xref: /linux/mm/migrate.c (revision eb057b44dbe35ae14527830236a92f51de8f9184)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 #include <linux/random.h>
54 
55 #include <asm/tlbflush.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/migrate.h>
59 
60 #include "internal.h"
61 
62 int isolate_movable_page(struct page *page, isolate_mode_t mode)
63 {
64 	struct address_space *mapping;
65 
66 	/*
67 	 * Avoid burning cycles with pages that are yet under __free_pages(),
68 	 * or just got freed under us.
69 	 *
70 	 * In case we 'win' a race for a movable page being freed under us and
71 	 * raise its refcount preventing __free_pages() from doing its job
72 	 * the put_page() at the end of this block will take care of
73 	 * release this page, thus avoiding a nasty leakage.
74 	 */
75 	if (unlikely(!get_page_unless_zero(page)))
76 		goto out;
77 
78 	/*
79 	 * Check PageMovable before holding a PG_lock because page's owner
80 	 * assumes anybody doesn't touch PG_lock of newly allocated page
81 	 * so unconditionally grabbing the lock ruins page's owner side.
82 	 */
83 	if (unlikely(!__PageMovable(page)))
84 		goto out_putpage;
85 	/*
86 	 * As movable pages are not isolated from LRU lists, concurrent
87 	 * compaction threads can race against page migration functions
88 	 * as well as race against the releasing a page.
89 	 *
90 	 * In order to avoid having an already isolated movable page
91 	 * being (wrongly) re-isolated while it is under migration,
92 	 * or to avoid attempting to isolate pages being released,
93 	 * lets be sure we have the page lock
94 	 * before proceeding with the movable page isolation steps.
95 	 */
96 	if (unlikely(!trylock_page(page)))
97 		goto out_putpage;
98 
99 	if (!PageMovable(page) || PageIsolated(page))
100 		goto out_no_isolated;
101 
102 	mapping = page_mapping(page);
103 	VM_BUG_ON_PAGE(!mapping, page);
104 
105 	if (!mapping->a_ops->isolate_page(page, mode))
106 		goto out_no_isolated;
107 
108 	/* Driver shouldn't use PG_isolated bit of page->flags */
109 	WARN_ON_ONCE(PageIsolated(page));
110 	__SetPageIsolated(page);
111 	unlock_page(page);
112 
113 	return 0;
114 
115 out_no_isolated:
116 	unlock_page(page);
117 out_putpage:
118 	put_page(page);
119 out:
120 	return -EBUSY;
121 }
122 
123 static void putback_movable_page(struct page *page)
124 {
125 	struct address_space *mapping;
126 
127 	mapping = page_mapping(page);
128 	mapping->a_ops->putback_page(page);
129 	__ClearPageIsolated(page);
130 }
131 
132 /*
133  * Put previously isolated pages back onto the appropriate lists
134  * from where they were once taken off for compaction/migration.
135  *
136  * This function shall be used whenever the isolated pageset has been
137  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
138  * and isolate_huge_page().
139  */
140 void putback_movable_pages(struct list_head *l)
141 {
142 	struct page *page;
143 	struct page *page2;
144 
145 	list_for_each_entry_safe(page, page2, l, lru) {
146 		if (unlikely(PageHuge(page))) {
147 			putback_active_hugepage(page);
148 			continue;
149 		}
150 		list_del(&page->lru);
151 		/*
152 		 * We isolated non-lru movable page so here we can use
153 		 * __PageMovable because LRU page's mapping cannot have
154 		 * PAGE_MAPPING_MOVABLE.
155 		 */
156 		if (unlikely(__PageMovable(page))) {
157 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
158 			lock_page(page);
159 			if (PageMovable(page))
160 				putback_movable_page(page);
161 			else
162 				__ClearPageIsolated(page);
163 			unlock_page(page);
164 			put_page(page);
165 		} else {
166 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
167 					page_is_file_lru(page), -thp_nr_pages(page));
168 			putback_lru_page(page);
169 		}
170 	}
171 }
172 
173 /*
174  * Restore a potential migration pte to a working pte entry
175  */
176 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
177 				 unsigned long addr, void *old)
178 {
179 	struct page_vma_mapped_walk pvmw = {
180 		.page = old,
181 		.vma = vma,
182 		.address = addr,
183 		.flags = PVMW_SYNC | PVMW_MIGRATION,
184 	};
185 	struct page *new;
186 	pte_t pte;
187 	swp_entry_t entry;
188 
189 	VM_BUG_ON_PAGE(PageTail(page), page);
190 	while (page_vma_mapped_walk(&pvmw)) {
191 		if (PageKsm(page))
192 			new = page;
193 		else
194 			new = page - pvmw.page->index +
195 				linear_page_index(vma, pvmw.address);
196 
197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
198 		/* PMD-mapped THP migration entry */
199 		if (!pvmw.pte) {
200 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
201 			remove_migration_pmd(&pvmw, new);
202 			continue;
203 		}
204 #endif
205 
206 		get_page(new);
207 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
208 		if (pte_swp_soft_dirty(*pvmw.pte))
209 			pte = pte_mksoft_dirty(pte);
210 
211 		/*
212 		 * Recheck VMA as permissions can change since migration started
213 		 */
214 		entry = pte_to_swp_entry(*pvmw.pte);
215 		if (is_writable_migration_entry(entry))
216 			pte = maybe_mkwrite(pte, vma);
217 		else if (pte_swp_uffd_wp(*pvmw.pte))
218 			pte = pte_mkuffd_wp(pte);
219 
220 		if (unlikely(is_device_private_page(new))) {
221 			if (pte_write(pte))
222 				entry = make_writable_device_private_entry(
223 							page_to_pfn(new));
224 			else
225 				entry = make_readable_device_private_entry(
226 							page_to_pfn(new));
227 			pte = swp_entry_to_pte(entry);
228 			if (pte_swp_soft_dirty(*pvmw.pte))
229 				pte = pte_swp_mksoft_dirty(pte);
230 			if (pte_swp_uffd_wp(*pvmw.pte))
231 				pte = pte_swp_mkuffd_wp(pte);
232 		}
233 
234 #ifdef CONFIG_HUGETLB_PAGE
235 		if (PageHuge(new)) {
236 			unsigned int shift = huge_page_shift(hstate_vma(vma));
237 
238 			pte = pte_mkhuge(pte);
239 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
240 			if (PageAnon(new))
241 				hugepage_add_anon_rmap(new, vma, pvmw.address);
242 			else
243 				page_dup_rmap(new, true);
244 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
245 		} else
246 #endif
247 		{
248 			if (PageAnon(new))
249 				page_add_anon_rmap(new, vma, pvmw.address, false);
250 			else
251 				page_add_file_rmap(new, false);
252 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 		}
254 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 			mlock_vma_page(new);
256 
257 		if (PageTransHuge(page) && PageMlocked(page))
258 			clear_page_mlock(page);
259 
260 		/* No need to invalidate - it was non-present before */
261 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Get rid of all migration entries and replace them by
269  * references to the indicated page.
270  */
271 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272 {
273 	struct rmap_walk_control rwc = {
274 		.rmap_one = remove_migration_pte,
275 		.arg = old,
276 	};
277 
278 	if (locked)
279 		rmap_walk_locked(new, &rwc);
280 	else
281 		rmap_walk(new, &rwc);
282 }
283 
284 /*
285  * Something used the pte of a page under migration. We need to
286  * get to the page and wait until migration is finished.
287  * When we return from this function the fault will be retried.
288  */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 				spinlock_t *ptl)
291 {
292 	pte_t pte;
293 	swp_entry_t entry;
294 
295 	spin_lock(ptl);
296 	pte = *ptep;
297 	if (!is_swap_pte(pte))
298 		goto out;
299 
300 	entry = pte_to_swp_entry(pte);
301 	if (!is_migration_entry(entry))
302 		goto out;
303 
304 	migration_entry_wait_on_locked(entry, ptep, ptl);
305 	return;
306 out:
307 	pte_unmap_unlock(ptep, ptl);
308 }
309 
310 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
311 				unsigned long address)
312 {
313 	spinlock_t *ptl = pte_lockptr(mm, pmd);
314 	pte_t *ptep = pte_offset_map(pmd, address);
315 	__migration_entry_wait(mm, ptep, ptl);
316 }
317 
318 void migration_entry_wait_huge(struct vm_area_struct *vma,
319 		struct mm_struct *mm, pte_t *pte)
320 {
321 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 	__migration_entry_wait(mm, pte, ptl);
323 }
324 
325 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
326 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
327 {
328 	spinlock_t *ptl;
329 
330 	ptl = pmd_lock(mm, pmd);
331 	if (!is_pmd_migration_entry(*pmd))
332 		goto unlock;
333 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 	return;
335 unlock:
336 	spin_unlock(ptl);
337 }
338 #endif
339 
340 static int expected_page_refs(struct address_space *mapping, struct page *page)
341 {
342 	int expected_count = 1;
343 
344 	/*
345 	 * Device private pages have an extra refcount as they are
346 	 * ZONE_DEVICE pages.
347 	 */
348 	expected_count += is_device_private_page(page);
349 	if (mapping)
350 		expected_count += compound_nr(page) + page_has_private(page);
351 
352 	return expected_count;
353 }
354 
355 /*
356  * Replace the page in the mapping.
357  *
358  * The number of remaining references must be:
359  * 1 for anonymous pages without a mapping
360  * 2 for pages with a mapping
361  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
362  */
363 int folio_migrate_mapping(struct address_space *mapping,
364 		struct folio *newfolio, struct folio *folio, int extra_count)
365 {
366 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
367 	struct zone *oldzone, *newzone;
368 	int dirty;
369 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
370 	long nr = folio_nr_pages(folio);
371 
372 	if (!mapping) {
373 		/* Anonymous page without mapping */
374 		if (folio_ref_count(folio) != expected_count)
375 			return -EAGAIN;
376 
377 		/* No turning back from here */
378 		newfolio->index = folio->index;
379 		newfolio->mapping = folio->mapping;
380 		if (folio_test_swapbacked(folio))
381 			__folio_set_swapbacked(newfolio);
382 
383 		return MIGRATEPAGE_SUCCESS;
384 	}
385 
386 	oldzone = folio_zone(folio);
387 	newzone = folio_zone(newfolio);
388 
389 	xas_lock_irq(&xas);
390 	if (!folio_ref_freeze(folio, expected_count)) {
391 		xas_unlock_irq(&xas);
392 		return -EAGAIN;
393 	}
394 
395 	/*
396 	 * Now we know that no one else is looking at the folio:
397 	 * no turning back from here.
398 	 */
399 	newfolio->index = folio->index;
400 	newfolio->mapping = folio->mapping;
401 	folio_ref_add(newfolio, nr); /* add cache reference */
402 	if (folio_test_swapbacked(folio)) {
403 		__folio_set_swapbacked(newfolio);
404 		if (folio_test_swapcache(folio)) {
405 			folio_set_swapcache(newfolio);
406 			newfolio->private = folio_get_private(folio);
407 		}
408 	} else {
409 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
410 	}
411 
412 	/* Move dirty while page refs frozen and newpage not yet exposed */
413 	dirty = folio_test_dirty(folio);
414 	if (dirty) {
415 		folio_clear_dirty(folio);
416 		folio_set_dirty(newfolio);
417 	}
418 
419 	xas_store(&xas, newfolio);
420 
421 	/*
422 	 * Drop cache reference from old page by unfreezing
423 	 * to one less reference.
424 	 * We know this isn't the last reference.
425 	 */
426 	folio_ref_unfreeze(folio, expected_count - nr);
427 
428 	xas_unlock(&xas);
429 	/* Leave irq disabled to prevent preemption while updating stats */
430 
431 	/*
432 	 * If moved to a different zone then also account
433 	 * the page for that zone. Other VM counters will be
434 	 * taken care of when we establish references to the
435 	 * new page and drop references to the old page.
436 	 *
437 	 * Note that anonymous pages are accounted for
438 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
439 	 * are mapped to swap space.
440 	 */
441 	if (newzone != oldzone) {
442 		struct lruvec *old_lruvec, *new_lruvec;
443 		struct mem_cgroup *memcg;
444 
445 		memcg = folio_memcg(folio);
446 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
447 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
448 
449 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
450 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
451 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
452 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
453 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
454 		}
455 #ifdef CONFIG_SWAP
456 		if (folio_test_swapcache(folio)) {
457 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
458 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
459 		}
460 #endif
461 		if (dirty && mapping_can_writeback(mapping)) {
462 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
463 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
464 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
465 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
466 		}
467 	}
468 	local_irq_enable();
469 
470 	return MIGRATEPAGE_SUCCESS;
471 }
472 EXPORT_SYMBOL(folio_migrate_mapping);
473 
474 /*
475  * The expected number of remaining references is the same as that
476  * of folio_migrate_mapping().
