2080 				break;
2081 		}
2082 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2083 		return 0;
2084 	}
2085 
2086 	if (isolate_lru_page(page))
2087 		return 0;
2088 
2089 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2090 			    nr_pages);
2091 
2092 	/*
2093 	 * Isolating the page has taken another reference, so the
2094 	 * caller's reference can be safely dropped without the page
2095 	 * disappearing underneath us during migration.
2096 	 */
2097 	put_page(page);
2098 	return 1;
2099 }
2100 
2101 /*
2102  * Attempt to migrate a misplaced page to the specified destination
2103  * node. Caller is expected to have an elevated reference count on
2104  * the page that will be dropped by this function before returning.
2105  */
2106 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2107 			   int node)
2108 {
2109 	pg_data_t *pgdat = NODE_DATA(node);
2110 	int isolated;
2111 	int nr_remaining;
2112 	unsigned int nr_succeeded;
2113 	LIST_HEAD(migratepages);
2114 	int nr_pages = thp_nr_pages(page);
2115 
2116 	/*
2117 	 * Don't migrate file pages that are mapped in multiple processes
2118 	 * with execute permissions as they are probably shared libraries.
2119 	 */
2120 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2121 	    (vma->vm_flags & VM_EXEC))
2122 		goto out;
2123 
2124 	/*
2125 	 * Also do not migrate dirty pages as not all filesystems can move
2126 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2127 	 */
2128 	if (page_is_file_lru(page) && PageDirty(page))
2129 		goto out;
2130 
2131 	isolated = numamigrate_isolate_page(pgdat, page);
2132 	if (!isolated)
2133 		goto out;
2134 
2135 	list_add(&page->lru, &migratepages);
2136 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2137 				     NULL, node, MIGRATE_ASYNC,
2138 				     MR_NUMA_MISPLACED, &nr_succeeded);
2139 	if (nr_remaining) {
2140 		if (!list_empty(&migratepages)) {
2141 			list_del(&page->lru);
2142 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2143 					page_is_file_lru(page), -nr_pages);
2144 			putback_lru_page(page);
2145 		}
2146 		isolated = 0;
2147 	}
2148 	if (nr_succeeded) {
2149 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2150 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2151 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2152 					    nr_succeeded);
2153 	}
2154 	BUG_ON(!list_empty(&migratepages));
2155 	return isolated;
2156 
2157 out:
2158 	put_page(page);
2159 	return 0;
2160 }
2161 #endif /* CONFIG_NUMA_BALANCING */
2162 
2163 /*
2164  * node_demotion[] example:
2165  *
2166  * Consider a system with two sockets.  Each socket has
2167  * three classes of memory attached: fast, medium and slow.
2168  * Each memory class is placed in its own NUMA node.  The
2169  * CPUs are placed in the node with the "fast" memory.  The
2170  * 6 NUMA nodes (0-5) might be split among the sockets like
2171  * this:
2172  *
2173  *	Socket A: 0, 1, 2
2174  *	Socket B: 3, 4, 5
2175  *
2176  * When Node 0 fills up, its memory should be migrated to
2177  * Node 1.  When Node 1 fills up, it should be migrated to
2178  * Node 2.  The migration path start on the nodes with the
2179  * processors (since allocations default to this node) and
2180  * fast memory, progress through medium and end with the
2181  * slow memory:
2182  *
2183  *	0 -> 1 -> 2 -> stop
2184  *	3 -> 4 -> 5 -> stop
2185  *
2186  * This is represented in the node_demotion[] like this:
2187  *
2188  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2189  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2190  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2191  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2192  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2193  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2194  *
2195  * Moreover some systems may have multiple slow memory nodes.
2196  * Suppose a system has one socket with 3 memory nodes, node 0
2197  * is fast memory type, and node 1/2 both are slow memory
2198  * type, and the distance between fast memory node and slow
2199  * memory node is same. So the migration path should be:
2200  *
2201  *	0 -> 1/2 -> stop
2202  *
2203  * This is represented in the node_demotion[] like this:
2204  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2205  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2206  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2207  */
2208 
2209 /*
2210  * Writes to this array occur without locking.  Cycles are
2211  * not allowed: Node X demotes to Y which demotes to X...
2212  *
2213  * If multiple reads are performed, a single rcu_read_lock()
2214  * must be held over all reads to ensure that no cycles are
2215  * observed.
