xref: /linux/mm/migrate.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 
34 #include "internal.h"
35 
36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 
38 /*
39  * Isolate one page from the LRU lists. If successful put it onto
40  * the indicated list with elevated page count.
41  *
42  * Result:
43  *  -EBUSY: page not on LRU list
44  *  0: page removed from LRU list and added to the specified list.
45  */
46 int isolate_lru_page(struct page *page, struct list_head *pagelist)
47 {
48 	int ret = -EBUSY;
49 
50 	if (PageLRU(page)) {
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irq(&zone->lru_lock);
54 		if (PageLRU(page) && get_page_unless_zero(page)) {
55 			ret = 0;
56 			ClearPageLRU(page);
57 			if (PageActive(page))
58 				del_page_from_active_list(zone, page);
59 			else
60 				del_page_from_inactive_list(zone, page);
61 			list_add_tail(&page->lru, pagelist);
62 		}
63 		spin_unlock_irq(&zone->lru_lock);
64 	}
65 	return ret;
66 }
67 
68 /*
69  * migrate_prep() needs to be called before we start compiling a list of pages
70  * to be migrated using isolate_lru_page().
71  */
72 int migrate_prep(void)
73 {
74 	/*
75 	 * Clear the LRU lists so pages can be isolated.
76 	 * Note that pages may be moved off the LRU after we have
77 	 * drained them. Those pages will fail to migrate like other
78 	 * pages that may be busy.
79 	 */
80 	lru_add_drain_all();
81 
82 	return 0;
83 }
84 
85 static inline void move_to_lru(struct page *page)
86 {
87 	if (PageActive(page)) {
88 		/*
89 		 * lru_cache_add_active checks that
90 		 * the PG_active bit is off.
91 		 */
92 		ClearPageActive(page);
93 		lru_cache_add_active(page);
94 	} else {
95 		lru_cache_add(page);
96 	}
97 	put_page(page);
98 }
99 
100 /*
101  * Add isolated pages on the list back to the LRU.
102  *
103  * returns the number of pages put back.
104  */
105 int putback_lru_pages(struct list_head *l)
106 {
107 	struct page *page;
108 	struct page *page2;
109 	int count = 0;
110 
111 	list_for_each_entry_safe(page, page2, l, lru) {
112 		list_del(&page->lru);
113 		move_to_lru(page);
114 		count++;
115 	}
116 	return count;
117 }
118 
119 /*
120  * Restore a potential migration pte to a working pte entry
121  */
122 static void remove_migration_pte(struct vm_area_struct *vma,
123 		struct page *old, struct page *new)
124 {
125 	struct mm_struct *mm = vma->vm_mm;
126 	swp_entry_t entry;
127  	pgd_t *pgd;
128  	pud_t *pud;
129  	pmd_t *pmd;
130 	pte_t *ptep, pte;
131  	spinlock_t *ptl;
132 	unsigned long addr = page_address_in_vma(new, vma);
133 
134 	if (addr == -EFAULT)
135 		return;
136 
137  	pgd = pgd_offset(mm, addr);
138 	if (!pgd_present(*pgd))
139                 return;
140 
141 	pud = pud_offset(pgd, addr);
142 	if (!pud_present(*pud))
143                 return;
144 
145 	pmd = pmd_offset(pud, addr);
146 	if (!pmd_present(*pmd))
147 		return;
148 
149 	ptep = pte_offset_map(pmd, addr);
150 
151 	if (!is_swap_pte(*ptep)) {
152 		pte_unmap(ptep);
153  		return;
154  	}
155 
156 	if (mem_cgroup_charge(new, mm, GFP_KERNEL)) {
157 		pte_unmap(ptep);
158 		return;
159 	}
160 
161  	ptl = pte_lockptr(mm, pmd);
162  	spin_lock(ptl);
163 	pte = *ptep;
164 	if (!is_swap_pte(pte))
165 		goto out;
166 
167 	entry = pte_to_swp_entry(pte);
168 
169 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
170 		goto out;
171 
172 	get_page(new);
173 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
174 	if (is_write_migration_entry(entry))
175 		pte = pte_mkwrite(pte);
176 	flush_cache_page(vma, addr, pte_pfn(pte));
177 	set_pte_at(mm, addr, ptep, pte);
178 
179 	if (PageAnon(new))
180 		page_add_anon_rmap(new, vma, addr);
181 	else
182 		page_add_file_rmap(new);
183 
184 	/* No need to invalidate - it was non-present before */
185 	update_mmu_cache(vma, addr, pte);
186 
187 out:
188 	pte_unmap_unlock(ptep, ptl);
189 }
190 
191 /*
192  * Note that remove_file_migration_ptes will only work on regular mappings,
193  * Nonlinear mappings do not use migration entries.
