1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter <clameter@sgi.com> 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/memcontrol.h> 33 34 #include "internal.h" 35 36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 37 38 /* 39 * Isolate one page from the LRU lists. If successful put it onto 40 * the indicated list with elevated page count. 41 * 42 * Result: 43 * -EBUSY: page not on LRU list 44 * 0: page removed from LRU list and added to the specified list. 45 */ 46 int isolate_lru_page(struct page *page, struct list_head *pagelist) 47 { 48 int ret = -EBUSY; 49 50 if (PageLRU(page)) { 51 struct zone *zone = page_zone(page); 52 53 spin_lock_irq(&zone->lru_lock); 54 if (PageLRU(page) && get_page_unless_zero(page)) { 55 ret = 0; 56 ClearPageLRU(page); 57 if (PageActive(page)) 58 del_page_from_active_list(zone, page); 59 else 60 del_page_from_inactive_list(zone, page); 61 list_add_tail(&page->lru, pagelist); 62 } 63 spin_unlock_irq(&zone->lru_lock); 64 } 65 return ret; 66 } 67 68 /* 69 * migrate_prep() needs to be called before we start compiling a list of pages 70 * to be migrated using isolate_lru_page(). 71 */ 72 int migrate_prep(void) 73 { 74 /* 75 * Clear the LRU lists so pages can be isolated. 76 * Note that pages may be moved off the LRU after we have 77 * drained them. Those pages will fail to migrate like other 78 * pages that may be busy. 79 */ 80 lru_add_drain_all(); 81 82 return 0; 83 } 84 85 static inline void move_to_lru(struct page *page) 86 { 87 if (PageActive(page)) { 88 /* 89 * lru_cache_add_active checks that 90 * the PG_active bit is off. 91 */ 92 ClearPageActive(page); 93 lru_cache_add_active(page); 94 } else { 95 lru_cache_add(page); 96 } 97 put_page(page); 98 } 99 100 /* 101 * Add isolated pages on the list back to the LRU. 102 * 103 * returns the number of pages put back. 104 */ 105 int putback_lru_pages(struct list_head *l) 106 { 107 struct page *page; 108 struct page *page2; 109 int count = 0; 110 111 list_for_each_entry_safe(page, page2, l, lru) { 112 list_del(&page->lru); 113 move_to_lru(page); 114 count++; 115 } 116 return count; 117 } 118 119 /* 120 * Restore a potential migration pte to a working pte entry 121 */ 122 static void remove_migration_pte(struct vm_area_struct *vma, 123 struct page *old, struct page *new) 124 { 125 struct mm_struct *mm = vma->vm_mm; 126 swp_entry_t entry; 127 pgd_t *pgd; 128 pud_t *pud; 129 pmd_t *pmd; 130 pte_t *ptep, pte; 131 spinlock_t *ptl; 132 unsigned long addr = page_address_in_vma(new, vma); 133 134 if (addr == -EFAULT) 135 return; 136 137 pgd = pgd_offset(mm, addr); 138 if (!pgd_present(*pgd)) 139 return; 140 141 pud = pud_offset(pgd, addr); 142 if (!pud_present(*pud)) 143 return; 144 145 pmd = pmd_offset(pud, addr); 146 if (!pmd_present(*pmd)) 147 return; 148 149 ptep = pte_offset_map(pmd, addr); 150 151 if (!is_swap_pte(*ptep)) { 152 pte_unmap(ptep); 153 return; 154 } 155 156 if (mem_cgroup_charge(new, mm, GFP_KERNEL)) { 157 pte_unmap(ptep); 158 return; 159 } 160 161 ptl = pte_lockptr(mm, pmd); 162 spin_lock(ptl); 163 pte = *ptep; 164 if (!is_swap_pte(pte)) 165 goto out; 166 167 entry = pte_to_swp_entry(pte); 168 169 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 170 goto out; 171 172 get_page(new); 173 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 174 if (is_write_migration_entry(entry)) 175 pte = pte_mkwrite(pte); 176 flush_cache_page(vma, addr, pte_pfn(pte)); 177 set_pte_at(mm, addr, ptep, pte); 178 179 if (PageAnon(new)) 180 page_add_anon_rmap(new, vma, addr); 181 else 182 page_add_file_rmap(new); 183 184 /* No need to invalidate - it was non-present before */ 185 update_mmu_cache(vma, addr, pte); 186 187 out: 188 pte_unmap_unlock(ptep, ptl); 189 } 190 191 /* 192 * Note that remove_file_migration_ptes will only work on regular mappings, 193 * Nonlinear mappings do not use migration entries. 