2216  */
2217 #define DEFAULT_DEMOTION_TARGET_NODES 15
2218 
2219 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2220 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2221 #else
2222 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2223 #endif
2224 
2225 struct demotion_nodes {
2226 	unsigned short nr;
2227 	short nodes[DEMOTION_TARGET_NODES];
2228 };
2229 
2230 static struct demotion_nodes *node_demotion __read_mostly;
2231 
2232 /**
2233  * next_demotion_node() - Get the next node in the demotion path
2234  * @node: The starting node to lookup the next node
2235  *
2236  * Return: node id for next memory node in the demotion path hierarchy
2237  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2238  * @node online or guarantee that it *continues* to be the next demotion
2239  * target.
2240  */
2241 int next_demotion_node(int node)
2242 {
2243 	struct demotion_nodes *nd;
2244 	unsigned short target_nr, index;
2245 	int target;
2246 
2247 	if (!node_demotion)
2248 		return NUMA_NO_NODE;
2249 
2250 	nd = &node_demotion[node];
2251 
2252 	/*
2253 	 * node_demotion[] is updated without excluding this
2254 	 * function from running.  RCU doesn't provide any
2255 	 * compiler barriers, so the READ_ONCE() is required
2256 	 * to avoid compiler reordering or read merging.
2257 	 *
2258 	 * Make sure to use RCU over entire code blocks if
2259 	 * node_demotion[] reads need to be consistent.
2260 	 */
2261 	rcu_read_lock();
2262 	target_nr = READ_ONCE(nd->nr);
2263 
2264 	switch (target_nr) {
2265 	case 0:
2266 		target = NUMA_NO_NODE;
2267 		goto out;
2268 	case 1:
2269 		index = 0;
2270 		break;
2271 	default:
2272 		/*
2273 		 * If there are multiple target nodes, just select one
2274 		 * target node randomly.
2275 		 *
2276 		 * In addition, we can also use round-robin to select
2277 		 * target node, but we should introduce another variable
2278 		 * for node_demotion[] to record last selected target node,
2279 		 * that may cause cache ping-pong due to the changing of
2280 		 * last target node. Or introducing per-cpu data to avoid
2281 		 * caching issue, which seems more complicated. So selecting
2282 		 * target node randomly seems better until now.
2283 		 */
2284 		index = get_random_int() % target_nr;
2285 		break;
2286 	}
2287 
2288 	target = READ_ONCE(nd->nodes[index]);
2289 
2290 out:
2291 	rcu_read_unlock();
2292 	return target;
2293 }
2294 
2295 /* Disable reclaim-based migration. */
2296 static void __disable_all_migrate_targets(void)
2297 {
2298 	int node, i;
2299 
2300 	if (!node_demotion)
2301 		return;
2302 
2303 	for_each_online_node(node) {
2304 		node_demotion[node].nr = 0;
2305 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2306 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
2307 	}
2308 }
2309 
2310 static void disable_all_migrate_targets(void)
2311 {
2312 	__disable_all_migrate_targets();
2313 
2314 	/*
2315 	 * Ensure that the "disable" is visible across the system.
2316 	 * Readers will see either a combination of before+disable
2317 	 * state or disable+after.  They will never see before and
2318 	 * after state together.
2319 	 *
2320 	 * The before+after state together might have cycles and
2321 	 * could cause readers to do things like loop until this
2322 	 * function finishes.  This ensures they can only see a
2323 	 * single "bad" read and would, for instance, only loop
2324 	 * once.
2325 	 */
2326 	synchronize_rcu();
2327 }
2328 
2329 /*
2330  * Find an automatic demotion target for 'node'.
2331  * Failing here is OK.  It might just indicate
2332  * being at the end of a chain.
2333  */
2334 static int establish_migrate_target(int node, nodemask_t *used,
2335 				    int best_distance)
2336 {
2337 	int migration_target, index, val;
2338 	struct demotion_nodes *nd;
2339 
2340 	if (!node_demotion)
2341 		return NUMA_NO_NODE;
2342 
2343 	nd = &node_demotion[node];
2344 
2345 	migration_target = find_next_best_node(node, used);
2346 	if (migration_target == NUMA_NO_NODE)
2347 		return NUMA_NO_NODE;
2348 
2349 	/*
2350 	 * If the node has been set a migration target node before,
2351 	 * which means it's the best distance between them. Still
2352 	 * check if this node can be demoted to other target nodes
2353 	 * if they have a same best distance.