194  */
195 static void remove_file_migration_ptes(struct page *old, struct page *new)
196 {
197 	struct vm_area_struct *vma;
198 	struct address_space *mapping = page_mapping(new);
199 	struct prio_tree_iter iter;
200 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201 
202 	if (!mapping)
203 		return;
204 
205 	spin_lock(&mapping->i_mmap_lock);
206 
207 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
208 		remove_migration_pte(vma, old, new);
209 
210 	spin_unlock(&mapping->i_mmap_lock);
211 }
212 
213 /*
214  * Must hold mmap_sem lock on at least one of the vmas containing
215  * the page so that the anon_vma cannot vanish.
216  */
217 static void remove_anon_migration_ptes(struct page *old, struct page *new)
218 {
219 	struct anon_vma *anon_vma;
220 	struct vm_area_struct *vma;
221 	unsigned long mapping;
222 
223 	mapping = (unsigned long)new->mapping;
224 
225 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
226 		return;
227 
228 	/*
229 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 	 */
231 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
232 	spin_lock(&anon_vma->lock);
233 
234 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
235 		remove_migration_pte(vma, old, new);
236 
237 	spin_unlock(&anon_vma->lock);
238 }
239 
240 /*
241  * Get rid of all migration entries and replace them by
242  * references to the indicated page.
243  */
244 static void remove_migration_ptes(struct page *old, struct page *new)
245 {
246 	if (PageAnon(new))
247 		remove_anon_migration_ptes(old, new);
248 	else
249 		remove_file_migration_ptes(old, new);
250 }
251 
252 /*
253  * Something used the pte of a page under migration. We need to
254  * get to the page and wait until migration is finished.
255  * When we return from this function the fault will be retried.
256  *
257  * This function is called from do_swap_page().
258  */
259 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
260 				unsigned long address)
261 {
262 	pte_t *ptep, pte;
263 	spinlock_t *ptl;
264 	swp_entry_t entry;
265 	struct page *page;
266 
267 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
268 	pte = *ptep;
269 	if (!is_swap_pte(pte))
270 		goto out;
271 
272 	entry = pte_to_swp_entry(pte);
273 	if (!is_migration_entry(entry))
274 		goto out;
275 
276 	page = migration_entry_to_page(entry);
277 
278 	get_page(page);
279 	pte_unmap_unlock(ptep, ptl);
280 	wait_on_page_locked(page);
281 	put_page(page);
282 	return;
283 out:
284 	pte_unmap_unlock(ptep, ptl);
285 }
286 
287 /*
288  * Replace the page in the mapping.
289  *
290  * The number of remaining references must be:
291  * 1 for anonymous pages without a mapping
292  * 2 for pages with a mapping
293  * 3 for pages with a mapping and PagePrivate set.
294  */
295 static int migrate_page_move_mapping(struct address_space *mapping,
296 		struct page *newpage, struct page *page)
297 {
298 	void **pslot;
299 
300 	if (!mapping) {
301 		/* Anonymous page without mapping */
302 		if (page_count(page) != 1)
303 			return -EAGAIN;
304 		return 0;
305 	}
306 
307 	write_lock_irq(&mapping->tree_lock);
308 
309 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
310  					page_index(page));
311 
312 	if (page_count(page) != 2 + !!PagePrivate(page) ||
313 			(struct page *)radix_tree_deref_slot(pslot) != page) {
314 		write_unlock_irq(&mapping->tree_lock);
315 		return -EAGAIN;
316 	}
317 
318 	/*
319 	 * Now we know that no one else is looking at the page.
320 	 */
321 	get_page(newpage);	/* add cache reference */
322 #ifdef CONFIG_SWAP
323 	if (PageSwapCache(page)) {
324 		SetPageSwapCache(newpage);
325 		set_page_private(newpage, page_private(page));
326 	}
327 #endif
328 
329 	radix_tree_replace_slot(pslot, newpage);
330 
331 	/*
332 	 * Drop cache reference from old page.