194 */ 195 static void remove_file_migration_ptes(struct page *old, struct page *new) 196 { 197 struct vm_area_struct *vma; 198 struct address_space *mapping = page_mapping(new); 199 struct prio_tree_iter iter; 200 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 201 202 if (!mapping) 203 return; 204 205 spin_lock(&mapping->i_mmap_lock); 206 207 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 208 remove_migration_pte(vma, old, new); 209 210 spin_unlock(&mapping->i_mmap_lock); 211 } 212 213 /* 214 * Must hold mmap_sem lock on at least one of the vmas containing 215 * the page so that the anon_vma cannot vanish. 216 */ 217 static void remove_anon_migration_ptes(struct page *old, struct page *new) 218 { 219 struct anon_vma *anon_vma; 220 struct vm_area_struct *vma; 221 unsigned long mapping; 222 223 mapping = (unsigned long)new->mapping; 224 225 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 226 return; 227 228 /* 229 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 230 */ 231 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 232 spin_lock(&anon_vma->lock); 233 234 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 235 remove_migration_pte(vma, old, new); 236 237 spin_unlock(&anon_vma->lock); 238 } 239 240 /* 241 * Get rid of all migration entries and replace them by 242 * references to the indicated page. 243 */ 244 static void remove_migration_ptes(struct page *old, struct page *new) 245 { 246 if (PageAnon(new)) 247 remove_anon_migration_ptes(old, new); 248 else 249 remove_file_migration_ptes(old, new); 250 } 251 252 /* 253 * Something used the pte of a page under migration. We need to 254 * get to the page and wait until migration is finished. 255 * When we return from this function the fault will be retried. 256 * 257 * This function is called from do_swap_page(). 258 */ 259 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 260 unsigned long address) 261 { 262 pte_t *ptep, pte; 263 spinlock_t *ptl; 264 swp_entry_t entry; 265 struct page *page; 266 267 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 268 pte = *ptep; 269 if (!is_swap_pte(pte)) 270 goto out; 271 272 entry = pte_to_swp_entry(pte); 273 if (!is_migration_entry(entry)) 274 goto out; 275 276 page = migration_entry_to_page(entry); 277 278 get_page(page); 279 pte_unmap_unlock(ptep, ptl); 280 wait_on_page_locked(page); 281 put_page(page); 282 return; 283 out: 284 pte_unmap_unlock(ptep, ptl); 285 } 286 287 /* 288 * Replace the page in the mapping. 289 * 290 * The number of remaining references must be: 291 * 1 for anonymous pages without a mapping 292 * 2 for pages with a mapping 293 * 3 for pages with a mapping and PagePrivate set. 294 */ 295 static int migrate_page_move_mapping(struct address_space *mapping, 296 struct page *newpage, struct page *page) 297 { 298 void **pslot; 299 300 if (!mapping) { 301 /* Anonymous page without mapping */ 302 if (page_count(page) != 1) 303 return -EAGAIN; 304 return 0; 305 } 306 307 write_lock_irq(&mapping->tree_lock); 308 309 pslot = radix_tree_lookup_slot(&mapping->page_tree, 310 page_index(page)); 311 312 if (page_count(page) != 2 + !!PagePrivate(page) || 313 (struct page *)radix_tree_deref_slot(pslot) != page) { 314 write_unlock_irq(&mapping->tree_lock); 315 return -EAGAIN; 316 } 317 318 /* 319 * Now we know that no one else is looking at the page. 320 */ 321 get_page(newpage); /* add cache reference */ 322 #ifdef CONFIG_SWAP 323 if (PageSwapCache(page)) { 324 SetPageSwapCache(newpage); 325 set_page_private(newpage, page_private(page)); 326 } 327 #endif 328 329 radix_tree_replace_slot(pslot, newpage); 330 331 /* 332 * Drop cache reference from old page. 333 * We know this isn't the last reference. 