xref: /linux/mm/migrate.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grabbing the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 			}
252 		}
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		if (PageTransHuge(page) && PageMlocked(page))
277 			clear_page_mlock(page);
278 
279 		/* No need to invalidate - it was non-present before */
280 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 	}
282 
283 	return true;
284 }
285 
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 	struct rmap_walk_control rwc = {
293 		.rmap_one = remove_migration_pte,
294 		.arg = old,
295 	};
296 
297 	if (locked)
298 		rmap_walk_locked(new, &rwc);
299 	else
300 		rmap_walk(new, &rwc);
301 }
302 
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 				spinlock_t *ptl)
310 {
311 	pte_t pte;
312 	swp_entry_t entry;
313 	struct page *page;
314 
315 	spin_lock(ptl);
316 	pte = *ptep;
317 	if (!is_swap_pte(pte))
318 		goto out;
319 
320 	entry = pte_to_swp_entry(pte);
321 	if (!is_migration_entry(entry))
322 		goto out;
323 
324 	page = migration_entry_to_page(entry);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device public or private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	expected_count += is_device_public_page(page);
385 	if (mapping)
386 		expected_count += hpage_nr_pages(page) + page_has_private(page);
387 
388 	return expected_count;
389 }
390 
391 /*
392  * Replace the page in the mapping.
393  *
394  * The number of remaining references must be:
395  * 1 for anonymous pages without a mapping
396  * 2 for pages with a mapping
397  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398  */
399 int migrate_page_move_mapping(struct address_space *mapping,
400 		struct page *newpage, struct page *page, enum migrate_mode mode,
401 		int extra_count)
402 {
403 	XA_STATE(xas, &mapping->i_pages, page_index(page));
404 	struct zone *oldzone, *newzone;
405 	int dirty;
406 	int expected_count = expected_page_refs(mapping, page) + extra_count;
407 
408 	if (!mapping) {
409 		/* Anonymous page without mapping */
410 		if (page_count(page) != expected_count)
411 			return -EAGAIN;
412 
413 		/* No turning back from here */
414 		newpage->index = page->index;
415 		newpage->mapping = page->mapping;
416 		if (PageSwapBacked(page))
417 			__SetPageSwapBacked(newpage);
418 
419 		return MIGRATEPAGE_SUCCESS;
420 	}
421 
422 	oldzone = page_zone(page);
423 	newzone = page_zone(newpage);
424 
425 	xas_lock_irq(&xas);
426 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
427 		xas_unlock_irq(&xas);
428 		return -EAGAIN;
429 	}
430 
431 	if (!page_ref_freeze(page, expected_count)) {
432 		xas_unlock_irq(&xas);
433 		return -EAGAIN;
434 	}
435 
436 	/*
437 	 * Now we know that no one else is looking at the page:
438 	 * no turning back from here.
439 	 */
440 	newpage->index = page->index;
441 	newpage->mapping = page->mapping;
442 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
443 	if (PageSwapBacked(page)) {
444 		__SetPageSwapBacked(newpage);
445 		if (PageSwapCache(page)) {
446 			SetPageSwapCache(newpage);
447 			set_page_private(newpage, page_private(page));
448 		}
449 	} else {
450 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
451 	}
452 
453 	/* Move dirty while page refs frozen and newpage not yet exposed */
454 	dirty = PageDirty(page);
455 	if (dirty) {
456 		ClearPageDirty(page);
457 		SetPageDirty(newpage);
458 	}
459 
460 	xas_store(&xas, newpage);
461 	if (PageTransHuge(page)) {
462 		int i;
463 
464 		for (i = 1; i < HPAGE_PMD_NR; i++) {
465 			xas_next(&xas);
466 			xas_store(&xas, newpage);
467 		}
468 	}
469 
470 	/*
471 	 * Drop cache reference from old page by unfreezing
472 	 * to one less reference.
473 	 * We know this isn't the last reference.
474 	 */
475 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
476 
477 	xas_unlock(&xas);
478 	/* Leave irq disabled to prevent preemption while updating stats */
479 
480 	/*
481 	 * If moved to a different zone then also account
482 	 * the page for that zone. Other VM counters will be
483 	 * taken care of when we establish references to the
484 	 * new page and drop references to the old page.
485 	 *
486 	 * Note that anonymous pages are accounted for
487 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 	 * are mapped to swap space.
489 	 */
490 	if (newzone != oldzone) {
491 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
492 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
493 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
494 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
495 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
496 		}
497 		if (dirty && mapping_cap_account_dirty(mapping)) {
498 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
499 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
500 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
501 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502 		}
503 	}
504 	local_irq_enable();
505 
506 	return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL(migrate_page_move_mapping);
509 
510 /*
511  * The expected number of remaining references is the same as that
512  * of migrate_page_move_mapping().
513  */
514 int migrate_huge_page_move_mapping(struct address_space *mapping,
515 				   struct page *newpage, struct page *page)
516 {
517 	XA_STATE(xas, &mapping->i_pages, page_index(page));
518 	int expected_count;
519 
520 	xas_lock_irq(&xas);
521 	expected_count = 2 + page_has_private(page);
522 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
523 		xas_unlock_irq(&xas);
524 		return -EAGAIN;
525 	}
526 
527 	if (!page_ref_freeze(page, expected_count)) {
528 		xas_unlock_irq(&xas);
529 		return -EAGAIN;
530 	}
531 
532 	newpage->index = page->index;
533 	newpage->mapping = page->mapping;
534 
535 	get_page(newpage);
536 
537 	xas_store(&xas, newpage);
538 
539 	page_ref_unfreeze(page, expected_count - 1);
540 
541 	xas_unlock_irq(&xas);
542 
543 	return MIGRATEPAGE_SUCCESS;
544 }
545 
546 /*
547  * Gigantic pages are so large that we do not guarantee that page++ pointer
548  * arithmetic will work across the entire page.  We need something more
549  * specialized.
550  */
551 static void __copy_gigantic_page(struct page *dst, struct page *src,
552 				int nr_pages)
553 {
554 	int i;
555 	struct page *dst_base = dst;
556 	struct page *src_base = src;
557 
558 	for (i = 0; i < nr_pages; ) {
559 		cond_resched();
560 		copy_highpage(dst, src);
561 
562 		i++;
563 		dst = mem_map_next(dst, dst_base, i);
564 		src = mem_map_next(src, src_base, i);
565 	}
566 }
567 
568 static void copy_huge_page(struct page *dst, struct page *src)
569 {
570 	int i;
571 	int nr_pages;
572 
573 	if (PageHuge(src)) {
574 		/* hugetlbfs page */
575 		struct hstate *h = page_hstate(src);
576 		nr_pages = pages_per_huge_page(h);
577 
578 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
579 			__copy_gigantic_page(dst, src, nr_pages);
580 			return;
581 		}
582 	} else {
583 		/* thp page */
584 		BUG_ON(!PageTransHuge(src));
585 		nr_pages = hpage_nr_pages(src);
586 	}
587 
588 	for (i = 0; i < nr_pages; i++) {
589 		cond_resched();
590 		copy_highpage(dst + i, src + i);
591 	}
592 }
593 
594 /*
595  * Copy the page to its new location
596  */
597 void migrate_page_states(struct page *newpage, struct page *page)
598 {
599 	int cpupid;
600 
601 	if (PageError(page))
602 		SetPageError(newpage);
603 	if (PageReferenced(page))
604 		SetPageReferenced(newpage);
605 	if (PageUptodate(page))
606 		SetPageUptodate(newpage);
607 	if (TestClearPageActive(page)) {
608 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
609 		SetPageActive(newpage);
610 	} else if (TestClearPageUnevictable(page))
611 		SetPageUnevictable(newpage);
612 	if (PageWorkingset(page))
613 		SetPageWorkingset(newpage);
614 	if (PageChecked(page))
615 		SetPageChecked(newpage);
616 	if (PageMappedToDisk(page))
617 		SetPageMappedToDisk(newpage);
618 
619 	/* Move dirty on pages not done by migrate_page_move_mapping() */
620 	if (PageDirty(page))
621 		SetPageDirty(newpage);
622 
623 	if (page_is_young(page))
624 		set_page_young(newpage);
625 	if (page_is_idle(page))
626 		set_page_idle(newpage);
627 
628 	/*
629 	 * Copy NUMA information to the new page, to prevent over-eager
630 	 * future migrations of this same page.
631 	 */
632 	cpupid = page_cpupid_xchg_last(page, -1);
633 	page_cpupid_xchg_last(newpage, cpupid);
634 
635 	ksm_migrate_page(newpage, page);
636 	/*
637 	 * Please do not reorder this without considering how mm/ksm.c's
638 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
639 	 */
640 	if (PageSwapCache(page))
641 		ClearPageSwapCache(page);
642 	ClearPagePrivate(page);
643 	set_page_private(page, 0);
644 
645 	/*
646 	 * If any waiters have accumulated on the new page then
647 	 * wake them up.
648 	 */
649 	if (PageWriteback(newpage))
650 		end_page_writeback(newpage);
651 
652 	copy_page_owner(page, newpage);
653 
654 	mem_cgroup_migrate(page, newpage);
655 }
656 EXPORT_SYMBOL(migrate_page_states);
657 
658 void migrate_page_copy(struct page *newpage, struct page *page)
659 {
660 	if (PageHuge(page) || PageTransHuge(page))
661 		copy_huge_page(newpage, page);
662 	else
663 		copy_highpage(newpage, page);
664 
665 	migrate_page_states(newpage, page);
666 }
667 EXPORT_SYMBOL(migrate_page_copy);
668 
669 /************************************************************
670  *                    Migration functions
671  ***********************************************************/
672 
673 /*
674  * Common logic to directly migrate a single LRU page suitable for
675  * pages that do not use PagePrivate/PagePrivate2.
676  *
677  * Pages are locked upon entry and exit.