477  */
478 int migrate_huge_page_move_mapping(struct address_space *mapping,
479 				   struct page *newpage, struct page *page)
480 {
481 	XA_STATE(xas, &mapping->i_pages, page_index(page));
482 	int expected_count;
483 
484 	xas_lock_irq(&xas);
485 	expected_count = 2 + page_has_private(page);
486 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
487 		xas_unlock_irq(&xas);
488 		return -EAGAIN;
489 	}
490 
491 	if (!page_ref_freeze(page, expected_count)) {
492 		xas_unlock_irq(&xas);
493 		return -EAGAIN;
494 	}
495 
496 	newpage->index = page->index;
497 	newpage->mapping = page->mapping;
498 
499 	get_page(newpage);
500 
501 	xas_store(&xas, newpage);
502 
503 	page_ref_unfreeze(page, expected_count - 1);
504 
505 	xas_unlock_irq(&xas);
506 
507 	return MIGRATEPAGE_SUCCESS;
508 }
509 
510 /*
511  * Copy the flags and some other ancillary information
512  */
513 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
514 {
515 	int cpupid;
516 
517 	if (folio_test_error(folio))
518 		folio_set_error(newfolio);
519 	if (folio_test_referenced(folio))
520 		folio_set_referenced(newfolio);
521 	if (folio_test_uptodate(folio))
522 		folio_mark_uptodate(newfolio);
523 	if (folio_test_clear_active(folio)) {
524 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
525 		folio_set_active(newfolio);
526 	} else if (folio_test_clear_unevictable(folio))
527 		folio_set_unevictable(newfolio);
528 	if (folio_test_workingset(folio))
529 		folio_set_workingset(newfolio);
530 	if (folio_test_checked(folio))
531 		folio_set_checked(newfolio);
532 	if (folio_test_mappedtodisk(folio))
533 		folio_set_mappedtodisk(newfolio);
534 
535 	/* Move dirty on pages not done by folio_migrate_mapping() */
536 	if (folio_test_dirty(folio))
537 		folio_set_dirty(newfolio);
538 
539 	if (folio_test_young(folio))
540 		folio_set_young(newfolio);
541 	if (folio_test_idle(folio))
542 		folio_set_idle(newfolio);
543 
544 	/*
545 	 * Copy NUMA information to the new page, to prevent over-eager
546 	 * future migrations of this same page.
547 	 */
548 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
549 	page_cpupid_xchg_last(&newfolio->page, cpupid);
550 
551 	folio_migrate_ksm(newfolio, folio);
552 	/*
553 	 * Please do not reorder this without considering how mm/ksm.c's
554 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
555 	 */
556 	if (folio_test_swapcache(folio))
557 		folio_clear_swapcache(folio);
558 	folio_clear_private(folio);
559 
560 	/* page->private contains hugetlb specific flags */
561 	if (!folio_test_hugetlb(folio))
562 		folio->private = NULL;
563 
564 	/*
565 	 * If any waiters have accumulated on the new page then
566 	 * wake them up.
567 	 */
568 	if (folio_test_writeback(newfolio))
569 		folio_end_writeback(newfolio);
570 
571 	/*
572 	 * PG_readahead shares the same bit with PG_reclaim.  The above
573 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
574 	 * bit after that.
575 	 */
576 	if (folio_test_readahead(folio))
577 		folio_set_readahead(newfolio);
578 
579 	folio_copy_owner(newfolio, folio);
580 
581 	if (!folio_test_hugetlb(folio))
582 		mem_cgroup_migrate(folio, newfolio);
583 }
584 EXPORT_SYMBOL(folio_migrate_flags);
585 
586 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
587 {
588 	folio_copy(newfolio, folio);
589 	folio_migrate_flags(newfolio, folio);
590 }
591 EXPORT_SYMBOL(folio_migrate_copy);
592 
593 /************************************************************
594  *                    Migration functions
595  ***********************************************************/
596 
597 /*
598  * Common logic to directly migrate a single LRU page suitable for
599  * pages that do not use PagePrivate/PagePrivate2.
600  *
601  * Pages are locked upon entry and exit.
602  */
603 int migrate_page(struct address_space *mapping,
604 		struct page *newpage, struct page *page,
605 		enum migrate_mode mode)
606 {
607 	struct folio *newfolio = page_folio(newpage);
608 	struct folio *folio = page_folio(page);
609 	int rc;
610 
611 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
612 
613 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
614 
615 	if (rc != MIGRATEPAGE_SUCCESS)
616 		return rc;
617 
618 	if (mode != MIGRATE_SYNC_NO_COPY)
619 		folio_migrate_copy(newfolio, folio);
620 	else
621 		folio_migrate_flags(newfolio, folio);
622 	return MIGRATEPAGE_SUCCESS;
623 }
624 EXPORT_SYMBOL(migrate_page);
625 
626 #ifdef CONFIG_BLOCK
627 /* Returns true if all buffers are successfully locked */
628 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
629 							enum migrate_mode mode)
630 {
631 	struct buffer_head *bh = head;
632 
633 	/* Simple case, sync compaction */
634 	if (mode != MIGRATE_ASYNC) {
635 		do {
636 			lock_buffer(bh);
637 			bh = bh->b_this_page;
638 
639 		} while (bh != head);
640 
641 		return true;
642 	}
643 
644 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
645 	do {
646 		if (!trylock_buffer(bh)) {
647 			/*
648 			 * We failed to lock the buffer and cannot stall in
649 			 * async migration. Release the taken locks
650 			 */
651 			struct buffer_head *failed_bh = bh;
652 			bh = head;
653 			while (bh != failed_bh) {
654 				unlock_buffer(bh);
655 				bh = bh->b_this_page;
656 			}
657 			return false;
658 		}
659 
660 		bh = bh->b_this_page;
661 	} while (bh != head);
662 	return true;
663 }
664 
665 static int __buffer_migrate_page(struct address_space *mapping,
666 		struct page *newpage, struct page *page, enum migrate_mode mode,
667 		bool check_refs)
668 {
669 	struct buffer_head *bh, *head;
670 	int rc;
671 	int expected_count;
672 
673 	if (!page_has_buffers(page))
674 		return migrate_page(mapping, newpage, page, mode);
675 
676 	/* Check whether page does not have extra refs before we do more work */
677 	expected_count = expected_page_refs(mapping, page);
678 	if (page_count(page) != expected_count)
679 		return -EAGAIN;
680 
681 	head = page_buffers(page);
682 	if (!buffer_migrate_lock_buffers(head, mode))
683 		return -EAGAIN;
684 
685 	if (check_refs) {
686 		bool busy;
687 		bool invalidated = false;
688 
689 recheck_buffers:
690 		busy = false;
691 		spin_lock(&mapping->private_lock);
692 		bh = head;
693 		do {
694 			if (atomic_read(&bh->b_count)) {
695 				busy = true;
696 				break;
697 			}
698 			bh = bh->b_this_page;
699 		} while (bh != head);
700 		if (busy) {
701 			if (invalidated) {
702 				rc = -EAGAIN;
703 				goto unlock_buffers;
704 			}
705 			spin_unlock(&mapping->private_lock);
706 			invalidate_bh_lrus();
707 			invalidated = true;
708 			goto recheck_buffers;
709 		}
710 	}
711 
712 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
713 	if (rc != MIGRATEPAGE_SUCCESS)
714 		goto unlock_buffers;
715 
716 	attach_page_private(newpage, detach_page_private(page));
717 
718 	bh = head;
719 	do {
720 		set_bh_page(bh, newpage, bh_offset(bh));
721 		bh = bh->b_this_page;
722 
723 	} while (bh != head);
724 
725 	if (mode != MIGRATE_SYNC_NO_COPY)
726 		migrate_page_copy(newpage, page);
727 	else
728 		migrate_page_states(newpage, page);
729 
730 	rc = MIGRATEPAGE_SUCCESS;
731 unlock_buffers:
732 	if (check_refs)
733 		spin_unlock(&mapping->private_lock);
734 	bh = head;
735 	do {
736 		unlock_buffer(bh);
737 		bh = bh->b_this_page;
738 
739 	} while (bh != head);
740 
741 	return rc;
742 }
743 
744 /*
745  * Migration function for pages with buffers. This function can only be used
746  * if the underlying filesystem guarantees that no other references to "page"
747  * exist. For example attached buffer heads are accessed only under page lock.
748  */
749 int buffer_migrate_page(struct address_space *mapping,
750 		struct page *newpage, struct page *page, enum migrate_mode mode)
751 {
752 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
753 }
754 EXPORT_SYMBOL(buffer_migrate_page);
755 
756 /*
757  * Same as above except that this variant is more careful and checks that there
758  * are also no buffer head references. This function is the right one for
759  * mappings where buffer heads are directly looked up and referenced (such as
760  * block device mappings).
761  */
762 int buffer_migrate_page_norefs(struct address_space *mapping,
763 		struct page *newpage, struct page *page, enum migrate_mode mode)
764 {
765 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
766 }
767 #endif
768 
769 /*
770  * Writeback a page to clean the dirty state
771  */
772 static int writeout(struct address_space *mapping, struct page *page)
773 {
774 	struct writeback_control wbc = {
775 		.sync_mode = WB_SYNC_NONE,
776 		.nr_to_write = 1,
777 		.range_start = 0,
778 		.range_end = LLONG_MAX,
779 		.for_reclaim = 1
780 	};
781 	int rc;
782 
783 	if (!mapping->a_ops->writepage)
784 		/* No write method for the address space */
785 		return -EINVAL;
786 
787 	if (!clear_page_dirty_for_io(page))
788 		/* Someone else already triggered a write */
789 		return -EAGAIN;
790 
791 	/*
792 	 * A dirty page may imply that the underlying filesystem has
793 	 * the page on some queue. So the page must be clean for
794 	 * migration. Writeout may mean we loose the lock and the
795 	 * page state is no longer what we checked for earlier.
796 	 * At this point we know that the migration attempt cannot
797 	 * be successful.
798 	 */
799 	remove_migration_ptes(page, page, false);
800 
801 	rc = mapping->a_ops->writepage(page, &wbc);
802 
803 	if (rc != AOP_WRITEPAGE_ACTIVATE)
804 		/* unlocked. Relock */
805 		lock_page(page);
806 
807 	return (rc < 0) ? -EIO : -EAGAIN;
808 }
809 
810 /*
811  * Default handling if a filesystem does not provide a migration function.
812  */
813 static int fallback_migrate_page(struct address_space *mapping,
814 	struct page *newpage, struct page *page, enum migrate_mode mode)
815 {
816 	if (PageDirty(page)) {
817 		/* Only writeback pages in full synchronous migration */
818 		switch (mode) {
819 		case MIGRATE_SYNC:
820 		case MIGRATE_SYNC_NO_COPY:
821 			break;
822 		default:
823 			return -EBUSY;
824 		}
825 		return writeout(mapping, page);
826 	}
827 
828 	/*
829 	 * Buffers may be managed in a filesystem specific way.
830 	 * We must have no buffers or drop them.
831 	 */
832 	if (page_has_private(page) &&
833 	    !try_to_release_page(page, GFP_KERNEL))
834 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
835 
836 	return migrate_page(mapping, newpage, page, mode);
837 }
838 
839 /*
840  * Move a page to a newly allocated page
841  * The page is locked and all ptes have been successfully removed.
842  *
843  * The new page will have replaced the old page if this function
844  * is successful.
845  *
846  * Return value:
847  *   < 0 - error code
848  *  MIGRATEPAGE_SUCCESS - success
849  */
850 static int move_to_new_page(struct page *newpage, struct page *page,
851 				enum migrate_mode mode)
852 {
853 	struct address_space *mapping;
854 	int rc = -EAGAIN;
855 	bool is_lru = !__PageMovable(page);
856 
857 	VM_BUG_ON_PAGE(!PageLocked(page), page);
858 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
859 
860 	mapping = page_mapping(page);
861 
862 	if (likely(is_lru)) {
863 		if (!mapping)
864 			rc = migrate_page(mapping, newpage, page, mode);
865 		else if (mapping->a_ops->migratepage)
866 			/*
867 			 * Most pages have a mapping and most filesystems
868 			 * provide a migratepage callback. Anonymous pages
869 			 * are part of swap space which also has its own
870 			 * migratepage callback. This is the most common path
871 			 * for page migration.
872 			 */
873 			rc = mapping->a_ops->migratepage(mapping, newpage,
874 							page, mode);
875 		else
876 			rc = fallback_migrate_page(mapping, newpage,
877 							page, mode);
878 	} else {
879 		/*
880 		 * In case of non-lru page, it could be released after
881 		 * isolation step. In that case, we shouldn't try migration.
882 		 */
883 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
884 		if (!PageMovable(page)) {
885 			rc = MIGRATEPAGE_SUCCESS;
886 			__ClearPageIsolated(page);
887 			goto out;
888 		}
889 
890 		rc = mapping->a_ops->migratepage(mapping, newpage,
891 						page, mode);
892 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
893 			!PageIsolated(page));
894 	}
895 
896 	/*
897 	 * When successful, old pagecache page->mapping must be cleared before
898 	 * page is freed; but stats require that PageAnon be left as PageAnon.
899 	 */
900 	if (rc == MIGRATEPAGE_SUCCESS) {
901 		if (__PageMovable(page)) {
902 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
903 
904 			/*
905 			 * We clear PG_movable under page_lock so any compactor
906 			 * cannot try to migrate this page.