333 	 * We know this isn't the last reference.
334 	 */
335 	__put_page(page);
336 
337 	/*
338 	 * If moved to a different zone then also account
339 	 * the page for that zone. Other VM counters will be
340 	 * taken care of when we establish references to the
341 	 * new page and drop references to the old page.
342 	 *
343 	 * Note that anonymous pages are accounted for
344 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
345 	 * are mapped to swap space.
346 	 */
347 	__dec_zone_page_state(page, NR_FILE_PAGES);
348 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
349 
350 	write_unlock_irq(&mapping->tree_lock);
351 
352 	return 0;
353 }
354 
355 /*
356  * Copy the page to its new location
357  */
358 static void migrate_page_copy(struct page *newpage, struct page *page)
359 {
360 	copy_highpage(newpage, page);
361 
362 	if (PageError(page))
363 		SetPageError(newpage);
364 	if (PageReferenced(page))
365 		SetPageReferenced(newpage);
366 	if (PageUptodate(page))
367 		SetPageUptodate(newpage);
368 	if (PageActive(page))
369 		SetPageActive(newpage);
370 	if (PageChecked(page))
371 		SetPageChecked(newpage);
372 	if (PageMappedToDisk(page))
373 		SetPageMappedToDisk(newpage);
374 
375 	if (PageDirty(page)) {
376 		clear_page_dirty_for_io(page);
377 		set_page_dirty(newpage);
378  	}
379 
380 #ifdef CONFIG_SWAP
381 	ClearPageSwapCache(page);
382 #endif
383 	ClearPageActive(page);
384 	ClearPagePrivate(page);
385 	set_page_private(page, 0);
386 	page->mapping = NULL;
387 
388 	/*
389 	 * If any waiters have accumulated on the new page then
390 	 * wake them up.
391 	 */
392 	if (PageWriteback(newpage))
393 		end_page_writeback(newpage);
394 }
395 
396 /************************************************************
397  *                    Migration functions
398  ***********************************************************/
399 
400 /* Always fail migration. Used for mappings that are not movable */
401 int fail_migrate_page(struct address_space *mapping,
402 			struct page *newpage, struct page *page)
403 {
404 	return -EIO;
405 }
406 EXPORT_SYMBOL(fail_migrate_page);
407 
408 /*
409  * Common logic to directly migrate a single page suitable for
410  * pages that do not use PagePrivate.
411  *
412  * Pages are locked upon entry and exit.
413  */
414 int migrate_page(struct address_space *mapping,
415 		struct page *newpage, struct page *page)
416 {
417 	int rc;
418 
419 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
420 
421 	rc = migrate_page_move_mapping(mapping, newpage, page);
422 
423 	if (rc)
424 		return rc;
425 
426 	migrate_page_copy(newpage, page);
427 	return 0;
428 }
429 EXPORT_SYMBOL(migrate_page);
430 
431 #ifdef CONFIG_BLOCK
432 /*
433  * Migration function for pages with buffers. This function can only be used
434  * if the underlying filesystem guarantees that no other references to "page"
435  * exist.
436  */
437 int buffer_migrate_page(struct address_space *mapping,
438 		struct page *newpage, struct page *page)
439 {
440 	struct buffer_head *bh, *head;
441 	int rc;
442 
443 	if (!page_has_buffers(page))
444 		return migrate_page(mapping, newpage, page);
445 
446 	head = page_buffers(page);
447 
448 	rc = migrate_page_move_mapping(mapping, newpage, page);
449 
450 	if (rc)
451 		return rc;
452 
453 	bh = head;
454 	do {
455 		get_bh(bh);
456 		lock_buffer(bh);
457 		bh = bh->b_this_page;
458 
459 	} while (bh != head);
460 
461 	ClearPagePrivate(page);
462 	set_page_private(newpage, page_private(page));
463 	set_page_private(page, 0);
464 	put_page(page);
465 	get_page(newpage);
466 
467 	bh = head;
468 	do {
469 		set_bh_page(bh, newpage, bh_offset(bh));
470 		bh = bh->b_this_page;
471 
472 	} while (bh != head);
473 
474 	SetPagePrivate(newpage);
475 
476 	migrate_page_copy(newpage, page);
477 
478 	bh = head;
479 	do {
480 		unlock_buffer(bh);
481  		put_bh(bh);
482 		bh = bh->b_this_page;
483 
484 	} while (bh != head);
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL(buffer_migrate_page);
489 #endif
490 
491 /*
492  * Writeback a page to clean the dirty state
493  */
494 static int writeout(struct address_space *mapping, struct page *page)
495 {
496 	struct writeback_control wbc = {
497 		.sync_mode = WB_SYNC_NONE,
498 		.nr_to_write = 1,
499 		.range_start = 0,
500 		.range_end = LLONG_MAX,
501 		.nonblocking = 1,
502 		.for_reclaim = 1
503 	};
504 	int rc;
505 
506 	if (!mapping->a_ops->writepage)
507 		/* No write method for the address space */
508 		return -EINVAL;
509 
510 	if (!clear_page_dirty_for_io(page))
511 		/* Someone else already triggered a write */
512 		return -EAGAIN;
513 
514 	/*
515 	 * A dirty page may imply that the underlying filesystem has
516 	 * the page on some queue. So the page must be clean for
517 	 * migration. Writeout may mean we loose the lock and the
518 	 * page state is no longer what we checked for earlier.
