xref: /linux/mm/migrate.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __folio_test_movable because LRU folio's mapping cannot
161 		 * have PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 
215 		entry = pte_to_swp_entry(old_pte);
216 		if (!is_migration_entry_young(entry))
217 			pte = pte_mkold(pte);
218 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
219 			pte = pte_mkdirty(pte);
220 		if (pte_swp_soft_dirty(old_pte))
221 			pte = pte_mksoft_dirty(pte);
222 		else
223 			pte = pte_clear_soft_dirty(pte);
224 
225 		if (is_writable_migration_entry(entry))
226 			pte = pte_mkwrite(pte, vma);
227 		else if (pte_swp_uffd_wp(old_pte))
228 			pte = pte_mkuffd_wp(pte);
229 
230 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 			rmap_flags |= RMAP_EXCLUSIVE;
232 
233 		if (unlikely(is_device_private_page(new))) {
234 			if (pte_write(pte))
235 				entry = make_writable_device_private_entry(
236 							page_to_pfn(new));
237 			else
238 				entry = make_readable_device_private_entry(
239 							page_to_pfn(new));
240 			pte = swp_entry_to_pte(entry);
241 			if (pte_swp_soft_dirty(old_pte))
242 				pte = pte_swp_mksoft_dirty(pte);
243 			if (pte_swp_uffd_wp(old_pte))
244 				pte = pte_swp_mkuffd_wp(pte);
245 		}
246 
247 #ifdef CONFIG_HUGETLB_PAGE
248 		if (folio_test_hugetlb(folio)) {
249 			struct hstate *h = hstate_vma(vma);
250 			unsigned int shift = huge_page_shift(h);
251 			unsigned long psize = huge_page_size(h);
252 
253 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
254 			if (folio_test_anon(folio))
255 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
256 						      rmap_flags);
257 			else
258 				hugetlb_add_file_rmap(folio);
259 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
260 					psize);
261 		} else
262 #endif
263 		{
264 			if (folio_test_anon(folio))
265 				folio_add_anon_rmap_pte(folio, new, vma,
266 							pvmw.address, rmap_flags);
267 			else
268 				folio_add_file_rmap_pte(folio, new, vma);
269 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 		}
271 		if (vma->vm_flags & VM_LOCKED)
272 			mlock_drain_local();
273 
274 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
275 					   compound_order(new));
276 
277 		/* No need to invalidate - it was non-present before */
278 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 	}
280 
281 	return true;
282 }
283 
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
289 {
290 	struct rmap_walk_control rwc = {
291 		.rmap_one = remove_migration_pte,
292 		.arg = src,
293 	};
294 
295 	if (locked)
296 		rmap_walk_locked(dst, &rwc);
297 	else
298 		rmap_walk(dst, &rwc);
299 }
300 
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
307 			  unsigned long address)
308 {
309 	spinlock_t *ptl;
310 	pte_t *ptep;
311 	pte_t pte;
312 	swp_entry_t entry;
313 
314 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
315 	if (!ptep)
316 		return;
317 
318 	pte = ptep_get(ptep);
319 	pte_unmap(ptep);
320 
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	migration_entry_wait_on_locked(entry, ptl);
329 	return;
330 out:
331 	spin_unlock(ptl);
332 }
333 
334 #ifdef CONFIG_HUGETLB_PAGE
335 /*
336  * The vma read lock must be held upon entry. Holding that lock prevents either
337  * the pte or the ptl from being freed.
338  *
339  * This function will release the vma lock before returning.
340  */
341 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
342 {
343 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
344 	pte_t pte;
345 
346 	hugetlb_vma_assert_locked(vma);
347 	spin_lock(ptl);
348 	pte = huge_ptep_get(ptep);
349 
350 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
351 		spin_unlock(ptl);
352 		hugetlb_vma_unlock_read(vma);
353 	} else {
354 		/*
355 		 * If migration entry existed, safe to release vma lock
356 		 * here because the pgtable page won't be freed without the
357 		 * pgtable lock released.  See comment right above pgtable
358 		 * lock release in migration_entry_wait_on_locked().
359 		 */
360 		hugetlb_vma_unlock_read(vma);
361 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
362 	}
363 }
364 #endif
365 
366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
368 {
369 	spinlock_t *ptl;
370 
371 	ptl = pmd_lock(mm, pmd);
372 	if (!is_pmd_migration_entry(*pmd))
373 		goto unlock;
374 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
375 	return;
376 unlock:
377 	spin_unlock(ptl);
378 }
379 #endif
380 
381 static int folio_expected_refs(struct address_space *mapping,
382 		struct folio *folio)
383 {
384 	int refs = 1;
385 	if (!mapping)
386 		return refs;
387 
388 	refs += folio_nr_pages(folio);
389 	if (folio_test_private(folio))
390 		refs++;
391 
392 	return refs;
393 }
394 
395 /*
396  * Replace the page in the mapping.
397  *
398  * The number of remaining references must be:
399  * 1 for anonymous pages without a mapping
400  * 2 for pages with a mapping
401  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402  */
403 int folio_migrate_mapping(struct address_space *mapping,
404 		struct folio *newfolio, struct folio *folio, int extra_count)
405 {
406 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
407 	struct zone *oldzone, *newzone;
408 	int dirty;
409 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
410 	long nr = folio_nr_pages(folio);
411 	long entries, i;
412 
413 	if (!mapping) {
414 		/* Anonymous page without mapping */
415 		if (folio_ref_count(folio) != expected_count)
416 			return -EAGAIN;
417 
418 		/* No turning back from here */
419 		newfolio->index = folio->index;
420 		newfolio->mapping = folio->mapping;
421 		if (folio_test_swapbacked(folio))
422 			__folio_set_swapbacked(newfolio);
423 
424 		return MIGRATEPAGE_SUCCESS;
425 	}
426 
427 	oldzone = folio_zone(folio);
428 	newzone = folio_zone(newfolio);
429 
430 	xas_lock_irq(&xas);
431 	if (!folio_ref_freeze(folio, expected_count)) {
432 		xas_unlock_irq(&xas);
433 		return -EAGAIN;
434 	}
435 
436 	/*
437 	 * Now we know that no one else is looking at the folio:
438 	 * no turning back from here.
439 	 */
440 	newfolio->index = folio->index;
441 	newfolio->mapping = folio->mapping;
442 	folio_ref_add(newfolio, nr); /* add cache reference */
443 	if (folio_test_swapbacked(folio)) {
444 		__folio_set_swapbacked(newfolio);
445 		if (folio_test_swapcache(folio)) {
446 			folio_set_swapcache(newfolio);
447 			newfolio->private = folio_get_private(folio);
448 		}
449 		entries = nr;
450 	} else {
451 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
452 		entries = 1;
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = folio_test_dirty(folio);
457 	if (dirty) {
458 		folio_clear_dirty(folio);
459 		folio_set_dirty(newfolio);
460 	}
461 
462 	/* Swap cache still stores N entries instead of a high-order entry */
463 	for (i = 0; i < entries; i++) {
464 		xas_store(&xas, newfolio);
465 		xas_next(&xas);
466 	}
467 
468 	/*
469 	 * Drop cache reference from old page by unfreezing
470 	 * to one less reference.
471 	 * We know this isn't the last reference.
472 	 */
473 	folio_ref_unfreeze(folio, expected_count - nr);
474 
475 	xas_unlock(&xas);
476 	/* Leave irq disabled to prevent preemption while updating stats */
477 
478 	/*
479 	 * If moved to a different zone then also account
480 	 * the page for that zone. Other VM counters will be
481 	 * taken care of when we establish references to the
482 	 * new page and drop references to the old page.
483 	 *
484 	 * Note that anonymous pages are accounted for
485 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 	 * are mapped to swap space.
487 	 */
488 	if (newzone != oldzone) {
489 		struct lruvec *old_lruvec, *new_lruvec;
490 		struct mem_cgroup *memcg;
491 
492 		memcg = folio_memcg(folio);
493 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
494 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
495 
496 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
497 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
498 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
499 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
500 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
501 
502 			if (folio_test_pmd_mappable(folio)) {
503 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
504 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
505 			}
506 		}
507 #ifdef CONFIG_SWAP
508 		if (folio_test_swapcache(folio)) {
509 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
510 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
511 		}
512 #endif
513 		if (dirty && mapping_can_writeback(mapping)) {
514 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
515 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
516 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
517 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
518 		}
519 	}
520 	local_irq_enable();
521 
522 	return MIGRATEPAGE_SUCCESS;
523 }
524 EXPORT_SYMBOL(folio_migrate_mapping);
525 
526 /*
527  * The expected number of remaining references is the same as that
528  * of folio_migrate_mapping().