907 			 */
908 			__ClearPageIsolated(page);
909 		}
910 
911 		/*
912 		 * Anonymous and movable page->mapping will be cleared by
913 		 * free_pages_prepare so don't reset it here for keeping
914 		 * the type to work PageAnon, for example.
915 		 */
916 		if (!PageMappingFlags(page))
917 			page->mapping = NULL;
918 
919 		if (likely(!is_zone_device_page(newpage)))
920 			flush_dcache_page(newpage);
921 
922 	}
923 out:
924 	return rc;
925 }
926 
927 static int __unmap_and_move(struct page *page, struct page *newpage,
928 				int force, enum migrate_mode mode)
929 {
930 	int rc = -EAGAIN;
931 	bool page_was_mapped = false;
932 	struct anon_vma *anon_vma = NULL;
933 	bool is_lru = !__PageMovable(page);
934 
935 	if (!trylock_page(page)) {
936 		if (!force || mode == MIGRATE_ASYNC)
937 			goto out;
938 
939 		/*
940 		 * It's not safe for direct compaction to call lock_page.
941 		 * For example, during page readahead pages are added locked
942 		 * to the LRU. Later, when the IO completes the pages are
943 		 * marked uptodate and unlocked. However, the queueing
944 		 * could be merging multiple pages for one bio (e.g.
945 		 * mpage_readahead). If an allocation happens for the
946 		 * second or third page, the process can end up locking
947 		 * the same page twice and deadlocking. Rather than
948 		 * trying to be clever about what pages can be locked,
949 		 * avoid the use of lock_page for direct compaction
950 		 * altogether.
951 		 */
952 		if (current->flags & PF_MEMALLOC)
953 			goto out;
954 
955 		lock_page(page);
956 	}
957 
958 	if (PageWriteback(page)) {
959 		/*
960 		 * Only in the case of a full synchronous migration is it
961 		 * necessary to wait for PageWriteback. In the async case,
962 		 * the retry loop is too short and in the sync-light case,
963 		 * the overhead of stalling is too much
964 		 */
965 		switch (mode) {
966 		case MIGRATE_SYNC:
967 		case MIGRATE_SYNC_NO_COPY:
968 			break;
969 		default:
970 			rc = -EBUSY;
971 			goto out_unlock;
972 		}
973 		if (!force)
974 			goto out_unlock;
975 		wait_on_page_writeback(page);
976 	}
977 
978 	/*
979 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
980 	 * we cannot notice that anon_vma is freed while we migrates a page.
981 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
982 	 * of migration. File cache pages are no problem because of page_lock()
983 	 * File Caches may use write_page() or lock_page() in migration, then,
984 	 * just care Anon page here.
985 	 *
986 	 * Only page_get_anon_vma() understands the subtleties of
987 	 * getting a hold on an anon_vma from outside one of its mms.
988 	 * But if we cannot get anon_vma, then we won't need it anyway,
989 	 * because that implies that the anon page is no longer mapped
990 	 * (and cannot be remapped so long as we hold the page lock).
991 	 */
992 	if (PageAnon(page) && !PageKsm(page))
993 		anon_vma = page_get_anon_vma(page);
994 
995 	/*
996 	 * Block others from accessing the new page when we get around to
997 	 * establishing additional references. We are usually the only one
998 	 * holding a reference to newpage at this point. We used to have a BUG
999 	 * here if trylock_page(newpage) fails, but would like to allow for
1000 	 * cases where there might be a race with the previous use of newpage.
1001 	 * This is much like races on refcount of oldpage: just don't BUG().
1002 	 */
1003 	if (unlikely(!trylock_page(newpage)))
1004 		goto out_unlock;
1005 
1006 	if (unlikely(!is_lru)) {
1007 		rc = move_to_new_page(newpage, page, mode);
1008 		goto out_unlock_both;
1009 	}
1010 
1011 	/*
1012 	 * Corner case handling:
1013 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1014 	 * and treated as swapcache but it has no rmap yet.
1015 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1016 	 * trigger a BUG.  So handle it here.
1017 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1018 	 * fs-private metadata. The page can be picked up due to memory
1019 	 * offlining.  Everywhere else except page reclaim, the page is
1020 	 * invisible to the vm, so the page can not be migrated.  So try to
1021 	 * free the metadata, so the page can be freed.
1022 	 */
1023 	if (!page->mapping) {
1024 		VM_BUG_ON_PAGE(PageAnon(page), page);
1025 		if (page_has_private(page)) {
1026 			try_to_free_buffers(page);
1027 			goto out_unlock_both;
1028 		}
1029 	} else if (page_mapped(page)) {
1030 		/* Establish migration ptes */
1031 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1032 				page);
1033 		try_to_migrate(page, 0);
1034 		page_was_mapped = true;
1035 	}
1036 
1037 	if (!page_mapped(page))
1038 		rc = move_to_new_page(newpage, page, mode);
1039 
1040 	if (page_was_mapped)
1041 		remove_migration_ptes(page,
1042 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1043 
1044 out_unlock_both:
1045 	unlock_page(newpage);
1046 out_unlock:
1047 	/* Drop an anon_vma reference if we took one */
1048 	if (anon_vma)
1049 		put_anon_vma(anon_vma);
1050 	unlock_page(page);
1051 out:
1052 	/*
1053 	 * If migration is successful, decrease refcount of the newpage
1054 	 * which will not free the page because new page owner increased
1055 	 * refcounter. As well, if it is LRU page, add the page to LRU
1056 	 * list in here. Use the old state of the isolated source page to
1057 	 * determine if we migrated a LRU page. newpage was already unlocked
1058 	 * and possibly modified by its owner - don't rely on the page
1059 	 * state.
1060 	 */
1061 	if (rc == MIGRATEPAGE_SUCCESS) {
1062 		if (unlikely(!is_lru))
1063 			put_page(newpage);
1064 		else
1065 			putback_lru_page(newpage);
1066 	}
1067 
1068 	return rc;
1069 }
1070 
1071 /*
1072  * Obtain the lock on page, remove all ptes and migrate the page
1073  * to the newly allocated page in newpage.
1074  */
1075 static int unmap_and_move(new_page_t get_new_page,
1076 				   free_page_t put_new_page,
1077 				   unsigned long private, struct page *page,
1078 				   int force, enum migrate_mode mode,
1079 				   enum migrate_reason reason,
1080 				   struct list_head *ret)
1081 {
1082 	int rc = MIGRATEPAGE_SUCCESS;
1083 	struct page *newpage = NULL;
1084 
1085 	if (!thp_migration_supported() && PageTransHuge(page))
1086 		return -ENOSYS;
1087 
1088 	if (page_count(page) == 1) {
1089 		/* page was freed from under us. So we are done. */
1090 		ClearPageActive(page);
1091 		ClearPageUnevictable(page);
1092 		if (unlikely(__PageMovable(page))) {
1093 			lock_page(page);
1094 			if (!PageMovable(page))
1095 				__ClearPageIsolated(page);
1096 			unlock_page(page);
1097 		}
1098 		goto out;
1099 	}
1100 
1101 	newpage = get_new_page(page, private);
1102 	if (!newpage)
1103 		return -ENOMEM;
1104 
1105 	rc = __unmap_and_move(page, newpage, force, mode);
1106 	if (rc == MIGRATEPAGE_SUCCESS)
1107 		set_page_owner_migrate_reason(newpage, reason);
1108 
1109 out:
1110 	if (rc != -EAGAIN) {
1111 		/*
1112 		 * A page that has been migrated has all references
1113 		 * removed and will be freed. A page that has not been
1114 		 * migrated will have kept its references and be restored.
1115 		 */
1116 		list_del(&page->lru);
1117 	}
1118 
1119 	/*
1120 	 * If migration is successful, releases reference grabbed during
1121 	 * isolation. Otherwise, restore the page to right list unless
1122 	 * we want to retry.
1123 	 */
1124 	if (rc == MIGRATEPAGE_SUCCESS) {
1125 		/*
1126 		 * Compaction can migrate also non-LRU pages which are
1127 		 * not accounted to NR_ISOLATED_*. They can be recognized
1128 		 * as __PageMovable
1129 		 */
1130 		if (likely(!__PageMovable(page)))
1131 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1132 					page_is_file_lru(page), -thp_nr_pages(page));
1133 
1134 		if (reason != MR_MEMORY_FAILURE)
1135 			/*
1136 			 * We release the page in page_handle_poison.
1137 			 */
1138 			put_page(page);
1139 	} else {
1140 		if (rc != -EAGAIN)
1141 			list_add_tail(&page->lru, ret);
1142 
1143 		if (put_new_page)
1144 			put_new_page(newpage, private);
1145 		else
1146 			put_page(newpage);
1147 	}
1148 
1149 	return rc;
1150 }
1151 
1152 /*
1153  * Counterpart of unmap_and_move_page() for hugepage migration.
1154  *
1155  * This function doesn't wait the completion of hugepage I/O
1156  * because there is no race between I/O and migration for hugepage.
1157  * Note that currently hugepage I/O occurs only in direct I/O
1158  * where no lock is held and PG_writeback is irrelevant,
1159  * and writeback status of all subpages are counted in the reference
1160  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1161  * under direct I/O, the reference of the head page is 512 and a bit more.)
1162  * This means that when we try to migrate hugepage whose subpages are
1163  * doing direct I/O, some references remain after try_to_unmap() and
1164  * hugepage migration fails without data corruption.
1165  *
1166  * There is also no race when direct I/O is issued on the page under migration,
1167  * because then pte is replaced with migration swap entry and direct I/O code
1168  * will wait in the page fault for migration to complete.
1169  */
1170 static int unmap_and_move_huge_page(new_page_t get_new_page,
1171 				free_page_t put_new_page, unsigned long private,
1172 				struct page *hpage, int force,
1173 				enum migrate_mode mode, int reason,
1174 				struct list_head *ret)
1175 {
1176 	int rc = -EAGAIN;
1177 	int page_was_mapped = 0;
1178 	struct page *new_hpage;
1179 	struct anon_vma *anon_vma = NULL;
1180 	struct address_space *mapping = NULL;
1181 
1182 	/*
1183 	 * Migratability of hugepages depends on architectures and their size.
1184 	 * This check is necessary because some callers of hugepage migration
1185 	 * like soft offline and memory hotremove don't walk through page
1186 	 * tables or check whether the hugepage is pmd-based or not before
1187 	 * kicking migration.
1188 	 */
1189 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1190 		list_move_tail(&hpage->lru, ret);
1191 		return -ENOSYS;
1192 	}
1193 
1194 	if (page_count(hpage) == 1) {
1195 		/* page was freed from under us. So we are done. */
1196 		putback_active_hugepage(hpage);
1197 		return MIGRATEPAGE_SUCCESS;
1198 	}
1199 
1200 	new_hpage = get_new_page(hpage, private);
1201 	if (!new_hpage)
1202 		return -ENOMEM;
1203 
1204 	if (!trylock_page(hpage)) {
1205 		if (!force)
1206 			goto out;
1207 		switch (mode) {
1208 		case MIGRATE_SYNC:
1209 		case MIGRATE_SYNC_NO_COPY:
1210 			break;
1211 		default:
1212 			goto out;
1213 		}
1214 		lock_page(hpage);
1215 	}
1216 
1217 	/*
1218 	 * Check for pages which are in the process of being freed.  Without
1219 	 * page_mapping() set, hugetlbfs specific move page routine will not
1220 	 * be called and we could leak usage counts for subpools.
1221 	 */
1222 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1223 		rc = -EBUSY;
1224 		goto out_unlock;
1225 	}
1226 
1227 	if (PageAnon(hpage))
1228 		anon_vma = page_get_anon_vma(hpage);
1229 
1230 	if (unlikely(!trylock_page(new_hpage)))
1231 		goto put_anon;
1232 
1233 	if (page_mapped(hpage)) {
1234 		bool mapping_locked = false;
1235 		enum ttu_flags ttu = 0;
1236 
1237 		if (!PageAnon(hpage)) {
1238 			/*
1239 			 * In shared mappings, try_to_unmap could potentially
1240 			 * call huge_pmd_unshare.  Because of this, take
1241 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1242 			 * to let lower levels know we have taken the lock.
1243 			 */
1244 			mapping = hugetlb_page_mapping_lock_write(hpage);
1245 			if (unlikely(!mapping))
1246 				goto unlock_put_anon;
1247 
1248 			mapping_locked = true;
1249 			ttu |= TTU_RMAP_LOCKED;
1250 		}
1251 
1252 		try_to_migrate(hpage, ttu);
1253 		page_was_mapped = 1;
1254 
1255 		if (mapping_locked)
1256 			i_mmap_unlock_write(mapping);
1257 	}
1258 
1259 	if (!page_mapped(hpage))
1260 		rc = move_to_new_page(new_hpage, hpage, mode);
1261 
1262 	if (page_was_mapped)
1263 		remove_migration_ptes(hpage,
1264 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1265 
1266 unlock_put_anon:
1267 	unlock_page(new_hpage);
1268 
1269 put_anon:
1270 	if (anon_vma)
1271 		put_anon_vma(anon_vma);
1272 
1273 	if (rc == MIGRATEPAGE_SUCCESS) {
1274 		move_hugetlb_state(hpage, new_hpage, reason);
1275 		put_new_page = NULL;
1276 	}
1277 
1278 out_unlock:
1279 	unlock_page(hpage);
1280 out:
1281 	if (rc == MIGRATEPAGE_SUCCESS)
1282 		putback_active_hugepage(hpage);
1283 	else if (rc != -EAGAIN)
1284 		list_move_tail(&hpage->lru, ret);
1285 
1286 	/*
1287 	 * If migration was not successful and there's a freeing callback, use
1288 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1289 	 * isolation.