334 */ 335 __put_page(page); 336 337 /* 338 * If moved to a different zone then also account 339 * the page for that zone. Other VM counters will be 340 * taken care of when we establish references to the 341 * new page and drop references to the old page. 342 * 343 * Note that anonymous pages are accounted for 344 * via NR_FILE_PAGES and NR_ANON_PAGES if they 345 * are mapped to swap space. 346 */ 347 __dec_zone_page_state(page, NR_FILE_PAGES); 348 __inc_zone_page_state(newpage, NR_FILE_PAGES); 349 350 write_unlock_irq(&mapping->tree_lock); 351 352 return 0; 353 } 354 355 /* 356 * Copy the page to its new location 357 */ 358 static void migrate_page_copy(struct page *newpage, struct page *page) 359 { 360 copy_highpage(newpage, page); 361 362 if (PageError(page)) 363 SetPageError(newpage); 364 if (PageReferenced(page)) 365 SetPageReferenced(newpage); 366 if (PageUptodate(page)) 367 SetPageUptodate(newpage); 368 if (PageActive(page)) 369 SetPageActive(newpage); 370 if (PageChecked(page)) 371 SetPageChecked(newpage); 372 if (PageMappedToDisk(page)) 373 SetPageMappedToDisk(newpage); 374 375 if (PageDirty(page)) { 376 clear_page_dirty_for_io(page); 377 set_page_dirty(newpage); 378 } 379 380 #ifdef CONFIG_SWAP 381 ClearPageSwapCache(page); 382 #endif 383 ClearPageActive(page); 384 ClearPagePrivate(page); 385 set_page_private(page, 0); 386 page->mapping = NULL; 387 388 /* 389 * If any waiters have accumulated on the new page then 390 * wake them up. 391 */ 392 if (PageWriteback(newpage)) 393 end_page_writeback(newpage); 394 } 395 396 /************************************************************ 397 * Migration functions 398 ***********************************************************/ 399 400 /* Always fail migration. Used for mappings that are not movable */ 401 int fail_migrate_page(struct address_space *mapping, 402 struct page *newpage, struct page *page) 403 { 404 return -EIO; 405 } 406 EXPORT_SYMBOL(fail_migrate_page); 407 408 /* 409 * Common logic to directly migrate a single page suitable for 410 * pages that do not use PagePrivate. 411 * 412 * Pages are locked upon entry and exit. 413 */ 414 int migrate_page(struct address_space *mapping, 415 struct page *newpage, struct page *page) 416 { 417 int rc; 418 419 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 420 421 rc = migrate_page_move_mapping(mapping, newpage, page); 422 423 if (rc) 424 return rc; 425 426 migrate_page_copy(newpage, page); 427 return 0; 428 } 429 EXPORT_SYMBOL(migrate_page); 430 431 #ifdef CONFIG_BLOCK 432 /* 433 * Migration function for pages with buffers. This function can only be used 434 * if the underlying filesystem guarantees that no other references to "page" 435 * exist. 436 */ 437 int buffer_migrate_page(struct address_space *mapping, 438 struct page *newpage, struct page *page) 439 { 440 struct buffer_head *bh, *head; 441 int rc; 442 443 if (!page_has_buffers(page)) 444 return migrate_page(mapping, newpage, page); 445 446 head = page_buffers(page); 447 448 rc = migrate_page_move_mapping(mapping, newpage, page); 449 450 if (rc) 451 return rc; 452 453 bh = head; 454 do { 455 get_bh(bh); 456 lock_buffer(bh); 457 bh = bh->b_this_page; 458 459 } while (bh != head); 460 461 ClearPagePrivate(page); 462 set_page_private(newpage, page_private(page)); 463 set_page_private(page, 0); 464 put_page(page); 465 get_page(newpage); 466 467 bh = head; 468 do { 469 set_bh_page(bh, newpage, bh_offset(bh)); 470 bh = bh->b_this_page; 471 472 } while (bh != head); 473 474 SetPagePrivate(newpage); 475 476 migrate_page_copy(newpage, page); 