678  */
679 int migrate_page(struct address_space *mapping,
680 		struct page *newpage, struct page *page,
681 		enum migrate_mode mode)
682 {
683 	int rc;
684 
685 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
686 
687 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
688 
689 	if (rc != MIGRATEPAGE_SUCCESS)
690 		return rc;
691 
692 	if (mode != MIGRATE_SYNC_NO_COPY)
693 		migrate_page_copy(newpage, page);
694 	else
695 		migrate_page_states(newpage, page);
696 	return MIGRATEPAGE_SUCCESS;
697 }
698 EXPORT_SYMBOL(migrate_page);
699 
700 #ifdef CONFIG_BLOCK
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703 							enum migrate_mode mode)
704 {
705 	struct buffer_head *bh = head;
706 
707 	/* Simple case, sync compaction */
708 	if (mode != MIGRATE_ASYNC) {
709 		do {
710 			lock_buffer(bh);
711 			bh = bh->b_this_page;
712 
713 		} while (bh != head);
714 
715 		return true;
716 	}
717 
718 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
719 	do {
720 		if (!trylock_buffer(bh)) {
721 			/*
722 			 * We failed to lock the buffer and cannot stall in
723 			 * async migration. Release the taken locks
724 			 */
725 			struct buffer_head *failed_bh = bh;
726 			bh = head;
727 			while (bh != failed_bh) {
728 				unlock_buffer(bh);
729 				bh = bh->b_this_page;
730 			}
731 			return false;
732 		}
733 
734 		bh = bh->b_this_page;
735 	} while (bh != head);
736 	return true;
737 }
738 
739 static int __buffer_migrate_page(struct address_space *mapping,
740 		struct page *newpage, struct page *page, enum migrate_mode mode,
741 		bool check_refs)
742 {
743 	struct buffer_head *bh, *head;
744 	int rc;
745 	int expected_count;
746 
747 	if (!page_has_buffers(page))
748 		return migrate_page(mapping, newpage, page, mode);
749 
750 	/* Check whether page does not have extra refs before we do more work */
751 	expected_count = expected_page_refs(mapping, page);
752 	if (page_count(page) != expected_count)
753 		return -EAGAIN;
754 
755 	head = page_buffers(page);
756 	if (!buffer_migrate_lock_buffers(head, mode))
757 		return -EAGAIN;
758 
759 	if (check_refs) {
760 		bool busy;
761 		bool invalidated = false;
762 
763 recheck_buffers:
764 		busy = false;
765 		spin_lock(&mapping->private_lock);
766 		bh = head;
767 		do {
768 			if (atomic_read(&bh->b_count)) {
769 				busy = true;
770 				break;
771 			}
772 			bh = bh->b_this_page;
773 		} while (bh != head);
774 		spin_unlock(&mapping->private_lock);
775 		if (busy) {
776 			if (invalidated) {
777 				rc = -EAGAIN;
778 				goto unlock_buffers;
779 			}
780 			invalidate_bh_lrus();
781 			invalidated = true;
782 			goto recheck_buffers;
783 		}
784 	}
785 
786 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
787 	if (rc != MIGRATEPAGE_SUCCESS)
788 		goto unlock_buffers;
789 
790 	ClearPagePrivate(page);
791 	set_page_private(newpage, page_private(page));
792 	set_page_private(page, 0);
793 	put_page(page);
794 	get_page(newpage);
795 
796 	bh = head;
797 	do {
798 		set_bh_page(bh, newpage, bh_offset(bh));
799 		bh = bh->b_this_page;
800 
801 	} while (bh != head);
802 
803 	SetPagePrivate(newpage);
804 
805 	if (mode != MIGRATE_SYNC_NO_COPY)
806 		migrate_page_copy(newpage, page);
807 	else
808 		migrate_page_states(newpage, page);
809 
810 	rc = MIGRATEPAGE_SUCCESS;
811 unlock_buffers:
812 	bh = head;
813 	do {
814 		unlock_buffer(bh);
815 		bh = bh->b_this_page;
816 
817 	} while (bh != head);
818 
819 	return rc;
820 }
821 
822 /*
823  * Migration function for pages with buffers. This function can only be used
824  * if the underlying filesystem guarantees that no other references to "page"
825  * exist. For example attached buffer heads are accessed only under page lock.
826  */
827 int buffer_migrate_page(struct address_space *mapping,
828 		struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833 
834 /*
835  * Same as above except that this variant is more careful and checks that there
836  * are also no buffer head references. This function is the right one for
837  * mappings where buffer heads are directly looked up and referenced (such as
838  * block device mappings).
839  */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841 		struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846 
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852 	struct writeback_control wbc = {
853 		.sync_mode = WB_SYNC_NONE,
854 		.nr_to_write = 1,
855 		.range_start = 0,
856 		.range_end = LLONG_MAX,
857 		.for_reclaim = 1
858 	};
859 	int rc;
860 
861 	if (!mapping->a_ops->writepage)
862 		/* No write method for the address space */
863 		return -EINVAL;
864 
865 	if (!clear_page_dirty_for_io(page))
866 		/* Someone else already triggered a write */
867 		return -EAGAIN;
868 
869 	/*
870 	 * A dirty page may imply that the underlying filesystem has
871 	 * the page on some queue. So the page must be clean for
872 	 * migration. Writeout may mean we loose the lock and the
873 	 * page state is no longer what we checked for earlier.
874 	 * At this point we know that the migration attempt cannot
875 	 * be successful.
876 	 */
877 	remove_migration_ptes(page, page, false);
878 
879 	rc = mapping->a_ops->writepage(page, &wbc);
880 
881 	if (rc != AOP_WRITEPAGE_ACTIVATE)
882 		/* unlocked. Relock */
883 		lock_page(page);
884 
885 	return (rc < 0) ? -EIO : -EAGAIN;
886 }
887 
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892 	struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894 	if (PageDirty(page)) {
895 		/* Only writeback pages in full synchronous migration */
896 		switch (mode) {
897 		case MIGRATE_SYNC:
898 		case MIGRATE_SYNC_NO_COPY:
899 			break;
900 		default:
901 			return -EBUSY;
902 		}
903 		return writeout(mapping, page);
904 	}
905 
906 	/*
907 	 * Buffers may be managed in a filesystem specific way.
908 	 * We must have no buffers or drop them.
909 	 */
910 	if (page_has_private(page) &&
911 	    !try_to_release_page(page, GFP_KERNEL))
912 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913 
914 	return migrate_page(mapping, newpage, page, mode);
915 }
916 
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929 				enum migrate_mode mode)
930 {
931 	struct address_space *mapping;
932 	int rc = -EAGAIN;
933 	bool is_lru = !__PageMovable(page);
934 
935 	VM_BUG_ON_PAGE(!PageLocked(page), page);
936 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937 
938 	mapping = page_mapping(page);
939 
940 	if (likely(is_lru)) {
941 		if (!mapping)
942 			rc = migrate_page(mapping, newpage, page, mode);
943 		else if (mapping->a_ops->migratepage)
944 			/*
945 			 * Most pages have a mapping and most filesystems
946 			 * provide a migratepage callback. Anonymous pages
947 			 * are part of swap space which also has its own
948 			 * migratepage callback. This is the most common path
949 			 * for page migration.
950 			 */
951 			rc = mapping->a_ops->migratepage(mapping, newpage,
952 							page, mode);
953 		else
954 			rc = fallback_migrate_page(mapping, newpage,
955 							page, mode);
956 	} else {
957 		/*
958 		 * In case of non-lru page, it could be released after
959 		 * isolation step. In that case, we shouldn't try migration.
960 		 */
961 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 		if (!PageMovable(page)) {
963 			rc = MIGRATEPAGE_SUCCESS;
964 			__ClearPageIsolated(page);
965 			goto out;
966 		}
967 
968 		rc = mapping->a_ops->migratepage(mapping, newpage,
969 						page, mode);
970 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 			!PageIsolated(page));
972 	}
973 
974 	/*
975 	 * When successful, old pagecache page->mapping must be cleared before
976 	 * page is freed; but stats require that PageAnon be left as PageAnon.
977 	 */
978 	if (rc == MIGRATEPAGE_SUCCESS) {
979 		if (__PageMovable(page)) {
980 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
981 
982 			/*
983 			 * We clear PG_movable under page_lock so any compactor
984 			 * cannot try to migrate this page.
985 			 */
986 			__ClearPageIsolated(page);
987 		}
988 
989 		/*
990 		 * Anonymous and movable page->mapping will be cleard by
991 		 * free_pages_prepare so don't reset it here for keeping
992 		 * the type to work PageAnon, for example.
993 		 */
994 		if (!PageMappingFlags(page))
995 			page->mapping = NULL;
996 
997 		if (unlikely(is_zone_device_page(newpage))) {
998 			if (is_device_public_page(newpage))
999 				flush_dcache_page(newpage);
1000 		} else
1001 			flush_dcache_page(newpage);
1002 
1003 	}
1004 out:
1005 	return rc;
1006 }
1007 
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009 				int force, enum migrate_mode mode)
1010 {
1011 	int rc = -EAGAIN;
1012 	int page_was_mapped = 0;
1013 	struct anon_vma *anon_vma = NULL;
1014 	bool is_lru = !__PageMovable(page);
1015 
1016 	if (!trylock_page(page)) {
1017 		if (!force || mode == MIGRATE_ASYNC)
1018 			goto out;
1019 
1020 		/*
1021 		 * It's not safe for direct compaction to call lock_page.
1022 		 * For example, during page readahead pages are added locked
1023 		 * to the LRU. Later, when the IO completes the pages are
1024 		 * marked uptodate and unlocked. However, the queueing
1025 		 * could be merging multiple pages for one bio (e.g.
1026 		 * mpage_readpages). If an allocation happens for the
1027 		 * second or third page, the process can end up locking
1028 		 * the same page twice and deadlocking. Rather than
1029 		 * trying to be clever about what pages can be locked,
1030 		 * avoid the use of lock_page for direct compaction
1031 		 * altogether.
1032 		 */
1033 		if (current->flags & PF_MEMALLOC)
1034 			goto out;
1035 
1036 		lock_page(page);
1037 	}
1038 
1039 	if (PageWriteback(page)) {
1040 		/*
1041 		 * Only in the case of a full synchronous migration is it
1042 		 * necessary to wait for PageWriteback. In the async case,
1043 		 * the retry loop is too short and in the sync-light case,
1044 		 * the overhead of stalling is too much
1045 		 */
1046 		switch (mode) {
1047 		case MIGRATE_SYNC:
1048 		case MIGRATE_SYNC_NO_COPY:
1049 			break;
1050 		default:
1051 			rc = -EBUSY;
1052 			goto out_unlock;
1053 		}
1054 		if (!force)
1055 			goto out_unlock;
1056 		wait_on_page_writeback(page);
1057 	}
1058 
1059 	/*
1060 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 	 * we cannot notice that anon_vma is freed while we migrates a page.