519 	 * At this point we know that the migration attempt cannot
520 	 * be successful.
521 	 */
522 	remove_migration_ptes(page, page);
523 
524 	rc = mapping->a_ops->writepage(page, &wbc);
525 	if (rc < 0)
526 		/* I/O Error writing */
527 		return -EIO;
528 
529 	if (rc != AOP_WRITEPAGE_ACTIVATE)
530 		/* unlocked. Relock */
531 		lock_page(page);
532 
533 	return -EAGAIN;
534 }
535 
536 /*
537  * Default handling if a filesystem does not provide a migration function.
538  */
539 static int fallback_migrate_page(struct address_space *mapping,
540 	struct page *newpage, struct page *page)
541 {
542 	if (PageDirty(page))
543 		return writeout(mapping, page);
544 
545 	/*
546 	 * Buffers may be managed in a filesystem specific way.
547 	 * We must have no buffers or drop them.
548 	 */
549 	if (PagePrivate(page) &&
550 	    !try_to_release_page(page, GFP_KERNEL))
551 		return -EAGAIN;
552 
553 	return migrate_page(mapping, newpage, page);
554 }
555 
556 /*
557  * Move a page to a newly allocated page
558  * The page is locked and all ptes have been successfully removed.
559  *
560  * The new page will have replaced the old page if this function
561  * is successful.
562  */
563 static int move_to_new_page(struct page *newpage, struct page *page)
564 {
565 	struct address_space *mapping;
566 	int rc;
567 
568 	/*
569 	 * Block others from accessing the page when we get around to
570 	 * establishing additional references. We are the only one
571 	 * holding a reference to the new page at this point.
572 	 */
573 	if (TestSetPageLocked(newpage))
574 		BUG();
575 
576 	/* Prepare mapping for the new page.*/
577 	newpage->index = page->index;
578 	newpage->mapping = page->mapping;
579 
580 	mapping = page_mapping(page);
581 	if (!mapping)
582 		rc = migrate_page(mapping, newpage, page);
583 	else if (mapping->a_ops->migratepage)
584 		/*
585 		 * Most pages have a mapping and most filesystems
586 		 * should provide a migration function. Anonymous
587 		 * pages are part of swap space which also has its
588 		 * own migration function. This is the most common
589 		 * path for page migration.
590 		 */
591 		rc = mapping->a_ops->migratepage(mapping,
592 						newpage, page);
593 	else
594 		rc = fallback_migrate_page(mapping, newpage, page);
595 
596 	if (!rc) {
597 		mem_cgroup_page_migration(page, newpage);
598 		remove_migration_ptes(page, newpage);
599 	} else
600 		newpage->mapping = NULL;
601 
602 	unlock_page(newpage);
603 
604 	return rc;
605 }
606 
607 /*
608  * Obtain the lock on page, remove all ptes and migrate the page
609  * to the newly allocated page in newpage.