477 478 bh = head; 479 do { 480 unlock_buffer(bh); 481 put_bh(bh); 482 bh = bh->b_this_page; 483 484 } while (bh != head); 485 486 return 0; 487 } 488 EXPORT_SYMBOL(buffer_migrate_page); 489 #endif 490 491 /* 492 * Writeback a page to clean the dirty state 493 */ 494 static int writeout(struct address_space *mapping, struct page *page) 495 { 496 struct writeback_control wbc = { 497 .sync_mode = WB_SYNC_NONE, 498 .nr_to_write = 1, 499 .range_start = 0, 500 .range_end = LLONG_MAX, 501 .nonblocking = 1, 502 .for_reclaim = 1 503 }; 504 int rc; 505 506 if (!mapping->a_ops->writepage) 507 /* No write method for the address space */ 508 return -EINVAL; 509 510 if (!clear_page_dirty_for_io(page)) 511 /* Someone else already triggered a write */ 512 return -EAGAIN; 513 514 /* 515 * A dirty page may imply that the underlying filesystem has 516 * the page on some queue. So the page must be clean for 517 * migration. Writeout may mean we loose the lock and the 518 * page state is no longer what we checked for earlier. 519 * At this point we know that the migration attempt cannot 520 * be successful. 521 */ 522 remove_migration_ptes(page, page); 523 524 rc = mapping->a_ops->writepage(page, &wbc); 525 if (rc < 0) 526 /* I/O Error writing */ 527 return -EIO; 528 529 if (rc != AOP_WRITEPAGE_ACTIVATE) 530 /* unlocked. Relock */ 531 lock_page(page); 532 533 return -EAGAIN; 534 } 535 536 /* 537 * Default handling if a filesystem does not provide a migration function. 538 */ 539 static int fallback_migrate_page(struct address_space *mapping, 540 struct page *newpage, struct page *page) 541 { 542 if (PageDirty(page)) 543 return writeout(mapping, page); 544 545 /* 546 * Buffers may be managed in a filesystem specific way. 547 * We must have no buffers or drop them. 548 */ 549 if (PagePrivate(page) && 550 !try_to_release_page(page, GFP_KERNEL)) 551 return -EAGAIN; 552 553 return migrate_page(mapping, newpage, page); 554 } 555 556 /* 557 * Move a page to a newly allocated page 558 * The page is locked and all ptes have been successfully removed. 559 * 560 * The new page will have replaced the old page if this function 561 * is successful. 562 */ 563 static int move_to_new_page(struct page *newpage, struct page *page) 564 { 565 struct address_space *mapping; 566 int rc; 567 568 /* 569 * Block others from accessing the page when we get around to 570 * establishing additional references. We are the only one 571 * holding a reference to the new page at this point. 572 */ 573 if (TestSetPageLocked(newpage)) 574 BUG(); 575 576 /* Prepare mapping for the new page.*/ 577 newpage->index = page->index; 578 newpage->mapping = page->mapping; 579 580 mapping = page_mapping(page); 581 if (!mapping) 582 rc = migrate_page(mapping, newpage, page); 583 else if (mapping->a_ops->migratepage) 584 /* 585 * Most pages have a mapping and most filesystems 586 * should provide a migration function. Anonymous 587 * pages are part of swap space which also has its 588 * own migration function. This is the most common 589 * path for page migration. 590 */ 591 rc = mapping->a_ops->migratepage(mapping, 592 newpage, page); 593 else 594 rc = fallback_migrate_page(mapping, newpage, page); 595 596 if (!rc) { 597 mem_cgroup_page_migration(page, newpage); 598 remove_migration_ptes(page, newpage); 599 } else 600 newpage->mapping = NULL; 601 602 unlock_page(newpage); 603 604 return rc; 605 } 606 607 /* 608 * Obtain the lock on page, remove all ptes and migrate the page 609 * to the newly allocated page in newpage. 