1062 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 	 * of migration. File cache pages are no problem because of page_lock()
1064 	 * File Caches may use write_page() or lock_page() in migration, then,
1065 	 * just care Anon page here.
1066 	 *
1067 	 * Only page_get_anon_vma() understands the subtleties of
1068 	 * getting a hold on an anon_vma from outside one of its mms.
1069 	 * But if we cannot get anon_vma, then we won't need it anyway,
1070 	 * because that implies that the anon page is no longer mapped
1071 	 * (and cannot be remapped so long as we hold the page lock).
1072 	 */
1073 	if (PageAnon(page) && !PageKsm(page))
1074 		anon_vma = page_get_anon_vma(page);
1075 
1076 	/*
1077 	 * Block others from accessing the new page when we get around to
1078 	 * establishing additional references. We are usually the only one
1079 	 * holding a reference to newpage at this point. We used to have a BUG
1080 	 * here if trylock_page(newpage) fails, but would like to allow for
1081 	 * cases where there might be a race with the previous use of newpage.
1082 	 * This is much like races on refcount of oldpage: just don't BUG().
1083 	 */
1084 	if (unlikely(!trylock_page(newpage)))
1085 		goto out_unlock;
1086 
1087 	if (unlikely(!is_lru)) {
1088 		rc = move_to_new_page(newpage, page, mode);
1089 		goto out_unlock_both;
1090 	}
1091 
1092 	/*
1093 	 * Corner case handling:
1094 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 	 * and treated as swapcache but it has no rmap yet.
1096 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 	 * trigger a BUG.  So handle it here.
1098 	 * 2. An orphaned page (see truncate_complete_page) might have
1099 	 * fs-private metadata. The page can be picked up due to memory
1100 	 * offlining.  Everywhere else except page reclaim, the page is
1101 	 * invisible to the vm, so the page can not be migrated.  So try to
1102 	 * free the metadata, so the page can be freed.
1103 	 */
1104 	if (!page->mapping) {
1105 		VM_BUG_ON_PAGE(PageAnon(page), page);
1106 		if (page_has_private(page)) {
1107 			try_to_free_buffers(page);
1108 			goto out_unlock_both;
1109 		}
1110 	} else if (page_mapped(page)) {
1111 		/* Establish migration ptes */
1112 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 				page);
1114 		try_to_unmap(page,
1115 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116 		page_was_mapped = 1;
1117 	}
1118 
1119 	if (!page_mapped(page))
1120 		rc = move_to_new_page(newpage, page, mode);
1121 
1122 	if (page_was_mapped)
1123 		remove_migration_ptes(page,
1124 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125 
1126 out_unlock_both:
1127 	unlock_page(newpage);
1128 out_unlock:
1129 	/* Drop an anon_vma reference if we took one */
1130 	if (anon_vma)
1131 		put_anon_vma(anon_vma);
1132 	unlock_page(page);
1133 out:
1134 	/*
1135 	 * If migration is successful, decrease refcount of the newpage
1136 	 * which will not free the page because new page owner increased
1137 	 * refcounter. As well, if it is LRU page, add the page to LRU
1138 	 * list in here. Use the old state of the isolated source page to
1139 	 * determine if we migrated a LRU page. newpage was already unlocked
1140 	 * and possibly modified by its owner - don't rely on the page
1141 	 * state.
1142 	 */
1143 	if (rc == MIGRATEPAGE_SUCCESS) {
1144 		if (unlikely(!is_lru))
1145 			put_page(newpage);
1146 		else
1147 			putback_lru_page(newpage);
1148 	}
1149 
1150 	return rc;
1151 }
1152 
1153 /*
1154  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1155  * around it.
1156  */
1157 #if defined(CONFIG_ARM) && \
1158 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1159 #define ICE_noinline noinline
1160 #else
1161 #define ICE_noinline
1162 #endif
1163 
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1169 				   free_page_t put_new_page,
1170 				   unsigned long private, struct page *page,
1171 				   int force, enum migrate_mode mode,
1172 				   enum migrate_reason reason)
1173 {
1174 	int rc = MIGRATEPAGE_SUCCESS;
1175 	struct page *newpage;
1176 
1177 	if (!thp_migration_supported() && PageTransHuge(page))
1178 		return -ENOMEM;
1179 
1180 	newpage = get_new_page(page, private);
1181 	if (!newpage)
1182 		return -ENOMEM;
1183 
1184 	if (page_count(page) == 1) {
1185 		/* page was freed from under us. So we are done. */
1186 		ClearPageActive(page);
1187 		ClearPageUnevictable(page);
1188 		if (unlikely(__PageMovable(page))) {
1189 			lock_page(page);
1190 			if (!PageMovable(page))
1191 				__ClearPageIsolated(page);
1192 			unlock_page(page);
1193 		}
1194 		if (put_new_page)
1195 			put_new_page(newpage, private);
1196 		else
1197 			put_page(newpage);
1198 		goto out;
1199 	}
1200 
1201 	rc = __unmap_and_move(page, newpage, force, mode);
1202 	if (rc == MIGRATEPAGE_SUCCESS)
1203 		set_page_owner_migrate_reason(newpage, reason);
1204 
1205 out:
1206 	if (rc != -EAGAIN) {
1207 		/*
1208 		 * A page that has been migrated has all references
1209 		 * removed and will be freed. A page that has not been
1210 		 * migrated will have kepts its references and be
1211 		 * restored.
1212 		 */
1213 		list_del(&page->lru);
1214 
1215 		/*
1216 		 * Compaction can migrate also non-LRU pages which are
1217 		 * not accounted to NR_ISOLATED_*. They can be recognized
1218 		 * as __PageMovable
1219 		 */
1220 		if (likely(!__PageMovable(page)))
1221 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1222 					page_is_file_cache(page), -hpage_nr_pages(page));
1223 	}
1224 
1225 	/*
1226 	 * If migration is successful, releases reference grabbed during
1227 	 * isolation. Otherwise, restore the page to right list unless
1228 	 * we want to retry.
1229 	 */
1230 	if (rc == MIGRATEPAGE_SUCCESS) {
1231 		put_page(page);
1232 		if (reason == MR_MEMORY_FAILURE) {
1233 			/*
1234 			 * Set PG_HWPoison on just freed page
1235 			 * intentionally. Although it's rather weird,
1236 			 * it's how HWPoison flag works at the moment.
1237 			 */
1238 			if (set_hwpoison_free_buddy_page(page))
1239 				num_poisoned_pages_inc();
1240 		}
1241 	} else {
1242 		if (rc != -EAGAIN) {
1243 			if (likely(!__PageMovable(page))) {
1244 				putback_lru_page(page);
1245 				goto put_new;
1246 			}
1247 
1248 			lock_page(page);
1249 			if (PageMovable(page))
1250 				putback_movable_page(page);
1251 			else
1252 				__ClearPageIsolated(page);
1253 			unlock_page(page);
1254 			put_page(page);
1255 		}
1256 put_new:
1257 		if (put_new_page)
1258 			put_new_page(newpage, private);
1259 		else
1260 			put_page(newpage);
1261 	}
1262 
1263 	return rc;
1264 }
1265 
1266 /*
1267  * Counterpart of unmap_and_move_page() for hugepage migration.
1268  *
1269  * This function doesn't wait the completion of hugepage I/O
1270  * because there is no race between I/O and migration for hugepage.
1271  * Note that currently hugepage I/O occurs only in direct I/O
1272  * where no lock is held and PG_writeback is irrelevant,
1273  * and writeback status of all subpages are counted in the reference
1274  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1275  * under direct I/O, the reference of the head page is 512 and a bit more.)
1276  * This means that when we try to migrate hugepage whose subpages are
1277  * doing direct I/O, some references remain after try_to_unmap() and
1278  * hugepage migration fails without data corruption.
1279  *
1280  * There is also no race when direct I/O is issued on the page under migration,
1281  * because then pte is replaced with migration swap entry and direct I/O code
1282  * will wait in the page fault for migration to complete.
1283  */
1284 static int unmap_and_move_huge_page(new_page_t get_new_page,
1285 				free_page_t put_new_page, unsigned long private,
1286 				struct page *hpage, int force,
1287 				enum migrate_mode mode, int reason)
1288 {
1289 	int rc = -EAGAIN;
1290 	int page_was_mapped = 0;
1291 	struct page *new_hpage;
1292 	struct anon_vma *anon_vma = NULL;
1293 
1294 	/*
1295 	 * Migratability of hugepages depends on architectures and their size.
1296 	 * This check is necessary because some callers of hugepage migration
1297 	 * like soft offline and memory hotremove don't walk through page
1298 	 * tables or check whether the hugepage is pmd-based or not before
1299 	 * kicking migration.
1300 	 */
1301 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1302 		putback_active_hugepage(hpage);
1303 		return -ENOSYS;
1304 	}
1305 
1306 	new_hpage = get_new_page(hpage, private);
1307 	if (!new_hpage)
1308 		return -ENOMEM;
1309 
1310 	if (!trylock_page(hpage)) {
1311 		if (!force)
1312 			goto out;
1313 		switch (mode) {
1314 		case MIGRATE_SYNC:
1315 		case MIGRATE_SYNC_NO_COPY:
1316 			break;
1317 		default:
1318 			goto out;
1319 		}
1320 		lock_page(hpage);
1321 	}
1322 
1323 	/*
1324 	 * Check for pages which are in the process of being freed.  Without
1325 	 * page_mapping() set, hugetlbfs specific move page routine will not
1326 	 * be called and we could leak usage counts for subpools.
1327 	 */
1328 	if (page_private(hpage) && !page_mapping(hpage)) {
1329 		rc = -EBUSY;
1330 		goto out_unlock;
1331 	}
1332 
1333 	if (PageAnon(hpage))
1334 		anon_vma = page_get_anon_vma(hpage);
1335 
1336 	if (unlikely(!trylock_page(new_hpage)))
1337 		goto put_anon;
1338 
1339 	if (page_mapped(hpage)) {
1340 		try_to_unmap(hpage,
1341 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1342 		page_was_mapped = 1;
1343 	}
1344 
1345 	if (!page_mapped(hpage))
1346 		rc = move_to_new_page(new_hpage, hpage, mode);
1347 
1348 	if (page_was_mapped)
1349 		remove_migration_ptes(hpage,
1350 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1351 
1352 	unlock_page(new_hpage);
1353 
1354 put_anon:
1355 	if (anon_vma)
1356 		put_anon_vma(anon_vma);
1357 
1358 	if (rc == MIGRATEPAGE_SUCCESS) {
1359 		move_hugetlb_state(hpage, new_hpage, reason);
1360 		put_new_page = NULL;
1361 	}
1362 
1363 out_unlock:
1364 	unlock_page(hpage);
1365 out:
1366 	if (rc != -EAGAIN)
1367 		putback_active_hugepage(hpage);
1368 
1369 	/*
1370 	 * If migration was not successful and there's a freeing callback, use
1371 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1372 	 * isolation.