529  */
530 int migrate_huge_page_move_mapping(struct address_space *mapping,
531 				   struct folio *dst, struct folio *src)
532 {
533 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
534 	int expected_count;
535 
536 	xas_lock_irq(&xas);
537 	expected_count = folio_expected_refs(mapping, src);
538 	if (!folio_ref_freeze(src, expected_count)) {
539 		xas_unlock_irq(&xas);
540 		return -EAGAIN;
541 	}
542 
543 	dst->index = src->index;
544 	dst->mapping = src->mapping;
545 
546 	folio_ref_add(dst, folio_nr_pages(dst));
547 
548 	xas_store(&xas, dst);
549 
550 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
551 
552 	xas_unlock_irq(&xas);
553 
554 	return MIGRATEPAGE_SUCCESS;
555 }
556 
557 /*
558  * Copy the flags and some other ancillary information
559  */
560 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
561 {
562 	int cpupid;
563 
564 	if (folio_test_error(folio))
565 		folio_set_error(newfolio);
566 	if (folio_test_referenced(folio))
567 		folio_set_referenced(newfolio);
568 	if (folio_test_uptodate(folio))
569 		folio_mark_uptodate(newfolio);
570 	if (folio_test_clear_active(folio)) {
571 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
572 		folio_set_active(newfolio);
573 	} else if (folio_test_clear_unevictable(folio))
574 		folio_set_unevictable(newfolio);
575 	if (folio_test_workingset(folio))
576 		folio_set_workingset(newfolio);
577 	if (folio_test_checked(folio))
578 		folio_set_checked(newfolio);
579 	/*
580 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
581 	 * migration entries. We can still have PG_anon_exclusive set on an
582 	 * effectively unmapped and unreferenced first sub-pages of an
583 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
584 	 */
585 	if (folio_test_mappedtodisk(folio))
586 		folio_set_mappedtodisk(newfolio);
587 
588 	/* Move dirty on pages not done by folio_migrate_mapping() */
589 	if (folio_test_dirty(folio))
590 		folio_set_dirty(newfolio);
591 
592 	if (folio_test_young(folio))
593 		folio_set_young(newfolio);
594 	if (folio_test_idle(folio))
595 		folio_set_idle(newfolio);
596 
597 	/*
598 	 * Copy NUMA information to the new page, to prevent over-eager
599 	 * future migrations of this same page.
600 	 */
601 	cpupid = folio_xchg_last_cpupid(folio, -1);
602 	/*
603 	 * For memory tiering mode, when migrate between slow and fast
604 	 * memory node, reset cpupid, because that is used to record
605 	 * page access time in slow memory node.
606 	 */
607 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
608 		bool f_toptier = node_is_toptier(folio_nid(folio));
609 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
610 
611 		if (f_toptier != t_toptier)
612 			cpupid = -1;
613 	}
614 	folio_xchg_last_cpupid(newfolio, cpupid);
615 
616 	folio_migrate_ksm(newfolio, folio);
617 	/*
618 	 * Please do not reorder this without considering how mm/ksm.c's
619 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
620 	 */
621 	if (folio_test_swapcache(folio))
622 		folio_clear_swapcache(folio);
623 	folio_clear_private(folio);
624 
625 	/* page->private contains hugetlb specific flags */
626 	if (!folio_test_hugetlb(folio))
627 		folio->private = NULL;
628 
629 	/*
630 	 * If any waiters have accumulated on the new page then
631 	 * wake them up.
632 	 */
633 	if (folio_test_writeback(newfolio))
634 		folio_end_writeback(newfolio);
635 
636 	/*
637 	 * PG_readahead shares the same bit with PG_reclaim.  The above
638 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
639 	 * bit after that.
640 	 */
641 	if (folio_test_readahead(folio))
642 		folio_set_readahead(newfolio);
643 
644 	folio_copy_owner(newfolio, folio);
645 
646 	mem_cgroup_migrate(folio, newfolio);
647 }
648 EXPORT_SYMBOL(folio_migrate_flags);
649 
650 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
651 {
652 	folio_copy(newfolio, folio);
653 	folio_migrate_flags(newfolio, folio);
654 }
655 EXPORT_SYMBOL(folio_migrate_copy);
656 
657 /************************************************************
658  *                    Migration functions
659  ***********************************************************/
660 
661 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
662 		struct folio *src, enum migrate_mode mode, int extra_count)
663 {
664 	int rc;
665 
666 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
667 
668 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
669 
670 	if (rc != MIGRATEPAGE_SUCCESS)
671 		return rc;
672 
673 	if (mode != MIGRATE_SYNC_NO_COPY)
674 		folio_migrate_copy(dst, src);
675 	else
676 		folio_migrate_flags(dst, src);
677 	return MIGRATEPAGE_SUCCESS;
678 }
679 
680 /**
681  * migrate_folio() - Simple folio migration.
682  * @mapping: The address_space containing the folio.
683  * @dst: The folio to migrate the data to.
684  * @src: The folio containing the current data.
685  * @mode: How to migrate the page.
686  *
687  * Common logic to directly migrate a single LRU folio suitable for
688  * folios that do not use PagePrivate/PagePrivate2.
689  *
690  * Folios are locked upon entry and exit.
691  */
692 int migrate_folio(struct address_space *mapping, struct folio *dst,
693 		struct folio *src, enum migrate_mode mode)
694 {
695 	return migrate_folio_extra(mapping, dst, src, mode, 0);
696 }
697 EXPORT_SYMBOL(migrate_folio);
698 
699 #ifdef CONFIG_BUFFER_HEAD
700 /* Returns true if all buffers are successfully locked */
701 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
702 							enum migrate_mode mode)
703 {
704 	struct buffer_head *bh = head;
705 	struct buffer_head *failed_bh;
706 
707 	do {
708 		if (!trylock_buffer(bh)) {
709 			if (mode == MIGRATE_ASYNC)
710 				goto unlock;
711 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
712 				goto unlock;
713 			lock_buffer(bh);
714 		}
715 
716 		bh = bh->b_this_page;
717 	} while (bh != head);
718 
719 	return true;
720 
721 unlock:
722 	/* We failed to lock the buffer and cannot stall. */
723 	failed_bh = bh;
724 	bh = head;
725 	while (bh != failed_bh) {
726 		unlock_buffer(bh);
727 		bh = bh->b_this_page;
728 	}
729 
730 	return false;
731 }
732 
733 static int __buffer_migrate_folio(struct address_space *mapping,
734 		struct folio *dst, struct folio *src, enum migrate_mode mode,
735 		bool check_refs)
736 {
737 	struct buffer_head *bh, *head;
738 	int rc;
739 	int expected_count;
740 
741 	head = folio_buffers(src);
742 	if (!head)
743 		return migrate_folio(mapping, dst, src, mode);
744 
745 	/* Check whether page does not have extra refs before we do more work */
746 	expected_count = folio_expected_refs(mapping, src);
747 	if (folio_ref_count(src) != expected_count)
748 		return -EAGAIN;
749 
750 	if (!buffer_migrate_lock_buffers(head, mode))
751 		return -EAGAIN;
752 
753 	if (check_refs) {
754 		bool busy;
755 		bool invalidated = false;
756 
757 recheck_buffers:
758 		busy = false;
759 		spin_lock(&mapping->i_private_lock);
760 		bh = head;
761 		do {
762 			if (atomic_read(&bh->b_count)) {
763 				busy = true;
764 				break;
765 			}
766 			bh = bh->b_this_page;
767 		} while (bh != head);
768 		if (busy) {
769 			if (invalidated) {
770 				rc = -EAGAIN;
771 				goto unlock_buffers;
772 			}
773 			spin_unlock(&mapping->i_private_lock);
774 			invalidate_bh_lrus();
775 			invalidated = true;
776 			goto recheck_buffers;
777 		}
778 	}
779 
780 	rc = folio_migrate_mapping(mapping, dst, src, 0);
781 	if (rc != MIGRATEPAGE_SUCCESS)
782 		goto unlock_buffers;
783 
784 	folio_attach_private(dst, folio_detach_private(src));
785 
786 	bh = head;
787 	do {
788 		folio_set_bh(bh, dst, bh_offset(bh));
789 		bh = bh->b_this_page;
790 	} while (bh != head);
791 
792 	if (mode != MIGRATE_SYNC_NO_COPY)
793 		folio_migrate_copy(dst, src);
794 	else
795 		folio_migrate_flags(dst, src);
796 
797 	rc = MIGRATEPAGE_SUCCESS;
798 unlock_buffers:
799 	if (check_refs)
800 		spin_unlock(&mapping->i_private_lock);
801 	bh = head;
802 	do {
803 		unlock_buffer(bh);
804 		bh = bh->b_this_page;
805 	} while (bh != head);
806 
807 	return rc;
808 }
809 
810 /**
811  * buffer_migrate_folio() - Migration function for folios with buffers.
812  * @mapping: The address space containing @src.
813  * @dst: The folio to migrate to.
814  * @src: The folio to migrate from.
815  * @mode: How to migrate the folio.
816  *
817  * This function can only be used if the underlying filesystem guarantees
818  * that no other references to @src exist. For example attached buffer
819  * heads are accessed only under the folio lock.  If your filesystem cannot
820  * provide this guarantee, buffer_migrate_folio_norefs() may be more
821  * appropriate.
822  *
823  * Return: 0 on success or a negative errno on failure.
824  */
825 int buffer_migrate_folio(struct address_space *mapping,
826 		struct folio *dst, struct folio *src, enum migrate_mode mode)
827 {
828 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
829 }
830 EXPORT_SYMBOL(buffer_migrate_folio);
831 
832 /**
833  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
834  * @mapping: The address space containing @src.
835  * @dst: The folio to migrate to.
836  * @src: The folio to migrate from.
837  * @mode: How to migrate the folio.
838  *
839  * Like buffer_migrate_folio() except that this variant is more careful
840  * and checks that there are also no buffer head references. This function
841  * is the right one for mappings where buffer heads are directly looked
842  * up and referenced (such as block device mappings).
843  *
844  * Return: 0 on success or a negative errno on failure.