610 */ 611 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 612 struct page *page, int force) 613 { 614 int rc = 0; 615 int *result = NULL; 616 struct page *newpage = get_new_page(page, private, &result); 617 int rcu_locked = 0; 618 int charge = 0; 619 620 if (!newpage) 621 return -ENOMEM; 622 623 if (page_count(page) == 1) 624 /* page was freed from under us. So we are done. */ 625 goto move_newpage; 626 627 rc = -EAGAIN; 628 if (TestSetPageLocked(page)) { 629 if (!force) 630 goto move_newpage; 631 lock_page(page); 632 } 633 634 if (PageWriteback(page)) { 635 if (!force) 636 goto unlock; 637 wait_on_page_writeback(page); 638 } 639 /* 640 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 641 * we cannot notice that anon_vma is freed while we migrates a page. 642 * This rcu_read_lock() delays freeing anon_vma pointer until the end 643 * of migration. File cache pages are no problem because of page_lock() 644 * File Caches may use write_page() or lock_page() in migration, then, 645 * just care Anon page here. 646 */ 647 if (PageAnon(page)) { 648 rcu_read_lock(); 649 rcu_locked = 1; 650 } 651 652 /* 653 * Corner case handling: 654 * 1. When a new swap-cache page is read into, it is added to the LRU 655 * and treated as swapcache but it has no rmap yet. 656 * Calling try_to_unmap() against a page->mapping==NULL page will 657 * trigger a BUG. So handle it here. 658 * 2. An orphaned page (see truncate_complete_page) might have 659 * fs-private metadata. The page can be picked up due to memory 660 * offlining. Everywhere else except page reclaim, the page is 661 * invisible to the vm, so the page can not be migrated. So try to 662 * free the metadata, so the page can be freed. 663 */ 664 if (!page->mapping) { 665 if (!PageAnon(page) && PagePrivate(page)) { 666 /* 667 * Go direct to try_to_free_buffers() here because 668 * a) that's what try_to_release_page() would do anyway 669 * b) we may be under rcu_read_lock() here, so we can't 670 * use GFP_KERNEL which is what try_to_release_page() 671 * needs to be effective. 672 */ 673 try_to_free_buffers(page); 674 } 675 goto rcu_unlock; 676 } 677 678 charge = mem_cgroup_prepare_migration(page); 679 /* Establish migration ptes or remove ptes */ 680 try_to_unmap(page, 1); 681 682 if (!page_mapped(page)) 683 rc = move_to_new_page(newpage, page); 684 685 if (rc) { 686 remove_migration_ptes(page, page); 687 if (charge) 688 mem_cgroup_end_migration(page); 689 } else if (charge) 690 mem_cgroup_end_migration(newpage); 691 rcu_unlock: 692 if (rcu_locked) 693 rcu_read_unlock(); 694 695 unlock: 696 697 unlock_page(page); 698 699 if (rc != -EAGAIN) { 700 /* 701 * A page that has been migrated has all references 702 * removed and will be freed. A page that has not been 703 * migrated will have kepts its references and be 704 * restored. 705 */ 706 list_del(&page->lru); 707 move_to_lru(page); 708 } 709 710 move_newpage: 711 /* 712 * Move the new page to the LRU. If migration was not successful 713 * then this will free the page. 714 */ 715 move_to_lru(newpage); 716 if (result) { 717 if (rc) 718 *result = rc; 719 else 720 *result = page_to_nid(newpage); 721 } 722 return rc; 723 } 724 725 /* 726 * migrate_pages 727 * 728 * The function takes one list of pages to migrate and a function 729 * that determines from the page to be migrated and the private data 730 * the target of the move and allocates the page. 731 * 732 * The function returns after 10 attempts or if no pages 733 * are movable anymore because to has become empty 734 * or no retryable pages exist anymore. All pages will be 735 * returned to the LRU or freed. 