xref: /linux/mm/migrate.c (revision f58c91ce82cbb55a48fbc1a0cb7c84c0d0a4e1bd)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		if (unlikely(PageHuge(page))) {
104 			putback_active_hugepage(page);
105 			continue;
106 		}
107 		list_del(&page->lru);
108 		dec_zone_page_state(page, NR_ISOLATED_ANON +
109 				page_is_file_cache(page));
110 		if (unlikely(isolated_balloon_page(page)))
111 			balloon_page_putback(page);
112 		else
113 			putback_lru_page(page);
114 	}
115 }
116 
117 /*
118  * Restore a potential migration pte to a working pte entry
119  */
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 				 unsigned long addr, void *old)
122 {
123 	struct mm_struct *mm = vma->vm_mm;
124 	swp_entry_t entry;
125  	pmd_t *pmd;
126 	pte_t *ptep, pte;
127  	spinlock_t *ptl;
128 
129 	if (unlikely(PageHuge(new))) {
130 		ptep = huge_pte_offset(mm, addr);
131 		if (!ptep)
132 			goto out;
133 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
134 	} else {
135 		pmd = mm_find_pmd(mm, addr);
136 		if (!pmd)
137 			goto out;
138 		if (pmd_trans_huge(*pmd))
139 			goto out;
140 
141 		ptep = pte_offset_map(pmd, addr);
142 
143 		/*
144 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
145 		 * can race mremap's move_ptes(), which skips anon_vma lock.
146 		 */
147 
148 		ptl = pte_lockptr(mm, pmd);
149 	}
150 
151  	spin_lock(ptl);
152 	pte = *ptep;
153 	if (!is_swap_pte(pte))
154 		goto unlock;
155 
156 	entry = pte_to_swp_entry(pte);
157 
158 	if (!is_migration_entry(entry) ||
159 	    migration_entry_to_page(entry) != old)
160 		goto unlock;
161 
162 	get_page(new);
163 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 	if (pte_swp_soft_dirty(*ptep))
165 		pte = pte_mksoft_dirty(pte);
166 	if (is_write_migration_entry(entry))
167 		pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 	if (PageHuge(new)) {
170 		pte = pte_mkhuge(pte);
171 		pte = arch_make_huge_pte(pte, vma, new, 0);
172 	}
173 #endif
174 	flush_dcache_page(new);
175 	set_pte_at(mm, addr, ptep, pte);
176 
177 	if (PageHuge(new)) {
178 		if (PageAnon(new))
179 			hugepage_add_anon_rmap(new, vma, addr);
180 		else
181 			page_dup_rmap(new);
182 	} else if (PageAnon(new))
183 		page_add_anon_rmap(new, vma, addr);
184 	else
185 		page_add_file_rmap(new);
186 
187 	/* No need to invalidate - it was non-present before */
188 	update_mmu_cache(vma, addr, ptep);
189 unlock:
190 	pte_unmap_unlock(ptep, ptl);
191 out:
192 	return SWAP_AGAIN;
193 }
194 
195 /*
196  * Get rid of all migration entries and replace them by
197  * references to the indicated page.
198  */
199 static void remove_migration_ptes(struct page *old, struct page *new)
200 {
201 	rmap_walk(new, remove_migration_pte, old);
202 }
203 
204 /*
205  * Something used the pte of a page under migration. We need to
206  * get to the page and wait until migration is finished.
207  * When we return from this function the fault will be retried.
208  */
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 				spinlock_t *ptl)
211 {
212 	pte_t pte;
213 	swp_entry_t entry;
214 	struct page *page;
215 
216 	spin_lock(ptl);
217 	pte = *ptep;
218 	if (!is_swap_pte(pte))
219 		goto out;
220 
221 	entry = pte_to_swp_entry(pte);
222 	if (!is_migration_entry(entry))
223 		goto out;
224 
225 	page = migration_entry_to_page(entry);
226 
227 	/*
228 	 * Once radix-tree replacement of page migration started, page_count
229 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 	 * against a page without get_page().
231 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 	 * will occur again.
233 	 */
234 	if (!get_page_unless_zero(page))
235 		goto out;
236 	pte_unmap_unlock(ptep, ptl);
237 	wait_on_page_locked(page);
238 	put_page(page);
239 	return;
240 out:
241 	pte_unmap_unlock(ptep, ptl);
242 }
243 
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 				unsigned long address)
246 {
247 	spinlock_t *ptl = pte_lockptr(mm, pmd);
248 	pte_t *ptep = pte_offset_map(pmd, address);
249 	__migration_entry_wait(mm, ptep, ptl);
250 }
251 
252 void migration_entry_wait_huge(struct vm_area_struct *vma,
253 		struct mm_struct *mm, pte_t *pte)
254 {
255 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
256 	__migration_entry_wait(mm, pte, ptl);
257 }
258 
259 #ifdef CONFIG_BLOCK
260 /* Returns true if all buffers are successfully locked */
261 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
262 							enum migrate_mode mode)
263 {
264 	struct buffer_head *bh = head;
265 
266 	/* Simple case, sync compaction */
267 	if (mode != MIGRATE_ASYNC) {
268 		do {
269 			get_bh(bh);
270 			lock_buffer(bh);
271 			bh = bh->b_this_page;
272 
273 		} while (bh != head);
274 
275 		return true;
276 	}
277 
278 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
279 	do {
280 		get_bh(bh);
281 		if (!trylock_buffer(bh)) {
282 			/*
283 			 * We failed to lock the buffer and cannot stall in
284 			 * async migration. Release the taken locks
285 			 */
286 			struct buffer_head *failed_bh = bh;
287 			put_bh(failed_bh);
288 			bh = head;
289 			while (bh != failed_bh) {
290 				unlock_buffer(bh);
291 				put_bh(bh);
292 				bh = bh->b_this_page;
293 			}
294 			return false;
295 		}
296 
297 		bh = bh->b_this_page;
298 	} while (bh != head);
299 	return true;
300 }
301 #else
302 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
303 							enum migrate_mode mode)
304 {
305 	return true;
306 }
307 #endif /* CONFIG_BLOCK */
308 
309 /*
310  * Replace the page in the mapping.