610  */
611 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
612 			struct page *page, int force)
613 {
614 	int rc = 0;
615 	int *result = NULL;
616 	struct page *newpage = get_new_page(page, private, &result);
617 	int rcu_locked = 0;
618 	int charge = 0;
619 
620 	if (!newpage)
621 		return -ENOMEM;
622 
623 	if (page_count(page) == 1)
624 		/* page was freed from under us. So we are done. */
625 		goto move_newpage;
626 
627 	rc = -EAGAIN;
628 	if (TestSetPageLocked(page)) {
629 		if (!force)
630 			goto move_newpage;
631 		lock_page(page);
632 	}
633 
634 	if (PageWriteback(page)) {
635 		if (!force)
636 			goto unlock;
637 		wait_on_page_writeback(page);
638 	}
639 	/*
640 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
641 	 * we cannot notice that anon_vma is freed while we migrates a page.
642 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
643 	 * of migration. File cache pages are no problem because of page_lock()
644 	 * File Caches may use write_page() or lock_page() in migration, then,
645 	 * just care Anon page here.
646 	 */
647 	if (PageAnon(page)) {
648 		rcu_read_lock();
649 		rcu_locked = 1;
650 	}
651 
652 	/*
653 	 * Corner case handling:
654 	 * 1. When a new swap-cache page is read into, it is added to the LRU
655 	 * and treated as swapcache but it has no rmap yet.
656 	 * Calling try_to_unmap() against a page->mapping==NULL page will
657 	 * trigger a BUG.  So handle it here.
658 	 * 2. An orphaned page (see truncate_complete_page) might have
659 	 * fs-private metadata. The page can be picked up due to memory
660 	 * offlining.  Everywhere else except page reclaim, the page is
661 	 * invisible to the vm, so the page can not be migrated.  So try to
662 	 * free the metadata, so the page can be freed.
663 	 */
664 	if (!page->mapping) {
665 		if (!PageAnon(page) && PagePrivate(page)) {
666 			/*
667 			 * Go direct to try_to_free_buffers() here because
668 			 * a) that's what try_to_release_page() would do anyway
669 			 * b) we may be under rcu_read_lock() here, so we can't
670 			 *    use GFP_KERNEL which is what try_to_release_page()
671 			 *    needs to be effective.
672 			 */
673 			try_to_free_buffers(page);
674 		}
675 		goto rcu_unlock;
676 	}
677 
678 	charge = mem_cgroup_prepare_migration(page);
679 	/* Establish migration ptes or remove ptes */
680 	try_to_unmap(page, 1);
681 
682 	if (!page_mapped(page))
683 		rc = move_to_new_page(newpage, page);
684 
685 	if (rc) {
686 		remove_migration_ptes(page, page);
687 		if (charge)
688 			mem_cgroup_end_migration(page);
689 	} else if (charge)
690  		mem_cgroup_end_migration(newpage);
691 rcu_unlock:
692 	if (rcu_locked)
693 		rcu_read_unlock();
694 
695 unlock:
696 
697 	unlock_page(page);
698 
699 	if (rc != -EAGAIN) {
700  		/*
701  		 * A page that has been migrated has all references
702  		 * removed and will be freed. A page that has not been
703  		 * migrated will have kepts its references and be
704  		 * restored.
705  		 */
706  		list_del(&page->lru);
707  		move_to_lru(page);
708 	}
709 
710 move_newpage:
711 	/*
712 	 * Move the new page to the LRU. If migration was not successful
713 	 * then this will free the page.
714 	 */
715 	move_to_lru(newpage);
716 	if (result) {
717 		if (rc)
718 			*result = rc;
719 		else
720 			*result = page_to_nid(newpage);
721 	}
722 	return rc;
723 }
724 
725 /*
726  * migrate_pages
727  *
728  * The function takes one list of pages to migrate and a function
729  * that determines from the page to be migrated and the private data
730  * the target of the move and allocates the page.
731  *
732  * The function returns after 10 attempts or if no pages
733  * are movable anymore because to has become empty
734  * or no retryable pages exist anymore. All pages will be
735  * returned to the LRU or freed.
736  *
737  * Return: Number of pages not migrated or error code.