845  */
846 int buffer_migrate_folio_norefs(struct address_space *mapping,
847 		struct folio *dst, struct folio *src, enum migrate_mode mode)
848 {
849 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
850 }
851 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
852 #endif /* CONFIG_BUFFER_HEAD */
853 
854 int filemap_migrate_folio(struct address_space *mapping,
855 		struct folio *dst, struct folio *src, enum migrate_mode mode)
856 {
857 	int ret;
858 
859 	ret = folio_migrate_mapping(mapping, dst, src, 0);
860 	if (ret != MIGRATEPAGE_SUCCESS)
861 		return ret;
862 
863 	if (folio_get_private(src))
864 		folio_attach_private(dst, folio_detach_private(src));
865 
866 	if (mode != MIGRATE_SYNC_NO_COPY)
867 		folio_migrate_copy(dst, src);
868 	else
869 		folio_migrate_flags(dst, src);
870 	return MIGRATEPAGE_SUCCESS;
871 }
872 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
873 
874 /*
875  * Writeback a folio to clean the dirty state
876  */
877 static int writeout(struct address_space *mapping, struct folio *folio)
878 {
879 	struct writeback_control wbc = {
880 		.sync_mode = WB_SYNC_NONE,
881 		.nr_to_write = 1,
882 		.range_start = 0,
883 		.range_end = LLONG_MAX,
884 		.for_reclaim = 1
885 	};
886 	int rc;
887 
888 	if (!mapping->a_ops->writepage)
889 		/* No write method for the address space */
890 		return -EINVAL;
891 
892 	if (!folio_clear_dirty_for_io(folio))
893 		/* Someone else already triggered a write */
894 		return -EAGAIN;
895 
896 	/*
897 	 * A dirty folio may imply that the underlying filesystem has
898 	 * the folio on some queue. So the folio must be clean for
899 	 * migration. Writeout may mean we lose the lock and the
900 	 * folio state is no longer what we checked for earlier.
901 	 * At this point we know that the migration attempt cannot
902 	 * be successful.
903 	 */
904 	remove_migration_ptes(folio, folio, false);
905 
906 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
907 
908 	if (rc != AOP_WRITEPAGE_ACTIVATE)
909 		/* unlocked. Relock */
910 		folio_lock(folio);
911 
912 	return (rc < 0) ? -EIO : -EAGAIN;
913 }
914 
915 /*
916  * Default handling if a filesystem does not provide a migration function.
917  */
918 static int fallback_migrate_folio(struct address_space *mapping,
919 		struct folio *dst, struct folio *src, enum migrate_mode mode)
920 {
921 	if (folio_test_dirty(src)) {
922 		/* Only writeback folios in full synchronous migration */
923 		switch (mode) {
924 		case MIGRATE_SYNC:
925 		case MIGRATE_SYNC_NO_COPY:
926 			break;
927 		default:
928 			return -EBUSY;
929 		}
930 		return writeout(mapping, src);
931 	}
932 
933 	/*
934 	 * Buffers may be managed in a filesystem specific way.
935 	 * We must have no buffers or drop them.
936 	 */
937 	if (!filemap_release_folio(src, GFP_KERNEL))
938 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
939 
940 	return migrate_folio(mapping, dst, src, mode);
941 }
942 
943 /*
944  * Move a page to a newly allocated page
945  * The page is locked and all ptes have been successfully removed.
946  *
947  * The new page will have replaced the old page if this function
948  * is successful.
949  *
950  * Return value:
951  *   < 0 - error code
952  *  MIGRATEPAGE_SUCCESS - success
953  */
954 static int move_to_new_folio(struct folio *dst, struct folio *src,
955 				enum migrate_mode mode)
956 {
957 	int rc = -EAGAIN;
958 	bool is_lru = !__folio_test_movable(src);
959 
960 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
961 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
962 
963 	if (likely(is_lru)) {
964 		struct address_space *mapping = folio_mapping(src);
965 
966 		if (!mapping)
967 			rc = migrate_folio(mapping, dst, src, mode);
968 		else if (mapping_unmovable(mapping))
969 			rc = -EOPNOTSUPP;
970 		else if (mapping->a_ops->migrate_folio)
971 			/*
972 			 * Most folios have a mapping and most filesystems
973 			 * provide a migrate_folio callback. Anonymous folios
974 			 * are part of swap space which also has its own
975 			 * migrate_folio callback. This is the most common path
976 			 * for page migration.
977 			 */
978 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
979 								mode);
980 		else
981 			rc = fallback_migrate_folio(mapping, dst, src, mode);
982 	} else {
983 		const struct movable_operations *mops;
984 
985 		/*
986 		 * In case of non-lru page, it could be released after
987 		 * isolation step. In that case, we shouldn't try migration.
988 		 */
989 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
990 		if (!folio_test_movable(src)) {
991 			rc = MIGRATEPAGE_SUCCESS;
992 			folio_clear_isolated(src);
993 			goto out;
994 		}
995 
996 		mops = folio_movable_ops(src);
997 		rc = mops->migrate_page(&dst->page, &src->page, mode);
998 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
999 				!folio_test_isolated(src));
1000 	}
1001 
1002 	/*
1003 	 * When successful, old pagecache src->mapping must be cleared before
1004 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1005 	 */
1006 	if (rc == MIGRATEPAGE_SUCCESS) {
1007 		if (__folio_test_movable(src)) {
1008 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1009 
1010 			/*
1011 			 * We clear PG_movable under page_lock so any compactor
1012 			 * cannot try to migrate this page.
1013 			 */
1014 			folio_clear_isolated(src);
1015 		}
1016 
1017 		/*
1018 		 * Anonymous and movable src->mapping will be cleared by
1019 		 * free_pages_prepare so don't reset it here for keeping
1020 		 * the type to work PageAnon, for example.
1021 		 */
1022 		if (!folio_mapping_flags(src))
1023 			src->mapping = NULL;
1024 
1025 		if (likely(!folio_is_zone_device(dst)))
1026 			flush_dcache_folio(dst);
1027 	}
1028 out:
1029 	return rc;
1030 }
1031 
1032 /*
1033  * To record some information during migration, we use unused private
1034  * field of struct folio of the newly allocated destination folio.
1035  * This is safe because nobody is using it except us.
1036  */
1037 enum {
1038 	PAGE_WAS_MAPPED = BIT(0),
1039 	PAGE_WAS_MLOCKED = BIT(1),
1040 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1041 };
1042 
1043 static void __migrate_folio_record(struct folio *dst,
1044 				   int old_page_state,
1045 				   struct anon_vma *anon_vma)
1046 {
1047 	dst->private = (void *)anon_vma + old_page_state;
1048 }
1049 
1050 static void __migrate_folio_extract(struct folio *dst,
1051 				   int *old_page_state,
1052 				   struct anon_vma **anon_vmap)
1053 {
1054 	unsigned long private = (unsigned long)dst->private;
1055 
1056 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1057 	*old_page_state = private & PAGE_OLD_STATES;
1058 	dst->private = NULL;
1059 }
1060 
1061 /* Restore the source folio to the original state upon failure */
1062 static void migrate_folio_undo_src(struct folio *src,
1063 				   int page_was_mapped,
1064 				   struct anon_vma *anon_vma,
1065 				   bool locked,
1066 				   struct list_head *ret)
1067 {
1068 	if (page_was_mapped)
1069 		remove_migration_ptes(src, src, false);
1070 	/* Drop an anon_vma reference if we took one */
1071 	if (anon_vma)
1072 		put_anon_vma(anon_vma);
1073 	if (locked)
1074 		folio_unlock(src);
1075 	if (ret)
1076 		list_move_tail(&src->lru, ret);
1077 }
1078 
1079 /* Restore the destination folio to the original state upon failure */
1080 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1081 		free_folio_t put_new_folio, unsigned long private)
1082 {
1083 	if (locked)
1084 		folio_unlock(dst);
1085 	if (put_new_folio)
1086 		put_new_folio(dst, private);
1087 	else
1088 		folio_put(dst);
1089 }
1090 
1091 /* Cleanup src folio upon migration success */
1092 static void migrate_folio_done(struct folio *src,
1093 			       enum migrate_reason reason)
1094 {
1095 	/*
1096 	 * Compaction can migrate also non-LRU pages which are
1097 	 * not accounted to NR_ISOLATED_*. They can be recognized
1098 	 * as __folio_test_movable
1099 	 */
1100 	if (likely(!__folio_test_movable(src)))
1101 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1102 				    folio_is_file_lru(src), -folio_nr_pages(src));
1103 
1104 	if (reason != MR_MEMORY_FAILURE)
1105 		/* We release the page in page_handle_poison. */
1106 		folio_put(src);
1107 }
1108 
1109 /* Obtain the lock on page, remove all ptes. */
1110 static int migrate_folio_unmap(new_folio_t get_new_folio,
1111 		free_folio_t put_new_folio, unsigned long private,
1112 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1113 		enum migrate_reason reason, struct list_head *ret)
1114 {
1115 	struct folio *dst;
1116 	int rc = -EAGAIN;
1117 	int old_page_state = 0;
1118 	struct anon_vma *anon_vma = NULL;
1119 	bool is_lru = !__folio_test_movable(src);
1120 	bool locked = false;
1121 	bool dst_locked = false;
1122 
1123 	if (folio_ref_count(src) == 1) {
1124 		/* Folio was freed from under us. So we are done. */
1125 		folio_clear_active(src);
1126 		folio_clear_unevictable(src);
1127 		/* free_pages_prepare() will clear PG_isolated. */
1128 		list_del(&src->lru);
1129 		migrate_folio_done(src, reason);
1130 		return MIGRATEPAGE_SUCCESS;
1131 	}
1132 
1133 	dst = get_new_folio(src, private);
1134 	if (!dst)
1135 		return -ENOMEM;
1136 	*dstp = dst;
1137 
1138 	dst->private = NULL;
1139 
1140 	if (!folio_trylock(src)) {
1141 		if (mode == MIGRATE_ASYNC)
1142 			goto out;
1143 
1144 		/*
1145 		 * It's not safe for direct compaction to call lock_page.
1146 		 * For example, during page readahead pages are added locked
1147 		 * to the LRU. Later, when the IO completes the pages are
1148 		 * marked uptodate and unlocked. However, the queueing
1149 		 * could be merging multiple pages for one bio (e.g.