1290 	 */
1291 	if (put_new_page)
1292 		put_new_page(new_hpage, private);
1293 	else
1294 		putback_active_hugepage(new_hpage);
1295 
1296 	return rc;
1297 }
1298 
1299 static inline int try_split_thp(struct page *page, struct page **page2,
1300 				struct list_head *from)
1301 {
1302 	int rc = 0;
1303 
1304 	lock_page(page);
1305 	rc = split_huge_page_to_list(page, from);
1306 	unlock_page(page);
1307 	if (!rc)
1308 		list_safe_reset_next(page, *page2, lru);
1309 
1310 	return rc;
1311 }
1312 
1313 /*
1314  * migrate_pages - migrate the pages specified in a list, to the free pages
1315  *		   supplied as the target for the page migration
1316  *
1317  * @from:		The list of pages to be migrated.
1318  * @get_new_page:	The function used to allocate free pages to be used
1319  *			as the target of the page migration.
1320  * @put_new_page:	The function used to free target pages if migration
1321  *			fails, or NULL if no special handling is necessary.
1322  * @private:		Private data to be passed on to get_new_page()
1323  * @mode:		The migration mode that specifies the constraints for
1324  *			page migration, if any.
1325  * @reason:		The reason for page migration.
1326  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1327  *			the caller passes a non-NULL pointer.
1328  *
1329  * The function returns after 10 attempts or if no pages are movable any more
1330  * because the list has become empty or no retryable pages exist any more.
1331  * It is caller's responsibility to call putback_movable_pages() to return pages
1332  * to the LRU or free list only if ret != 0.
1333  *
1334  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1335  * an error code. The number of THP splits will be considered as the number of
1336  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1337  */
1338 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1339 		free_page_t put_new_page, unsigned long private,
1340 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1341 {
1342 	int retry = 1;
1343 	int thp_retry = 1;
1344 	int nr_failed = 0;
1345 	int nr_failed_pages = 0;
1346 	int nr_succeeded = 0;
1347 	int nr_thp_succeeded = 0;
1348 	int nr_thp_failed = 0;
1349 	int nr_thp_split = 0;
1350 	int pass = 0;
1351 	bool is_thp = false;
1352 	struct page *page;
1353 	struct page *page2;
1354 	int swapwrite = current->flags & PF_SWAPWRITE;
1355 	int rc, nr_subpages;
1356 	LIST_HEAD(ret_pages);
1357 	LIST_HEAD(thp_split_pages);
1358 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1359 	bool no_subpage_counting = false;
1360 
1361 	trace_mm_migrate_pages_start(mode, reason);
1362 
1363 	if (!swapwrite)
1364 		current->flags |= PF_SWAPWRITE;
1365 
1366 thp_subpage_migration:
1367 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1368 		retry = 0;
1369 		thp_retry = 0;
1370 
1371 		list_for_each_entry_safe(page, page2, from, lru) {
1372 retry:
1373 			/*
1374 			 * THP statistics is based on the source huge page.
1375 			 * Capture required information that might get lost
1376 			 * during migration.
1377 			 */
1378 			is_thp = PageTransHuge(page) && !PageHuge(page);
1379 			nr_subpages = compound_nr(page);
1380 			cond_resched();
1381 
1382 			if (PageHuge(page))
1383 				rc = unmap_and_move_huge_page(get_new_page,
1384 						put_new_page, private, page,
1385 						pass > 2, mode, reason,
1386 						&ret_pages);
1387 			else
1388 				rc = unmap_and_move(get_new_page, put_new_page,
1389 						private, page, pass > 2, mode,
1390 						reason, &ret_pages);
1391 			/*
1392 			 * The rules are:
1393 			 *	Success: non hugetlb page will be freed, hugetlb
1394 			 *		 page will be put back
1395 			 *	-EAGAIN: stay on the from list
1396 			 *	-ENOMEM: stay on the from list
1397 			 *	Other errno: put on ret_pages list then splice to
1398 			 *		     from list
1399 			 */
1400 			switch(rc) {
1401 			/*
1402 			 * THP migration might be unsupported or the
1403 			 * allocation could've failed so we should
1404 			 * retry on the same page with the THP split
1405 			 * to base pages.
1406 			 *
1407 			 * Head page is retried immediately and tail
1408 			 * pages are added to the tail of the list so
1409 			 * we encounter them after the rest of the list
1410 			 * is processed.
1411 			 */
1412 			case -ENOSYS:
1413 				/* THP migration is unsupported */
1414 				if (is_thp) {
1415 					nr_thp_failed++;
1416 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1417 						nr_thp_split++;
1418 						goto retry;
1419 					}
1420 
1421 					nr_failed_pages += nr_subpages;
1422 					break;
1423 				}
1424 
1425 				/* Hugetlb migration is unsupported */
1426 				if (!no_subpage_counting)
1427 					nr_failed++;
1428 				nr_failed_pages += nr_subpages;
1429 				break;
1430 			case -ENOMEM:
1431 				/*
1432 				 * When memory is low, don't bother to try to migrate
1433 				 * other pages, just exit.
1434 				 * THP NUMA faulting doesn't split THP to retry.
1435 				 */
1436 				if (is_thp && !nosplit) {
1437 					nr_thp_failed++;
1438 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1439 						nr_thp_split++;
1440 						goto retry;
1441 					}
1442 
1443 					nr_failed_pages += nr_subpages;
1444 					goto out;
1445 				}
1446 
1447 				if (!no_subpage_counting)
1448 					nr_failed++;
1449 				nr_failed_pages += nr_subpages;
1450 				goto out;
1451 			case -EAGAIN:
1452 				if (is_thp) {
1453 					thp_retry++;
1454 					break;
1455 				}
1456 				retry++;
1457 				break;
1458 			case MIGRATEPAGE_SUCCESS:
1459 				nr_succeeded += nr_subpages;
1460 				if (is_thp) {
1461 					nr_thp_succeeded++;
1462 					break;
1463 				}
1464 				break;
1465 			default:
1466 				/*
1467 				 * Permanent failure (-EBUSY, etc.):
1468 				 * unlike -EAGAIN case, the failed page is
1469 				 * removed from migration page list and not
1470 				 * retried in the next outer loop.
1471 				 */
1472 				if (is_thp) {
1473 					nr_thp_failed++;
1474 					nr_failed_pages += nr_subpages;
1475 					break;
1476 				}
1477 
1478 				if (!no_subpage_counting)
1479 					nr_failed++;
1480 				nr_failed_pages += nr_subpages;
1481 				break;
1482 			}
1483 		}
1484 	}
1485 	nr_failed += retry;
1486 	nr_thp_failed += thp_retry;
1487 	/*
1488 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1489 	 * counting in this round, since all subpages of a THP is counted
1490 	 * as 1 failure in the first round.
1491 	 */
1492 	if (!list_empty(&thp_split_pages)) {
1493 		/*
1494 		 * Move non-migrated pages (after 10 retries) to ret_pages
1495 		 * to avoid migrating them again.
1496 		 */
1497 		list_splice_init(from, &ret_pages);
1498 		list_splice_init(&thp_split_pages, from);
1499 		no_subpage_counting = true;
1500 		retry = 1;
1501 		goto thp_subpage_migration;
1502 	}
1503 
1504 	rc = nr_failed + nr_thp_failed;
1505 out:
1506 	/*
1507 	 * Put the permanent failure page back to migration list, they
1508 	 * will be put back to the right list by the caller.
1509 	 */
1510 	list_splice(&ret_pages, from);
1511 
1512 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1513 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1514 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1515 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1516 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1517 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1518 			       nr_thp_failed, nr_thp_split, mode, reason);
1519 
1520 	if (!swapwrite)
1521 		current->flags &= ~PF_SWAPWRITE;
1522 
1523 	if (ret_succeeded)
1524 		*ret_succeeded = nr_succeeded;
1525 
1526 	return rc;
1527 }
1528 
1529 struct page *alloc_migration_target(struct page *page, unsigned long private)
1530 {
1531 	struct migration_target_control *mtc;
1532 	gfp_t gfp_mask;
1533 	unsigned int order = 0;
1534 	struct page *new_page = NULL;
1535 	int nid;
1536 	int zidx;
1537 
1538 	mtc = (struct migration_target_control *)private;
1539 	gfp_mask = mtc->gfp_mask;
1540 	nid = mtc->nid;
1541 	if (nid == NUMA_NO_NODE)
1542 		nid = page_to_nid(page);
1543 
1544 	if (PageHuge(page)) {
1545 		struct hstate *h = page_hstate(compound_head(page));
1546 
1547 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1548 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1549 	}
1550 
1551 	if (PageTransHuge(page)) {
1552 		/*
1553 		 * clear __GFP_RECLAIM to make the migration callback
1554 		 * consistent with regular THP allocations.
1555 		 */
1556 		gfp_mask &= ~__GFP_RECLAIM;
1557 		gfp_mask |= GFP_TRANSHUGE;
1558 		order = HPAGE_PMD_ORDER;
1559 	}
1560 	zidx = zone_idx(page_zone(page));
1561 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1562 		gfp_mask |= __GFP_HIGHMEM;
1563 
1564 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1565 
1566 	if (new_page && PageTransHuge(new_page))
1567 		prep_transhuge_page(new_page);
1568 
1569 	return new_page;
1570 }
1571 
1572 #ifdef CONFIG_NUMA
1573 
1574 static int store_status(int __user *status, int start, int value, int nr)
1575 {
1576 	while (nr-- > 0) {
1577 		if (put_user(value, status + start))
1578 			return -EFAULT;
1579 		start++;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static int do_move_pages_to_node(struct mm_struct *mm,
1586 		struct list_head *pagelist, int node)
1587 {
1588 	int err;
1589 	struct migration_target_control mtc = {
1590 		.nid = node,
1591 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1592 	};
1593 
1594 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1595 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1596 	if (err)
1597 		putback_movable_pages(pagelist);
1598 	return err;
1599 }
1600 
1601 /*
1602  * Resolves the given address to a struct page, isolates it from the LRU and
1603  * puts it to the given pagelist.
1604  * Returns:
1605  *     errno - if the page cannot be found/isolated
1606  *     0 - when it doesn't have to be migrated because it is already on the
1607  *         target node
1608  *     1 - when it has been queued
1609  */
1610 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1611 		int node, struct list_head *pagelist, bool migrate_all)
1612 {
1613 	struct vm_area_struct *vma;
1614 	struct page *page;
1615 	unsigned int follflags;
1616 	int err;
1617 
1618 	mmap_read_lock(mm);
1619 	err = -EFAULT;
1620 	vma = find_vma(mm, addr);
1621 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1622 		goto out;
1623 
1624 	/* FOLL_DUMP to ignore special (like zero) pages */
1625 	follflags = FOLL_GET | FOLL_DUMP;
1626 	page = follow_page(vma, addr, follflags);
1627 
1628 	err = PTR_ERR(page);
1629 	if (IS_ERR(page))
1630 		goto out;
1631 
1632 	err = -ENOENT;
1633 	if (!page)
1634 		goto out;
1635 
1636 	err = 0;
1637 	if (page_to_nid(page) == node)
1638 		goto out_putpage;
1639 
1640 	err = -EACCES;
1641 	if (page_mapcount(page) > 1 && !migrate_all)
1642 		goto out_putpage;
1643 
1644 	if (PageHuge(page)) {
1645 		if (PageHead(page)) {
1646 			isolate_huge_page(page, pagelist);
1647 			err = 1;
1648 		}
1649 	} else {
1650 		struct page *head;
1651 
1652 		head = compound_head(page);
1653 		err = isolate_lru_page(head);
1654 		if (err)
1655 			goto out_putpage;
1656 
1657 		err = 1;
1658 		list_add_tail(&head->lru, pagelist);
1659 		mod_node_page_state(page_pgdat(head),
1660 			NR_ISOLATED_ANON + page_is_file_lru(head),
1661 			thp_nr_pages(head));
1662 	}
1663 out_putpage:
1664 	/*
1665 	 * Either remove the duplicate refcount from
1666 	 * isolate_lru_page() or drop the page ref if it was
1667 	 * not isolated.
1668 	 */
1669 	put_page(page);
1670 out:
1671 	mmap_read_unlock(mm);
1672 	return err;
1673 }
1674 
1675 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1676 		struct list_head *pagelist, int __user *status,
1677 		int start, int i, unsigned long nr_pages)
1678 {
1679 	int err;
1680 
1681 	if (list_empty(pagelist))
1682 		return 0;
1683 
1684 	err = do_move_pages_to_node(mm, pagelist, node);
1685 	if (err) {
1686 		/*
1687 		 * Positive err means the number of failed
1688 		 * pages to migrate.  Since we are going to
1689 		 * abort and return the number of non-migrated
1690 		 * pages, so need to include the rest of the
1691 		 * nr_pages that have not been attempted as
1692 		 * well.