2354 	 */
2355 	if (best_distance != -1) {
2356 		val = node_distance(node, migration_target);
2357 		if (val > best_distance)
2358 			goto out_clear;
2359 	}
2360 
2361 	index = nd->nr;
2362 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2363 		      "Exceeds maximum demotion target nodes\n"))
2364 		goto out_clear;
2365 
2366 	nd->nodes[index] = migration_target;
2367 	nd->nr++;
2368 
2369 	return migration_target;
2370 out_clear:
2371 	node_clear(migration_target, *used);
2372 	return NUMA_NO_NODE;
2373 }
2374 
2375 /*
2376  * When memory fills up on a node, memory contents can be
2377  * automatically migrated to another node instead of
2378  * discarded at reclaim.
2379  *
2380  * Establish a "migration path" which will start at nodes
2381  * with CPUs and will follow the priorities used to build the
2382  * page allocator zonelists.
2383  *
2384  * The difference here is that cycles must be avoided.  If
2385  * node0 migrates to node1, then neither node1, nor anything
2386  * node1 migrates to can migrate to node0. Also one node can
2387  * be migrated to multiple nodes if the target nodes all have
2388  * a same best-distance against the source node.
2389  *
2390  * This function can run simultaneously with readers of
2391  * node_demotion[].  However, it can not run simultaneously
2392  * with itself.  Exclusion is provided by memory hotplug events
2393  * being single-threaded.
2394  */
2395 static void __set_migration_target_nodes(void)
2396 {
2397 	nodemask_t next_pass;
2398 	nodemask_t this_pass;
2399 	nodemask_t used_targets = NODE_MASK_NONE;
2400 	int node, best_distance;
2401 
2402 	/*
2403 	 * Avoid any oddities like cycles that could occur
2404 	 * from changes in the topology.  This will leave
2405 	 * a momentary gap when migration is disabled.
2406 	 */
2407 	disable_all_migrate_targets();
2408 
2409 	/*
2410 	 * Allocations go close to CPUs, first.  Assume that
2411 	 * the migration path starts at the nodes with CPUs.
2412 	 */
2413 	next_pass = node_states[N_CPU];
2414 again:
2415 	this_pass = next_pass;
2416 	next_pass = NODE_MASK_NONE;
2417 	/*
2418 	 * To avoid cycles in the migration "graph", ensure
2419 	 * that migration sources are not future targets by
2420 	 * setting them in 'used_targets'.  Do this only
2421 	 * once per pass so that multiple source nodes can
2422 	 * share a target node.
2423 	 *
2424 	 * 'used_targets' will become unavailable in future
2425 	 * passes.  This limits some opportunities for
2426 	 * multiple source nodes to share a destination.
2427 	 */
2428 	nodes_or(used_targets, used_targets, this_pass);
2429 
2430 	for_each_node_mask(node, this_pass) {
2431 		best_distance = -1;
2432 
2433 		/*
2434 		 * Try to set up the migration path for the node, and the target
2435 		 * migration nodes can be multiple, so doing a loop to find all
2436 		 * the target nodes if they all have a best node distance.
2437 		 */
2438 		do {
2439 			int target_node =
2440 				establish_migrate_target(node, &used_targets,
2441 							 best_distance);
2442 
2443 			if (target_node == NUMA_NO_NODE)
2444 				break;
2445 
2446 			if (best_distance == -1)
2447 				best_distance = node_distance(node, target_node);
2448 
2449 			/*
2450 			 * Visit targets from this pass in the next pass.
2451 			 * Eventually, every node will have been part of
2452 			 * a pass, and will become set in 'used_targets'.
2453 			 */
2454 			node_set(target_node, next_pass);
2455 		} while (1);
2456 	}
2457 	/*
2458 	 * 'next_pass' contains nodes which became migration
2459 	 * targets in this pass.  Make additional passes until
2460 	 * no more migrations targets are available.
2461 	 */
2462 	if (!nodes_empty(next_pass))
2463 		goto again;
2464 }
2465 
2466 /*
2467  * For callers that do not hold get_online_mems() already.
2468  */
2469 void set_migration_target_nodes(void)
2470 {
2471 	get_online_mems();
2472 	__set_migration_target_nodes();
2473 	put_online_mems();
2474 }
2475 
2476 /*
2477  * This leaves migrate-on-reclaim transiently disabled between
2478  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2479  * whether reclaim-based migration is enabled or not, which
2480  * ensures that the user can turn reclaim-based migration at
2481  * any time without needing to recalculate migration targets.