1150 		 * mpage_readahead). If an allocation happens for the
1151 		 * second or third page, the process can end up locking
1152 		 * the same page twice and deadlocking. Rather than
1153 		 * trying to be clever about what pages can be locked,
1154 		 * avoid the use of lock_page for direct compaction
1155 		 * altogether.
1156 		 */
1157 		if (current->flags & PF_MEMALLOC)
1158 			goto out;
1159 
1160 		/*
1161 		 * In "light" mode, we can wait for transient locks (eg
1162 		 * inserting a page into the page table), but it's not
1163 		 * worth waiting for I/O.
1164 		 */
1165 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1166 			goto out;
1167 
1168 		folio_lock(src);
1169 	}
1170 	locked = true;
1171 	if (folio_test_mlocked(src))
1172 		old_page_state |= PAGE_WAS_MLOCKED;
1173 
1174 	if (folio_test_writeback(src)) {
1175 		/*
1176 		 * Only in the case of a full synchronous migration is it
1177 		 * necessary to wait for PageWriteback. In the async case,
1178 		 * the retry loop is too short and in the sync-light case,
1179 		 * the overhead of stalling is too much
1180 		 */
1181 		switch (mode) {
1182 		case MIGRATE_SYNC:
1183 		case MIGRATE_SYNC_NO_COPY:
1184 			break;
1185 		default:
1186 			rc = -EBUSY;
1187 			goto out;
1188 		}
1189 		folio_wait_writeback(src);
1190 	}
1191 
1192 	/*
1193 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1194 	 * we cannot notice that anon_vma is freed while we migrate a page.
1195 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1196 	 * of migration. File cache pages are no problem because of page_lock()
1197 	 * File Caches may use write_page() or lock_page() in migration, then,
1198 	 * just care Anon page here.
1199 	 *
1200 	 * Only folio_get_anon_vma() understands the subtleties of
1201 	 * getting a hold on an anon_vma from outside one of its mms.
1202 	 * But if we cannot get anon_vma, then we won't need it anyway,
1203 	 * because that implies that the anon page is no longer mapped
1204 	 * (and cannot be remapped so long as we hold the page lock).
1205 	 */
1206 	if (folio_test_anon(src) && !folio_test_ksm(src))
1207 		anon_vma = folio_get_anon_vma(src);
1208 
1209 	/*
1210 	 * Block others from accessing the new page when we get around to
1211 	 * establishing additional references. We are usually the only one
1212 	 * holding a reference to dst at this point. We used to have a BUG
1213 	 * here if folio_trylock(dst) fails, but would like to allow for
1214 	 * cases where there might be a race with the previous use of dst.
1215 	 * This is much like races on refcount of oldpage: just don't BUG().
1216 	 */
1217 	if (unlikely(!folio_trylock(dst)))
1218 		goto out;
1219 	dst_locked = true;
1220 
1221 	if (unlikely(!is_lru)) {
1222 		__migrate_folio_record(dst, old_page_state, anon_vma);
1223 		return MIGRATEPAGE_UNMAP;
1224 	}
1225 
1226 	/*
1227 	 * Corner case handling:
1228 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1229 	 * and treated as swapcache but it has no rmap yet.
1230 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1231 	 * trigger a BUG.  So handle it here.
1232 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1233 	 * fs-private metadata. The page can be picked up due to memory
1234 	 * offlining.  Everywhere else except page reclaim, the page is
1235 	 * invisible to the vm, so the page can not be migrated.  So try to
1236 	 * free the metadata, so the page can be freed.
1237 	 */
1238 	if (!src->mapping) {
1239 		if (folio_test_private(src)) {
1240 			try_to_free_buffers(src);
1241 			goto out;
1242 		}
1243 	} else if (folio_mapped(src)) {
1244 		/* Establish migration ptes */
1245 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1246 			       !folio_test_ksm(src) && !anon_vma, src);
1247 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1248 		old_page_state |= PAGE_WAS_MAPPED;
1249 	}
1250 
1251 	if (!folio_mapped(src)) {
1252 		__migrate_folio_record(dst, old_page_state, anon_vma);
1253 		return MIGRATEPAGE_UNMAP;
1254 	}
1255 
1256 out:
1257 	/*
1258 	 * A folio that has not been unmapped will be restored to
1259 	 * right list unless we want to retry.
1260 	 */
1261 	if (rc == -EAGAIN)
1262 		ret = NULL;
1263 
1264 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1265 			       anon_vma, locked, ret);
1266 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1267 
1268 	return rc;
1269 }
1270 
1271 /* Migrate the folio to the newly allocated folio in dst. */
1272 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1273 			      struct folio *src, struct folio *dst,
1274 			      enum migrate_mode mode, enum migrate_reason reason,
1275 			      struct list_head *ret)
1276 {
1277 	int rc;
1278 	int old_page_state = 0;
1279 	struct anon_vma *anon_vma = NULL;
1280 	bool is_lru = !__folio_test_movable(src);
1281 	struct list_head *prev;
1282 
1283 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1284 	prev = dst->lru.prev;
1285 	list_del(&dst->lru);
1286 
1287 	rc = move_to_new_folio(dst, src, mode);
1288 	if (rc)
1289 		goto out;
1290 
1291 	if (unlikely(!is_lru))
1292 		goto out_unlock_both;
1293 
1294 	/*
1295 	 * When successful, push dst to LRU immediately: so that if it
1296 	 * turns out to be an mlocked page, remove_migration_ptes() will
1297 	 * automatically build up the correct dst->mlock_count for it.
1298 	 *
1299 	 * We would like to do something similar for the old page, when
1300 	 * unsuccessful, and other cases when a page has been temporarily
1301 	 * isolated from the unevictable LRU: but this case is the easiest.
1302 	 */
1303 	folio_add_lru(dst);
1304 	if (old_page_state & PAGE_WAS_MLOCKED)
1305 		lru_add_drain();
1306 
1307 	if (old_page_state & PAGE_WAS_MAPPED)
1308 		remove_migration_ptes(src, dst, false);
1309 
1310 out_unlock_both:
1311 	folio_unlock(dst);
1312 	set_page_owner_migrate_reason(&dst->page, reason);
1313 	/*
1314 	 * If migration is successful, decrease refcount of dst,
1315 	 * which will not free the page because new page owner increased
1316 	 * refcounter.
1317 	 */
1318 	folio_put(dst);
1319 
1320 	/*
1321 	 * A folio that has been migrated has all references removed
1322 	 * and will be freed.
1323 	 */
1324 	list_del(&src->lru);
1325 	/* Drop an anon_vma reference if we took one */
1326 	if (anon_vma)
1327 		put_anon_vma(anon_vma);
1328 	folio_unlock(src);
1329 	migrate_folio_done(src, reason);
1330 
1331 	return rc;
1332 out:
1333 	/*
1334 	 * A folio that has not been migrated will be restored to
1335 	 * right list unless we want to retry.
1336 	 */
1337 	if (rc == -EAGAIN) {
1338 		list_add(&dst->lru, prev);
1339 		__migrate_folio_record(dst, old_page_state, anon_vma);
1340 		return rc;
1341 	}
1342 
1343 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1344 			       anon_vma, true, ret);
1345 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1346 
1347 	return rc;
1348 }
1349 
1350 /*
1351  * Counterpart of unmap_and_move_page() for hugepage migration.
1352  *
1353  * This function doesn't wait the completion of hugepage I/O
1354  * because there is no race between I/O and migration for hugepage.
1355  * Note that currently hugepage I/O occurs only in direct I/O
1356  * where no lock is held and PG_writeback is irrelevant,
1357  * and writeback status of all subpages are counted in the reference
1358  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1359  * under direct I/O, the reference of the head page is 512 and a bit more.)
1360  * This means that when we try to migrate hugepage whose subpages are
1361  * doing direct I/O, some references remain after try_to_unmap() and
1362  * hugepage migration fails without data corruption.
1363  *
1364  * There is also no race when direct I/O is issued on the page under migration,
1365  * because then pte is replaced with migration swap entry and direct I/O code
1366  * will wait in the page fault for migration to complete.
1367  */
1368 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1369 		free_folio_t put_new_folio, unsigned long private,
1370 		struct folio *src, int force, enum migrate_mode mode,
1371 		int reason, struct list_head *ret)
1372 {
1373 	struct folio *dst;
1374 	int rc = -EAGAIN;
1375 	int page_was_mapped = 0;
1376 	struct anon_vma *anon_vma = NULL;
1377 	struct address_space *mapping = NULL;
1378 
1379 	if (folio_ref_count(src) == 1) {
1380 		/* page was freed from under us. So we are done. */
1381 		folio_putback_active_hugetlb(src);
1382 		return MIGRATEPAGE_SUCCESS;
1383 	}
1384 
1385 	dst = get_new_folio(src, private);
1386 	if (!dst)
1387 		return -ENOMEM;
1388 
1389 	if (!folio_trylock(src)) {
1390 		if (!force)
1391 			goto out;
1392 		switch (mode) {
1393 		case MIGRATE_SYNC:
1394 		case MIGRATE_SYNC_NO_COPY:
1395 			break;
1396 		default:
1397 			goto out;
1398 		}
1399 		folio_lock(src);
1400 	}
1401 
1402 	/*
1403 	 * Check for pages which are in the process of being freed.  Without
1404 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1405 	 * be called and we could leak usage counts for subpools.