1373 	 */
1374 	if (put_new_page)
1375 		put_new_page(new_hpage, private);
1376 	else
1377 		putback_active_hugepage(new_hpage);
1378 
1379 	return rc;
1380 }
1381 
1382 /*
1383  * migrate_pages - migrate the pages specified in a list, to the free pages
1384  *		   supplied as the target for the page migration
1385  *
1386  * @from:		The list of pages to be migrated.
1387  * @get_new_page:	The function used to allocate free pages to be used
1388  *			as the target of the page migration.
1389  * @put_new_page:	The function used to free target pages if migration
1390  *			fails, or NULL if no special handling is necessary.
1391  * @private:		Private data to be passed on to get_new_page()
1392  * @mode:		The migration mode that specifies the constraints for
1393  *			page migration, if any.
1394  * @reason:		The reason for page migration.
1395  *
1396  * The function returns after 10 attempts or if no pages are movable any more
1397  * because the list has become empty or no retryable pages exist any more.
1398  * The caller should call putback_movable_pages() to return pages to the LRU
1399  * or free list only if ret != 0.
1400  *
1401  * Returns the number of pages that were not migrated, or an error code.
1402  */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404 		free_page_t put_new_page, unsigned long private,
1405 		enum migrate_mode mode, int reason)
1406 {
1407 	int retry = 1;
1408 	int nr_failed = 0;
1409 	int nr_succeeded = 0;
1410 	int pass = 0;
1411 	struct page *page;
1412 	struct page *page2;
1413 	int swapwrite = current->flags & PF_SWAPWRITE;
1414 	int rc;
1415 
1416 	if (!swapwrite)
1417 		current->flags |= PF_SWAPWRITE;
1418 
1419 	for(pass = 0; pass < 10 && retry; pass++) {
1420 		retry = 0;
1421 
1422 		list_for_each_entry_safe(page, page2, from, lru) {
1423 retry:
1424 			cond_resched();
1425 
1426 			if (PageHuge(page))
1427 				rc = unmap_and_move_huge_page(get_new_page,
1428 						put_new_page, private, page,
1429 						pass > 2, mode, reason);
1430 			else
1431 				rc = unmap_and_move(get_new_page, put_new_page,
1432 						private, page, pass > 2, mode,
1433 						reason);
1434 
1435 			switch(rc) {
1436 			case -ENOMEM:
1437 				/*
1438 				 * THP migration might be unsupported or the
1439 				 * allocation could've failed so we should
1440 				 * retry on the same page with the THP split
1441 				 * to base pages.
1442 				 *
1443 				 * Head page is retried immediately and tail
1444 				 * pages are added to the tail of the list so
1445 				 * we encounter them after the rest of the list
1446 				 * is processed.
1447 				 */
1448 				if (PageTransHuge(page) && !PageHuge(page)) {
1449 					lock_page(page);
1450 					rc = split_huge_page_to_list(page, from);
1451 					unlock_page(page);
1452 					if (!rc) {
1453 						list_safe_reset_next(page, page2, lru);
1454 						goto retry;
1455 					}
1456 				}
1457 				nr_failed++;
1458 				goto out;
1459 			case -EAGAIN:
1460 				retry++;
1461 				break;
1462 			case MIGRATEPAGE_SUCCESS:
1463 				nr_succeeded++;
1464 				break;
1465 			default:
1466 				/*
1467 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1468 				 * unlike -EAGAIN case, the failed page is
1469 				 * removed from migration page list and not
1470 				 * retried in the next outer loop.
1471 				 */
1472 				nr_failed++;
1473 				break;
1474 			}
1475 		}
1476 	}
1477 	nr_failed += retry;
1478 	rc = nr_failed;
1479 out:
1480 	if (nr_succeeded)
1481 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1482 	if (nr_failed)
1483 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1484 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1485 
1486 	if (!swapwrite)
1487 		current->flags &= ~PF_SWAPWRITE;
1488 
1489 	return rc;
1490 }
1491 
1492 #ifdef CONFIG_NUMA
1493 
1494 static int store_status(int __user *status, int start, int value, int nr)
1495 {
1496 	while (nr-- > 0) {
1497 		if (put_user(value, status + start))
1498 			return -EFAULT;
1499 		start++;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int do_move_pages_to_node(struct mm_struct *mm,
1506 		struct list_head *pagelist, int node)
1507 {
1508 	int err;
1509 
1510 	if (list_empty(pagelist))
1511 		return 0;
1512 
1513 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1514 			MIGRATE_SYNC, MR_SYSCALL);
1515 	if (err)
1516 		putback_movable_pages(pagelist);
1517 	return err;
1518 }
1519 
1520 /*
1521  * Resolves the given address to a struct page, isolates it from the LRU and
1522  * puts it to the given pagelist.
1523  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1524  * queued or the page doesn't need to be migrated because it is already on
1525  * the target node
1526  */
1527 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1528 		int node, struct list_head *pagelist, bool migrate_all)
1529 {
1530 	struct vm_area_struct *vma;
1531 	struct page *page;
1532 	unsigned int follflags;
1533 	int err;
1534 
1535 	down_read(&mm->mmap_sem);
1536 	err = -EFAULT;
1537 	vma = find_vma(mm, addr);
1538 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1539 		goto out;
1540 
1541 	/* FOLL_DUMP to ignore special (like zero) pages */
1542 	follflags = FOLL_GET | FOLL_DUMP;
1543 	page = follow_page(vma, addr, follflags);
1544 
1545 	err = PTR_ERR(page);
1546 	if (IS_ERR(page))
1547 		goto out;
1548 
1549 	err = -ENOENT;
1550 	if (!page)
1551 		goto out;
1552 
1553 	err = 0;
1554 	if (page_to_nid(page) == node)
1555 		goto out_putpage;
1556 
1557 	err = -EACCES;
1558 	if (page_mapcount(page) > 1 && !migrate_all)
1559 		goto out_putpage;
1560 
1561 	if (PageHuge(page)) {
1562 		if (PageHead(page)) {
1563 			isolate_huge_page(page, pagelist);
1564 			err = 0;
1565 		}
1566 	} else {
1567 		struct page *head;
1568 
1569 		head = compound_head(page);
1570 		err = isolate_lru_page(head);
1571 		if (err)
1572 			goto out_putpage;
1573 
1574 		err = 0;
1575 		list_add_tail(&head->lru, pagelist);
1576 		mod_node_page_state(page_pgdat(head),
1577 			NR_ISOLATED_ANON + page_is_file_cache(head),
1578 			hpage_nr_pages(head));
1579 	}
1580 out_putpage:
1581 	/*
1582 	 * Either remove the duplicate refcount from
1583 	 * isolate_lru_page() or drop the page ref if it was
1584 	 * not isolated.
1585 	 */
1586 	put_page(page);
1587 out:
1588 	up_read(&mm->mmap_sem);
1589 	return err;
1590 }
1591 
1592 /*
1593  * Migrate an array of page address onto an array of nodes and fill
1594  * the corresponding array of status.
1595  */
1596 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1597 			 unsigned long nr_pages,
1598 			 const void __user * __user *pages,
1599 			 const int __user *nodes,
1600 			 int __user *status, int flags)
1601 {
1602 	int current_node = NUMA_NO_NODE;
1603 	LIST_HEAD(pagelist);
1604 	int start, i;
1605 	int err = 0, err1;
1606 
1607 	migrate_prep();
1608 
1609 	for (i = start = 0; i < nr_pages; i++) {
1610 		const void __user *p;
1611 		unsigned long addr;
1612 		int node;
1613 
1614 		err = -EFAULT;
1615 		if (get_user(p, pages + i))
1616 			goto out_flush;
1617 		if (get_user(node, nodes + i))
1618 			goto out_flush;
1619 		addr = (unsigned long)p;
1620 
1621 		err = -ENODEV;
1622 		if (node < 0 || node >= MAX_NUMNODES)
1623 			goto out_flush;
1624 		if (!node_state(node, N_MEMORY))
1625 			goto out_flush;
1626 
1627 		err = -EACCES;
1628 		if (!node_isset(node, task_nodes))
1629 			goto out_flush;
1630 
1631 		if (current_node == NUMA_NO_NODE) {
1632 			current_node = node;
1633 			start = i;
1634 		} else if (node != current_node) {
1635 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1636 			if (err)
1637 				goto out;
1638 			err = store_status(status, start, current_node, i - start);
1639 			if (err)
1640 				goto out;
1641 			start = i;
1642 			current_node = node;
1643 		}
1644 
1645 		/*
1646 		 * Errors in the page lookup or isolation are not fatal and we simply
1647 		 * report them via status
1648 		 */
1649 		err = add_page_for_migration(mm, addr, current_node,
1650 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1651 		if (!err)
1652 			continue;
1653 
1654 		err = store_status(status, i, err, 1);
1655 		if (err)
1656 			goto out_flush;
1657 
1658 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1659 		if (err)
1660 			goto out;
1661 		if (i > start) {
1662 			err = store_status(status, start, current_node, i - start);
1663 			if (err)
1664 				goto out;
1665 		}
1666 		current_node = NUMA_NO_NODE;
1667 	}
1668 out_flush:
1669 	if (list_empty(&pagelist))
1670 		return err;
1671 
1672 	/* Make sure we do not overwrite the existing error */
1673 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1674 	if (!err1)
1675 		err1 = store_status(status, start, current_node, i - start);
1676 	if (!err)
1677 		err = err1;
1678 out:
1679 	return err;
1680 }
1681 
1682 /*
1683  * Determine the nodes of an array of pages and store it in an array of status.