738  */
739 int migrate_pages(struct list_head *from,
740 		new_page_t get_new_page, unsigned long private)
741 {
742 	int retry = 1;
743 	int nr_failed = 0;
744 	int pass = 0;
745 	struct page *page;
746 	struct page *page2;
747 	int swapwrite = current->flags & PF_SWAPWRITE;
748 	int rc;
749 
750 	if (!swapwrite)
751 		current->flags |= PF_SWAPWRITE;
752 
753 	for(pass = 0; pass < 10 && retry; pass++) {
754 		retry = 0;
755 
756 		list_for_each_entry_safe(page, page2, from, lru) {
757 			cond_resched();
758 
759 			rc = unmap_and_move(get_new_page, private,
760 						page, pass > 2);
761 
762 			switch(rc) {
763 			case -ENOMEM:
764 				goto out;
765 			case -EAGAIN:
766 				retry++;
767 				break;
768 			case 0:
769 				break;
770 			default:
771 				/* Permanent failure */
772 				nr_failed++;
773 				break;
774 			}
775 		}
776 	}
777 	rc = 0;
778 out:
779 	if (!swapwrite)
780 		current->flags &= ~PF_SWAPWRITE;
781 
782 	putback_lru_pages(from);
783 
784 	if (rc)
785 		return rc;
786 
787 	return nr_failed + retry;
788 }
789 
790 #ifdef CONFIG_NUMA
791 /*
792  * Move a list of individual pages
793  */
794 struct page_to_node {
795 	unsigned long addr;
796 	struct page *page;
797 	int node;
798 	int status;
799 };
800 
801 static struct page *new_page_node(struct page *p, unsigned long private,
802 		int **result)
803 {
804 	struct page_to_node *pm = (struct page_to_node *)private;
805 
806 	while (pm->node != MAX_NUMNODES && pm->page != p)
807 		pm++;
808 
809 	if (pm->node == MAX_NUMNODES)
810 		return NULL;
811 
812 	*result = &pm->status;
813 
814 	return alloc_pages_node(pm->node,
815 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
816 }
817 
818 /*
819  * Move a set of pages as indicated in the pm array. The addr
820  * field must be set to the virtual address of the page to be moved
821  * and the node number must contain a valid target node.
822  */
823 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
824 				int migrate_all)
825 {
826 	int err;
827 	struct page_to_node *pp;
828 	LIST_HEAD(pagelist);
829 
830 	down_read(&mm->mmap_sem);
831 
832 	/*
833 	 * Build a list of pages to migrate
834 	 */
835 	migrate_prep();
836 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
837 		struct vm_area_struct *vma;
838 		struct page *page;
839 
840 		/*
841 		 * A valid page pointer that will not match any of the
842 		 * pages that will be moved.
843 		 */
844 		pp->page = ZERO_PAGE(0);
845 
846 		err = -EFAULT;
847 		vma = find_vma(mm, pp->addr);
848 		if (!vma || !vma_migratable(vma))
849 			goto set_status;
850 
851 		page = follow_page(vma, pp->addr, FOLL_GET);
852 		err = -ENOENT;
853 		if (!page)
854 			goto set_status;
855 
856 		if (PageReserved(page))		/* Check for zero page */
857 			goto put_and_set;
858 
859 		pp->page = page;
860 		err = page_to_nid(page);
861 
862 		if (err == pp->node)
863 			/*
864 			 * Node already in the right place
865 			 */
866 			goto put_and_set;
867 
868 		err = -EACCES;
869 		if (page_mapcount(page) > 1 &&
870 				!migrate_all)
871 			goto put_and_set;
872 
873 		err = isolate_lru_page(page, &pagelist);
874 put_and_set:
875 		/*
876 		 * Either remove the duplicate refcount from
877 		 * isolate_lru_page() or drop the page ref if it was
878 		 * not isolated.
879 		 */
880 		put_page(page);
881 set_status:
882 		pp->status = err;
883 	}
884 
885 	if (!list_empty(&pagelist))
886 		err = migrate_pages(&pagelist, new_page_node,
887 				(unsigned long)pm);
888 	else
889 		err = -ENOENT;
890 
891 	up_read(&mm->mmap_sem);
892 	return err;
893 }
894 
895 /*
896  * Determine the nodes of a list of pages. The addr in the pm array
897  * must have been set to the virtual address of which we want to determine
898  * the node number.