311  *
312  * The number of remaining references must be:
313  * 1 for anonymous pages without a mapping
314  * 2 for pages with a mapping
315  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
316  */
317 int migrate_page_move_mapping(struct address_space *mapping,
318 		struct page *newpage, struct page *page,
319 		struct buffer_head *head, enum migrate_mode mode)
320 {
321 	int expected_count = 0;
322 	void **pslot;
323 
324 	if (!mapping) {
325 		/* Anonymous page without mapping */
326 		if (page_count(page) != 1)
327 			return -EAGAIN;
328 		return MIGRATEPAGE_SUCCESS;
329 	}
330 
331 	spin_lock_irq(&mapping->tree_lock);
332 
333 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
334  					page_index(page));
335 
336 	expected_count = 2 + page_has_private(page);
337 	if (page_count(page) != expected_count ||
338 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
339 		spin_unlock_irq(&mapping->tree_lock);
340 		return -EAGAIN;
341 	}
342 
343 	if (!page_freeze_refs(page, expected_count)) {
344 		spin_unlock_irq(&mapping->tree_lock);
345 		return -EAGAIN;
346 	}
347 
348 	/*
349 	 * In the async migration case of moving a page with buffers, lock the
350 	 * buffers using trylock before the mapping is moved. If the mapping
351 	 * was moved, we later failed to lock the buffers and could not move
352 	 * the mapping back due to an elevated page count, we would have to
353 	 * block waiting on other references to be dropped.
354 	 */
355 	if (mode == MIGRATE_ASYNC && head &&
356 			!buffer_migrate_lock_buffers(head, mode)) {
357 		page_unfreeze_refs(page, expected_count);
358 		spin_unlock_irq(&mapping->tree_lock);
359 		return -EAGAIN;
360 	}
361 
362 	/*
363 	 * Now we know that no one else is looking at the page.
364 	 */
365 	get_page(newpage);	/* add cache reference */
366 	if (PageSwapCache(page)) {
367 		SetPageSwapCache(newpage);
368 		set_page_private(newpage, page_private(page));
369 	}
370 
371 	radix_tree_replace_slot(pslot, newpage);
372 
373 	/*
374 	 * Drop cache reference from old page by unfreezing
375 	 * to one less reference.
376 	 * We know this isn't the last reference.
377 	 */
378 	page_unfreeze_refs(page, expected_count - 1);
379 
380 	/*
381 	 * If moved to a different zone then also account
382 	 * the page for that zone. Other VM counters will be
383 	 * taken care of when we establish references to the
384 	 * new page and drop references to the old page.
385 	 *
386 	 * Note that anonymous pages are accounted for
387 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
388 	 * are mapped to swap space.
389 	 */
390 	__dec_zone_page_state(page, NR_FILE_PAGES);
391 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
392 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
393 		__dec_zone_page_state(page, NR_SHMEM);
394 		__inc_zone_page_state(newpage, NR_SHMEM);
395 	}
396 	spin_unlock_irq(&mapping->tree_lock);
397 
398 	return MIGRATEPAGE_SUCCESS;
399 }
400 
401 /*
402  * The expected number of remaining references is the same as that
403  * of migrate_page_move_mapping().
404  */
405 int migrate_huge_page_move_mapping(struct address_space *mapping,
406 				   struct page *newpage, struct page *page)
407 {
408 	int expected_count;
409 	void **pslot;
410 
411 	if (!mapping) {
412 		if (page_count(page) != 1)
413 			return -EAGAIN;
414 		return MIGRATEPAGE_SUCCESS;
415 	}
416 
417 	spin_lock_irq(&mapping->tree_lock);
418 
419 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
420 					page_index(page));
421 
422 	expected_count = 2 + page_has_private(page);
423 	if (page_count(page) != expected_count ||
424 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
425 		spin_unlock_irq(&mapping->tree_lock);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_freeze_refs(page, expected_count)) {
430 		spin_unlock_irq(&mapping->tree_lock);
431 		return -EAGAIN;
432 	}
433 
434 	get_page(newpage);
435 
436 	radix_tree_replace_slot(pslot, newpage);
437 
438 	page_unfreeze_refs(page, expected_count - 1);
439 
440 	spin_unlock_irq(&mapping->tree_lock);
441 	return MIGRATEPAGE_SUCCESS;
442 }
443 
444 /*
445  * Gigantic pages are so large that we do not guarantee that page++ pointer
446  * arithmetic will work across the entire page.  We need something more
447  * specialized.
448  */
449 static void __copy_gigantic_page(struct page *dst, struct page *src,
450 				int nr_pages)
451 {
452 	int i;
453 	struct page *dst_base = dst;
454 	struct page *src_base = src;
455 
456 	for (i = 0; i < nr_pages; ) {
457 		cond_resched();
458 		copy_highpage(dst, src);
459 
460 		i++;
461 		dst = mem_map_next(dst, dst_base, i);
462 		src = mem_map_next(src, src_base, i);
463 	}
464 }
465 
466 static void copy_huge_page(struct page *dst, struct page *src)
467 {
468 	int i;
469 	int nr_pages;
470 
471 	if (PageHuge(src)) {
472 		/* hugetlbfs page */
473 		struct hstate *h = page_hstate(src);
474 		nr_pages = pages_per_huge_page(h);
475 
476 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
477 			__copy_gigantic_page(dst, src, nr_pages);
478 			return;
479 		}
480 	} else {
481 		/* thp page */
482 		BUG_ON(!PageTransHuge(src));
483 		nr_pages = hpage_nr_pages(src);
484 	}
485 
486 	for (i = 0; i < nr_pages; i++) {
487 		cond_resched();
488 		copy_highpage(dst + i, src + i);
489 	}
490 }
491 
492 /*
493  * Copy the page to its new location
494  */
495 void migrate_page_copy(struct page *newpage, struct page *page)
496 {
497 	int cpupid;
498 
499 	if (PageHuge(page) || PageTransHuge(page))
500 		copy_huge_page(newpage, page);
501 	else
502 		copy_highpage(newpage, page);
503 
504 	if (PageError(page))
505 		SetPageError(newpage);
506 	if (PageReferenced(page))
507 		SetPageReferenced(newpage);
508 	if (PageUptodate(page))
509 		SetPageUptodate(newpage);
510 	if (TestClearPageActive(page)) {
511 		VM_BUG_ON(PageUnevictable(page));
512 		SetPageActive(newpage);
513 	} else if (TestClearPageUnevictable(page))
514 		SetPageUnevictable(newpage);
515 	if (PageChecked(page))
516 		SetPageChecked(newpage);
517 	if (PageMappedToDisk(page))
518 		SetPageMappedToDisk(newpage);
519 
520 	if (PageDirty(page)) {
521 		clear_page_dirty_for_io(page);
522 		/*
523 		 * Want to mark the page and the radix tree as dirty, and
524 		 * redo the accounting that clear_page_dirty_for_io undid,
525 		 * but we can't use set_page_dirty because that function
526 		 * is actually a signal that all of the page has become dirty.
527 		 * Whereas only part of our page may be dirty.
528 		 */
529 		if (PageSwapBacked(page))
530 			SetPageDirty(newpage);
531 		else
532 			__set_page_dirty_nobuffers(newpage);
533  	}
534 
535 	/*
536 	 * Copy NUMA information to the new page, to prevent over-eager
537 	 * future migrations of this same page.