1406 	 */
1407 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1408 		rc = -EBUSY;
1409 		goto out_unlock;
1410 	}
1411 
1412 	if (folio_test_anon(src))
1413 		anon_vma = folio_get_anon_vma(src);
1414 
1415 	if (unlikely(!folio_trylock(dst)))
1416 		goto put_anon;
1417 
1418 	if (folio_mapped(src)) {
1419 		enum ttu_flags ttu = 0;
1420 
1421 		if (!folio_test_anon(src)) {
1422 			/*
1423 			 * In shared mappings, try_to_unmap could potentially
1424 			 * call huge_pmd_unshare.  Because of this, take
1425 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1426 			 * to let lower levels know we have taken the lock.
1427 			 */
1428 			mapping = hugetlb_page_mapping_lock_write(&src->page);
1429 			if (unlikely(!mapping))
1430 				goto unlock_put_anon;
1431 
1432 			ttu = TTU_RMAP_LOCKED;
1433 		}
1434 
1435 		try_to_migrate(src, ttu);
1436 		page_was_mapped = 1;
1437 
1438 		if (ttu & TTU_RMAP_LOCKED)
1439 			i_mmap_unlock_write(mapping);
1440 	}
1441 
1442 	if (!folio_mapped(src))
1443 		rc = move_to_new_folio(dst, src, mode);
1444 
1445 	if (page_was_mapped)
1446 		remove_migration_ptes(src,
1447 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1448 
1449 unlock_put_anon:
1450 	folio_unlock(dst);
1451 
1452 put_anon:
1453 	if (anon_vma)
1454 		put_anon_vma(anon_vma);
1455 
1456 	if (rc == MIGRATEPAGE_SUCCESS) {
1457 		move_hugetlb_state(src, dst, reason);
1458 		put_new_folio = NULL;
1459 	}
1460 
1461 out_unlock:
1462 	folio_unlock(src);
1463 out:
1464 	if (rc == MIGRATEPAGE_SUCCESS)
1465 		folio_putback_active_hugetlb(src);
1466 	else if (rc != -EAGAIN)
1467 		list_move_tail(&src->lru, ret);
1468 
1469 	/*
1470 	 * If migration was not successful and there's a freeing callback, use
1471 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1472 	 * isolation.
1473 	 */
1474 	if (put_new_folio)
1475 		put_new_folio(dst, private);
1476 	else
1477 		folio_putback_active_hugetlb(dst);
1478 
1479 	return rc;
1480 }
1481 
1482 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1483 {
1484 	int rc;
1485 
1486 	folio_lock(folio);
1487 	rc = split_folio_to_list(folio, split_folios);
1488 	folio_unlock(folio);
1489 	if (!rc)
1490 		list_move_tail(&folio->lru, split_folios);
1491 
1492 	return rc;
1493 }
1494 
1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1497 #else
1498 #define NR_MAX_BATCHED_MIGRATION	512
1499 #endif
1500 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1501 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1502 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1503 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1504 
1505 struct migrate_pages_stats {
1506 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1507 				   units of base pages */
1508 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1509 				   units of base pages.  Untried folios aren't counted */
1510 	int nr_thp_succeeded;	/* THP migrated successfully */
1511 	int nr_thp_failed;	/* THP failed to be migrated */
1512 	int nr_thp_split;	/* THP split before migrating */
1513 	int nr_split;	/* Large folio (include THP) split before migrating */
1514 };
1515 
1516 /*
1517  * Returns the number of hugetlb folios that were not migrated, or an error code
1518  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1519  * any more because the list has become empty or no retryable hugetlb folios
1520  * exist any more. It is caller's responsibility to call putback_movable_pages()
1521  * only if ret != 0.
1522  */
1523 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1524 			    free_folio_t put_new_folio, unsigned long private,
1525 			    enum migrate_mode mode, int reason,
1526 			    struct migrate_pages_stats *stats,
1527 			    struct list_head *ret_folios)
1528 {
1529 	int retry = 1;
1530 	int nr_failed = 0;
1531 	int nr_retry_pages = 0;
1532 	int pass = 0;
1533 	struct folio *folio, *folio2;
1534 	int rc, nr_pages;
1535 
1536 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1537 		retry = 0;
1538 		nr_retry_pages = 0;
1539 
1540 		list_for_each_entry_safe(folio, folio2, from, lru) {
1541 			if (!folio_test_hugetlb(folio))
1542 				continue;
1543 
1544 			nr_pages = folio_nr_pages(folio);
1545 
1546 			cond_resched();
1547 
1548 			/*
1549 			 * Migratability of hugepages depends on architectures and
1550 			 * their size.  This check is necessary because some callers
1551 			 * of hugepage migration like soft offline and memory
1552 			 * hotremove don't walk through page tables or check whether
1553 			 * the hugepage is pmd-based or not before kicking migration.
1554 			 */
1555 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1556 				nr_failed++;
1557 				stats->nr_failed_pages += nr_pages;
1558 				list_move_tail(&folio->lru, ret_folios);
1559 				continue;
1560 			}
1561 
1562 			rc = unmap_and_move_huge_page(get_new_folio,
1563 						      put_new_folio, private,
1564 						      folio, pass > 2, mode,
1565 						      reason, ret_folios);
1566 			/*
1567 			 * The rules are:
1568 			 *	Success: hugetlb folio will be put back
1569 			 *	-EAGAIN: stay on the from list
1570 			 *	-ENOMEM: stay on the from list
1571 			 *	Other errno: put on ret_folios list
1572 			 */
1573 			switch(rc) {
1574 			case -ENOMEM:
1575 				/*
1576 				 * When memory is low, don't bother to try to migrate
1577 				 * other folios, just exit.
1578 				 */
1579 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1580 				return -ENOMEM;
1581 			case -EAGAIN:
1582 				retry++;
1583 				nr_retry_pages += nr_pages;
1584 				break;
1585 			case MIGRATEPAGE_SUCCESS:
1586 				stats->nr_succeeded += nr_pages;
1587 				break;
1588 			default:
1589 				/*
1590 				 * Permanent failure (-EBUSY, etc.):
1591 				 * unlike -EAGAIN case, the failed folio is
1592 				 * removed from migration folio list and not
1593 				 * retried in the next outer loop.
1594 				 */
1595 				nr_failed++;
1596 				stats->nr_failed_pages += nr_pages;
1597 				break;
1598 			}
1599 		}
1600 	}
1601 	/*
1602 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1603 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1604 	 * folios as failed.
1605 	 */
1606 	nr_failed += retry;
1607 	stats->nr_failed_pages += nr_retry_pages;
1608 
1609 	return nr_failed;
1610 }
1611 
1612 /*
1613  * migrate_pages_batch() first unmaps folios in the from list as many as
1614  * possible, then move the unmapped folios.
1615  *
1616  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1617  * lock or bit when we have locked more than one folio.  Which may cause
1618  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1619  * length of the from list must be <= 1.
1620  */
1621 static int migrate_pages_batch(struct list_head *from,
1622 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1623 		unsigned long private, enum migrate_mode mode, int reason,
1624 		struct list_head *ret_folios, struct list_head *split_folios,
1625 		struct migrate_pages_stats *stats, int nr_pass)
1626 {
1627 	int retry = 1;
1628 	int thp_retry = 1;
1629 	int nr_failed = 0;
1630 	int nr_retry_pages = 0;
1631 	int pass = 0;
1632 	bool is_thp = false;
1633 	bool is_large = false;
1634 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1635 	int rc, rc_saved = 0, nr_pages;
1636 	LIST_HEAD(unmap_folios);
1637 	LIST_HEAD(dst_folios);
1638 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1639 
1640 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1641 			!list_empty(from) && !list_is_singular(from));
1642 
1643 	for (pass = 0; pass < nr_pass && retry; pass++) {
1644 		retry = 0;
1645 		thp_retry = 0;
1646 		nr_retry_pages = 0;
1647 
1648 		list_for_each_entry_safe(folio, folio2, from, lru) {
1649 			is_large = folio_test_large(folio);
1650 			is_thp = is_large && folio_test_pmd_mappable(folio);
1651 			nr_pages = folio_nr_pages(folio);
1652 
1653 			cond_resched();
1654 
1655 			/*
1656 			 * Large folio migration might be unsupported or
1657 			 * the allocation might be failed so we should retry
1658 			 * on the same folio with the large folio split
1659 			 * to normal folios.
1660 			 *
1661 			 * Split folios are put in split_folios, and
1662 			 * we will migrate them after the rest of the
1663 			 * list is processed.
1664 			 */
1665 			if (!thp_migration_supported() && is_thp) {
1666 				nr_failed++;
1667 				stats->nr_thp_failed++;
1668 				if (!try_split_folio(folio, split_folios)) {
1669 					stats->nr_thp_split++;
1670 					stats->nr_split++;
1671 					continue;
1672 				}
1673 				stats->nr_failed_pages += nr_pages;
1674 				list_move_tail(&folio->lru, ret_folios);
1675 				continue;
1676 			}
1677 
1678 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1679 					private, folio, &dst, mode, reason,
1680 					ret_folios);
1681 			/*
1682 			 * The rules are:
1683 			 *	Success: folio will be freed
1684 			 *	Unmap: folio will be put on unmap_folios list,
1685 			 *	       dst folio put on dst_folios list
1686 			 *	-EAGAIN: stay on the from list
1687 			 *	-ENOMEM: stay on the from list
1688 			 *	Other errno: put on ret_folios list
1689 			 */
1690 			switch(rc) {
1691 			case -ENOMEM:
1692 				/*
1693 				 * When memory is low, don't bother to try to migrate
1694 				 * other folios, move unmapped folios, then exit.