1684  */
1685 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1686 				const void __user **pages, int *status)
1687 {
1688 	unsigned long i;
1689 
1690 	down_read(&mm->mmap_sem);
1691 
1692 	for (i = 0; i < nr_pages; i++) {
1693 		unsigned long addr = (unsigned long)(*pages);
1694 		struct vm_area_struct *vma;
1695 		struct page *page;
1696 		int err = -EFAULT;
1697 
1698 		vma = find_vma(mm, addr);
1699 		if (!vma || addr < vma->vm_start)
1700 			goto set_status;
1701 
1702 		/* FOLL_DUMP to ignore special (like zero) pages */
1703 		page = follow_page(vma, addr, FOLL_DUMP);
1704 
1705 		err = PTR_ERR(page);
1706 		if (IS_ERR(page))
1707 			goto set_status;
1708 
1709 		err = page ? page_to_nid(page) : -ENOENT;
1710 set_status:
1711 		*status = err;
1712 
1713 		pages++;
1714 		status++;
1715 	}
1716 
1717 	up_read(&mm->mmap_sem);
1718 }
1719 
1720 /*
1721  * Determine the nodes of a user array of pages and store it in
1722  * a user array of status.
1723  */
1724 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1725 			 const void __user * __user *pages,
1726 			 int __user *status)
1727 {
1728 #define DO_PAGES_STAT_CHUNK_NR 16
1729 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1730 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1731 
1732 	while (nr_pages) {
1733 		unsigned long chunk_nr;
1734 
1735 		chunk_nr = nr_pages;
1736 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1737 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1738 
1739 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1740 			break;
1741 
1742 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1743 
1744 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1745 			break;
1746 
1747 		pages += chunk_nr;
1748 		status += chunk_nr;
1749 		nr_pages -= chunk_nr;
1750 	}
1751 	return nr_pages ? -EFAULT : 0;
1752 }
1753 
1754 /*
1755  * Move a list of pages in the address space of the currently executing
1756  * process.
1757  */
1758 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1759 			     const void __user * __user *pages,
1760 			     const int __user *nodes,
1761 			     int __user *status, int flags)
1762 {
1763 	struct task_struct *task;
1764 	struct mm_struct *mm;
1765 	int err;
1766 	nodemask_t task_nodes;
1767 
1768 	/* Check flags */
1769 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1770 		return -EINVAL;
1771 
1772 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1773 		return -EPERM;
1774 
1775 	/* Find the mm_struct */
1776 	rcu_read_lock();
1777 	task = pid ? find_task_by_vpid(pid) : current;
1778 	if (!task) {
1779 		rcu_read_unlock();
1780 		return -ESRCH;
1781 	}
1782 	get_task_struct(task);
1783 
1784 	/*
1785 	 * Check if this process has the right to modify the specified
1786 	 * process. Use the regular "ptrace_may_access()" checks.
1787 	 */
1788 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1789 		rcu_read_unlock();
1790 		err = -EPERM;
1791 		goto out;
1792 	}
1793 	rcu_read_unlock();
1794 
1795  	err = security_task_movememory(task);
1796  	if (err)
1797 		goto out;
1798 
1799 	task_nodes = cpuset_mems_allowed(task);
1800 	mm = get_task_mm(task);
1801 	put_task_struct(task);
1802 
1803 	if (!mm)
1804 		return -EINVAL;
1805 
1806 	if (nodes)
1807 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1808 				    nodes, status, flags);
1809 	else
1810 		err = do_pages_stat(mm, nr_pages, pages, status);
1811 
1812 	mmput(mm);
1813 	return err;
1814 
1815 out:
1816 	put_task_struct(task);
1817 	return err;
1818 }
1819 
1820 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1821 		const void __user * __user *, pages,
1822 		const int __user *, nodes,
1823 		int __user *, status, int, flags)
1824 {
1825 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1826 }
1827 
1828 #ifdef CONFIG_COMPAT
1829 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1830 		       compat_uptr_t __user *, pages32,
1831 		       const int __user *, nodes,
1832 		       int __user *, status,
1833 		       int, flags)
1834 {
1835 	const void __user * __user *pages;
1836 	int i;
1837 
1838 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1839 	for (i = 0; i < nr_pages; i++) {
1840 		compat_uptr_t p;
1841 
1842 		if (get_user(p, pages32 + i) ||
1843 			put_user(compat_ptr(p), pages + i))
1844 			return -EFAULT;
1845 	}
1846 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1847 }
1848 #endif /* CONFIG_COMPAT */
1849 
1850 #ifdef CONFIG_NUMA_BALANCING
1851 /*
1852  * Returns true if this is a safe migration target node for misplaced NUMA
1853  * pages. Currently it only checks the watermarks which crude
1854  */
1855 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1856 				   unsigned long nr_migrate_pages)
1857 {
1858 	int z;
1859 
1860 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1861 		struct zone *zone = pgdat->node_zones + z;
1862 
1863 		if (!populated_zone(zone))
1864 			continue;
1865 
1866 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1867 		if (!zone_watermark_ok(zone, 0,
1868 				       high_wmark_pages(zone) +
1869 				       nr_migrate_pages,
1870 				       0, 0))
1871 			continue;
1872 		return true;
1873 	}
1874 	return false;
1875 }
1876 
1877 static struct page *alloc_misplaced_dst_page(struct page *page,
1878 					   unsigned long data)
1879 {
1880 	int nid = (int) data;
1881 	struct page *newpage;
1882 
1883 	newpage = __alloc_pages_node(nid,
1884 					 (GFP_HIGHUSER_MOVABLE |
1885 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1886 					  __GFP_NORETRY | __GFP_NOWARN) &
1887 					 ~__GFP_RECLAIM, 0);
1888 
1889 	return newpage;
1890 }
1891 
1892 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1893 {
1894 	int page_lru;
1895 
1896 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1897 
1898 	/* Avoid migrating to a node that is nearly full */
1899 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1900 		return 0;
1901 
1902 	if (isolate_lru_page(page))
1903 		return 0;
1904 
1905 	/*
1906 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1907 	 * check on page_count(), so we must do it here, now that the page
1908 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1909 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1910 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1911 	 */
1912 	if (PageTransHuge(page) && page_count(page) != 3) {
1913 		putback_lru_page(page);
1914 		return 0;
1915 	}
1916 
1917 	page_lru = page_is_file_cache(page);
1918 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1919 				hpage_nr_pages(page));
1920 
1921 	/*
1922 	 * Isolating the page has taken another reference, so the
1923 	 * caller's reference can be safely dropped without the page
1924 	 * disappearing underneath us during migration.
1925 	 */
1926 	put_page(page);
1927 	return 1;
1928 }
1929 
1930 bool pmd_trans_migrating(pmd_t pmd)
1931 {
1932 	struct page *page = pmd_page(pmd);
1933 	return PageLocked(page);
1934 }
1935 
1936 /*
1937  * Attempt to migrate a misplaced page to the specified destination
1938  * node. Caller is expected to have an elevated reference count on
1939  * the page that will be dropped by this function before returning.
1940  */
1941 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1942 			   int node)
1943 {
1944 	pg_data_t *pgdat = NODE_DATA(node);
1945 	int isolated;
1946 	int nr_remaining;
1947 	LIST_HEAD(migratepages);
1948 
1949 	/*
1950 	 * Don't migrate file pages that are mapped in multiple processes
1951 	 * with execute permissions as they are probably shared libraries.
1952 	 */
1953 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1954 	    (vma->vm_flags & VM_EXEC))
1955 		goto out;
1956 
1957 	/*
1958 	 * Also do not migrate dirty pages as not all filesystems can move
1959 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1960 	 */
1961 	if (page_is_file_cache(page) && PageDirty(page))
1962 		goto out;
1963 
1964 	isolated = numamigrate_isolate_page(pgdat, page);
1965 	if (!isolated)
1966 		goto out;
1967 
1968 	list_add(&page->lru, &migratepages);
1969 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1970 				     NULL, node, MIGRATE_ASYNC,
1971 				     MR_NUMA_MISPLACED);
1972 	if (nr_remaining) {
1973 		if (!list_empty(&migratepages)) {
1974 			list_del(&page->lru);
1975 			dec_node_page_state(page, NR_ISOLATED_ANON +
1976 					page_is_file_cache(page));
1977 			putback_lru_page(page);
1978 		}
1979 		isolated = 0;
1980 	} else
1981 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1982 	BUG_ON(!list_empty(&migratepages));
1983 	return isolated;
1984 
1985 out:
1986 	put_page(page);
1987 	return 0;
1988 }
1989 #endif /* CONFIG_NUMA_BALANCING */
1990 
1991 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1992 /*
1993  * Migrates a THP to a given target node. page must be locked and is unlocked
1994  * before returning.
1995  */
1996 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1997 				struct vm_area_struct *vma,
1998 				pmd_t *pmd, pmd_t entry,
1999 				unsigned long address,
2000 				struct page *page, int node)
2001 {
2002 	spinlock_t *ptl;
2003 	pg_data_t *pgdat = NODE_DATA(node);
2004 	int isolated = 0;
2005 	struct page *new_page = NULL;
2006 	int page_lru = page_is_file_cache(page);
2007 	unsigned long start = address & HPAGE_PMD_MASK;
2008 
2009 	new_page = alloc_pages_node(node,
2010 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2011 		HPAGE_PMD_ORDER);
2012 	if (!new_page)
2013 		goto out_fail;
2014 	prep_transhuge_page(new_page);
2015 
2016 	isolated = numamigrate_isolate_page(pgdat, page);
2017 	if (!isolated) {
2018 		put_page(new_page);
2019 		goto out_fail;
2020 	}
2021 
2022 	/* Prepare a page as a migration target */
2023 	__SetPageLocked(new_page);
2024 	if (PageSwapBacked(page))
2025 		__SetPageSwapBacked(new_page);
2026 
2027 	/* anon mapping, we can simply copy page->mapping to the new page: */
2028 	new_page->mapping = page->mapping;
2029 	new_page->index = page->index;
2030 	/* flush the cache before copying using the kernel virtual address */
2031 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2032 	migrate_page_copy(new_page, page);
2033 	WARN_ON(PageLRU(new_page));
2034 
2035 	/* Recheck the target PMD */
2036 	ptl = pmd_lock(mm, pmd);
2037 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2038 		spin_unlock(ptl);
2039 
2040 		/* Reverse changes made by migrate_page_copy() */
2041 		if (TestClearPageActive(new_page))
2042 			SetPageActive(page);
2043 		if (TestClearPageUnevictable(new_page))
2044 			SetPageUnevictable(page);
2045 
2046 		unlock_page(new_page);
2047 		put_page(new_page);		/* Free it */
2048 
2049 		/* Retake the callers reference and putback on LRU */
2050 		get_page(page);
2051 		putback_lru_page(page);
2052 		mod_node_page_state(page_pgdat(page),
2053 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2054 
2055 		goto out_unlock;
2056 	}
2057 
2058 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2059 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2060 
2061 	/*
2062 	 * Overwrite the old entry under pagetable lock and establish
2063 	 * the new PTE. Any parallel GUP will either observe the old
2064 	 * page blocking on the page lock, block on the page table
2065 	 * lock or observe the new page. The SetPageUptodate on the
2066 	 * new page and page_add_new_anon_rmap guarantee the copy is
2067 	 * visible before the pagetable update.