538 	 */
539 	cpupid = page_cpupid_xchg_last(page, -1);
540 	page_cpupid_xchg_last(newpage, cpupid);
541 
542 	mlock_migrate_page(newpage, page);
543 	ksm_migrate_page(newpage, page);
544 	/*
545 	 * Please do not reorder this without considering how mm/ksm.c's
546 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
547 	 */
548 	ClearPageSwapCache(page);
549 	ClearPagePrivate(page);
550 	set_page_private(page, 0);
551 
552 	/*
553 	 * If any waiters have accumulated on the new page then
554 	 * wake them up.
555 	 */
556 	if (PageWriteback(newpage))
557 		end_page_writeback(newpage);
558 }
559 
560 /************************************************************
561  *                    Migration functions
562  ***********************************************************/
563 
564 /* Always fail migration. Used for mappings that are not movable */
565 int fail_migrate_page(struct address_space *mapping,
566 			struct page *newpage, struct page *page)
567 {
568 	return -EIO;
569 }
570 EXPORT_SYMBOL(fail_migrate_page);
571 
572 /*
573  * Common logic to directly migrate a single page suitable for
574  * pages that do not use PagePrivate/PagePrivate2.
575  *
576  * Pages are locked upon entry and exit.
577  */
578 int migrate_page(struct address_space *mapping,
579 		struct page *newpage, struct page *page,
580 		enum migrate_mode mode)
581 {
582 	int rc;
583 
584 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
585 
586 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
587 
588 	if (rc != MIGRATEPAGE_SUCCESS)
589 		return rc;
590 
591 	migrate_page_copy(newpage, page);
592 	return MIGRATEPAGE_SUCCESS;
593 }
594 EXPORT_SYMBOL(migrate_page);
595 
596 #ifdef CONFIG_BLOCK
597 /*
598  * Migration function for pages with buffers. This function can only be used
599  * if the underlying filesystem guarantees that no other references to "page"
600  * exist.
601  */
602 int buffer_migrate_page(struct address_space *mapping,
603 		struct page *newpage, struct page *page, enum migrate_mode mode)
604 {
605 	struct buffer_head *bh, *head;
606 	int rc;
607 
608 	if (!page_has_buffers(page))
609 		return migrate_page(mapping, newpage, page, mode);
610 
611 	head = page_buffers(page);
612 
613 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
614 
615 	if (rc != MIGRATEPAGE_SUCCESS)
616 		return rc;
617 
618 	/*
619 	 * In the async case, migrate_page_move_mapping locked the buffers
620 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
621 	 * need to be locked now
622 	 */
623 	if (mode != MIGRATE_ASYNC)
624 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
625 
626 	ClearPagePrivate(page);
627 	set_page_private(newpage, page_private(page));
628 	set_page_private(page, 0);
629 	put_page(page);
630 	get_page(newpage);
631 
632 	bh = head;
633 	do {
634 		set_bh_page(bh, newpage, bh_offset(bh));
635 		bh = bh->b_this_page;
636 
637 	} while (bh != head);
638 
639 	SetPagePrivate(newpage);
640 
641 	migrate_page_copy(newpage, page);
642 
643 	bh = head;
644 	do {
645 		unlock_buffer(bh);
646  		put_bh(bh);
647 		bh = bh->b_this_page;
648 
649 	} while (bh != head);
650 
651 	return MIGRATEPAGE_SUCCESS;
652 }
653 EXPORT_SYMBOL(buffer_migrate_page);
654 #endif
655 
656 /*
657  * Writeback a page to clean the dirty state
658  */
659 static int writeout(struct address_space *mapping, struct page *page)
660 {
661 	struct writeback_control wbc = {
662 		.sync_mode = WB_SYNC_NONE,
663 		.nr_to_write = 1,
664 		.range_start = 0,
665 		.range_end = LLONG_MAX,
666 		.for_reclaim = 1
667 	};
668 	int rc;
669 
670 	if (!mapping->a_ops->writepage)
671 		/* No write method for the address space */
672 		return -EINVAL;
673 
674 	if (!clear_page_dirty_for_io(page))
675 		/* Someone else already triggered a write */
676 		return -EAGAIN;
677 
678 	/*
679 	 * A dirty page may imply that the underlying filesystem has
680 	 * the page on some queue. So the page must be clean for
681 	 * migration. Writeout may mean we loose the lock and the
682 	 * page state is no longer what we checked for earlier.
683 	 * At this point we know that the migration attempt cannot
684 	 * be successful.
685 	 */
686 	remove_migration_ptes(page, page);
687 
688 	rc = mapping->a_ops->writepage(page, &wbc);
689 
690 	if (rc != AOP_WRITEPAGE_ACTIVATE)
691 		/* unlocked. Relock */
692 		lock_page(page);
693 
694 	return (rc < 0) ? -EIO : -EAGAIN;
695 }
696 
697 /*
698  * Default handling if a filesystem does not provide a migration function.
699  */
700 static int fallback_migrate_page(struct address_space *mapping,
701 	struct page *newpage, struct page *page, enum migrate_mode mode)
702 {
703 	if (PageDirty(page)) {
704 		/* Only writeback pages in full synchronous migration */
705 		if (mode != MIGRATE_SYNC)
706 			return -EBUSY;
707 		return writeout(mapping, page);
708 	}
709 
710 	/*
711 	 * Buffers may be managed in a filesystem specific way.
712 	 * We must have no buffers or drop them.
713 	 */
714 	if (page_has_private(page) &&
715 	    !try_to_release_page(page, GFP_KERNEL))
716 		return -EAGAIN;
717 
718 	return migrate_page(mapping, newpage, page, mode);
719 }
720 
721 /*
722  * Move a page to a newly allocated page
723  * The page is locked and all ptes have been successfully removed.
724  *
725  * The new page will have replaced the old page if this function
726  * is successful.
727  *
728  * Return value:
729  *   < 0 - error code
730  *  MIGRATEPAGE_SUCCESS - success
731  */
732 static int move_to_new_page(struct page *newpage, struct page *page,
733 				int remap_swapcache, enum migrate_mode mode)
734 {
735 	struct address_space *mapping;
736 	int rc;
737 
738 	/*
739 	 * Block others from accessing the page when we get around to
740 	 * establishing additional references. We are the only one
741 	 * holding a reference to the new page at this point.
742 	 */
743 	if (!trylock_page(newpage))
744 		BUG();
745 
746 	/* Prepare mapping for the new page.*/
747 	newpage->index = page->index;
748 	newpage->mapping = page->mapping;
749 	if (PageSwapBacked(page))
750 		SetPageSwapBacked(newpage);
751 
752 	mapping = page_mapping(page);
753 	if (!mapping)
754 		rc = migrate_page(mapping, newpage, page, mode);
755 	else if (mapping->a_ops->migratepage)
756 		/*
757 		 * Most pages have a mapping and most filesystems provide a
758 		 * migratepage callback. Anonymous pages are part of swap
759 		 * space which also has its own migratepage callback. This
760 		 * is the most common path for page migration.