1695 				 */
1696 				nr_failed++;
1697 				stats->nr_thp_failed += is_thp;
1698 				/* Large folio NUMA faulting doesn't split to retry. */
1699 				if (is_large && !nosplit) {
1700 					int ret = try_split_folio(folio, split_folios);
1701 
1702 					if (!ret) {
1703 						stats->nr_thp_split += is_thp;
1704 						stats->nr_split++;
1705 						break;
1706 					} else if (reason == MR_LONGTERM_PIN &&
1707 						   ret == -EAGAIN) {
1708 						/*
1709 						 * Try again to split large folio to
1710 						 * mitigate the failure of longterm pinning.
1711 						 */
1712 						retry++;
1713 						thp_retry += is_thp;
1714 						nr_retry_pages += nr_pages;
1715 						/* Undo duplicated failure counting. */
1716 						nr_failed--;
1717 						stats->nr_thp_failed -= is_thp;
1718 						break;
1719 					}
1720 				}
1721 
1722 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1723 				/* nr_failed isn't updated for not used */
1724 				stats->nr_thp_failed += thp_retry;
1725 				rc_saved = rc;
1726 				if (list_empty(&unmap_folios))
1727 					goto out;
1728 				else
1729 					goto move;
1730 			case -EAGAIN:
1731 				retry++;
1732 				thp_retry += is_thp;
1733 				nr_retry_pages += nr_pages;
1734 				break;
1735 			case MIGRATEPAGE_SUCCESS:
1736 				stats->nr_succeeded += nr_pages;
1737 				stats->nr_thp_succeeded += is_thp;
1738 				break;
1739 			case MIGRATEPAGE_UNMAP:
1740 				list_move_tail(&folio->lru, &unmap_folios);
1741 				list_add_tail(&dst->lru, &dst_folios);
1742 				break;
1743 			default:
1744 				/*
1745 				 * Permanent failure (-EBUSY, etc.):
1746 				 * unlike -EAGAIN case, the failed folio is
1747 				 * removed from migration folio list and not
1748 				 * retried in the next outer loop.
1749 				 */
1750 				nr_failed++;
1751 				stats->nr_thp_failed += is_thp;
1752 				stats->nr_failed_pages += nr_pages;
1753 				break;
1754 			}
1755 		}
1756 	}
1757 	nr_failed += retry;
1758 	stats->nr_thp_failed += thp_retry;
1759 	stats->nr_failed_pages += nr_retry_pages;
1760 move:
1761 	/* Flush TLBs for all unmapped folios */
1762 	try_to_unmap_flush();
1763 
1764 	retry = 1;
1765 	for (pass = 0; pass < nr_pass && retry; pass++) {
1766 		retry = 0;
1767 		thp_retry = 0;
1768 		nr_retry_pages = 0;
1769 
1770 		dst = list_first_entry(&dst_folios, struct folio, lru);
1771 		dst2 = list_next_entry(dst, lru);
1772 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1773 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1774 			nr_pages = folio_nr_pages(folio);
1775 
1776 			cond_resched();
1777 
1778 			rc = migrate_folio_move(put_new_folio, private,
1779 						folio, dst, mode,
1780 						reason, ret_folios);
1781 			/*
1782 			 * The rules are:
1783 			 *	Success: folio will be freed
1784 			 *	-EAGAIN: stay on the unmap_folios list
1785 			 *	Other errno: put on ret_folios list
1786 			 */
1787 			switch(rc) {
1788 			case -EAGAIN:
1789 				retry++;
1790 				thp_retry += is_thp;
1791 				nr_retry_pages += nr_pages;
1792 				break;
1793 			case MIGRATEPAGE_SUCCESS:
1794 				stats->nr_succeeded += nr_pages;
1795 				stats->nr_thp_succeeded += is_thp;
1796 				break;
1797 			default:
1798 				nr_failed++;
1799 				stats->nr_thp_failed += is_thp;
1800 				stats->nr_failed_pages += nr_pages;
1801 				break;
1802 			}
1803 			dst = dst2;
1804 			dst2 = list_next_entry(dst, lru);
1805 		}
1806 	}
1807 	nr_failed += retry;
1808 	stats->nr_thp_failed += thp_retry;
1809 	stats->nr_failed_pages += nr_retry_pages;
1810 
1811 	rc = rc_saved ? : nr_failed;
1812 out:
1813 	/* Cleanup remaining folios */
1814 	dst = list_first_entry(&dst_folios, struct folio, lru);
1815 	dst2 = list_next_entry(dst, lru);
1816 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1817 		int old_page_state = 0;
1818 		struct anon_vma *anon_vma = NULL;
1819 
1820 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1821 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1822 				       anon_vma, true, ret_folios);
1823 		list_del(&dst->lru);
1824 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1825 		dst = dst2;
1826 		dst2 = list_next_entry(dst, lru);
1827 	}
1828 
1829 	return rc;
1830 }
1831 
1832 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1833 		free_folio_t put_new_folio, unsigned long private,
1834 		enum migrate_mode mode, int reason,
1835 		struct list_head *ret_folios, struct list_head *split_folios,
1836 		struct migrate_pages_stats *stats)
1837 {
1838 	int rc, nr_failed = 0;
1839 	LIST_HEAD(folios);
1840 	struct migrate_pages_stats astats;
1841 
1842 	memset(&astats, 0, sizeof(astats));
1843 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1844 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1845 				 reason, &folios, split_folios, &astats,
1846 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1847 	stats->nr_succeeded += astats.nr_succeeded;
1848 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1849 	stats->nr_thp_split += astats.nr_thp_split;
1850 	stats->nr_split += astats.nr_split;
1851 	if (rc < 0) {
1852 		stats->nr_failed_pages += astats.nr_failed_pages;
1853 		stats->nr_thp_failed += astats.nr_thp_failed;
1854 		list_splice_tail(&folios, ret_folios);
1855 		return rc;
1856 	}
1857 	stats->nr_thp_failed += astats.nr_thp_split;
1858 	/*
1859 	 * Do not count rc, as pages will be retried below.
1860 	 * Count nr_split only, since it includes nr_thp_split.
1861 	 */
1862 	nr_failed += astats.nr_split;
1863 	/*
1864 	 * Fall back to migrate all failed folios one by one synchronously. All
1865 	 * failed folios except split THPs will be retried, so their failure
1866 	 * isn't counted
1867 	 */
1868 	list_splice_tail_init(&folios, from);
1869 	while (!list_empty(from)) {
1870 		list_move(from->next, &folios);
1871 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1872 					 private, mode, reason, ret_folios,
1873 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1874 		list_splice_tail_init(&folios, ret_folios);
1875 		if (rc < 0)
1876 			return rc;
1877 		nr_failed += rc;
1878 	}
1879 
1880 	return nr_failed;
1881 }
1882 
1883 /*
1884  * migrate_pages - migrate the folios specified in a list, to the free folios
1885  *		   supplied as the target for the page migration
1886  *
1887  * @from:		The list of folios to be migrated.
1888  * @get_new_folio:	The function used to allocate free folios to be used
1889  *			as the target of the folio migration.
1890  * @put_new_folio:	The function used to free target folios if migration
1891  *			fails, or NULL if no special handling is necessary.
1892  * @private:		Private data to be passed on to get_new_folio()
1893  * @mode:		The migration mode that specifies the constraints for
1894  *			folio migration, if any.
1895  * @reason:		The reason for folio migration.
1896  * @ret_succeeded:	Set to the number of folios migrated successfully if
1897  *			the caller passes a non-NULL pointer.
1898  *
1899  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1900  * are movable any more because the list has become empty or no retryable folios
1901  * exist any more. It is caller's responsibility to call putback_movable_pages()
1902  * only if ret != 0.
1903  *
1904  * Returns the number of {normal folio, large folio, hugetlb} that were not
1905  * migrated, or an error code. The number of large folio splits will be
1906  * considered as the number of non-migrated large folio, no matter how many
1907  * split folios of the large folio are migrated successfully.
1908  */
1909 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1910 		free_folio_t put_new_folio, unsigned long private,
1911 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1912 {
1913 	int rc, rc_gather;
1914 	int nr_pages;
1915 	struct folio *folio, *folio2;
1916 	LIST_HEAD(folios);
1917 	LIST_HEAD(ret_folios);
1918 	LIST_HEAD(split_folios);
1919 	struct migrate_pages_stats stats;
1920 
1921 	trace_mm_migrate_pages_start(mode, reason);
1922 
1923 	memset(&stats, 0, sizeof(stats));
1924 
1925 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1926 				     mode, reason, &stats, &ret_folios);
1927 	if (rc_gather < 0)
1928 		goto out;
1929 
1930 again:
1931 	nr_pages = 0;
1932 	list_for_each_entry_safe(folio, folio2, from, lru) {
1933 		/* Retried hugetlb folios will be kept in list  */
1934 		if (folio_test_hugetlb(folio)) {
1935 			list_move_tail(&folio->lru, &ret_folios);
1936 			continue;
1937 		}
1938 
1939 		nr_pages += folio_nr_pages(folio);
1940 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1941 			break;
1942 	}
1943 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1944 		list_cut_before(&folios, from, &folio2->lru);
1945 	else
1946 		list_splice_init(from, &folios);
1947 	if (mode == MIGRATE_ASYNC)
1948 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1949 				private, mode, reason, &ret_folios,
1950 				&split_folios, &stats,
1951 				NR_MAX_MIGRATE_PAGES_RETRY);
1952 	else
1953 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1954 				private, mode, reason, &ret_folios,
1955 				&split_folios, &stats);
1956 	list_splice_tail_init(&folios, &ret_folios);
1957 	if (rc < 0) {
1958 		rc_gather = rc;
1959 		list_splice_tail(&split_folios, &ret_folios);
1960 		goto out;
1961 	}
1962 	if (!list_empty(&split_folios)) {
1963 		/*
1964 		 * Failure isn't counted since all split folios of a large folio
1965 		 * is counted as 1 failure already.  And, we only try to migrate
1966 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1967 		 */
1968 		migrate_pages_batch(&split_folios, get_new_folio,
1969 				put_new_folio, private, MIGRATE_ASYNC, reason,
1970 				&ret_folios, NULL, &stats, 1);
1971 		list_splice_tail_init(&split_folios, &ret_folios);
1972 	}
1973 	rc_gather += rc;
1974 	if (!list_empty(from))
1975 		goto again;
1976 out:
1977 	/*
1978 	 * Put the permanent failure folio back to migration list, they
1979 	 * will be put back to the right list by the caller.