2482  *
2483  * These callbacks already hold get_online_mems().  That is why
2484  * __set_migration_target_nodes() can be used as opposed to
2485  * set_migration_target_nodes().
2486  */
2487 #ifdef CONFIG_MEMORY_HOTPLUG
2488 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2489 						 unsigned long action, void *_arg)
2490 {
2491 	struct memory_notify *arg = _arg;
2492 
2493 	/*
2494 	 * Only update the node migration order when a node is
2495 	 * changing status, like online->offline.  This avoids
2496 	 * the overhead of synchronize_rcu() in most cases.
2497 	 */
2498 	if (arg->status_change_nid < 0)
2499 		return notifier_from_errno(0);
2500 
2501 	switch (action) {
2502 	case MEM_GOING_OFFLINE:
2503 		/*
2504 		 * Make sure there are not transient states where
2505 		 * an offline node is a migration target.  This
2506 		 * will leave migration disabled until the offline
2507 		 * completes and the MEM_OFFLINE case below runs.
2508 		 */
2509 		disable_all_migrate_targets();
2510 		break;
2511 	case MEM_OFFLINE:
2512 	case MEM_ONLINE:
2513 		/*
2514 		 * Recalculate the target nodes once the node
2515 		 * reaches its final state (online or offline).
2516 		 */
2517 		__set_migration_target_nodes();
2518 		break;
2519 	case MEM_CANCEL_OFFLINE:
2520 		/*
2521 		 * MEM_GOING_OFFLINE disabled all the migration
2522 		 * targets.  Reenable them.
2523 		 */
2524 		__set_migration_target_nodes();
2525 		break;
2526 	case MEM_GOING_ONLINE:
2527 	case MEM_CANCEL_ONLINE:
2528 		break;
2529 	}
2530 
2531 	return notifier_from_errno(0);
2532 }
2533 #endif
2534 
2535 void __init migrate_on_reclaim_init(void)
2536 {
2537 	node_demotion = kcalloc(nr_node_ids,
2538 				sizeof(struct demotion_nodes),
2539 				GFP_KERNEL);
2540 	WARN_ON(!node_demotion);
2541 #ifdef CONFIG_MEMORY_HOTPLUG
2542 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2543 #endif
2544 	/*
2545 	 * At this point, all numa nodes with memory/CPus have their state
2546 	 * properly set, so we can build the demotion order now.
2547 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
2548 	 * CPU hotplug events during boot.
2549 	 */
2550 	cpus_read_lock();
2551 	set_migration_target_nodes();
2552 	cpus_read_unlock();
2553 }
2554 
2555 bool numa_demotion_enabled = false;
2556 
2557 #ifdef CONFIG_SYSFS
2558 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2559 					  struct kobj_attribute *attr, char *buf)
2560 {
2561 	return sysfs_emit(buf, "%s\n",
2562 			  numa_demotion_enabled ? "true" : "false");
2563 }
2564 
2565 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2566 					   struct kobj_attribute *attr,
2567 					   const char *buf, size_t count)
2568 {
2569 	ssize_t ret;
2570 
2571 	ret = kstrtobool(buf, &numa_demotion_enabled);
2572 	if (ret)
2573 		return ret;
2574 
2575 	return count;
2576 }
2577 
2578 static struct kobj_attribute numa_demotion_enabled_attr =
2579 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2580 	       numa_demotion_enabled_store);
2581 
2582 static struct attribute *numa_attrs[] = {
2583 	&numa_demotion_enabled_attr.attr,
2584 	NULL,
2585 };
2586 
2587 static const struct attribute_group numa_attr_group = {
2588 	.attrs = numa_attrs,
2589 };
2590 
2591 static int __init numa_init_sysfs(void)
2592 {
2593 	int err;
2594 	struct kobject *numa_kobj;
2595 
2596 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
2597 	if (!numa_kobj) {
2598 		pr_err("failed to create numa kobject\n");
2599 		return -ENOMEM;
2600 	}
2601 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
2602 	if (err) {
2603 		pr_err("failed to register numa group\n");
2604 		goto delete_obj;
2605 	}
2606 	return 0;
2607 
2608 delete_obj:
2609 	kobject_put(numa_kobj);
2610 	return err;
2611 }
2612 subsys_initcall(numa_init_sysfs);
2613 #endif /* CONFIG_SYSFS */
2614 #endif /* CONFIG_NUMA */
2615