761 		 */
762 		rc = mapping->a_ops->migratepage(mapping,
763 						newpage, page, mode);
764 	else
765 		rc = fallback_migrate_page(mapping, newpage, page, mode);
766 
767 	if (rc != MIGRATEPAGE_SUCCESS) {
768 		newpage->mapping = NULL;
769 	} else {
770 		if (remap_swapcache)
771 			remove_migration_ptes(page, newpage);
772 		page->mapping = NULL;
773 	}
774 
775 	unlock_page(newpage);
776 
777 	return rc;
778 }
779 
780 static int __unmap_and_move(struct page *page, struct page *newpage,
781 				int force, enum migrate_mode mode)
782 {
783 	int rc = -EAGAIN;
784 	int remap_swapcache = 1;
785 	struct mem_cgroup *mem;
786 	struct anon_vma *anon_vma = NULL;
787 
788 	if (!trylock_page(page)) {
789 		if (!force || mode == MIGRATE_ASYNC)
790 			goto out;
791 
792 		/*
793 		 * It's not safe for direct compaction to call lock_page.
794 		 * For example, during page readahead pages are added locked
795 		 * to the LRU. Later, when the IO completes the pages are
796 		 * marked uptodate and unlocked. However, the queueing
797 		 * could be merging multiple pages for one bio (e.g.
798 		 * mpage_readpages). If an allocation happens for the
799 		 * second or third page, the process can end up locking
800 		 * the same page twice and deadlocking. Rather than
801 		 * trying to be clever about what pages can be locked,
802 		 * avoid the use of lock_page for direct compaction
803 		 * altogether.
804 		 */
805 		if (current->flags & PF_MEMALLOC)
806 			goto out;
807 
808 		lock_page(page);
809 	}
810 
811 	/* charge against new page */
812 	mem_cgroup_prepare_migration(page, newpage, &mem);
813 
814 	if (PageWriteback(page)) {
815 		/*
816 		 * Only in the case of a full synchronous migration is it
817 		 * necessary to wait for PageWriteback. In the async case,
818 		 * the retry loop is too short and in the sync-light case,
819 		 * the overhead of stalling is too much
820 		 */
821 		if (mode != MIGRATE_SYNC) {
822 			rc = -EBUSY;
823 			goto uncharge;
824 		}
825 		if (!force)
826 			goto uncharge;
827 		wait_on_page_writeback(page);
828 	}
829 	/*
830 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
831 	 * we cannot notice that anon_vma is freed while we migrates a page.
832 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
833 	 * of migration. File cache pages are no problem because of page_lock()
834 	 * File Caches may use write_page() or lock_page() in migration, then,
835 	 * just care Anon page here.
836 	 */
837 	if (PageAnon(page) && !PageKsm(page)) {
838 		/*
839 		 * Only page_lock_anon_vma_read() understands the subtleties of
840 		 * getting a hold on an anon_vma from outside one of its mms.
841 		 */
842 		anon_vma = page_get_anon_vma(page);
843 		if (anon_vma) {
844 			/*
845 			 * Anon page
846 			 */
847 		} else if (PageSwapCache(page)) {
848 			/*
849 			 * We cannot be sure that the anon_vma of an unmapped
850 			 * swapcache page is safe to use because we don't
851 			 * know in advance if the VMA that this page belonged
852 			 * to still exists. If the VMA and others sharing the
853 			 * data have been freed, then the anon_vma could
854 			 * already be invalid.
855 			 *
856 			 * To avoid this possibility, swapcache pages get
857 			 * migrated but are not remapped when migration
858 			 * completes
859 			 */
860 			remap_swapcache = 0;
861 		} else {
862 			goto uncharge;
863 		}
864 	}
865 
866 	if (unlikely(balloon_page_movable(page))) {
867 		/*
868 		 * A ballooned page does not need any special attention from
869 		 * physical to virtual reverse mapping procedures.
870 		 * Skip any attempt to unmap PTEs or to remap swap cache,
871 		 * in order to avoid burning cycles at rmap level, and perform
872 		 * the page migration right away (proteced by page lock).
873 		 */
874 		rc = balloon_page_migrate(newpage, page, mode);
875 		goto uncharge;
876 	}
877 
878 	/*
879 	 * Corner case handling:
880 	 * 1. When a new swap-cache page is read into, it is added to the LRU
881 	 * and treated as swapcache but it has no rmap yet.
882 	 * Calling try_to_unmap() against a page->mapping==NULL page will
883 	 * trigger a BUG.  So handle it here.
884 	 * 2. An orphaned page (see truncate_complete_page) might have
885 	 * fs-private metadata. The page can be picked up due to memory
886 	 * offlining.  Everywhere else except page reclaim, the page is
887 	 * invisible to the vm, so the page can not be migrated.  So try to
888 	 * free the metadata, so the page can be freed.
889 	 */
890 	if (!page->mapping) {
891 		VM_BUG_ON(PageAnon(page));
892 		if (page_has_private(page)) {
893 			try_to_free_buffers(page);
894 			goto uncharge;
895 		}
896 		goto skip_unmap;
897 	}
898 
899 	/* Establish migration ptes or remove ptes */
900 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
901 
902 skip_unmap:
903 	if (!page_mapped(page))
904 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
905 
906 	if (rc && remap_swapcache)
907 		remove_migration_ptes(page, page);
908 
909 	/* Drop an anon_vma reference if we took one */
910 	if (anon_vma)
911 		put_anon_vma(anon_vma);
912 
913 uncharge:
914 	mem_cgroup_end_migration(mem, page, newpage,
915 				 (rc == MIGRATEPAGE_SUCCESS ||
916 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
917 	unlock_page(page);
918 out:
919 	return rc;
920 }
921 
922 /*
923  * Obtain the lock on page, remove all ptes and migrate the page
924  * to the newly allocated page in newpage.
925  */
926 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
927 			struct page *page, int force, enum migrate_mode mode)
928 {
929 	int rc = 0;
930 	int *result = NULL;
931 	struct page *newpage = get_new_page(page, private, &result);
932 
933 	if (!newpage)
934 		return -ENOMEM;
935 
936 	if (page_count(page) == 1) {
937 		/* page was freed from under us. So we are done. */
938 		goto out;
939 	}
940 
941 	if (unlikely(PageTransHuge(page)))
942 		if (unlikely(split_huge_page(page)))
943 			goto out;
944 
945 	rc = __unmap_and_move(page, newpage, force, mode);
946 
947 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
948 		/*
949 		 * A ballooned page has been migrated already.
950 		 * Now, it's the time to wrap-up counters,
951 		 * handle the page back to Buddy and return.