2068 	 */
2069 	page_add_anon_rmap(new_page, vma, start, true);
2070 	/*
2071 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2072 	 * has already been flushed globally.  So no TLB can be currently
2073 	 * caching this non present pmd mapping.  There's no need to clear the
2074 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2075 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2076 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2077 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2078 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2079 	 * pmd.
2080 	 */
2081 	set_pmd_at(mm, start, pmd, entry);
2082 	update_mmu_cache_pmd(vma, address, &entry);
2083 
2084 	page_ref_unfreeze(page, 2);
2085 	mlock_migrate_page(new_page, page);
2086 	page_remove_rmap(page, true);
2087 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2088 
2089 	spin_unlock(ptl);
2090 
2091 	/* Take an "isolate" reference and put new page on the LRU. */
2092 	get_page(new_page);
2093 	putback_lru_page(new_page);
2094 
2095 	unlock_page(new_page);
2096 	unlock_page(page);
2097 	put_page(page);			/* Drop the rmap reference */
2098 	put_page(page);			/* Drop the LRU isolation reference */
2099 
2100 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2101 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2102 
2103 	mod_node_page_state(page_pgdat(page),
2104 			NR_ISOLATED_ANON + page_lru,
2105 			-HPAGE_PMD_NR);
2106 	return isolated;
2107 
2108 out_fail:
2109 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2110 	ptl = pmd_lock(mm, pmd);
2111 	if (pmd_same(*pmd, entry)) {
2112 		entry = pmd_modify(entry, vma->vm_page_prot);
2113 		set_pmd_at(mm, start, pmd, entry);
2114 		update_mmu_cache_pmd(vma, address, &entry);
2115 	}
2116 	spin_unlock(ptl);
2117 
2118 out_unlock:
2119 	unlock_page(page);
2120 	put_page(page);
2121 	return 0;
2122 }
2123 #endif /* CONFIG_NUMA_BALANCING */
2124 
2125 #endif /* CONFIG_NUMA */
2126 
2127 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2128 struct migrate_vma {
2129 	struct vm_area_struct	*vma;
2130 	unsigned long		*dst;
2131 	unsigned long		*src;
2132 	unsigned long		cpages;
2133 	unsigned long		npages;
2134 	unsigned long		start;
2135 	unsigned long		end;
2136 };
2137 
2138 static int migrate_vma_collect_hole(unsigned long start,
2139 				    unsigned long end,
2140 				    struct mm_walk *walk)
2141 {
2142 	struct migrate_vma *migrate = walk->private;
2143 	unsigned long addr;
2144 
2145 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2146 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2147 		migrate->dst[migrate->npages] = 0;
2148 		migrate->npages++;
2149 		migrate->cpages++;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static int migrate_vma_collect_skip(unsigned long start,
2156 				    unsigned long end,
2157 				    struct mm_walk *walk)
2158 {
2159 	struct migrate_vma *migrate = walk->private;
2160 	unsigned long addr;
2161 
2162 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2163 		migrate->dst[migrate->npages] = 0;
2164 		migrate->src[migrate->npages++] = 0;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2171 				   unsigned long start,
2172 				   unsigned long end,
2173 				   struct mm_walk *walk)
2174 {
2175 	struct migrate_vma *migrate = walk->private;
2176 	struct vm_area_struct *vma = walk->vma;
2177 	struct mm_struct *mm = vma->vm_mm;
2178 	unsigned long addr = start, unmapped = 0;
2179 	spinlock_t *ptl;
2180 	pte_t *ptep;
2181 
2182 again:
2183 	if (pmd_none(*pmdp))
2184 		return migrate_vma_collect_hole(start, end, walk);
2185 
2186 	if (pmd_trans_huge(*pmdp)) {
2187 		struct page *page;
2188 
2189 		ptl = pmd_lock(mm, pmdp);
2190 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2191 			spin_unlock(ptl);
2192 			goto again;
2193 		}
2194 
2195 		page = pmd_page(*pmdp);
2196 		if (is_huge_zero_page(page)) {
2197 			spin_unlock(ptl);
2198 			split_huge_pmd(vma, pmdp, addr);
2199 			if (pmd_trans_unstable(pmdp))
2200 				return migrate_vma_collect_skip(start, end,
2201 								walk);
2202 		} else {
2203 			int ret;
2204 
2205 			get_page(page);
2206 			spin_unlock(ptl);
2207 			if (unlikely(!trylock_page(page)))
2208 				return migrate_vma_collect_skip(start, end,
2209 								walk);
2210 			ret = split_huge_page(page);
2211 			unlock_page(page);
2212 			put_page(page);
2213 			if (ret)
2214 				return migrate_vma_collect_skip(start, end,
2215 								walk);
2216 			if (pmd_none(*pmdp))
2217 				return migrate_vma_collect_hole(start, end,
2218 								walk);
2219 		}
2220 	}
2221 
2222 	if (unlikely(pmd_bad(*pmdp)))
2223 		return migrate_vma_collect_skip(start, end, walk);
2224 
2225 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2226 	arch_enter_lazy_mmu_mode();
2227 
2228 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2229 		unsigned long mpfn, pfn;
2230 		struct page *page;
2231 		swp_entry_t entry;
2232 		pte_t pte;
2233 
2234 		pte = *ptep;
2235 		pfn = pte_pfn(pte);
2236 
2237 		if (pte_none(pte)) {
2238 			mpfn = MIGRATE_PFN_MIGRATE;
2239 			migrate->cpages++;
2240 			pfn = 0;
2241 			goto next;
2242 		}
2243 
2244 		if (!pte_present(pte)) {
2245 			mpfn = pfn = 0;
2246 
2247 			/*
2248 			 * Only care about unaddressable device page special
2249 			 * page table entry. Other special swap entries are not
2250 			 * migratable, and we ignore regular swapped page.
2251 			 */
2252 			entry = pte_to_swp_entry(pte);
2253 			if (!is_device_private_entry(entry))
2254 				goto next;
2255 
2256 			page = device_private_entry_to_page(entry);
2257 			mpfn = migrate_pfn(page_to_pfn(page))|
2258 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2259 			if (is_write_device_private_entry(entry))
2260 				mpfn |= MIGRATE_PFN_WRITE;
2261 		} else {
2262 			if (is_zero_pfn(pfn)) {
2263 				mpfn = MIGRATE_PFN_MIGRATE;
2264 				migrate->cpages++;
2265 				pfn = 0;
2266 				goto next;
2267 			}
2268 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2269 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271 		}
2272 
2273 		/* FIXME support THP */
2274 		if (!page || !page->mapping || PageTransCompound(page)) {
2275 			mpfn = pfn = 0;
2276 			goto next;
2277 		}
2278 		pfn = page_to_pfn(page);
2279 
2280 		/*
2281 		 * By getting a reference on the page we pin it and that blocks
2282 		 * any kind of migration. Side effect is that it "freezes" the
2283 		 * pte.
2284 		 *
2285 		 * We drop this reference after isolating the page from the lru
2286 		 * for non device page (device page are not on the lru and thus
2287 		 * can't be dropped from it).
2288 		 */
2289 		get_page(page);
2290 		migrate->cpages++;
2291 
2292 		/*
2293 		 * Optimize for the common case where page is only mapped once
2294 		 * in one process. If we can lock the page, then we can safely
2295 		 * set up a special migration page table entry now.
2296 		 */
2297 		if (trylock_page(page)) {
2298 			pte_t swp_pte;
2299 
2300 			mpfn |= MIGRATE_PFN_LOCKED;
2301 			ptep_get_and_clear(mm, addr, ptep);
2302 
2303 			/* Setup special migration page table entry */
2304 			entry = make_migration_entry(page, mpfn &
2305 						     MIGRATE_PFN_WRITE);
2306 			swp_pte = swp_entry_to_pte(entry);
2307 			if (pte_soft_dirty(pte))
2308 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2309 			set_pte_at(mm, addr, ptep, swp_pte);
2310 
2311 			/*
2312 			 * This is like regular unmap: we remove the rmap and
2313 			 * drop page refcount. Page won't be freed, as we took
2314 			 * a reference just above.
2315 			 */
2316 			page_remove_rmap(page, false);
2317 			put_page(page);
2318 
2319 			if (pte_present(pte))
2320 				unmapped++;
2321 		}
2322 
2323 next:
2324 		migrate->dst[migrate->npages] = 0;
2325 		migrate->src[migrate->npages++] = mpfn;
2326 	}
2327 	arch_leave_lazy_mmu_mode();
2328 	pte_unmap_unlock(ptep - 1, ptl);
2329 
2330 	/* Only flush the TLB if we actually modified any entries */
2331 	if (unmapped)
2332 		flush_tlb_range(walk->vma, start, end);
2333 
2334 	return 0;
2335 }
2336 
2337 /*
2338  * migrate_vma_collect() - collect pages over a range of virtual addresses
2339  * @migrate: migrate struct containing all migration information
2340  *
2341  * This will walk the CPU page table. For each virtual address backed by a
2342  * valid page, it updates the src array and takes a reference on the page, in
2343  * order to pin the page until we lock it and unmap it.