736 * 737 * Return: Number of pages not migrated or error code. 738 */ 739 int migrate_pages(struct list_head *from, 740 new_page_t get_new_page, unsigned long private) 741 { 742 int retry = 1; 743 int nr_failed = 0; 744 int pass = 0; 745 struct page *page; 746 struct page *page2; 747 int swapwrite = current->flags & PF_SWAPWRITE; 748 int rc; 749 750 if (!swapwrite) 751 current->flags |= PF_SWAPWRITE; 752 753 for(pass = 0; pass < 10 && retry; pass++) { 754 retry = 0; 755 756 list_for_each_entry_safe(page, page2, from, lru) { 757 cond_resched(); 758 759 rc = unmap_and_move(get_new_page, private, 760 page, pass > 2); 761 762 switch(rc) { 763 case -ENOMEM: 764 goto out; 765 case -EAGAIN: 766 retry++; 767 break; 768 case 0: 769 break; 770 default: 771 /* Permanent failure */ 772 nr_failed++; 773 break; 774 } 775 } 776 } 777 rc = 0; 778 out: 779 if (!swapwrite) 780 current->flags &= ~PF_SWAPWRITE; 781 782 putback_lru_pages(from); 783 784 if (rc) 785 return rc; 786 787 return nr_failed + retry; 788 } 789 790 #ifdef CONFIG_NUMA 791 /* 792 * Move a list of individual pages 793 */ 794 struct page_to_node { 795 unsigned long addr; 796 struct page *page; 797 int node; 798 int status; 799 }; 800 801 static struct page *new_page_node(struct page *p, unsigned long private, 802 int **result) 803 { 804 struct page_to_node *pm = (struct page_to_node *)private; 805 806 while (pm->node != MAX_NUMNODES && pm->page != p) 807 pm++; 808 809 if (pm->node == MAX_NUMNODES) 810 return NULL; 811 812 *result = &pm->status; 813 814 return alloc_pages_node(pm->node, 815 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 816 } 817 818 /* 819 * Move a set of pages as indicated in the pm array. The addr 820 * field must be set to the virtual address of the page to be moved 821 * and the node number must contain a valid target node. 822 */ 823 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 824 int migrate_all) 825 { 826 int err; 827 struct page_to_node *pp; 828 LIST_HEAD(pagelist); 829 830 down_read(&mm->mmap_sem); 831 832 /* 833 * Build a list of pages to migrate 834 */ 835 migrate_prep(); 836 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 837 struct vm_area_struct *vma; 838 struct page *page; 839 840 /* 841 * A valid page pointer that will not match any of the 842 * pages that will be moved. 843 */ 844 pp->page = ZERO_PAGE(0); 845 846 err = -EFAULT; 847 vma = find_vma(mm, pp->addr); 848 if (!vma || !vma_migratable(vma)) 849 goto set_status; 850 851 page = follow_page(vma, pp->addr, FOLL_GET); 852 err = -ENOENT; 853 if (!page) 854 goto set_status; 855 856 if (PageReserved(page)) /* Check for zero page */ 857 goto put_and_set; 858 859 pp->page = page; 860 err = page_to_nid(page); 861 862 if (err == pp->node) 863 /* 864 * Node already in the right place 865 */ 866 goto put_and_set; 867 868 err = -EACCES; 869 if (page_mapcount(page) > 1 && 870 !migrate_all) 871 goto put_and_set; 872 873 err = isolate_lru_page(page, &pagelist); 874 put_and_set: 875 /* 876 * Either remove the duplicate refcount from 877 * isolate_lru_page() or drop the page ref if it was 878 * not isolated. 879 */ 880 put_page(page); 881 set_status: 882 pp->status = err; 883 } 884 885 if (!list_empty(&pagelist)) 886 err = migrate_pages(&pagelist, new_page_node, 887 (unsigned long)pm); 888 else 889 err = -ENOENT; 890 891 up_read(&mm->mmap_sem); 892 return err; 893 } 894 895 /* 896 * Determine the nodes of a list of pages. The addr in the pm array 897 * must have been set to the virtual address of which we want to determine 898 * the node number. 899 */ 900 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 901 { 902 down_read(&mm->mmap_sem); 903 904 for ( ; pm->node != MAX_NUMNODES; pm++) { 905 struct vm_area_struct *vma; 906 struct page *page; 907 int err; 908 909 err = -EFAULT; 910 vma = find_vma(mm, pm->addr); 911 if (!vma) 912 goto set_status; 913 914 page = follow_page(vma, pm->addr, 0); 915 err = -ENOENT; 916 /* Use PageReserved to check for zero page */ 917 if (!page || PageReserved(page)) 918 goto set_status; 919 920 err = page_to_nid(page); 921 set_status: 922 pm->status = err; 923 } 924 925 up_read(&mm->mmap_sem); 926 return 0; 927 } 928 929 /* 930 * Move a list of pages in the address space of the currently executing 931 * process. 