952 		 */
953 		dec_zone_page_state(page, NR_ISOLATED_ANON +
954 				    page_is_file_cache(page));
955 		balloon_page_free(page);
956 		return MIGRATEPAGE_SUCCESS;
957 	}
958 out:
959 	if (rc != -EAGAIN) {
960 		/*
961 		 * A page that has been migrated has all references
962 		 * removed and will be freed. A page that has not been
963 		 * migrated will have kepts its references and be
964 		 * restored.
965 		 */
966 		list_del(&page->lru);
967 		dec_zone_page_state(page, NR_ISOLATED_ANON +
968 				page_is_file_cache(page));
969 		putback_lru_page(page);
970 	}
971 	/*
972 	 * Move the new page to the LRU. If migration was not successful
973 	 * then this will free the page.
974 	 */
975 	putback_lru_page(newpage);
976 	if (result) {
977 		if (rc)
978 			*result = rc;
979 		else
980 			*result = page_to_nid(newpage);
981 	}
982 	return rc;
983 }
984 
985 /*
986  * Counterpart of unmap_and_move_page() for hugepage migration.
987  *
988  * This function doesn't wait the completion of hugepage I/O
989  * because there is no race between I/O and migration for hugepage.
990  * Note that currently hugepage I/O occurs only in direct I/O
991  * where no lock is held and PG_writeback is irrelevant,
992  * and writeback status of all subpages are counted in the reference
993  * count of the head page (i.e. if all subpages of a 2MB hugepage are
994  * under direct I/O, the reference of the head page is 512 and a bit more.)
995  * This means that when we try to migrate hugepage whose subpages are
996  * doing direct I/O, some references remain after try_to_unmap() and
997  * hugepage migration fails without data corruption.
998  *
999  * There is also no race when direct I/O is issued on the page under migration,
1000  * because then pte is replaced with migration swap entry and direct I/O code
1001  * will wait in the page fault for migration to complete.
1002  */
1003 static int unmap_and_move_huge_page(new_page_t get_new_page,
1004 				unsigned long private, struct page *hpage,
1005 				int force, enum migrate_mode mode)
1006 {
1007 	int rc = 0;
1008 	int *result = NULL;
1009 	struct page *new_hpage = get_new_page(hpage, private, &result);
1010 	struct anon_vma *anon_vma = NULL;
1011 
1012 	/*
1013 	 * Movability of hugepages depends on architectures and hugepage size.
1014 	 * This check is necessary because some callers of hugepage migration
1015 	 * like soft offline and memory hotremove don't walk through page
1016 	 * tables or check whether the hugepage is pmd-based or not before
1017 	 * kicking migration.
1018 	 */
1019 	if (!hugepage_migration_support(page_hstate(hpage)))
1020 		return -ENOSYS;
1021 
1022 	if (!new_hpage)
1023 		return -ENOMEM;
1024 
1025 	rc = -EAGAIN;
1026 
1027 	if (!trylock_page(hpage)) {
1028 		if (!force || mode != MIGRATE_SYNC)
1029 			goto out;
1030 		lock_page(hpage);
1031 	}
1032 
1033 	if (PageAnon(hpage))
1034 		anon_vma = page_get_anon_vma(hpage);
1035 
1036 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1037 
1038 	if (!page_mapped(hpage))
1039 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1040 
1041 	if (rc)
1042 		remove_migration_ptes(hpage, hpage);
1043 
1044 	if (anon_vma)
1045 		put_anon_vma(anon_vma);
1046 
1047 	if (!rc)
1048 		hugetlb_cgroup_migrate(hpage, new_hpage);
1049 
1050 	unlock_page(hpage);
1051 out:
1052 	if (rc != -EAGAIN)
1053 		putback_active_hugepage(hpage);
1054 	put_page(new_hpage);
1055 	if (result) {
1056 		if (rc)
1057 			*result = rc;
1058 		else
1059 			*result = page_to_nid(new_hpage);
1060 	}
1061 	return rc;
1062 }
1063 
1064 /*
1065  * migrate_pages - migrate the pages specified in a list, to the free pages
1066  *		   supplied as the target for the page migration
1067  *
1068  * @from:		The list of pages to be migrated.
1069  * @get_new_page:	The function used to allocate free pages to be used
1070  *			as the target of the page migration.
1071  * @private:		Private data to be passed on to get_new_page()
1072  * @mode:		The migration mode that specifies the constraints for
1073  *			page migration, if any.
1074  * @reason:		The reason for page migration.
1075  *
1076  * The function returns after 10 attempts or if no pages are movable any more
1077  * because the list has become empty or no retryable pages exist any more.
1078  * The caller should call putback_lru_pages() to return pages to the LRU
1079  * or free list only if ret != 0.
1080  *
1081  * Returns the number of pages that were not migrated, or an error code.
1082  */
1083 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1084 		unsigned long private, enum migrate_mode mode, int reason)
1085 {
1086 	int retry = 1;
1087 	int nr_failed = 0;
1088 	int nr_succeeded = 0;
1089 	int pass = 0;
1090 	struct page *page;
1091 	struct page *page2;
1092 	int swapwrite = current->flags & PF_SWAPWRITE;
1093 	int rc;
1094 
1095 	if (!swapwrite)
1096 		current->flags |= PF_SWAPWRITE;
1097 
1098 	for(pass = 0; pass < 10 && retry; pass++) {
1099 		retry = 0;
1100 
1101 		list_for_each_entry_safe(page, page2, from, lru) {
1102 			cond_resched();
1103 
1104 			if (PageHuge(page))
1105 				rc = unmap_and_move_huge_page(get_new_page,
1106 						private, page, pass > 2, mode);
1107 			else
1108 				rc = unmap_and_move(get_new_page, private,
1109 						page, pass > 2, mode);
1110 
1111 			switch(rc) {
1112 			case -ENOMEM:
1113 				goto out;
1114 			case -EAGAIN:
1115 				retry++;
1116 				break;
1117 			case MIGRATEPAGE_SUCCESS:
1118 				nr_succeeded++;
1119 				break;
1120 			default:
1121 				/* Permanent failure */
1122 				nr_failed++;
1123 				break;
1124 			}
1125 		}
1126 	}
1127 	rc = nr_failed + retry;
1128 out:
1129 	if (nr_succeeded)
1130 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1131 	if (nr_failed)
1132 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1133 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1134 
1135 	if (!swapwrite)
1136 		current->flags &= ~PF_SWAPWRITE;
1137 
1138 	return rc;
1139 }
1140 
1141 #ifdef CONFIG_NUMA
1142 /*
1143  * Move a list of individual pages
1144  */
1145 struct page_to_node {
1146 	unsigned long addr;
1147 	struct page *page;
1148 	int node;
1149 	int status;
1150 };
1151 
1152 static struct page *new_page_node(struct page *p, unsigned long private,
1153 		int **result)
1154 {
1155 	struct page_to_node *pm = (struct page_to_node *)private;
1156 
1157 	while (pm->node != MAX_NUMNODES && pm->page != p)
1158 		pm++;
1159 
1160 	if (pm->node == MAX_NUMNODES)
1161 		return NULL;
1162 
1163 	*result = &pm->status;
1164 
1165 	if (PageHuge(p))
1166 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1167 					pm->node);
1168 	else
1169 		return alloc_pages_exact_node(pm->node,
1170 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1171 }
1172 
1173 /*
1174  * Move a set of pages as indicated in the pm array. The addr
1175  * field must be set to the virtual address of the page to be moved
1176  * and the node number must contain a valid target node.