2344  */
2345 static void migrate_vma_collect(struct migrate_vma *migrate)
2346 {
2347 	struct mmu_notifier_range range;
2348 	struct mm_walk mm_walk;
2349 
2350 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2351 	mm_walk.pte_entry = NULL;
2352 	mm_walk.pte_hole = migrate_vma_collect_hole;
2353 	mm_walk.hugetlb_entry = NULL;
2354 	mm_walk.test_walk = NULL;
2355 	mm_walk.vma = migrate->vma;
2356 	mm_walk.mm = migrate->vma->vm_mm;
2357 	mm_walk.private = migrate;
2358 
2359 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2360 				migrate->start,
2361 				migrate->end);
2362 	mmu_notifier_invalidate_range_start(&range);
2363 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2364 	mmu_notifier_invalidate_range_end(&range);
2365 
2366 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2367 }
2368 
2369 /*
2370  * migrate_vma_check_page() - check if page is pinned or not
2371  * @page: struct page to check
2372  *
2373  * Pinned pages cannot be migrated. This is the same test as in
2374  * migrate_page_move_mapping(), except that here we allow migration of a
2375  * ZONE_DEVICE page.
2376  */
2377 static bool migrate_vma_check_page(struct page *page)
2378 {
2379 	/*
2380 	 * One extra ref because caller holds an extra reference, either from
2381 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2382 	 * a device page.
2383 	 */
2384 	int extra = 1;
2385 
2386 	/*
2387 	 * FIXME support THP (transparent huge page), it is bit more complex to
2388 	 * check them than regular pages, because they can be mapped with a pmd
2389 	 * or with a pte (split pte mapping).
2390 	 */
2391 	if (PageCompound(page))
2392 		return false;
2393 
2394 	/* Page from ZONE_DEVICE have one extra reference */
2395 	if (is_zone_device_page(page)) {
2396 		/*
2397 		 * Private page can never be pin as they have no valid pte and
2398 		 * GUP will fail for those. Yet if there is a pending migration
2399 		 * a thread might try to wait on the pte migration entry and
2400 		 * will bump the page reference count. Sadly there is no way to
2401 		 * differentiate a regular pin from migration wait. Hence to
2402 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2403 		 * infinite loop (one stoping migration because the other is
2404 		 * waiting on pte migration entry). We always return true here.
2405 		 *
2406 		 * FIXME proper solution is to rework migration_entry_wait() so
2407 		 * it does not need to take a reference on page.
2408 		 */
2409 		if (is_device_private_page(page))
2410 			return true;
2411 
2412 		/*
2413 		 * Only allow device public page to be migrated and account for
2414 		 * the extra reference count imply by ZONE_DEVICE pages.
2415 		 */
2416 		if (!is_device_public_page(page))
2417 			return false;
2418 		extra++;
2419 	}
2420 
2421 	/* For file back page */
2422 	if (page_mapping(page))
2423 		extra += 1 + page_has_private(page);
2424 
2425 	if ((page_count(page) - extra) > page_mapcount(page))
2426 		return false;
2427 
2428 	return true;
2429 }
2430 
2431 /*
2432  * migrate_vma_prepare() - lock pages and isolate them from the lru
2433  * @migrate: migrate struct containing all migration information
2434  *
2435  * This locks pages that have been collected by migrate_vma_collect(). Once each
2436  * page is locked it is isolated from the lru (for non-device pages). Finally,
2437  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2438  * migrated by concurrent kernel threads.
2439  */
2440 static void migrate_vma_prepare(struct migrate_vma *migrate)
2441 {
2442 	const unsigned long npages = migrate->npages;
2443 	const unsigned long start = migrate->start;
2444 	unsigned long addr, i, restore = 0;
2445 	bool allow_drain = true;
2446 
2447 	lru_add_drain();
2448 
2449 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2450 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2451 		bool remap = true;
2452 
2453 		if (!page)
2454 			continue;
2455 
2456 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2457 			/*
2458 			 * Because we are migrating several pages there can be
2459 			 * a deadlock between 2 concurrent migration where each
2460 			 * are waiting on each other page lock.
2461 			 *
2462 			 * Make migrate_vma() a best effort thing and backoff
2463 			 * for any page we can not lock right away.
2464 			 */
2465 			if (!trylock_page(page)) {
2466 				migrate->src[i] = 0;
2467 				migrate->cpages--;
2468 				put_page(page);
2469 				continue;
2470 			}
2471 			remap = false;
2472 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2473 		}
2474 
2475 		/* ZONE_DEVICE pages are not on LRU */
2476 		if (!is_zone_device_page(page)) {
2477 			if (!PageLRU(page) && allow_drain) {
2478 				/* Drain CPU's pagevec */
2479 				lru_add_drain_all();
2480 				allow_drain = false;
2481 			}
2482 
2483 			if (isolate_lru_page(page)) {
2484 				if (remap) {
2485 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2486 					migrate->cpages--;
2487 					restore++;
2488 				} else {
2489 					migrate->src[i] = 0;
2490 					unlock_page(page);
2491 					migrate->cpages--;
2492 					put_page(page);
2493 				}
2494 				continue;
2495 			}
2496 
2497 			/* Drop the reference we took in collect */
2498 			put_page(page);
2499 		}
2500 
2501 		if (!migrate_vma_check_page(page)) {
2502 			if (remap) {
2503 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2504 				migrate->cpages--;
2505 				restore++;
2506 
2507 				if (!is_zone_device_page(page)) {
2508 					get_page(page);
2509 					putback_lru_page(page);
2510 				}
2511 			} else {
2512 				migrate->src[i] = 0;
2513 				unlock_page(page);
2514 				migrate->cpages--;
2515 
2516 				if (!is_zone_device_page(page))
2517 					putback_lru_page(page);
2518 				else
2519 					put_page(page);
2520 			}
2521 		}
2522 	}
2523 
2524 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2525 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2526 
2527 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2528 			continue;
2529 
2530 		remove_migration_pte(page, migrate->vma, addr, page);
2531 
2532 		migrate->src[i] = 0;
2533 		unlock_page(page);
2534 		put_page(page);
2535 		restore--;
2536 	}
2537 }
2538 
2539 /*
2540  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2541  * @migrate: migrate struct containing all migration information
2542  *
2543  * Replace page mapping (CPU page table pte) with a special migration pte entry
2544  * and check again if it has been pinned. Pinned pages are restored because we
2545  * cannot migrate them.
2546  *
2547  * This is the last step before we call the device driver callback to allocate
2548  * destination memory and copy contents of original page over to new page.
2549  */
2550 static void migrate_vma_unmap(struct migrate_vma *migrate)
2551 {
2552 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2553 	const unsigned long npages = migrate->npages;
2554 	const unsigned long start = migrate->start;
2555 	unsigned long addr, i, restore = 0;
2556 
2557 	for (i = 0; i < npages; i++) {
2558 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2559 
2560 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2561 			continue;
2562 
2563 		if (page_mapped(page)) {
2564 			try_to_unmap(page, flags);
2565 			if (page_mapped(page))
2566 				goto restore;
2567 		}
2568 
2569 		if (migrate_vma_check_page(page))
2570 			continue;
2571 
2572 restore:
2573 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2574 		migrate->cpages--;
2575 		restore++;
2576 	}
2577 
2578 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2579 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2580 
2581 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2582 			continue;
2583 
2584 		remove_migration_ptes(page, page, false);
2585 
2586 		migrate->src[i] = 0;
2587 		unlock_page(page);
2588 		restore--;
2589 
2590 		if (is_zone_device_page(page))
2591 			put_page(page);
2592 		else
2593 			putback_lru_page(page);
2594 	}
2595 }
2596 
2597 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2598 				    unsigned long addr,
2599 				    struct page *page,
2600 				    unsigned long *src,
2601 				    unsigned long *dst)
2602 {
2603 	struct vm_area_struct *vma = migrate->vma;
2604 	struct mm_struct *mm = vma->vm_mm;
2605 	struct mem_cgroup *memcg;
2606 	bool flush = false;
2607 	spinlock_t *ptl;
2608 	pte_t entry;
2609 	pgd_t *pgdp;
2610 	p4d_t *p4dp;
2611 	pud_t *pudp;
2612 	pmd_t *pmdp;
2613 	pte_t *ptep;
2614 
2615 	/* Only allow populating anonymous memory */
2616 	if (!vma_is_anonymous(vma))
2617 		goto abort;
2618 
2619 	pgdp = pgd_offset(mm, addr);
2620 	p4dp = p4d_alloc(mm, pgdp, addr);
2621 	if (!p4dp)
2622 		goto abort;
2623 	pudp = pud_alloc(mm, p4dp, addr);
2624 	if (!pudp)
2625 		goto abort;
2626 	pmdp = pmd_alloc(mm, pudp, addr);
2627 	if (!pmdp)
2628 		goto abort;
2629 
2630 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2631 		goto abort;
2632 
2633 	/*
2634 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2635 	 * pte_offset_map() on pmds where a huge pmd might be created
2636 	 * from a different thread.
2637 	 *
2638 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2639 	 * parallel threads are excluded by other means.
2640 	 *
2641 	 * Here we only have down_read(mmap_sem).
2642 	 */
2643 	if (pte_alloc(mm, pmdp))
2644 		goto abort;
2645 
2646 	/* See the comment in pte_alloc_one_map() */
2647 	if (unlikely(pmd_trans_unstable(pmdp)))
2648 		goto abort;
2649 
2650 	if (unlikely(anon_vma_prepare(vma)))
2651 		goto abort;
2652 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2653 		goto abort;
2654 
2655 	/*
2656 	 * The memory barrier inside __SetPageUptodate makes sure that
2657 	 * preceding stores to the page contents become visible before
2658 	 * the set_pte_at() write.
2659 	 */
2660 	__SetPageUptodate(page);
2661 
2662 	if (is_zone_device_page(page)) {
2663 		if (is_device_private_page(page)) {
2664 			swp_entry_t swp_entry;
2665 
2666 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2667 			entry = swp_entry_to_pte(swp_entry);
2668 		} else if (is_device_public_page(page)) {
2669 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2670 			if (vma->vm_flags & VM_WRITE)
2671 				entry = pte_mkwrite(pte_mkdirty(entry));
2672 			entry = pte_mkdevmap(entry);
2673 		}
2674 	} else {
2675 		entry = mk_pte(page, vma->vm_page_prot);
2676 		if (vma->vm_flags & VM_WRITE)
2677 			entry = pte_mkwrite(pte_mkdirty(entry));
2678 	}
2679 
2680 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2681 
2682 	if (pte_present(*ptep)) {
2683 		unsigned long pfn = pte_pfn(*ptep);
2684 
2685 		if (!is_zero_pfn(pfn)) {
2686 			pte_unmap_unlock(ptep, ptl);
2687 			mem_cgroup_cancel_charge(page, memcg, false);
2688 			goto abort;
2689 		}
2690 		flush = true;
2691 	} else if (!pte_none(*ptep)) {
2692 		pte_unmap_unlock(ptep, ptl);
2693 		mem_cgroup_cancel_charge(page, memcg, false);
2694 		goto abort;
2695 	}
2696 
2697 	/*
2698 	 * Check for usefaultfd but do not deliver the fault. Instead,
2699 	 * just back off.