1693 		 */
1694 		if (err > 0)
1695 			err += nr_pages - i - 1;
1696 		return err;
1697 	}
1698 	return store_status(status, start, node, i - start);
1699 }
1700 
1701 /*
1702  * Migrate an array of page address onto an array of nodes and fill
1703  * the corresponding array of status.
1704  */
1705 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1706 			 unsigned long nr_pages,
1707 			 const void __user * __user *pages,
1708 			 const int __user *nodes,
1709 			 int __user *status, int flags)
1710 {
1711 	int current_node = NUMA_NO_NODE;
1712 	LIST_HEAD(pagelist);
1713 	int start, i;
1714 	int err = 0, err1;
1715 
1716 	lru_cache_disable();
1717 
1718 	for (i = start = 0; i < nr_pages; i++) {
1719 		const void __user *p;
1720 		unsigned long addr;
1721 		int node;
1722 
1723 		err = -EFAULT;
1724 		if (get_user(p, pages + i))
1725 			goto out_flush;
1726 		if (get_user(node, nodes + i))
1727 			goto out_flush;
1728 		addr = (unsigned long)untagged_addr(p);
1729 
1730 		err = -ENODEV;
1731 		if (node < 0 || node >= MAX_NUMNODES)
1732 			goto out_flush;
1733 		if (!node_state(node, N_MEMORY))
1734 			goto out_flush;
1735 
1736 		err = -EACCES;
1737 		if (!node_isset(node, task_nodes))
1738 			goto out_flush;
1739 
1740 		if (current_node == NUMA_NO_NODE) {
1741 			current_node = node;
1742 			start = i;
1743 		} else if (node != current_node) {
1744 			err = move_pages_and_store_status(mm, current_node,
1745 					&pagelist, status, start, i, nr_pages);
1746 			if (err)
1747 				goto out;
1748 			start = i;
1749 			current_node = node;
1750 		}
1751 
1752 		/*
1753 		 * Errors in the page lookup or isolation are not fatal and we simply
1754 		 * report them via status
1755 		 */
1756 		err = add_page_for_migration(mm, addr, current_node,
1757 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1758 
1759 		if (err > 0) {
1760 			/* The page is successfully queued for migration */
1761 			continue;
1762 		}
1763 
1764 		/*
1765 		 * If the page is already on the target node (!err), store the
1766 		 * node, otherwise, store the err.
1767 		 */
1768 		err = store_status(status, i, err ? : current_node, 1);
1769 		if (err)
1770 			goto out_flush;
1771 
1772 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1773 				status, start, i, nr_pages);
1774 		if (err)
1775 			goto out;
1776 		current_node = NUMA_NO_NODE;
1777 	}
1778 out_flush:
1779 	/* Make sure we do not overwrite the existing error */
1780 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1781 				status, start, i, nr_pages);
1782 	if (err >= 0)
1783 		err = err1;
1784 out:
1785 	lru_cache_enable();
1786 	return err;
1787 }
1788 
1789 /*
1790  * Determine the nodes of an array of pages and store it in an array of status.
1791  */
1792 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1793 				const void __user **pages, int *status)
1794 {
1795 	unsigned long i;
1796 
1797 	mmap_read_lock(mm);
1798 
1799 	for (i = 0; i < nr_pages; i++) {
1800 		unsigned long addr = (unsigned long)(*pages);
1801 		struct vm_area_struct *vma;
1802 		struct page *page;
1803 		int err = -EFAULT;
1804 
1805 		vma = vma_lookup(mm, addr);
1806 		if (!vma)
1807 			goto set_status;
1808 
1809 		/* FOLL_DUMP to ignore special (like zero) pages */
1810 		page = follow_page(vma, addr, FOLL_DUMP);
1811 
1812 		err = PTR_ERR(page);
1813 		if (IS_ERR(page))
1814 			goto set_status;
1815 
1816 		err = page ? page_to_nid(page) : -ENOENT;
1817 set_status:
1818 		*status = err;
1819 
1820 		pages++;
1821 		status++;
1822 	}
1823 
1824 	mmap_read_unlock(mm);
1825 }
1826 
1827 static int get_compat_pages_array(const void __user *chunk_pages[],
1828 				  const void __user * __user *pages,
1829 				  unsigned long chunk_nr)
1830 {
1831 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1832 	compat_uptr_t p;
1833 	int i;
1834 
1835 	for (i = 0; i < chunk_nr; i++) {
1836 		if (get_user(p, pages32 + i))
1837 			return -EFAULT;
1838 		chunk_pages[i] = compat_ptr(p);
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 /*
1845  * Determine the nodes of a user array of pages and store it in
1846  * a user array of status.
1847  */
1848 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1849 			 const void __user * __user *pages,
1850 			 int __user *status)
1851 {
1852 #define DO_PAGES_STAT_CHUNK_NR 16
1853 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1854 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1855 
1856 	while (nr_pages) {
1857 		unsigned long chunk_nr;
1858 
1859 		chunk_nr = nr_pages;
1860 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1861 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1862 
1863 		if (in_compat_syscall()) {
1864 			if (get_compat_pages_array(chunk_pages, pages,
1865 						   chunk_nr))
1866 				break;
1867 		} else {
1868 			if (copy_from_user(chunk_pages, pages,
1869 				      chunk_nr * sizeof(*chunk_pages)))
1870 				break;
1871 		}
1872 
1873 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1874 
1875 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1876 			break;
1877 
1878 		pages += chunk_nr;
1879 		status += chunk_nr;
1880 		nr_pages -= chunk_nr;
1881 	}
1882 	return nr_pages ? -EFAULT : 0;
1883 }
1884 
1885 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1886 {
1887 	struct task_struct *task;
1888 	struct mm_struct *mm;
1889 
1890 	/*
1891 	 * There is no need to check if current process has the right to modify
1892 	 * the specified process when they are same.
1893 	 */
1894 	if (!pid) {
1895 		mmget(current->mm);
1896 		*mem_nodes = cpuset_mems_allowed(current);
1897 		return current->mm;
1898 	}
1899 
1900 	/* Find the mm_struct */
1901 	rcu_read_lock();
1902 	task = find_task_by_vpid(pid);
1903 	if (!task) {
1904 		rcu_read_unlock();
1905 		return ERR_PTR(-ESRCH);
1906 	}
1907 	get_task_struct(task);
1908 
1909 	/*
1910 	 * Check if this process has the right to modify the specified
1911 	 * process. Use the regular "ptrace_may_access()" checks.
1912 	 */
1913 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1914 		rcu_read_unlock();
1915 		mm = ERR_PTR(-EPERM);
1916 		goto out;
1917 	}
1918 	rcu_read_unlock();
1919 
1920 	mm = ERR_PTR(security_task_movememory(task));
1921 	if (IS_ERR(mm))
1922 		goto out;
1923 	*mem_nodes = cpuset_mems_allowed(task);
1924 	mm = get_task_mm(task);
1925 out:
1926 	put_task_struct(task);
1927 	if (!mm)
1928 		mm = ERR_PTR(-EINVAL);
1929 	return mm;
1930 }
1931 
1932 /*
1933  * Move a list of pages in the address space of the currently executing
1934  * process.
1935  */
1936 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1937 			     const void __user * __user *pages,
1938 			     const int __user *nodes,
1939 			     int __user *status, int flags)
1940 {
1941 	struct mm_struct *mm;
1942 	int err;
1943 	nodemask_t task_nodes;
1944 
1945 	/* Check flags */
1946 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1947 		return -EINVAL;
1948 
1949 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1950 		return -EPERM;
1951 
1952 	mm = find_mm_struct(pid, &task_nodes);
1953 	if (IS_ERR(mm))
1954 		return PTR_ERR(mm);
1955 
1956 	if (nodes)
1957 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1958 				    nodes, status, flags);
1959 	else
1960 		err = do_pages_stat(mm, nr_pages, pages, status);
1961 
1962 	mmput(mm);
1963 	return err;
1964 }
1965 
1966 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1967 		const void __user * __user *, pages,
1968 		const int __user *, nodes,
1969 		int __user *, status, int, flags)
1970 {
1971 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1972 }
1973 
1974 #ifdef CONFIG_NUMA_BALANCING
1975 /*
1976  * Returns true if this is a safe migration target node for misplaced NUMA
1977  * pages. Currently it only checks the watermarks which crude
1978  */
1979 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1980 				   unsigned long nr_migrate_pages)
1981 {
1982 	int z;
1983 
1984 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1985 		struct zone *zone = pgdat->node_zones + z;
1986 
1987 		if (!populated_zone(zone))
1988 			continue;
1989 
1990 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1991 		if (!zone_watermark_ok(zone, 0,
1992 				       high_wmark_pages(zone) +
1993 				       nr_migrate_pages,
1994 				       ZONE_MOVABLE, 0))
1995 			continue;
1996 		return true;
1997 	}
1998 	return false;
1999 }
2000 
2001 static struct page *alloc_misplaced_dst_page(struct page *page,
2002 					   unsigned long data)
2003 {
2004 	int nid = (int) data;
2005 	struct page *newpage;
2006 
2007 	newpage = __alloc_pages_node(nid,
2008 					 (GFP_HIGHUSER_MOVABLE |
2009 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2010 					  __GFP_NORETRY | __GFP_NOWARN) &
2011 					 ~__GFP_RECLAIM, 0);
2012 
2013 	return newpage;
2014 }
2015 
2016 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2017 						 unsigned long data)
2018 {
2019 	int nid = (int) data;
2020 	struct page *newpage;
2021 
2022 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2023 				   HPAGE_PMD_ORDER);
2024 	if (!newpage)
2025 		goto out;
2026 
2027 	prep_transhuge_page(newpage);
2028 
2029 out:
2030 	return newpage;
2031 }
2032 
2033 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2034 {
2035 	int page_lru;
2036 	int nr_pages = thp_nr_pages(page);
2037 
2038 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2039 
2040 	/* Do not migrate THP mapped by multiple processes */
2041 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2042 		return 0;
2043 
2044 	/* Avoid migrating to a node that is nearly full */
2045 	if (!migrate_balanced_pgdat(pgdat, nr_pages))
2046 		return 0;
2047 
2048 	if (isolate_lru_page(page))
2049 		return 0;
2050 
2051 	page_lru = page_is_file_lru(page);
2052 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2053 			    nr_pages);
2054 
2055 	/*
2056 	 * Isolating the page has taken another reference, so the
2057 	 * caller's reference can be safely dropped without the page
2058 	 * disappearing underneath us during migration.
2059 	 */
2060 	put_page(page);
2061 	return 1;
2062 }
2063 
2064 /*
2065  * Attempt to migrate a misplaced page to the specified destination
2066  * node. Caller is expected to have an elevated reference count on
2067  * the page that will be dropped by this function before returning.
2068  */
2069 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2070 			   int node)
2071 {
2072 	pg_data_t *pgdat = NODE_DATA(node);
2073 	int isolated;
2074 	int nr_remaining;
2075 	LIST_HEAD(migratepages);
2076 	new_page_t *new;
2077 	bool compound;
2078 	int nr_pages = thp_nr_pages(page);
2079 
2080 	/*
2081 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2082 	 * be either base page or THP.  And it must be head page if it is
2083 	 * THP.
2084 	 */
2085 	compound = PageTransHuge(page);
2086 
2087 	if (compound)
2088 		new = alloc_misplaced_dst_page_thp;
2089 	else
2090 		new = alloc_misplaced_dst_page;
2091 
2092 	/*
2093 	 * Don't migrate file pages that are mapped in multiple processes
2094 	 * with execute permissions as they are probably shared libraries.