1177  * The pm array ends with node = MAX_NUMNODES.
1178  */
1179 static int do_move_page_to_node_array(struct mm_struct *mm,
1180 				      struct page_to_node *pm,
1181 				      int migrate_all)
1182 {
1183 	int err;
1184 	struct page_to_node *pp;
1185 	LIST_HEAD(pagelist);
1186 
1187 	down_read(&mm->mmap_sem);
1188 
1189 	/*
1190 	 * Build a list of pages to migrate
1191 	 */
1192 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1193 		struct vm_area_struct *vma;
1194 		struct page *page;
1195 
1196 		err = -EFAULT;
1197 		vma = find_vma(mm, pp->addr);
1198 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1199 			goto set_status;
1200 
1201 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1202 
1203 		err = PTR_ERR(page);
1204 		if (IS_ERR(page))
1205 			goto set_status;
1206 
1207 		err = -ENOENT;
1208 		if (!page)
1209 			goto set_status;
1210 
1211 		/* Use PageReserved to check for zero page */
1212 		if (PageReserved(page))
1213 			goto put_and_set;
1214 
1215 		pp->page = page;
1216 		err = page_to_nid(page);
1217 
1218 		if (err == pp->node)
1219 			/*
1220 			 * Node already in the right place
1221 			 */
1222 			goto put_and_set;
1223 
1224 		err = -EACCES;
1225 		if (page_mapcount(page) > 1 &&
1226 				!migrate_all)
1227 			goto put_and_set;
1228 
1229 		if (PageHuge(page)) {
1230 			isolate_huge_page(page, &pagelist);
1231 			goto put_and_set;
1232 		}
1233 
1234 		err = isolate_lru_page(page);
1235 		if (!err) {
1236 			list_add_tail(&page->lru, &pagelist);
1237 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1238 					    page_is_file_cache(page));
1239 		}
1240 put_and_set:
1241 		/*
1242 		 * Either remove the duplicate refcount from
1243 		 * isolate_lru_page() or drop the page ref if it was
1244 		 * not isolated.
1245 		 */
1246 		put_page(page);
1247 set_status:
1248 		pp->status = err;
1249 	}
1250 
1251 	err = 0;
1252 	if (!list_empty(&pagelist)) {
1253 		err = migrate_pages(&pagelist, new_page_node,
1254 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1255 		if (err)
1256 			putback_movable_pages(&pagelist);
1257 	}
1258 
1259 	up_read(&mm->mmap_sem);
1260 	return err;
1261 }
1262 
1263 /*
1264  * Migrate an array of page address onto an array of nodes and fill
1265  * the corresponding array of status.
1266  */
1267 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1268 			 unsigned long nr_pages,
1269 			 const void __user * __user *pages,
1270 			 const int __user *nodes,
1271 			 int __user *status, int flags)
1272 {
1273 	struct page_to_node *pm;
1274 	unsigned long chunk_nr_pages;
1275 	unsigned long chunk_start;
1276 	int err;
1277 
1278 	err = -ENOMEM;
1279 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1280 	if (!pm)
1281 		goto out;
1282 
1283 	migrate_prep();
1284 
1285 	/*
1286 	 * Store a chunk of page_to_node array in a page,
1287 	 * but keep the last one as a marker
1288 	 */
1289 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1290 
1291 	for (chunk_start = 0;
1292 	     chunk_start < nr_pages;
1293 	     chunk_start += chunk_nr_pages) {
1294 		int j;
1295 
1296 		if (chunk_start + chunk_nr_pages > nr_pages)
1297 			chunk_nr_pages = nr_pages - chunk_start;
1298 
1299 		/* fill the chunk pm with addrs and nodes from user-space */
1300 		for (j = 0; j < chunk_nr_pages; j++) {
1301 			const void __user *p;
1302 			int node;
1303 
1304 			err = -EFAULT;
1305 			if (get_user(p, pages + j + chunk_start))
1306 				goto out_pm;
1307 			pm[j].addr = (unsigned long) p;
1308 
1309 			if (get_user(node, nodes + j + chunk_start))
1310 				goto out_pm;
1311 
1312 			err = -ENODEV;
1313 			if (node < 0 || node >= MAX_NUMNODES)
1314 				goto out_pm;
1315 
1316 			if (!node_state(node, N_MEMORY))
1317 				goto out_pm;
1318 
1319 			err = -EACCES;
1320 			if (!node_isset(node, task_nodes))
1321 				goto out_pm;
1322 
1323 			pm[j].node = node;
1324 		}
1325 
1326 		/* End marker for this chunk */
1327 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1328 
1329 		/* Migrate this chunk */
1330 		err = do_move_page_to_node_array(mm, pm,
1331 						 flags & MPOL_MF_MOVE_ALL);
1332 		if (err < 0)
1333 			goto out_pm;
1334 
1335 		/* Return status information */
1336 		for (j = 0; j < chunk_nr_pages; j++)
1337 			if (put_user(pm[j].status, status + j + chunk_start)) {
1338 				err = -EFAULT;
1339 				goto out_pm;
1340 			}
1341 	}
1342 	err = 0;
1343 
1344 out_pm:
1345 	free_page((unsigned long)pm);
1346 out:
1347 	return err;
1348 }
1349 
1350 /*
1351  * Determine the nodes of an array of pages and store it in an array of status.
1352  */
1353 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1354 				const void __user **pages, int *status)
1355 {
1356 	unsigned long i;
1357 
1358 	down_read(&mm->mmap_sem);
1359 
1360 	for (i = 0; i < nr_pages; i++) {
1361 		unsigned long addr = (unsigned long)(*pages);
1362 		struct vm_area_struct *vma;
1363 		struct page *page;
1364 		int err = -EFAULT;
1365 
1366 		vma = find_vma(mm, addr);
1367 		if (!vma || addr < vma->vm_start)
1368 			goto set_status;
1369 
1370 		page = follow_page(vma, addr, 0);
1371 
1372 		err = PTR_ERR(page);
1373 		if (IS_ERR(page))
1374 			goto set_status;
1375 
1376 		err = -ENOENT;
1377 		/* Use PageReserved to check for zero page */
1378 		if (!page || PageReserved(page))
1379 			goto set_status;
1380 
1381 		err = page_to_nid(page);
1382 set_status:
1383 		*status = err;
1384 
1385 		pages++;
1386 		status++;
1387 	}
1388 
1389 	up_read(&mm->mmap_sem);
1390 }
1391 
1392 /*
1393  * Determine the nodes of a user array of pages and store it in
1394  * a user array of status.