2700 	 */
2701 	if (userfaultfd_missing(vma)) {
2702 		pte_unmap_unlock(ptep, ptl);
2703 		mem_cgroup_cancel_charge(page, memcg, false);
2704 		goto abort;
2705 	}
2706 
2707 	inc_mm_counter(mm, MM_ANONPAGES);
2708 	page_add_new_anon_rmap(page, vma, addr, false);
2709 	mem_cgroup_commit_charge(page, memcg, false, false);
2710 	if (!is_zone_device_page(page))
2711 		lru_cache_add_active_or_unevictable(page, vma);
2712 	get_page(page);
2713 
2714 	if (flush) {
2715 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2716 		ptep_clear_flush_notify(vma, addr, ptep);
2717 		set_pte_at_notify(mm, addr, ptep, entry);
2718 		update_mmu_cache(vma, addr, ptep);
2719 	} else {
2720 		/* No need to invalidate - it was non-present before */
2721 		set_pte_at(mm, addr, ptep, entry);
2722 		update_mmu_cache(vma, addr, ptep);
2723 	}
2724 
2725 	pte_unmap_unlock(ptep, ptl);
2726 	*src = MIGRATE_PFN_MIGRATE;
2727 	return;
2728 
2729 abort:
2730 	*src &= ~MIGRATE_PFN_MIGRATE;
2731 }
2732 
2733 /*
2734  * migrate_vma_pages() - migrate meta-data from src page to dst page
2735  * @migrate: migrate struct containing all migration information
2736  *
2737  * This migrates struct page meta-data from source struct page to destination
2738  * struct page. This effectively finishes the migration from source page to the
2739  * destination page.
2740  */
2741 static void migrate_vma_pages(struct migrate_vma *migrate)
2742 {
2743 	const unsigned long npages = migrate->npages;
2744 	const unsigned long start = migrate->start;
2745 	struct mmu_notifier_range range;
2746 	unsigned long addr, i;
2747 	bool notified = false;
2748 
2749 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2750 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2751 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2752 		struct address_space *mapping;
2753 		int r;
2754 
2755 		if (!newpage) {
2756 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2757 			continue;
2758 		}
2759 
2760 		if (!page) {
2761 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2762 				continue;
2763 			}
2764 			if (!notified) {
2765 				notified = true;
2766 
2767 				mmu_notifier_range_init(&range,
2768 							MMU_NOTIFY_CLEAR, 0,
2769 							NULL,
2770 							migrate->vma->vm_mm,
2771 							addr, migrate->end);
2772 				mmu_notifier_invalidate_range_start(&range);
2773 			}
2774 			migrate_vma_insert_page(migrate, addr, newpage,
2775 						&migrate->src[i],
2776 						&migrate->dst[i]);
2777 			continue;
2778 		}
2779 
2780 		mapping = page_mapping(page);
2781 
2782 		if (is_zone_device_page(newpage)) {
2783 			if (is_device_private_page(newpage)) {
2784 				/*
2785 				 * For now only support private anonymous when
2786 				 * migrating to un-addressable device memory.
2787 				 */
2788 				if (mapping) {
2789 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2790 					continue;
2791 				}
2792 			} else if (!is_device_public_page(newpage)) {
2793 				/*
2794 				 * Other types of ZONE_DEVICE page are not
2795 				 * supported.
2796 				 */
2797 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2798 				continue;
2799 			}
2800 		}
2801 
2802 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2803 		if (r != MIGRATEPAGE_SUCCESS)
2804 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2805 	}
2806 
2807 	/*
2808 	 * No need to double call mmu_notifier->invalidate_range() callback as
2809 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2810 	 * did already call it.
2811 	 */
2812 	if (notified)
2813 		mmu_notifier_invalidate_range_only_end(&range);
2814 }
2815 
2816 /*
2817  * migrate_vma_finalize() - restore CPU page table entry
2818  * @migrate: migrate struct containing all migration information
2819  *
2820  * This replaces the special migration pte entry with either a mapping to the
2821  * new page if migration was successful for that page, or to the original page
2822  * otherwise.
2823  *
2824  * This also unlocks the pages and puts them back on the lru, or drops the extra
2825  * refcount, for device pages.
2826  */
2827 static void migrate_vma_finalize(struct migrate_vma *migrate)
2828 {
2829 	const unsigned long npages = migrate->npages;
2830 	unsigned long i;
2831 
2832 	for (i = 0; i < npages; i++) {
2833 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2834 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2835 
2836 		if (!page) {
2837 			if (newpage) {
2838 				unlock_page(newpage);
2839 				put_page(newpage);
2840 			}
2841 			continue;
2842 		}
2843 
2844 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2845 			if (newpage) {
2846 				unlock_page(newpage);
2847 				put_page(newpage);
2848 			}
2849 			newpage = page;
2850 		}
2851 
2852 		remove_migration_ptes(page, newpage, false);
2853 		unlock_page(page);
2854 		migrate->cpages--;
2855 
2856 		if (is_zone_device_page(page))
2857 			put_page(page);
2858 		else
2859 			putback_lru_page(page);
2860 
2861 		if (newpage != page) {
2862 			unlock_page(newpage);
2863 			if (is_zone_device_page(newpage))
2864 				put_page(newpage);
2865 			else
2866 				putback_lru_page(newpage);
2867 		}
2868 	}
2869 }
2870 
2871 /*
2872  * migrate_vma() - migrate a range of memory inside vma
2873  *
2874  * @ops: migration callback for allocating destination memory and copying
2875  * @vma: virtual memory area containing the range to be migrated
2876  * @start: start address of the range to migrate (inclusive)
2877  * @end: end address of the range to migrate (exclusive)
2878  * @src: array of hmm_pfn_t containing source pfns
2879  * @dst: array of hmm_pfn_t containing destination pfns
2880  * @private: pointer passed back to each of the callback
2881  * Returns: 0 on success, error code otherwise
2882  *
2883  * This function tries to migrate a range of memory virtual address range, using
2884  * callbacks to allocate and copy memory from source to destination. First it
2885  * collects all the pages backing each virtual address in the range, saving this
2886  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2887  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2888  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2889  * in the corresponding src array entry. It then restores any pages that are
2890  * pinned, by remapping and unlocking those pages.
2891  *
2892  * At this point it calls the alloc_and_copy() callback. For documentation on
2893  * what is expected from that callback, see struct migrate_vma_ops comments in
2894  * include/linux/migrate.h
2895  *
2896  * After the alloc_and_copy() callback, this function goes over each entry in
2897  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2898  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2899  * then the function tries to migrate struct page information from the source
2900  * struct page to the destination struct page. If it fails to migrate the struct
2901  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2902  * array.
2903  *
2904  * At this point all successfully migrated pages have an entry in the src
2905  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2906  * array entry with MIGRATE_PFN_VALID flag set.
2907  *
2908  * It then calls the finalize_and_map() callback. See comments for "struct
2909  * migrate_vma_ops", in include/linux/migrate.h for details about
2910  * finalize_and_map() behavior.
2911  *
2912  * After the finalize_and_map() callback, for successfully migrated pages, this
2913  * function updates the CPU page table to point to new pages, otherwise it
2914  * restores the CPU page table to point to the original source pages.
2915  *
2916  * Function returns 0 after the above steps, even if no pages were migrated
2917  * (The function only returns an error if any of the arguments are invalid.)
2918  *
2919  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2920  * unsigned long entries.
2921  */
2922 int migrate_vma(const struct migrate_vma_ops *ops,
2923 		struct vm_area_struct *vma,
2924 		unsigned long start,
2925 		unsigned long end,
2926 		unsigned long *src,
2927 		unsigned long *dst,
2928 		void *private)
2929 {
2930 	struct migrate_vma migrate;
2931 
2932 	/* Sanity check the arguments */
2933 	start &= PAGE_MASK;
2934 	end &= PAGE_MASK;
2935 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2936 			vma_is_dax(vma))
2937 		return -EINVAL;
2938 	if (start < vma->vm_start || start >= vma->vm_end)
2939 		return -EINVAL;
2940 	if (end <= vma->vm_start || end > vma->vm_end)
2941 		return -EINVAL;
2942 	if (!ops || !src || !dst || start >= end)
2943 		return -EINVAL;
2944 
2945 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2946 	migrate.src = src;
2947 	migrate.dst = dst;
2948 	migrate.start = start;
2949 	migrate.npages = 0;
2950 	migrate.cpages = 0;
2951 	migrate.end = end;
2952 	migrate.vma = vma;
2953 
2954 	/* Collect, and try to unmap source pages */
2955 	migrate_vma_collect(&migrate);
2956 	if (!migrate.cpages)
2957 		return 0;
2958 
2959 	/* Lock and isolate page */
2960 	migrate_vma_prepare(&migrate);
2961 	if (!migrate.cpages)
2962 		return 0;
2963 
2964 	/* Unmap pages */
2965 	migrate_vma_unmap(&migrate);
2966 	if (!migrate.cpages)
2967 		return 0;
2968 
2969 	/*
2970 	 * At this point pages are locked and unmapped, and thus they have
2971 	 * stable content and can safely be copied to destination memory that
2972 	 * is allocated by the callback.
2973 	 *
2974 	 * Note that migration can fail in migrate_vma_struct_page() for each
2975 	 * individual page.
2976 	 */
2977 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2978 
2979 	/* This does the real migration of struct page */
2980 	migrate_vma_pages(&migrate);
2981 
2982 	ops->finalize_and_map(vma, src, dst, start, end, private);
2983 
2984 	/* Unlock and remap pages */
2985 	migrate_vma_finalize(&migrate);
2986 
2987 	return 0;
2988 }
2989 EXPORT_SYMBOL(migrate_vma);
2990 #endif /* defined(MIGRATE_VMA_HELPER) */
2991