932 */ 933 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 934 const void __user * __user *pages, 935 const int __user *nodes, 936 int __user *status, int flags) 937 { 938 int err = 0; 939 int i; 940 struct task_struct *task; 941 nodemask_t task_nodes; 942 struct mm_struct *mm; 943 struct page_to_node *pm = NULL; 944 945 /* Check flags */ 946 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 947 return -EINVAL; 948 949 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 950 return -EPERM; 951 952 /* Find the mm_struct */ 953 read_lock(&tasklist_lock); 954 task = pid ? find_task_by_vpid(pid) : current; 955 if (!task) { 956 read_unlock(&tasklist_lock); 957 return -ESRCH; 958 } 959 mm = get_task_mm(task); 960 read_unlock(&tasklist_lock); 961 962 if (!mm) 963 return -EINVAL; 964 965 /* 966 * Check if this process has the right to modify the specified 967 * process. The right exists if the process has administrative 968 * capabilities, superuser privileges or the same 969 * userid as the target process. 970 */ 971 if ((current->euid != task->suid) && (current->euid != task->uid) && 972 (current->uid != task->suid) && (current->uid != task->uid) && 973 !capable(CAP_SYS_NICE)) { 974 err = -EPERM; 975 goto out2; 976 } 977 978 err = security_task_movememory(task); 979 if (err) 980 goto out2; 981 982 983 task_nodes = cpuset_mems_allowed(task); 984 985 /* Limit nr_pages so that the multiplication may not overflow */ 986 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 987 err = -E2BIG; 988 goto out2; 989 } 990 991 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 992 if (!pm) { 993 err = -ENOMEM; 994 goto out2; 995 } 996 997 /* 998 * Get parameters from user space and initialize the pm 999 * array. Return various errors if the user did something wrong. 1000 */ 1001 for (i = 0; i < nr_pages; i++) { 1002 const void __user *p; 1003 1004 err = -EFAULT; 1005 if (get_user(p, pages + i)) 1006 goto out; 1007 1008 pm[i].addr = (unsigned long)p; 1009 if (nodes) { 1010 int node; 1011 1012 if (get_user(node, nodes + i)) 1013 goto out; 1014 1015 err = -ENODEV; 1016 if (!node_state(node, N_HIGH_MEMORY)) 1017 goto out; 1018 1019 err = -EACCES; 1020 if (!node_isset(node, task_nodes)) 1021 goto out; 1022 1023 pm[i].node = node; 1024 } else 1025 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 1026 } 1027 /* End marker */ 1028 pm[nr_pages].node = MAX_NUMNODES; 1029 1030 if (nodes) 1031 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 1032 else 1033 err = do_pages_stat(mm, pm); 1034 1035 if (err >= 0) 1036 /* Return status information */ 1037 for (i = 0; i < nr_pages; i++) 1038 if (put_user(pm[i].status, status + i)) 1039 err = -EFAULT; 1040 1041 out: 1042 vfree(pm); 1043 out2: 1044 mmput(mm); 1045 return err; 1046 } 1047 #endif 1048 1049 /* 1050 * Call migration functions in the vma_ops that may prepare 1051 * memory in a vm for migration. migration functions may perform 1052 * the migration for vmas that do not have an underlying page struct. 1053 */ 1054 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1055 const nodemask_t *from, unsigned long flags) 1056 { 1057 struct vm_area_struct *vma; 1058 int err = 0; 1059 1060 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1061 if (vma->vm_ops && vma->vm_ops->migrate) { 1062 err = vma->vm_ops->migrate(vma, to, from, flags); 1063 if (err) 1064 break; 1065 } 1066 } 1067 return err; 1068 } 1069