1980 	 */
1981 	list_splice(&ret_folios, from);
1982 
1983 	/*
1984 	 * Return 0 in case all split folios of fail-to-migrate large folios
1985 	 * are migrated successfully.
1986 	 */
1987 	if (list_empty(from))
1988 		rc_gather = 0;
1989 
1990 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1991 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1992 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1993 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1994 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1995 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1996 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1997 			       stats.nr_thp_split, stats.nr_split, mode,
1998 			       reason);
1999 
2000 	if (ret_succeeded)
2001 		*ret_succeeded = stats.nr_succeeded;
2002 
2003 	return rc_gather;
2004 }
2005 
2006 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2007 {
2008 	struct migration_target_control *mtc;
2009 	gfp_t gfp_mask;
2010 	unsigned int order = 0;
2011 	int nid;
2012 	int zidx;
2013 
2014 	mtc = (struct migration_target_control *)private;
2015 	gfp_mask = mtc->gfp_mask;
2016 	nid = mtc->nid;
2017 	if (nid == NUMA_NO_NODE)
2018 		nid = folio_nid(src);
2019 
2020 	if (folio_test_hugetlb(src)) {
2021 		struct hstate *h = folio_hstate(src);
2022 
2023 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2024 		return alloc_hugetlb_folio_nodemask(h, nid,
2025 						mtc->nmask, gfp_mask);
2026 	}
2027 
2028 	if (folio_test_large(src)) {
2029 		/*
2030 		 * clear __GFP_RECLAIM to make the migration callback
2031 		 * consistent with regular THP allocations.
2032 		 */
2033 		gfp_mask &= ~__GFP_RECLAIM;
2034 		gfp_mask |= GFP_TRANSHUGE;
2035 		order = folio_order(src);
2036 	}
2037 	zidx = zone_idx(folio_zone(src));
2038 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2039 		gfp_mask |= __GFP_HIGHMEM;
2040 
2041 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2042 }
2043 
2044 #ifdef CONFIG_NUMA
2045 
2046 static int store_status(int __user *status, int start, int value, int nr)
2047 {
2048 	while (nr-- > 0) {
2049 		if (put_user(value, status + start))
2050 			return -EFAULT;
2051 		start++;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2058 {
2059 	int err;
2060 	struct migration_target_control mtc = {
2061 		.nid = node,
2062 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2063 	};
2064 
2065 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2066 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2067 	if (err)
2068 		putback_movable_pages(pagelist);
2069 	return err;
2070 }
2071 
2072 /*
2073  * Resolves the given address to a struct page, isolates it from the LRU and
2074  * puts it to the given pagelist.
2075  * Returns:
2076  *     errno - if the page cannot be found/isolated
2077  *     0 - when it doesn't have to be migrated because it is already on the
2078  *         target node
2079  *     1 - when it has been queued
2080  */
2081 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2082 		int node, struct list_head *pagelist, bool migrate_all)
2083 {
2084 	struct vm_area_struct *vma;
2085 	unsigned long addr;
2086 	struct page *page;
2087 	struct folio *folio;
2088 	int err;
2089 
2090 	mmap_read_lock(mm);
2091 	addr = (unsigned long)untagged_addr_remote(mm, p);
2092 
2093 	err = -EFAULT;
2094 	vma = vma_lookup(mm, addr);
2095 	if (!vma || !vma_migratable(vma))
2096 		goto out;
2097 
2098 	/* FOLL_DUMP to ignore special (like zero) pages */
2099 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2100 
2101 	err = PTR_ERR(page);
2102 	if (IS_ERR(page))
2103 		goto out;
2104 
2105 	err = -ENOENT;
2106 	if (!page)
2107 		goto out;
2108 
2109 	folio = page_folio(page);
2110 	if (folio_is_zone_device(folio))
2111 		goto out_putfolio;
2112 
2113 	err = 0;
2114 	if (folio_nid(folio) == node)
2115 		goto out_putfolio;
2116 
2117 	err = -EACCES;
2118 	if (page_mapcount(page) > 1 && !migrate_all)
2119 		goto out_putfolio;
2120 
2121 	err = -EBUSY;
2122 	if (folio_test_hugetlb(folio)) {
2123 		if (isolate_hugetlb(folio, pagelist))
2124 			err = 1;
2125 	} else {
2126 		if (!folio_isolate_lru(folio))
2127 			goto out_putfolio;
2128 
2129 		err = 1;
2130 		list_add_tail(&folio->lru, pagelist);
2131 		node_stat_mod_folio(folio,
2132 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2133 			folio_nr_pages(folio));
2134 	}
2135 out_putfolio:
2136 	/*
2137 	 * Either remove the duplicate refcount from folio_isolate_lru()
2138 	 * or drop the folio ref if it was not isolated.
2139 	 */
2140 	folio_put(folio);
2141 out:
2142 	mmap_read_unlock(mm);
2143 	return err;
2144 }
2145 
2146 static int move_pages_and_store_status(int node,
2147 		struct list_head *pagelist, int __user *status,
2148 		int start, int i, unsigned long nr_pages)
2149 {
2150 	int err;
2151 
2152 	if (list_empty(pagelist))
2153 		return 0;
2154 
2155 	err = do_move_pages_to_node(pagelist, node);
2156 	if (err) {
2157 		/*
2158 		 * Positive err means the number of failed
2159 		 * pages to migrate.  Since we are going to
2160 		 * abort and return the number of non-migrated
2161 		 * pages, so need to include the rest of the
2162 		 * nr_pages that have not been attempted as
2163 		 * well.
2164 		 */
2165 		if (err > 0)
2166 			err += nr_pages - i;
2167 		return err;
2168 	}
2169 	return store_status(status, start, node, i - start);
2170 }
2171 
2172 /*
2173  * Migrate an array of page address onto an array of nodes and fill
2174  * the corresponding array of status.
2175  */
2176 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2177 			 unsigned long nr_pages,
2178 			 const void __user * __user *pages,
2179 			 const int __user *nodes,
2180 			 int __user *status, int flags)
2181 {
2182 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2183 	int current_node = NUMA_NO_NODE;
2184 	LIST_HEAD(pagelist);
2185 	int start, i;
2186 	int err = 0, err1;
2187 
2188 	lru_cache_disable();
2189 
2190 	for (i = start = 0; i < nr_pages; i++) {
2191 		const void __user *p;
2192 		int node;
2193 
2194 		err = -EFAULT;
2195 		if (in_compat_syscall()) {
2196 			compat_uptr_t cp;
2197 
2198 			if (get_user(cp, compat_pages + i))
2199 				goto out_flush;
2200 
2201 			p = compat_ptr(cp);
2202 		} else {
2203 			if (get_user(p, pages + i))
2204 				goto out_flush;
2205 		}
2206 		if (get_user(node, nodes + i))
2207 			goto out_flush;
2208 
2209 		err = -ENODEV;
2210 		if (node < 0 || node >= MAX_NUMNODES)
2211 			goto out_flush;
2212 		if (!node_state(node, N_MEMORY))
2213 			goto out_flush;
2214 
2215 		err = -EACCES;
2216 		if (!node_isset(node, task_nodes))
2217 			goto out_flush;
2218 
2219 		if (current_node == NUMA_NO_NODE) {
2220 			current_node = node;
2221 			start = i;
2222 		} else if (node != current_node) {
2223 			err = move_pages_and_store_status(current_node,
2224 					&pagelist, status, start, i, nr_pages);
2225 			if (err)
2226 				goto out;
2227 			start = i;
2228 			current_node = node;
2229 		}
2230 
2231 		/*
2232 		 * Errors in the page lookup or isolation are not fatal and we simply
2233 		 * report them via status
2234 		 */
2235 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2236 					     flags & MPOL_MF_MOVE_ALL);
2237 
2238 		if (err > 0) {
2239 			/* The page is successfully queued for migration */
2240 			continue;
2241 		}
2242 
2243 		/*
2244 		 * The move_pages() man page does not have an -EEXIST choice, so
2245 		 * use -EFAULT instead.
2246 		 */
2247 		if (err == -EEXIST)
2248 			err = -EFAULT;
2249 
2250 		/*
2251 		 * If the page is already on the target node (!err), store the
2252 		 * node, otherwise, store the err.
2253 		 */
2254 		err = store_status(status, i, err ? : current_node, 1);
2255 		if (err)
2256 			goto out_flush;
2257 
2258 		err = move_pages_and_store_status(current_node, &pagelist,
2259 				status, start, i, nr_pages);
2260 		if (err) {
2261 			/* We have accounted for page i */
2262 			if (err > 0)
2263 				err--;
2264 			goto out;
2265 		}
2266 		current_node = NUMA_NO_NODE;
2267 	}
2268 out_flush:
2269 	/* Make sure we do not overwrite the existing error */
2270 	err1 = move_pages_and_store_status(current_node, &pagelist,
2271 				status, start, i, nr_pages);
2272 	if (err >= 0)
2273 		err = err1;
2274 out:
2275 	lru_cache_enable();
2276 	return err;
2277 }
2278 
2279 /*
2280  * Determine the nodes of an array of pages and store it in an array of status.