2095 	 */
2096 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2097 	    (vma->vm_flags & VM_EXEC))
2098 		goto out;
2099 
2100 	/*
2101 	 * Also do not migrate dirty pages as not all filesystems can move
2102 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2103 	 */
2104 	if (page_is_file_lru(page) && PageDirty(page))
2105 		goto out;
2106 
2107 	isolated = numamigrate_isolate_page(pgdat, page);
2108 	if (!isolated)
2109 		goto out;
2110 
2111 	list_add(&page->lru, &migratepages);
2112 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2113 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2114 	if (nr_remaining) {
2115 		if (!list_empty(&migratepages)) {
2116 			list_del(&page->lru);
2117 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2118 					page_is_file_lru(page), -nr_pages);
2119 			putback_lru_page(page);
2120 		}
2121 		isolated = 0;
2122 	} else
2123 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2124 	BUG_ON(!list_empty(&migratepages));
2125 	return isolated;
2126 
2127 out:
2128 	put_page(page);
2129 	return 0;
2130 }
2131 #endif /* CONFIG_NUMA_BALANCING */
2132 #endif /* CONFIG_NUMA */
2133 
2134 #ifdef CONFIG_DEVICE_PRIVATE
2135 static int migrate_vma_collect_skip(unsigned long start,
2136 				    unsigned long end,
2137 				    struct mm_walk *walk)
2138 {
2139 	struct migrate_vma *migrate = walk->private;
2140 	unsigned long addr;
2141 
2142 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2143 		migrate->dst[migrate->npages] = 0;
2144 		migrate->src[migrate->npages++] = 0;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int migrate_vma_collect_hole(unsigned long start,
2151 				    unsigned long end,
2152 				    __always_unused int depth,
2153 				    struct mm_walk *walk)
2154 {
2155 	struct migrate_vma *migrate = walk->private;
2156 	unsigned long addr;
2157 
2158 	/* Only allow populating anonymous memory. */
2159 	if (!vma_is_anonymous(walk->vma))
2160 		return migrate_vma_collect_skip(start, end, walk);
2161 
2162 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2163 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2164 		migrate->dst[migrate->npages] = 0;
2165 		migrate->npages++;
2166 		migrate->cpages++;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2173 				   unsigned long start,
2174 				   unsigned long end,
2175 				   struct mm_walk *walk)
2176 {
2177 	struct migrate_vma *migrate = walk->private;
2178 	struct vm_area_struct *vma = walk->vma;
2179 	struct mm_struct *mm = vma->vm_mm;
2180 	unsigned long addr = start, unmapped = 0;
2181 	spinlock_t *ptl;
2182 	pte_t *ptep;
2183 
2184 again:
2185 	if (pmd_none(*pmdp))
2186 		return migrate_vma_collect_hole(start, end, -1, walk);
2187 
2188 	if (pmd_trans_huge(*pmdp)) {
2189 		struct page *page;
2190 
2191 		ptl = pmd_lock(mm, pmdp);
2192 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2193 			spin_unlock(ptl);
2194 			goto again;
2195 		}
2196 
2197 		page = pmd_page(*pmdp);
2198 		if (is_huge_zero_page(page)) {
2199 			spin_unlock(ptl);
2200 			split_huge_pmd(vma, pmdp, addr);
2201 			if (pmd_trans_unstable(pmdp))
2202 				return migrate_vma_collect_skip(start, end,
2203 								walk);
2204 		} else {
2205 			int ret;
2206 
2207 			get_page(page);
2208 			spin_unlock(ptl);
2209 			if (unlikely(!trylock_page(page)))
2210 				return migrate_vma_collect_skip(start, end,
2211 								walk);
2212 			ret = split_huge_page(page);
2213 			unlock_page(page);
2214 			put_page(page);
2215 			if (ret)
2216 				return migrate_vma_collect_skip(start, end,
2217 								walk);
2218 			if (pmd_none(*pmdp))
2219 				return migrate_vma_collect_hole(start, end, -1,
2220 								walk);
2221 		}
2222 	}
2223 
2224 	if (unlikely(pmd_bad(*pmdp)))
2225 		return migrate_vma_collect_skip(start, end, walk);
2226 
2227 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2228 	arch_enter_lazy_mmu_mode();
2229 
2230 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2231 		unsigned long mpfn = 0, pfn;
2232 		struct page *page;
2233 		swp_entry_t entry;
2234 		pte_t pte;
2235 
2236 		pte = *ptep;
2237 
2238 		if (pte_none(pte)) {
2239 			if (vma_is_anonymous(vma)) {
2240 				mpfn = MIGRATE_PFN_MIGRATE;
2241 				migrate->cpages++;
2242 			}
2243 			goto next;
2244 		}
2245 
2246 		if (!pte_present(pte)) {
2247 			/*
2248 			 * Only care about unaddressable device page special
2249 			 * page table entry. Other special swap entries are not
2250 			 * migratable, and we ignore regular swapped page.
2251 			 */
2252 			entry = pte_to_swp_entry(pte);
2253 			if (!is_device_private_entry(entry))
2254 				goto next;
2255 
2256 			page = pfn_swap_entry_to_page(entry);
2257 			if (!(migrate->flags &
2258 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2259 			    page->pgmap->owner != migrate->pgmap_owner)
2260 				goto next;
2261 
2262 			mpfn = migrate_pfn(page_to_pfn(page)) |
2263 					MIGRATE_PFN_MIGRATE;
2264 			if (is_writable_device_private_entry(entry))
2265 				mpfn |= MIGRATE_PFN_WRITE;
2266 		} else {
2267 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2268 				goto next;
2269 			pfn = pte_pfn(pte);
2270 			if (is_zero_pfn(pfn)) {
2271 				mpfn = MIGRATE_PFN_MIGRATE;
2272 				migrate->cpages++;
2273 				goto next;
2274 			}
2275 			page = vm_normal_page(migrate->vma, addr, pte);
2276 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2278 		}
2279 
2280 		/* FIXME support THP */
2281 		if (!page || !page->mapping || PageTransCompound(page)) {
2282 			mpfn = 0;
2283 			goto next;
2284 		}
2285 
2286 		/*
2287 		 * By getting a reference on the page we pin it and that blocks
2288 		 * any kind of migration. Side effect is that it "freezes" the
2289 		 * pte.
2290 		 *
2291 		 * We drop this reference after isolating the page from the lru
2292 		 * for non device page (device page are not on the lru and thus
2293 		 * can't be dropped from it).
2294 		 */
2295 		get_page(page);
2296 
2297 		/*
2298 		 * Optimize for the common case where page is only mapped once
2299 		 * in one process. If we can lock the page, then we can safely
2300 		 * set up a special migration page table entry now.
2301 		 */
2302 		if (trylock_page(page)) {
2303 			pte_t swp_pte;
2304 
2305 			migrate->cpages++;
2306 			ptep_get_and_clear(mm, addr, ptep);
2307 
2308 			/* Setup special migration page table entry */
2309 			if (mpfn & MIGRATE_PFN_WRITE)
2310 				entry = make_writable_migration_entry(
2311 							page_to_pfn(page));
2312 			else
2313 				entry = make_readable_migration_entry(
2314 							page_to_pfn(page));
2315 			swp_pte = swp_entry_to_pte(entry);
2316 			if (pte_present(pte)) {
2317 				if (pte_soft_dirty(pte))
2318 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2319 				if (pte_uffd_wp(pte))
2320 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2321 			} else {
2322 				if (pte_swp_soft_dirty(pte))
2323 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2324 				if (pte_swp_uffd_wp(pte))
2325 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2326 			}
2327 			set_pte_at(mm, addr, ptep, swp_pte);
2328 
2329 			/*
2330 			 * This is like regular unmap: we remove the rmap and
2331 			 * drop page refcount. Page won't be freed, as we took
2332 			 * a reference just above.
2333 			 */
2334 			page_remove_rmap(page, false);
2335 			put_page(page);
2336 
2337 			if (pte_present(pte))
2338 				unmapped++;
2339 		} else {
2340 			put_page(page);
2341 			mpfn = 0;
2342 		}
2343 
2344 next:
2345 		migrate->dst[migrate->npages] = 0;
2346 		migrate->src[migrate->npages++] = mpfn;
2347 	}
2348 	arch_leave_lazy_mmu_mode();
2349 	pte_unmap_unlock(ptep - 1, ptl);
2350 
2351 	/* Only flush the TLB if we actually modified any entries */
2352 	if (unmapped)
2353 		flush_tlb_range(walk->vma, start, end);
2354 
2355 	return 0;
2356 }
2357 
2358 static const struct mm_walk_ops migrate_vma_walk_ops = {
2359 	.pmd_entry		= migrate_vma_collect_pmd,
2360 	.pte_hole		= migrate_vma_collect_hole,
2361 };
2362 
2363 /*
2364  * migrate_vma_collect() - collect pages over a range of virtual addresses
2365  * @migrate: migrate struct containing all migration information
2366  *
2367  * This will walk the CPU page table. For each virtual address backed by a
2368  * valid page, it updates the src array and takes a reference on the page, in
2369  * order to pin the page until we lock it and unmap it.
2370  */
2371 static void migrate_vma_collect(struct migrate_vma *migrate)
2372 {
2373 	struct mmu_notifier_range range;
2374 
2375 	/*
2376 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2377 	 * that the registered device driver can skip invalidating device
2378 	 * private page mappings that won't be migrated.
2379 	 */
2380 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2381 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2382 		migrate->pgmap_owner);
2383 	mmu_notifier_invalidate_range_start(&range);
2384 
2385 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2386 			&migrate_vma_walk_ops, migrate);
2387 
2388 	mmu_notifier_invalidate_range_end(&range);
2389 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2390 }
2391 
2392 /*
2393  * migrate_vma_check_page() - check if page is pinned or not
2394  * @page: struct page to check
2395  *
2396  * Pinned pages cannot be migrated. This is the same test as in
2397  * folio_migrate_mapping(), except that here we allow migration of a
2398  * ZONE_DEVICE page.
2399  */
2400 static bool migrate_vma_check_page(struct page *page)
2401 {
2402 	/*
2403 	 * One extra ref because caller holds an extra reference, either from
2404 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2405 	 * a device page.
2406 	 */
2407 	int extra = 1;
2408 
2409 	/*
2410 	 * FIXME support THP (transparent huge page), it is bit more complex to
2411 	 * check them than regular pages, because they can be mapped with a pmd
2412 	 * or with a pte (split pte mapping).
2413 	 */
2414 	if (PageCompound(page))
2415 		return false;
2416 
2417 	/* Page from ZONE_DEVICE have one extra reference */
2418 	if (is_zone_device_page(page))
2419 		extra++;
2420 
2421 	/* For file back page */
2422 	if (page_mapping(page))
2423 		extra += 1 + page_has_private(page);
2424 
2425 	if ((page_count(page) - extra) > page_mapcount(page))
2426 		return false;
2427 
2428 	return true;
2429 }
2430 
2431 /*
2432  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2433  * @migrate: migrate struct containing all migration information
2434  *
2435  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
2436  * special migration pte entry and check if it has been pinned. Pinned pages are
2437  * restored because we cannot migrate them.
2438  *
2439  * This is the last step before we call the device driver callback to allocate
2440  * destination memory and copy contents of original page over to new page.
2441  */
2442 static void migrate_vma_unmap(struct migrate_vma *migrate)
2443 {
2444 	const unsigned long npages = migrate->npages;
2445 	unsigned long i, restore = 0;
2446 	bool allow_drain = true;
2447 
2448 	lru_add_drain();
2449 
2450 	for (i = 0; i < npages; i++) {
2451 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2452 
2453 		if (!page)
2454 			continue;
2455 
2456 		/* ZONE_DEVICE pages are not on LRU */
2457 		if (!is_zone_device_page(page)) {
2458 			if (!PageLRU(page) && allow_drain) {
2459 				/* Drain CPU's pagevec */
2460 				lru_add_drain_all();
2461 				allow_drain = false;
2462 			}
2463 
2464 			if (isolate_lru_page(page)) {
2465 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2466 				migrate->cpages--;
2467 				restore++;
2468 				continue;
2469 			}
2470 
2471 			/* Drop the reference we took in collect */
2472 			put_page(page);
2473 		}
2474 
2475 		if (page_mapped(page))
2476 			try_to_migrate(page, 0);
2477 
2478 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
2479 			if (!is_zone_device_page(page)) {
2480 				get_page(page);
2481 				putback_lru_page(page);
2482 			}
2483 
2484 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485 			migrate->cpages--;
2486 			restore++;
2487 			continue;
2488 		}
2489 	}
2490 
2491 	for (i = 0; i < npages && restore; i++) {
2492 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2493 
2494 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2495 			continue;
2496 
2497 		remove_migration_ptes(page, page, false);
2498 
2499 		migrate->src[i] = 0;
2500 		unlock_page(page);
2501 		put_page(page);
2502 		restore--;
2503 	}
2504 }
2505 
2506 /**
2507  * migrate_vma_setup() - prepare to migrate a range of memory
2508  * @args: contains the vma, start, and pfns arrays for the migration
2509  *
2510  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2511  * without an error.
2512  *
2513  * Prepare to migrate a range of memory virtual address range by collecting all
2514  * the pages backing each virtual address in the range, saving them inside the
2515  * src array.  Then lock those pages and unmap them. Once the pages are locked
2516  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2517  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2518  * corresponding src array entry.  Then restores any pages that are pinned, by
2519  * remapping and unlocking those pages.
2520  *
2521  * The caller should then allocate destination memory and copy source memory to
2522  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2523  * flag set).  Once these are allocated and copied, the caller must update each
2524  * corresponding entry in the dst array with the pfn value of the destination
2525  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
2526  * lock_page().
2527  *
2528  * Note that the caller does not have to migrate all the pages that are marked
2529  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2530  * device memory to system memory.  If the caller cannot migrate a device page
2531  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2532  * consequences for the userspace process, so it must be avoided if at all
2533  * possible.
2534  *
2535  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2536  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2537  * allowing the caller to allocate device memory for those unbacked virtual
2538  * addresses.  For this the caller simply has to allocate device memory and
2539  * properly set the destination entry like for regular migration.  Note that
2540  * this can still fail, and thus inside the device driver you must check if the
2541  * migration was successful for those entries after calling migrate_vma_pages(),
2542  * just like for regular migration.
2543  *
2544  * After that, the callers must call migrate_vma_pages() to go over each entry
2545  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2546  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2547  * then migrate_vma_pages() to migrate struct page information from the source
2548  * struct page to the destination struct page.  If it fails to migrate the
2549  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2550  * src array.
2551  *
2552  * At this point all successfully migrated pages have an entry in the src
2553  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2554  * array entry with MIGRATE_PFN_VALID flag set.