1395  */
1396 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1397 			 const void __user * __user *pages,
1398 			 int __user *status)
1399 {
1400 #define DO_PAGES_STAT_CHUNK_NR 16
1401 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1402 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1403 
1404 	while (nr_pages) {
1405 		unsigned long chunk_nr;
1406 
1407 		chunk_nr = nr_pages;
1408 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1409 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1410 
1411 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1412 			break;
1413 
1414 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1415 
1416 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1417 			break;
1418 
1419 		pages += chunk_nr;
1420 		status += chunk_nr;
1421 		nr_pages -= chunk_nr;
1422 	}
1423 	return nr_pages ? -EFAULT : 0;
1424 }
1425 
1426 /*
1427  * Move a list of pages in the address space of the currently executing
1428  * process.
1429  */
1430 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1431 		const void __user * __user *, pages,
1432 		const int __user *, nodes,
1433 		int __user *, status, int, flags)
1434 {
1435 	const struct cred *cred = current_cred(), *tcred;
1436 	struct task_struct *task;
1437 	struct mm_struct *mm;
1438 	int err;
1439 	nodemask_t task_nodes;
1440 
1441 	/* Check flags */
1442 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1443 		return -EINVAL;
1444 
1445 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1446 		return -EPERM;
1447 
1448 	/* Find the mm_struct */
1449 	rcu_read_lock();
1450 	task = pid ? find_task_by_vpid(pid) : current;
1451 	if (!task) {
1452 		rcu_read_unlock();
1453 		return -ESRCH;
1454 	}
1455 	get_task_struct(task);
1456 
1457 	/*
1458 	 * Check if this process has the right to modify the specified
1459 	 * process. The right exists if the process has administrative
1460 	 * capabilities, superuser privileges or the same
1461 	 * userid as the target process.
1462 	 */
1463 	tcred = __task_cred(task);
1464 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1465 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1466 	    !capable(CAP_SYS_NICE)) {
1467 		rcu_read_unlock();
1468 		err = -EPERM;
1469 		goto out;
1470 	}
1471 	rcu_read_unlock();
1472 
1473  	err = security_task_movememory(task);
1474  	if (err)
1475 		goto out;
1476 
1477 	task_nodes = cpuset_mems_allowed(task);
1478 	mm = get_task_mm(task);
1479 	put_task_struct(task);
1480 
1481 	if (!mm)
1482 		return -EINVAL;
1483 
1484 	if (nodes)
1485 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1486 				    nodes, status, flags);
1487 	else
1488 		err = do_pages_stat(mm, nr_pages, pages, status);
1489 
1490 	mmput(mm);
1491 	return err;
1492 
1493 out:
1494 	put_task_struct(task);
1495 	return err;
1496 }
1497 
1498 /*
1499  * Call migration functions in the vma_ops that may prepare
1500  * memory in a vm for migration. migration functions may perform
1501  * the migration for vmas that do not have an underlying page struct.
1502  */
1503 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1504 	const nodemask_t *from, unsigned long flags)
1505 {
1506  	struct vm_area_struct *vma;
1507  	int err = 0;
1508 
1509 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1510  		if (vma->vm_ops && vma->vm_ops->migrate) {
1511  			err = vma->vm_ops->migrate(vma, to, from, flags);
1512  			if (err)
1513  				break;
1514  		}
1515  	}
1516  	return err;
1517 }
1518 
1519 #ifdef CONFIG_NUMA_BALANCING
1520 /*
1521  * Returns true if this is a safe migration target node for misplaced NUMA
1522  * pages. Currently it only checks the watermarks which crude
1523  */
1524 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1525 				   unsigned long nr_migrate_pages)
1526 {
1527 	int z;
1528 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1529 		struct zone *zone = pgdat->node_zones + z;
1530 
1531 		if (!populated_zone(zone))
1532 			continue;
1533 
1534 		if (!zone_reclaimable(zone))
1535 			continue;
1536 
1537 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1538 		if (!zone_watermark_ok(zone, 0,
1539 				       high_wmark_pages(zone) +
1540 				       nr_migrate_pages,
1541 				       0, 0))
1542 			continue;
1543 		return true;
1544 	}
1545 	return false;
1546 }
1547 
1548 static struct page *alloc_misplaced_dst_page(struct page *page,
1549 					   unsigned long data,
1550 					   int **result)
1551 {
1552 	int nid = (int) data;
1553 	struct page *newpage;
1554 
1555 	newpage = alloc_pages_exact_node(nid,
1556 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1557 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1558 					  __GFP_NOWARN) &
1559 					 ~GFP_IOFS, 0);
1560 	if (newpage)
1561 		page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1562 
1563 	return newpage;
1564 }
1565 
1566 /*
1567  * page migration rate limiting control.
1568  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1569  * window of time. Default here says do not migrate more than 1280M per second.
1570  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1571  * as it is faults that reset the window, pte updates will happen unconditionally
1572  * if there has not been a fault since @pteupdate_interval_millisecs after the
1573  * throttle window closed.
1574  */
1575 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1576 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1577 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1578 
1579 /* Returns true if NUMA migration is currently rate limited */
1580 bool migrate_ratelimited(int node)
1581 {
1582 	pg_data_t *pgdat = NODE_DATA(node);
1583 
1584 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1585 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1586 		return false;
1587 
1588 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1589 		return false;
1590 
1591 	return true;
1592 }
1593 
1594 /* Returns true if the node is migrate rate-limited after the update */
1595 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1596 {
1597 	bool rate_limited = false;
1598 
1599 	/*
1600 	 * Rate-limit the amount of data that is being migrated to a node.
1601 	 * Optimal placement is no good if the memory bus is saturated and
1602 	 * all the time is being spent migrating!
1603 	 */
1604 	spin_lock(&pgdat->numabalancing_migrate_lock);
1605 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1606 		pgdat->numabalancing_migrate_nr_pages = 0;
1607 		pgdat->numabalancing_migrate_next_window = jiffies +
1608 			msecs_to_jiffies(migrate_interval_millisecs);
1609 	}
1610 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1611 		rate_limited = true;
1612 	else
1613 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1614 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1615 
1616 	return rate_limited;
1617 }
1618 
1619 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1620 {
1621 	int page_lru;
1622 
1623 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1624 
1625 	/* Avoid migrating to a node that is nearly full */
1626 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1627 		return 0;
1628 
1629 	if (isolate_lru_page(page))
1630 		return 0;
1631 
1632 	/*
1633 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1634 	 * check on page_count(), so we must do it here, now that the page
1635 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1636 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1637 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1638 	 */
1639 	if (PageTransHuge(page) && page_count(page) != 3) {
1640 		putback_lru_page(page);
1641 		return 0;
1642 	}
1643 
1644 	page_lru = page_is_file_cache(page);
1645 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1646 				hpage_nr_pages(page));
1647 
1648 	/*
1649 	 * Isolating the page has taken another reference, so the
1650 	 * caller's reference can be safely dropped without the page
1651 	 * disappearing underneath us during migration.