2281  */
2282 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2283 				const void __user **pages, int *status)
2284 {
2285 	unsigned long i;
2286 
2287 	mmap_read_lock(mm);
2288 
2289 	for (i = 0; i < nr_pages; i++) {
2290 		unsigned long addr = (unsigned long)(*pages);
2291 		struct vm_area_struct *vma;
2292 		struct page *page;
2293 		int err = -EFAULT;
2294 
2295 		vma = vma_lookup(mm, addr);
2296 		if (!vma)
2297 			goto set_status;
2298 
2299 		/* FOLL_DUMP to ignore special (like zero) pages */
2300 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2301 
2302 		err = PTR_ERR(page);
2303 		if (IS_ERR(page))
2304 			goto set_status;
2305 
2306 		err = -ENOENT;
2307 		if (!page)
2308 			goto set_status;
2309 
2310 		if (!is_zone_device_page(page))
2311 			err = page_to_nid(page);
2312 
2313 		put_page(page);
2314 set_status:
2315 		*status = err;
2316 
2317 		pages++;
2318 		status++;
2319 	}
2320 
2321 	mmap_read_unlock(mm);
2322 }
2323 
2324 static int get_compat_pages_array(const void __user *chunk_pages[],
2325 				  const void __user * __user *pages,
2326 				  unsigned long chunk_nr)
2327 {
2328 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2329 	compat_uptr_t p;
2330 	int i;
2331 
2332 	for (i = 0; i < chunk_nr; i++) {
2333 		if (get_user(p, pages32 + i))
2334 			return -EFAULT;
2335 		chunk_pages[i] = compat_ptr(p);
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 /*
2342  * Determine the nodes of a user array of pages and store it in
2343  * a user array of status.
2344  */
2345 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2346 			 const void __user * __user *pages,
2347 			 int __user *status)
2348 {
2349 #define DO_PAGES_STAT_CHUNK_NR 16UL
2350 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2351 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2352 
2353 	while (nr_pages) {
2354 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2355 
2356 		if (in_compat_syscall()) {
2357 			if (get_compat_pages_array(chunk_pages, pages,
2358 						   chunk_nr))
2359 				break;
2360 		} else {
2361 			if (copy_from_user(chunk_pages, pages,
2362 				      chunk_nr * sizeof(*chunk_pages)))
2363 				break;
2364 		}
2365 
2366 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2367 
2368 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2369 			break;
2370 
2371 		pages += chunk_nr;
2372 		status += chunk_nr;
2373 		nr_pages -= chunk_nr;
2374 	}
2375 	return nr_pages ? -EFAULT : 0;
2376 }
2377 
2378 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2379 {
2380 	struct task_struct *task;
2381 	struct mm_struct *mm;
2382 
2383 	/*
2384 	 * There is no need to check if current process has the right to modify
2385 	 * the specified process when they are same.
2386 	 */
2387 	if (!pid) {
2388 		mmget(current->mm);
2389 		*mem_nodes = cpuset_mems_allowed(current);
2390 		return current->mm;
2391 	}
2392 
2393 	/* Find the mm_struct */
2394 	rcu_read_lock();
2395 	task = find_task_by_vpid(pid);
2396 	if (!task) {
2397 		rcu_read_unlock();
2398 		return ERR_PTR(-ESRCH);
2399 	}
2400 	get_task_struct(task);
2401 
2402 	/*
2403 	 * Check if this process has the right to modify the specified
2404 	 * process. Use the regular "ptrace_may_access()" checks.
2405 	 */
2406 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2407 		rcu_read_unlock();
2408 		mm = ERR_PTR(-EPERM);
2409 		goto out;
2410 	}
2411 	rcu_read_unlock();
2412 
2413 	mm = ERR_PTR(security_task_movememory(task));
2414 	if (IS_ERR(mm))
2415 		goto out;
2416 	*mem_nodes = cpuset_mems_allowed(task);
2417 	mm = get_task_mm(task);
2418 out:
2419 	put_task_struct(task);
2420 	if (!mm)
2421 		mm = ERR_PTR(-EINVAL);
2422 	return mm;
2423 }
2424 
2425 /*
2426  * Move a list of pages in the address space of the currently executing
2427  * process.
2428  */
2429 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2430 			     const void __user * __user *pages,
2431 			     const int __user *nodes,
2432 			     int __user *status, int flags)
2433 {
2434 	struct mm_struct *mm;
2435 	int err;
2436 	nodemask_t task_nodes;
2437 
2438 	/* Check flags */
2439 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2440 		return -EINVAL;
2441 
2442 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2443 		return -EPERM;
2444 
2445 	mm = find_mm_struct(pid, &task_nodes);
2446 	if (IS_ERR(mm))
2447 		return PTR_ERR(mm);
2448 
2449 	if (nodes)
2450 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2451 				    nodes, status, flags);
2452 	else
2453 		err = do_pages_stat(mm, nr_pages, pages, status);
2454 
2455 	mmput(mm);
2456 	return err;
2457 }
2458 
2459 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2460 		const void __user * __user *, pages,
2461 		const int __user *, nodes,
2462 		int __user *, status, int, flags)
2463 {
2464 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2465 }
2466 
2467 #ifdef CONFIG_NUMA_BALANCING
2468 /*
2469  * Returns true if this is a safe migration target node for misplaced NUMA
2470  * pages. Currently it only checks the watermarks which is crude.
2471  */
2472 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2473 				   unsigned long nr_migrate_pages)
2474 {
2475 	int z;
2476 
2477 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2478 		struct zone *zone = pgdat->node_zones + z;
2479 
2480 		if (!managed_zone(zone))
2481 			continue;
2482 
2483 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2484 		if (!zone_watermark_ok(zone, 0,
2485 				       high_wmark_pages(zone) +
2486 				       nr_migrate_pages,
2487 				       ZONE_MOVABLE, 0))
2488 			continue;
2489 		return true;
2490 	}
2491 	return false;
2492 }
2493 
2494 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2495 					   unsigned long data)
2496 {
2497 	int nid = (int) data;
2498 	int order = folio_order(src);
2499 	gfp_t gfp = __GFP_THISNODE;
2500 
2501 	if (order > 0)
2502 		gfp |= GFP_TRANSHUGE_LIGHT;
2503 	else {
2504 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2505 			__GFP_NOWARN;
2506 		gfp &= ~__GFP_RECLAIM;
2507 	}
2508 	return __folio_alloc_node(gfp, order, nid);
2509 }
2510 
2511 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
2512 {
2513 	int nr_pages = folio_nr_pages(folio);
2514 
2515 	/* Avoid migrating to a node that is nearly full */
2516 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2517 		int z;
2518 
2519 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2520 			return 0;
2521 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2522 			if (managed_zone(pgdat->node_zones + z))
2523 				break;
2524 		}
2525 
2526 		/*
2527 		 * If there are no managed zones, it should not proceed
2528 		 * further.
2529 		 */
2530 		if (z < 0)
2531 			return 0;
2532 
2533 		wakeup_kswapd(pgdat->node_zones + z, 0,
2534 			      folio_order(folio), ZONE_MOVABLE);
2535 		return 0;
2536 	}
2537 
2538 	if (!folio_isolate_lru(folio))
2539 		return 0;
2540 
2541 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2542 			    nr_pages);
2543 
2544 	/*
2545 	 * Isolating the folio has taken another reference, so the
2546 	 * caller's reference can be safely dropped without the folio
2547 	 * disappearing underneath us during migration.
2548 	 */
2549 	folio_put(folio);
2550 	return 1;
2551 }
2552 
2553 /*
2554  * Attempt to migrate a misplaced folio to the specified destination
2555  * node. Caller is expected to have an elevated reference count on
2556  * the folio that will be dropped by this function before returning.
2557  */
2558 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2559 			    int node)
2560 {
2561 	pg_data_t *pgdat = NODE_DATA(node);
2562 	int isolated;
2563 	int nr_remaining;
2564 	unsigned int nr_succeeded;
2565 	LIST_HEAD(migratepages);
2566 	int nr_pages = folio_nr_pages(folio);
2567 
2568 	/*
2569 	 * Don't migrate file folios that are mapped in multiple processes
2570 	 * with execute permissions as they are probably shared libraries.
2571 	 * To check if the folio is shared, ideally we want to make sure
2572 	 * every page is mapped to the same process. Doing that is very
2573 	 * expensive, so check the estimated mapcount of the folio instead.
2574 	 */
2575 	if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) &&
2576 	    (vma->vm_flags & VM_EXEC))
2577 		goto out;
2578 
2579 	/*
2580 	 * Also do not migrate dirty folios as not all filesystems can move
2581 	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
2582 	 */
2583 	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2584 		goto out;
2585 
2586 	isolated = numamigrate_isolate_folio(pgdat, folio);
2587 	if (!isolated)
2588 		goto out;
2589 
2590 	list_add(&folio->lru, &migratepages);
2591 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2592 				     NULL, node, MIGRATE_ASYNC,
2593 				     MR_NUMA_MISPLACED, &nr_succeeded);
2594 	if (nr_remaining) {
2595 		if (!list_empty(&migratepages)) {
2596 			list_del(&folio->lru);
2597 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2598 					folio_is_file_lru(folio), -nr_pages);
2599 			folio_putback_lru(folio);
2600 		}
2601 		isolated = 0;
2602 	}
2603 	if (nr_succeeded) {
2604 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2605 		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2606 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2607 					    nr_succeeded);
2608 	}
2609 	BUG_ON(!list_empty(&migratepages));
2610 	return isolated;
2611 
2612 out:
2613 	folio_put(folio);
2614 	return 0;
2615 }
2616 #endif /* CONFIG_NUMA_BALANCING */
2617 #endif /* CONFIG_NUMA */
2618