2555  *
2556  * Once migrate_vma_pages() returns the caller may inspect which pages were
2557  * successfully migrated, and which were not.  Successfully migrated pages will
2558  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2559  *
2560  * It is safe to update device page table after migrate_vma_pages() because
2561  * both destination and source page are still locked, and the mmap_lock is held
2562  * in read mode (hence no one can unmap the range being migrated).
2563  *
2564  * Once the caller is done cleaning up things and updating its page table (if it
2565  * chose to do so, this is not an obligation) it finally calls
2566  * migrate_vma_finalize() to update the CPU page table to point to new pages
2567  * for successfully migrated pages or otherwise restore the CPU page table to
2568  * point to the original source pages.
2569  */
2570 int migrate_vma_setup(struct migrate_vma *args)
2571 {
2572 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2573 
2574 	args->start &= PAGE_MASK;
2575 	args->end &= PAGE_MASK;
2576 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2577 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2578 		return -EINVAL;
2579 	if (nr_pages <= 0)
2580 		return -EINVAL;
2581 	if (args->start < args->vma->vm_start ||
2582 	    args->start >= args->vma->vm_end)
2583 		return -EINVAL;
2584 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2585 		return -EINVAL;
2586 	if (!args->src || !args->dst)
2587 		return -EINVAL;
2588 
2589 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2590 	args->cpages = 0;
2591 	args->npages = 0;
2592 
2593 	migrate_vma_collect(args);
2594 
2595 	if (args->cpages)
2596 		migrate_vma_unmap(args);
2597 
2598 	/*
2599 	 * At this point pages are locked and unmapped, and thus they have
2600 	 * stable content and can safely be copied to destination memory that
2601 	 * is allocated by the drivers.
2602 	 */
2603 	return 0;
2604 
2605 }
2606 EXPORT_SYMBOL(migrate_vma_setup);
2607 
2608 /*
2609  * This code closely matches the code in:
2610  *   __handle_mm_fault()
2611  *     handle_pte_fault()
2612  *       do_anonymous_page()
2613  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2614  * private page.
2615  */
2616 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2617 				    unsigned long addr,
2618 				    struct page *page,
2619 				    unsigned long *src)
2620 {
2621 	struct vm_area_struct *vma = migrate->vma;
2622 	struct mm_struct *mm = vma->vm_mm;
2623 	bool flush = false;
2624 	spinlock_t *ptl;
2625 	pte_t entry;
2626 	pgd_t *pgdp;
2627 	p4d_t *p4dp;
2628 	pud_t *pudp;
2629 	pmd_t *pmdp;
2630 	pte_t *ptep;
2631 
2632 	/* Only allow populating anonymous memory */
2633 	if (!vma_is_anonymous(vma))
2634 		goto abort;
2635 
2636 	pgdp = pgd_offset(mm, addr);
2637 	p4dp = p4d_alloc(mm, pgdp, addr);
2638 	if (!p4dp)
2639 		goto abort;
2640 	pudp = pud_alloc(mm, p4dp, addr);
2641 	if (!pudp)
2642 		goto abort;
2643 	pmdp = pmd_alloc(mm, pudp, addr);
2644 	if (!pmdp)
2645 		goto abort;
2646 
2647 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2648 		goto abort;
2649 
2650 	/*
2651 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2652 	 * pte_offset_map() on pmds where a huge pmd might be created
2653 	 * from a different thread.
2654 	 *
2655 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2656 	 * parallel threads are excluded by other means.
2657 	 *
2658 	 * Here we only have mmap_read_lock(mm).
2659 	 */
2660 	if (pte_alloc(mm, pmdp))
2661 		goto abort;
2662 
2663 	/* See the comment in pte_alloc_one_map() */
2664 	if (unlikely(pmd_trans_unstable(pmdp)))
2665 		goto abort;
2666 
2667 	if (unlikely(anon_vma_prepare(vma)))
2668 		goto abort;
2669 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2670 		goto abort;
2671 
2672 	/*
2673 	 * The memory barrier inside __SetPageUptodate makes sure that
2674 	 * preceding stores to the page contents become visible before
2675 	 * the set_pte_at() write.
2676 	 */
2677 	__SetPageUptodate(page);
2678 
2679 	if (is_zone_device_page(page)) {
2680 		if (is_device_private_page(page)) {
2681 			swp_entry_t swp_entry;
2682 
2683 			if (vma->vm_flags & VM_WRITE)
2684 				swp_entry = make_writable_device_private_entry(
2685 							page_to_pfn(page));
2686 			else
2687 				swp_entry = make_readable_device_private_entry(
2688 							page_to_pfn(page));
2689 			entry = swp_entry_to_pte(swp_entry);
2690 		} else {
2691 			/*
2692 			 * For now we only support migrating to un-addressable
2693 			 * device memory.
2694 			 */
2695 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2696 			goto abort;
2697 		}
2698 	} else {
2699 		entry = mk_pte(page, vma->vm_page_prot);
2700 		if (vma->vm_flags & VM_WRITE)
2701 			entry = pte_mkwrite(pte_mkdirty(entry));
2702 	}
2703 
2704 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2705 
2706 	if (check_stable_address_space(mm))
2707 		goto unlock_abort;
2708 
2709 	if (pte_present(*ptep)) {
2710 		unsigned long pfn = pte_pfn(*ptep);
2711 
2712 		if (!is_zero_pfn(pfn))
2713 			goto unlock_abort;
2714 		flush = true;
2715 	} else if (!pte_none(*ptep))
2716 		goto unlock_abort;
2717 
2718 	/*
2719 	 * Check for userfaultfd but do not deliver the fault. Instead,
2720 	 * just back off.
2721 	 */
2722 	if (userfaultfd_missing(vma))
2723 		goto unlock_abort;
2724 
2725 	inc_mm_counter(mm, MM_ANONPAGES);
2726 	page_add_new_anon_rmap(page, vma, addr, false);
2727 	if (!is_zone_device_page(page))
2728 		lru_cache_add_inactive_or_unevictable(page, vma);
2729 	get_page(page);
2730 
2731 	if (flush) {
2732 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2733 		ptep_clear_flush_notify(vma, addr, ptep);
2734 		set_pte_at_notify(mm, addr, ptep, entry);
2735 		update_mmu_cache(vma, addr, ptep);
2736 	} else {
2737 		/* No need to invalidate - it was non-present before */
2738 		set_pte_at(mm, addr, ptep, entry);
2739 		update_mmu_cache(vma, addr, ptep);
2740 	}
2741 
2742 	pte_unmap_unlock(ptep, ptl);
2743 	*src = MIGRATE_PFN_MIGRATE;
2744 	return;
2745 
2746 unlock_abort:
2747 	pte_unmap_unlock(ptep, ptl);
2748 abort:
2749 	*src &= ~MIGRATE_PFN_MIGRATE;
2750 }
2751 
2752 /**
2753  * migrate_vma_pages() - migrate meta-data from src page to dst page
2754  * @migrate: migrate struct containing all migration information
2755  *
2756  * This migrates struct page meta-data from source struct page to destination
2757  * struct page. This effectively finishes the migration from source page to the
2758  * destination page.
2759  */
2760 void migrate_vma_pages(struct migrate_vma *migrate)
2761 {
2762 	const unsigned long npages = migrate->npages;
2763 	const unsigned long start = migrate->start;
2764 	struct mmu_notifier_range range;
2765 	unsigned long addr, i;
2766 	bool notified = false;
2767 
2768 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2769 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2770 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2771 		struct address_space *mapping;
2772 		int r;
2773 
2774 		if (!newpage) {
2775 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2776 			continue;
2777 		}
2778 
2779 		if (!page) {
2780 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2781 				continue;
2782 			if (!notified) {
2783 				notified = true;
2784 
2785 				mmu_notifier_range_init_owner(&range,
2786 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2787 					migrate->vma->vm_mm, addr, migrate->end,
2788 					migrate->pgmap_owner);
2789 				mmu_notifier_invalidate_range_start(&range);
2790 			}
2791 			migrate_vma_insert_page(migrate, addr, newpage,
2792 						&migrate->src[i]);
2793 			continue;
2794 		}
2795 
2796 		mapping = page_mapping(page);
2797 
2798 		if (is_zone_device_page(newpage)) {
2799 			if (is_device_private_page(newpage)) {
2800 				/*
2801 				 * For now only support private anonymous when
2802 				 * migrating to un-addressable device memory.
2803 				 */
2804 				if (mapping) {
2805 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2806 					continue;
2807 				}
2808 			} else {
2809 				/*
2810 				 * Other types of ZONE_DEVICE page are not
2811 				 * supported.
2812 				 */
2813 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2814 				continue;
2815 			}
2816 		}
2817 
2818 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2819 		if (r != MIGRATEPAGE_SUCCESS)
2820 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2821 	}
2822 
2823 	/*
2824 	 * No need to double call mmu_notifier->invalidate_range() callback as
2825 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2826 	 * did already call it.
2827 	 */
2828 	if (notified)
2829 		mmu_notifier_invalidate_range_only_end(&range);
2830 }
2831 EXPORT_SYMBOL(migrate_vma_pages);
2832 
2833 /**
2834  * migrate_vma_finalize() - restore CPU page table entry
2835  * @migrate: migrate struct containing all migration information
2836  *
2837  * This replaces the special migration pte entry with either a mapping to the
2838  * new page if migration was successful for that page, or to the original page
2839  * otherwise.
2840  *
2841  * This also unlocks the pages and puts them back on the lru, or drops the extra
2842  * refcount, for device pages.
2843  */
2844 void migrate_vma_finalize(struct migrate_vma *migrate)
2845 {
2846 	const unsigned long npages = migrate->npages;
2847 	unsigned long i;
2848 
2849 	for (i = 0; i < npages; i++) {
2850 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2851 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2852 
2853 		if (!page) {
2854 			if (newpage) {
2855 				unlock_page(newpage);
2856 				put_page(newpage);
2857 			}
2858 			continue;
2859 		}
2860 
2861 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2862 			if (newpage) {
2863 				unlock_page(newpage);
2864 				put_page(newpage);
2865 			}
2866 			newpage = page;
2867 		}
2868 
2869 		remove_migration_ptes(page, newpage, false);
2870 		unlock_page(page);
2871 
2872 		if (is_zone_device_page(page))
2873 			put_page(page);
2874 		else
2875 			putback_lru_page(page);
2876 
2877 		if (newpage != page) {
2878 			unlock_page(newpage);
2879 			if (is_zone_device_page(newpage))
2880 				put_page(newpage);
2881 			else
2882 				putback_lru_page(newpage);
2883 		}
2884 	}
2885 }
2886 EXPORT_SYMBOL(migrate_vma_finalize);
2887 #endif /* CONFIG_DEVICE_PRIVATE */
2888 
2889 /*
2890  * node_demotion[] example:
2891  *
2892  * Consider a system with two sockets.  Each socket has
2893  * three classes of memory attached: fast, medium and slow.
2894  * Each memory class is placed in its own NUMA node.  The
2895  * CPUs are placed in the node with the "fast" memory.  The
2896  * 6 NUMA nodes (0-5) might be split among the sockets like
2897  * this:
2898  *
2899  *	Socket A: 0, 1, 2
2900  *	Socket B: 3, 4, 5
2901  *
2902  * When Node 0 fills up, its memory should be migrated to
2903  * Node 1.  When Node 1 fills up, it should be migrated to
2904  * Node 2.  The migration path start on the nodes with the
2905  * processors (since allocations default to this node) and
2906  * fast memory, progress through medium and end with the
2907  * slow memory:
2908  *
2909  *	0 -> 1 -> 2 -> stop
2910  *	3 -> 4 -> 5 -> stop
2911  *
2912  * This is represented in the node_demotion[] like this:
2913  *
2914  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2915  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2916  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2917  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2918  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2919  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2920  *
2921  * Moreover some systems may have multiple slow memory nodes.
2922  * Suppose a system has one socket with 3 memory nodes, node 0
2923  * is fast memory type, and node 1/2 both are slow memory
2924  * type, and the distance between fast memory node and slow
2925  * memory node is same. So the migration path should be:
2926  *
2927  *	0 -> 1/2 -> stop
2928  *
2929  * This is represented in the node_demotion[] like this:
2930  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2931  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2932  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2933  */
2934 
2935 /*
2936  * Writes to this array occur without locking.  Cycles are
2937  * not allowed: Node X demotes to Y which demotes to X...
2938  *
2939  * If multiple reads are performed, a single rcu_read_lock()
2940  * must be held over all reads to ensure that no cycles are
2941  * observed.
2942  */
2943 #define DEFAULT_DEMOTION_TARGET_NODES 15
2944 
2945 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2946 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2947 #else
2948 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2949 #endif
2950 
2951 struct demotion_nodes {
2952 	unsigned short nr;
2953 	short nodes[DEMOTION_TARGET_NODES];
2954 };
2955 
2956 static struct demotion_nodes *node_demotion __read_mostly;
2957 
2958 /**
2959  * next_demotion_node() - Get the next node in the demotion path
2960  * @node: The starting node to lookup the next node
2961  *
2962  * Return: node id for next memory node in the demotion path hierarchy
2963  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2964  * @node online or guarantee that it *continues* to be the next demotion
2965  * target.