1652 	 */
1653 	put_page(page);
1654 	return 1;
1655 }
1656 
1657 /*
1658  * Attempt to migrate a misplaced page to the specified destination
1659  * node. Caller is expected to have an elevated reference count on
1660  * the page that will be dropped by this function before returning.
1661  */
1662 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1663 			   int node)
1664 {
1665 	pg_data_t *pgdat = NODE_DATA(node);
1666 	int isolated;
1667 	int nr_remaining;
1668 	LIST_HEAD(migratepages);
1669 
1670 	/*
1671 	 * Don't migrate file pages that are mapped in multiple processes
1672 	 * with execute permissions as they are probably shared libraries.
1673 	 */
1674 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1675 	    (vma->vm_flags & VM_EXEC))
1676 		goto out;
1677 
1678 	/*
1679 	 * Rate-limit the amount of data that is being migrated to a node.
1680 	 * Optimal placement is no good if the memory bus is saturated and
1681 	 * all the time is being spent migrating!
1682 	 */
1683 	if (numamigrate_update_ratelimit(pgdat, 1))
1684 		goto out;
1685 
1686 	isolated = numamigrate_isolate_page(pgdat, page);
1687 	if (!isolated)
1688 		goto out;
1689 
1690 	list_add(&page->lru, &migratepages);
1691 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1692 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1693 	if (nr_remaining) {
1694 		putback_lru_pages(&migratepages);
1695 		isolated = 0;
1696 	} else
1697 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1698 	BUG_ON(!list_empty(&migratepages));
1699 	return isolated;
1700 
1701 out:
1702 	put_page(page);
1703 	return 0;
1704 }
1705 #endif /* CONFIG_NUMA_BALANCING */
1706 
1707 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1708 /*
1709  * Migrates a THP to a given target node. page must be locked and is unlocked
1710  * before returning.
1711  */
1712 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1713 				struct vm_area_struct *vma,
1714 				pmd_t *pmd, pmd_t entry,
1715 				unsigned long address,
1716 				struct page *page, int node)
1717 {
1718 	spinlock_t *ptl;
1719 	unsigned long haddr = address & HPAGE_PMD_MASK;
1720 	pg_data_t *pgdat = NODE_DATA(node);
1721 	int isolated = 0;
1722 	struct page *new_page = NULL;
1723 	struct mem_cgroup *memcg = NULL;
1724 	int page_lru = page_is_file_cache(page);
1725 
1726 	/*
1727 	 * Rate-limit the amount of data that is being migrated to a node.
1728 	 * Optimal placement is no good if the memory bus is saturated and
1729 	 * all the time is being spent migrating!
1730 	 */
1731 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1732 		goto out_dropref;
1733 
1734 	new_page = alloc_pages_node(node,
1735 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1736 	if (!new_page)
1737 		goto out_fail;
1738 
1739 	page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1740 
1741 	isolated = numamigrate_isolate_page(pgdat, page);
1742 	if (!isolated) {
1743 		put_page(new_page);
1744 		goto out_fail;
1745 	}
1746 
1747 	/* Prepare a page as a migration target */
1748 	__set_page_locked(new_page);
1749 	SetPageSwapBacked(new_page);
1750 
1751 	/* anon mapping, we can simply copy page->mapping to the new page: */
1752 	new_page->mapping = page->mapping;
1753 	new_page->index = page->index;
1754 	migrate_page_copy(new_page, page);
1755 	WARN_ON(PageLRU(new_page));
1756 
1757 	/* Recheck the target PMD */
1758 	ptl = pmd_lock(mm, pmd);
1759 	if (unlikely(!pmd_same(*pmd, entry))) {
1760 		spin_unlock(ptl);
1761 
1762 		/* Reverse changes made by migrate_page_copy() */
1763 		if (TestClearPageActive(new_page))
1764 			SetPageActive(page);
1765 		if (TestClearPageUnevictable(new_page))
1766 			SetPageUnevictable(page);
1767 		mlock_migrate_page(page, new_page);
1768 
1769 		unlock_page(new_page);
1770 		put_page(new_page);		/* Free it */
1771 
1772 		/* Retake the callers reference and putback on LRU */
1773 		get_page(page);
1774 		putback_lru_page(page);
1775 		mod_zone_page_state(page_zone(page),
1776 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1777 		goto out_fail;
1778 	}
1779 
1780 	/*
1781 	 * Traditional migration needs to prepare the memcg charge
1782 	 * transaction early to prevent the old page from being
1783 	 * uncharged when installing migration entries.  Here we can
1784 	 * save the potential rollback and start the charge transfer
1785 	 * only when migration is already known to end successfully.
1786 	 */
1787 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1788 
1789 	entry = mk_pmd(new_page, vma->vm_page_prot);
1790 	entry = pmd_mknonnuma(entry);
1791 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1792 	entry = pmd_mkhuge(entry);
1793 
1794 	pmdp_clear_flush(vma, haddr, pmd);
1795 	set_pmd_at(mm, haddr, pmd, entry);
1796 	page_add_new_anon_rmap(new_page, vma, haddr);
1797 	update_mmu_cache_pmd(vma, address, &entry);
1798 	page_remove_rmap(page);
1799 	/*
1800 	 * Finish the charge transaction under the page table lock to
1801 	 * prevent split_huge_page() from dividing up the charge
1802 	 * before it's fully transferred to the new page.
1803 	 */
1804 	mem_cgroup_end_migration(memcg, page, new_page, true);
1805 	spin_unlock(ptl);
1806 
1807 	unlock_page(new_page);
1808 	unlock_page(page);
1809 	put_page(page);			/* Drop the rmap reference */
1810 	put_page(page);			/* Drop the LRU isolation reference */
1811 
1812 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1813 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1814 
1815 	mod_zone_page_state(page_zone(page),
1816 			NR_ISOLATED_ANON + page_lru,
1817 			-HPAGE_PMD_NR);
1818 	return isolated;
1819 
1820 out_fail:
1821 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1822 out_dropref:
1823 	entry = pmd_mknonnuma(entry);
1824 	set_pmd_at(mm, haddr, pmd, entry);
1825 	update_mmu_cache_pmd(vma, address, &entry);
1826 
1827 	unlock_page(page);
1828 	put_page(page);
1829 	return 0;
1830 }
1831 #endif /* CONFIG_NUMA_BALANCING */
1832 
1833 #endif /* CONFIG_NUMA */
1834