899  */
900 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
901 {
902 	down_read(&mm->mmap_sem);
903 
904 	for ( ; pm->node != MAX_NUMNODES; pm++) {
905 		struct vm_area_struct *vma;
906 		struct page *page;
907 		int err;
908 
909 		err = -EFAULT;
910 		vma = find_vma(mm, pm->addr);
911 		if (!vma)
912 			goto set_status;
913 
914 		page = follow_page(vma, pm->addr, 0);
915 		err = -ENOENT;
916 		/* Use PageReserved to check for zero page */
917 		if (!page || PageReserved(page))
918 			goto set_status;
919 
920 		err = page_to_nid(page);
921 set_status:
922 		pm->status = err;
923 	}
924 
925 	up_read(&mm->mmap_sem);
926 	return 0;
927 }
928 
929 /*
930  * Move a list of pages in the address space of the currently executing
931  * process.
932  */
933 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
934 			const void __user * __user *pages,
935 			const int __user *nodes,
936 			int __user *status, int flags)
937 {
938 	int err = 0;
939 	int i;
940 	struct task_struct *task;
941 	nodemask_t task_nodes;
942 	struct mm_struct *mm;
943 	struct page_to_node *pm = NULL;
944 
945 	/* Check flags */
946 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
947 		return -EINVAL;
948 
949 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
950 		return -EPERM;
951 
952 	/* Find the mm_struct */
953 	read_lock(&tasklist_lock);
954 	task = pid ? find_task_by_vpid(pid) : current;
955 	if (!task) {
956 		read_unlock(&tasklist_lock);
957 		return -ESRCH;
958 	}
959 	mm = get_task_mm(task);
960 	read_unlock(&tasklist_lock);
961 
962 	if (!mm)
963 		return -EINVAL;
964 
965 	/*
966 	 * Check if this process has the right to modify the specified
967 	 * process. The right exists if the process has administrative
968 	 * capabilities, superuser privileges or the same
969 	 * userid as the target process.
970 	 */
971 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
972 	    (current->uid != task->suid) && (current->uid != task->uid) &&
973 	    !capable(CAP_SYS_NICE)) {
974 		err = -EPERM;
975 		goto out2;
976 	}
977 
978  	err = security_task_movememory(task);
979  	if (err)
980  		goto out2;
981 
982 
983 	task_nodes = cpuset_mems_allowed(task);
984 
985 	/* Limit nr_pages so that the multiplication may not overflow */
986 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
987 		err = -E2BIG;
988 		goto out2;
989 	}
990 
991 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
992 	if (!pm) {
993 		err = -ENOMEM;
994 		goto out2;
995 	}
996 
997 	/*
998 	 * Get parameters from user space and initialize the pm
999 	 * array. Return various errors if the user did something wrong.
1000 	 */
1001 	for (i = 0; i < nr_pages; i++) {
1002 		const void __user *p;
1003 
1004 		err = -EFAULT;
1005 		if (get_user(p, pages + i))
1006 			goto out;
1007 
1008 		pm[i].addr = (unsigned long)p;
1009 		if (nodes) {
1010 			int node;
1011 
1012 			if (get_user(node, nodes + i))
1013 				goto out;
1014 
1015 			err = -ENODEV;
1016 			if (!node_state(node, N_HIGH_MEMORY))
1017 				goto out;
1018 
1019 			err = -EACCES;
1020 			if (!node_isset(node, task_nodes))
1021 				goto out;
1022 
1023 			pm[i].node = node;
1024 		} else
1025 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
1026 	}
1027 	/* End marker */
1028 	pm[nr_pages].node = MAX_NUMNODES;
1029 
1030 	if (nodes)
1031 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1032 	else
1033 		err = do_pages_stat(mm, pm);
1034 
1035 	if (err >= 0)
1036 		/* Return status information */
1037 		for (i = 0; i < nr_pages; i++)
1038 			if (put_user(pm[i].status, status + i))
1039 				err = -EFAULT;
1040 
1041 out:
1042 	vfree(pm);
1043 out2:
1044 	mmput(mm);
1045 	return err;
1046 }
1047 #endif
1048 
1049 /*
1050  * Call migration functions in the vma_ops that may prepare
1051  * memory in a vm for migration. migration functions may perform
1052  * the migration for vmas that do not have an underlying page struct.
1053  */
1054 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1055 	const nodemask_t *from, unsigned long flags)
1056 {
1057  	struct vm_area_struct *vma;
1058  	int err = 0;
1059 
1060  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1061  		if (vma->vm_ops && vma->vm_ops->migrate) {
1062  			err = vma->vm_ops->migrate(vma, to, from, flags);
1063  			if (err)
1064  				break;
1065  		}
1066  	}
1067  	return err;
1068 }
1069