2966  */
2967 int next_demotion_node(int node)
2968 {
2969 	struct demotion_nodes *nd;
2970 	unsigned short target_nr, index;
2971 	int target;
2972 
2973 	if (!node_demotion)
2974 		return NUMA_NO_NODE;
2975 
2976 	nd = &node_demotion[node];
2977 
2978 	/*
2979 	 * node_demotion[] is updated without excluding this
2980 	 * function from running.  RCU doesn't provide any
2981 	 * compiler barriers, so the READ_ONCE() is required
2982 	 * to avoid compiler reordering or read merging.
2983 	 *
2984 	 * Make sure to use RCU over entire code blocks if
2985 	 * node_demotion[] reads need to be consistent.
2986 	 */
2987 	rcu_read_lock();
2988 	target_nr = READ_ONCE(nd->nr);
2989 
2990 	switch (target_nr) {
2991 	case 0:
2992 		target = NUMA_NO_NODE;
2993 		goto out;
2994 	case 1:
2995 		index = 0;
2996 		break;
2997 	default:
2998 		/*
2999 		 * If there are multiple target nodes, just select one
3000 		 * target node randomly.
3001 		 *
3002 		 * In addition, we can also use round-robin to select
3003 		 * target node, but we should introduce another variable
3004 		 * for node_demotion[] to record last selected target node,
3005 		 * that may cause cache ping-pong due to the changing of
3006 		 * last target node. Or introducing per-cpu data to avoid
3007 		 * caching issue, which seems more complicated. So selecting
3008 		 * target node randomly seems better until now.
3009 		 */
3010 		index = get_random_int() % target_nr;
3011 		break;
3012 	}
3013 
3014 	target = READ_ONCE(nd->nodes[index]);
3015 
3016 out:
3017 	rcu_read_unlock();
3018 	return target;
3019 }
3020 
3021 #if defined(CONFIG_HOTPLUG_CPU)
3022 /* Disable reclaim-based migration. */
3023 static void __disable_all_migrate_targets(void)
3024 {
3025 	int node, i;
3026 
3027 	if (!node_demotion)
3028 		return;
3029 
3030 	for_each_online_node(node) {
3031 		node_demotion[node].nr = 0;
3032 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
3033 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
3034 	}
3035 }
3036 
3037 static void disable_all_migrate_targets(void)
3038 {
3039 	__disable_all_migrate_targets();
3040 
3041 	/*
3042 	 * Ensure that the "disable" is visible across the system.
3043 	 * Readers will see either a combination of before+disable
3044 	 * state or disable+after.  They will never see before and
3045 	 * after state together.
3046 	 *
3047 	 * The before+after state together might have cycles and
3048 	 * could cause readers to do things like loop until this
3049 	 * function finishes.  This ensures they can only see a
3050 	 * single "bad" read and would, for instance, only loop
3051 	 * once.
3052 	 */
3053 	synchronize_rcu();
3054 }
3055 
3056 /*
3057  * Find an automatic demotion target for 'node'.
3058  * Failing here is OK.  It might just indicate
3059  * being at the end of a chain.
3060  */
3061 static int establish_migrate_target(int node, nodemask_t *used,
3062 				    int best_distance)
3063 {
3064 	int migration_target, index, val;
3065 	struct demotion_nodes *nd;
3066 
3067 	if (!node_demotion)
3068 		return NUMA_NO_NODE;
3069 
3070 	nd = &node_demotion[node];
3071 
3072 	migration_target = find_next_best_node(node, used);
3073 	if (migration_target == NUMA_NO_NODE)
3074 		return NUMA_NO_NODE;
3075 
3076 	/*
3077 	 * If the node has been set a migration target node before,
3078 	 * which means it's the best distance between them. Still
3079 	 * check if this node can be demoted to other target nodes
3080 	 * if they have a same best distance.
3081 	 */
3082 	if (best_distance != -1) {
3083 		val = node_distance(node, migration_target);
3084 		if (val > best_distance)
3085 			return NUMA_NO_NODE;
3086 	}
3087 
3088 	index = nd->nr;
3089 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
3090 		      "Exceeds maximum demotion target nodes\n"))
3091 		return NUMA_NO_NODE;
3092 
3093 	nd->nodes[index] = migration_target;
3094 	nd->nr++;
3095 
3096 	return migration_target;
3097 }
3098 
3099 /*
3100  * When memory fills up on a node, memory contents can be
3101  * automatically migrated to another node instead of
3102  * discarded at reclaim.
3103  *
3104  * Establish a "migration path" which will start at nodes
3105  * with CPUs and will follow the priorities used to build the
3106  * page allocator zonelists.
3107  *
3108  * The difference here is that cycles must be avoided.  If
3109  * node0 migrates to node1, then neither node1, nor anything
3110  * node1 migrates to can migrate to node0. Also one node can
3111  * be migrated to multiple nodes if the target nodes all have
3112  * a same best-distance against the source node.
3113  *
3114  * This function can run simultaneously with readers of
3115  * node_demotion[].  However, it can not run simultaneously
3116  * with itself.  Exclusion is provided by memory hotplug events
3117  * being single-threaded.
3118  */
3119 static void __set_migration_target_nodes(void)
3120 {
3121 	nodemask_t next_pass	= NODE_MASK_NONE;
3122 	nodemask_t this_pass	= NODE_MASK_NONE;
3123 	nodemask_t used_targets = NODE_MASK_NONE;
3124 	int node, best_distance;
3125 
3126 	/*
3127 	 * Avoid any oddities like cycles that could occur
3128 	 * from changes in the topology.  This will leave
3129 	 * a momentary gap when migration is disabled.
3130 	 */
3131 	disable_all_migrate_targets();
3132 
3133 	/*
3134 	 * Allocations go close to CPUs, first.  Assume that
3135 	 * the migration path starts at the nodes with CPUs.
3136 	 */
3137 	next_pass = node_states[N_CPU];
3138 again:
3139 	this_pass = next_pass;
3140 	next_pass = NODE_MASK_NONE;
3141 	/*
3142 	 * To avoid cycles in the migration "graph", ensure
3143 	 * that migration sources are not future targets by
3144 	 * setting them in 'used_targets'.  Do this only
3145 	 * once per pass so that multiple source nodes can
3146 	 * share a target node.
3147 	 *
3148 	 * 'used_targets' will become unavailable in future
3149 	 * passes.  This limits some opportunities for
3150 	 * multiple source nodes to share a destination.
3151 	 */
3152 	nodes_or(used_targets, used_targets, this_pass);
3153 
3154 	for_each_node_mask(node, this_pass) {
3155 		best_distance = -1;
3156 
3157 		/*
3158 		 * Try to set up the migration path for the node, and the target
3159 		 * migration nodes can be multiple, so doing a loop to find all
3160 		 * the target nodes if they all have a best node distance.
3161 		 */
3162 		do {
3163 			int target_node =
3164 				establish_migrate_target(node, &used_targets,
3165 							 best_distance);
3166 
3167 			if (target_node == NUMA_NO_NODE)
3168 				break;
3169 
3170 			if (best_distance == -1)
3171 				best_distance = node_distance(node, target_node);
3172 
3173 			/*
3174 			 * Visit targets from this pass in the next pass.
3175 			 * Eventually, every node will have been part of
3176 			 * a pass, and will become set in 'used_targets'.
3177 			 */
3178 			node_set(target_node, next_pass);
3179 		} while (1);
3180 	}
3181 	/*
3182 	 * 'next_pass' contains nodes which became migration
3183 	 * targets in this pass.  Make additional passes until
3184 	 * no more migrations targets are available.
3185 	 */
3186 	if (!nodes_empty(next_pass))
3187 		goto again;
3188 }
3189 
3190 /*
3191  * For callers that do not hold get_online_mems() already.
3192  */
3193 static void set_migration_target_nodes(void)
3194 {
3195 	get_online_mems();
3196 	__set_migration_target_nodes();
3197 	put_online_mems();
3198 }
3199 
3200 /*
3201  * This leaves migrate-on-reclaim transiently disabled between
3202  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3203  * whether reclaim-based migration is enabled or not, which
3204  * ensures that the user can turn reclaim-based migration at
3205  * any time without needing to recalculate migration targets.
3206  *
3207  * These callbacks already hold get_online_mems().  That is why
3208  * __set_migration_target_nodes() can be used as opposed to
3209  * set_migration_target_nodes().
3210  */
3211 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3212 						 unsigned long action, void *_arg)
3213 {
3214 	struct memory_notify *arg = _arg;
3215 
3216 	/*
3217 	 * Only update the node migration order when a node is
3218 	 * changing status, like online->offline.  This avoids
3219 	 * the overhead of synchronize_rcu() in most cases.
3220 	 */
3221 	if (arg->status_change_nid < 0)
3222 		return notifier_from_errno(0);
3223 
3224 	switch (action) {
3225 	case MEM_GOING_OFFLINE:
3226 		/*
3227 		 * Make sure there are not transient states where
3228 		 * an offline node is a migration target.  This
3229 		 * will leave migration disabled until the offline
3230 		 * completes and the MEM_OFFLINE case below runs.
3231 		 */
3232 		disable_all_migrate_targets();
3233 		break;
3234 	case MEM_OFFLINE:
3235 	case MEM_ONLINE:
3236 		/*
3237 		 * Recalculate the target nodes once the node
3238 		 * reaches its final state (online or offline).
3239 		 */
3240 		__set_migration_target_nodes();
3241 		break;
3242 	case MEM_CANCEL_OFFLINE:
3243 		/*
3244 		 * MEM_GOING_OFFLINE disabled all the migration
3245 		 * targets.  Reenable them.
3246 		 */
3247 		__set_migration_target_nodes();
3248 		break;
3249 	case MEM_GOING_ONLINE:
3250 	case MEM_CANCEL_ONLINE:
3251 		break;
3252 	}
3253 
3254 	return notifier_from_errno(0);
3255 }
3256 
3257 /*
3258  * React to hotplug events that might affect the migration targets
3259  * like events that online or offline NUMA nodes.
3260  *
3261  * The ordering is also currently dependent on which nodes have
3262  * CPUs.  That means we need CPU on/offline notification too.
3263  */
3264 static int migration_online_cpu(unsigned int cpu)
3265 {
3266 	set_migration_target_nodes();
3267 	return 0;
3268 }
3269 
3270 static int migration_offline_cpu(unsigned int cpu)
3271 {
3272 	set_migration_target_nodes();
3273 	return 0;
3274 }
3275 
3276 static int __init migrate_on_reclaim_init(void)
3277 {
3278 	int ret;
3279 
3280 	node_demotion = kmalloc_array(nr_node_ids,
3281 				      sizeof(struct demotion_nodes),
3282 				      GFP_KERNEL);
3283 	WARN_ON(!node_demotion);
3284 
3285 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3286 					NULL, migration_offline_cpu);
3287 	/*
3288 	 * In the unlikely case that this fails, the automatic
3289 	 * migration targets may become suboptimal for nodes
3290 	 * where N_CPU changes.  With such a small impact in a
3291 	 * rare case, do not bother trying to do anything special.
3292 	 */
3293 	WARN_ON(ret < 0);
3294 	ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3295 				migration_online_cpu, NULL);
3296 	WARN_ON(ret < 0);
3297 
3298 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3299 	return 0;
3300 }
3301 late_initcall(migrate_on_reclaim_init);
3302 #endif /* CONFIG_HOTPLUG_CPU */
3303 
3304 bool numa_demotion_enabled = false;
3305 
3306 #ifdef CONFIG_SYSFS
3307 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3308 					  struct kobj_attribute *attr, char *buf)
3309 {
3310 	return sysfs_emit(buf, "%s\n",
3311 			  numa_demotion_enabled ? "true" : "false");
3312 }
3313 
3314 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3315 					   struct kobj_attribute *attr,
3316 					   const char *buf, size_t count)
3317 {
3318 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3319 		numa_demotion_enabled = true;
3320 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3321 		numa_demotion_enabled = false;
3322 	else
3323 		return -EINVAL;
3324 
3325 	return count;
3326 }
3327 
3328 static struct kobj_attribute numa_demotion_enabled_attr =
3329 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3330 	       numa_demotion_enabled_store);
3331 
3332 static struct attribute *numa_attrs[] = {
3333 	&numa_demotion_enabled_attr.attr,
3334 	NULL,
3335 };
3336 
3337 static const struct attribute_group numa_attr_group = {
3338 	.attrs = numa_attrs,
3339 };
3340 
3341 static int __init numa_init_sysfs(void)
3342 {
3343 	int err;
3344 	struct kobject *numa_kobj;
3345 
3346 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
3347 	if (!numa_kobj) {
3348 		pr_err("failed to create numa kobject\n");
3349 		return -ENOMEM;
3350 	}
3351 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
3352 	if (err) {
3353 		pr_err("failed to register numa group\n");
3354 		goto delete_obj;
3355 	}
3356 	return 0;
3357 
3358 delete_obj:
3359 	kobject_put(numa_kobj);
3360 	return err;
3361 }
3362 subsys_initcall(numa_init_sysfs);
3363 #endif
3364