1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 #include <linux/memory.h> 53 54 #include <asm/tlbflush.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 struct address_space *mapping; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 /* 78 * Check PageMovable before holding a PG_lock because page's owner 79 * assumes anybody doesn't touch PG_lock of newly allocated page 80 * so unconditionally grabbing the lock ruins page's owner side. 81 */ 82 if (unlikely(!__PageMovable(page))) 83 goto out_putpage; 84 /* 85 * As movable pages are not isolated from LRU lists, concurrent 86 * compaction threads can race against page migration functions 87 * as well as race against the releasing a page. 88 * 89 * In order to avoid having an already isolated movable page 90 * being (wrongly) re-isolated while it is under migration, 91 * or to avoid attempting to isolate pages being released, 92 * lets be sure we have the page lock 93 * before proceeding with the movable page isolation steps. 94 */ 95 if (unlikely(!trylock_page(page))) 96 goto out_putpage; 97 98 if (!PageMovable(page) || PageIsolated(page)) 99 goto out_no_isolated; 100 101 mapping = page_mapping(page); 102 VM_BUG_ON_PAGE(!mapping, page); 103 104 if (!mapping->a_ops->isolate_page(page, mode)) 105 goto out_no_isolated; 106 107 /* Driver shouldn't use PG_isolated bit of page->flags */ 108 WARN_ON_ONCE(PageIsolated(page)); 109 __SetPageIsolated(page); 110 unlock_page(page); 111 112 return 0; 113 114 out_no_isolated: 115 unlock_page(page); 116 out_putpage: 117 put_page(page); 118 out: 119 return -EBUSY; 120 } 121 122 static void putback_movable_page(struct page *page) 123 { 124 struct address_space *mapping; 125 126 mapping = page_mapping(page); 127 mapping->a_ops->putback_page(page); 128 __ClearPageIsolated(page); 129 } 130 131 /* 132 * Put previously isolated pages back onto the appropriate lists 133 * from where they were once taken off for compaction/migration. 134 * 135 * This function shall be used whenever the isolated pageset has been 136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 137 * and isolate_huge_page(). 138 */ 139 void putback_movable_pages(struct list_head *l) 140 { 141 struct page *page; 142 struct page *page2; 143 144 list_for_each_entry_safe(page, page2, l, lru) { 145 if (unlikely(PageHuge(page))) { 146 putback_active_hugepage(page); 147 continue; 148 } 149 list_del(&page->lru); 150 /* 151 * We isolated non-lru movable page so here we can use 152 * __PageMovable because LRU page's mapping cannot have 153 * PAGE_MAPPING_MOVABLE. 154 */ 155 if (unlikely(__PageMovable(page))) { 156 VM_BUG_ON_PAGE(!PageIsolated(page), page); 157 lock_page(page); 158 if (PageMovable(page)) 159 putback_movable_page(page); 160 else 161 __ClearPageIsolated(page); 162 unlock_page(page); 163 put_page(page); 164 } else { 165 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 166 page_is_file_lru(page), -thp_nr_pages(page)); 167 putback_lru_page(page); 168 } 169 } 170 } 171 172 /* 173 * Restore a potential migration pte to a working pte entry 174 */ 175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 176 unsigned long addr, void *old) 177 { 178 struct page_vma_mapped_walk pvmw = { 179 .page = old, 180 .vma = vma, 181 .address = addr, 182 .flags = PVMW_SYNC | PVMW_MIGRATION, 183 }; 184 struct page *new; 185 pte_t pte; 186 swp_entry_t entry; 187 188 VM_BUG_ON_PAGE(PageTail(page), page); 189 while (page_vma_mapped_walk(&pvmw)) { 190 if (PageKsm(page)) 191 new = page; 192 else 193 new = page - pvmw.page->index + 194 linear_page_index(vma, pvmw.address); 195 196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 197 /* PMD-mapped THP migration entry */ 198 if (!pvmw.pte) { 199 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 200 remove_migration_pmd(&pvmw, new); 201 continue; 202 } 203 #endif 204 205 get_page(new); 206 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 207 if (pte_swp_soft_dirty(*pvmw.pte)) 208 pte = pte_mksoft_dirty(pte); 209 210 /* 211 * Recheck VMA as permissions can change since migration started 212 */ 213 entry = pte_to_swp_entry(*pvmw.pte); 214 if (is_writable_migration_entry(entry)) 215 pte = maybe_mkwrite(pte, vma); 216 else if (pte_swp_uffd_wp(*pvmw.pte)) 217 pte = pte_mkuffd_wp(pte); 218 219 if (unlikely(is_device_private_page(new))) { 220 if (pte_write(pte)) 221 entry = make_writable_device_private_entry( 222 page_to_pfn(new)); 223 else 224 entry = make_readable_device_private_entry( 225 page_to_pfn(new)); 226 pte = swp_entry_to_pte(entry); 227 if (pte_swp_soft_dirty(*pvmw.pte)) 228 pte = pte_swp_mksoft_dirty(pte); 229 if (pte_swp_uffd_wp(*pvmw.pte)) 230 pte = pte_swp_mkuffd_wp(pte); 231 } 232 233 #ifdef CONFIG_HUGETLB_PAGE 234 if (PageHuge(new)) { 235 unsigned int shift = huge_page_shift(hstate_vma(vma)); 236 237 pte = pte_mkhuge(pte); 238 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 239 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 240 if (PageAnon(new)) 241 hugepage_add_anon_rmap(new, vma, pvmw.address); 242 else 243 page_dup_rmap(new, true); 244 } else 245 #endif 246 { 247 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 248 249 if (PageAnon(new)) 250 page_add_anon_rmap(new, vma, pvmw.address, false); 251 else 252 page_add_file_rmap(new, false); 253 } 254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 255 mlock_vma_page(new); 256 257 if (PageTransHuge(page) && PageMlocked(page)) 258 clear_page_mlock(page); 259 260 /* No need to invalidate - it was non-present before */ 261 update_mmu_cache(vma, pvmw.address, pvmw.pte); 262 } 263 264 return true; 265 } 266 267 /* 268 * Get rid of all migration entries and replace them by 269 * references to the indicated page. 270 */ 271 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 272 { 273 struct rmap_walk_control rwc = { 274 .rmap_one = remove_migration_pte, 275 .arg = old, 276 }; 277 278 if (locked) 279 rmap_walk_locked(new, &rwc); 280 else 281 rmap_walk(new, &rwc); 282 } 283 284 /* 285 * Something used the pte of a page under migration. We need to 286 * get to the page and wait until migration is finished. 287 * When we return from this function the fault will be retried. 288 */ 289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 290 spinlock_t *ptl) 291 { 292 pte_t pte; 293 swp_entry_t entry; 294 struct page *page; 295 296 spin_lock(ptl); 297 pte = *ptep; 298 if (!is_swap_pte(pte)) 299 goto out; 300 301 entry = pte_to_swp_entry(pte); 302 if (!is_migration_entry(entry)) 303 goto out; 304 305 page = pfn_swap_entry_to_page(entry); 306 page = compound_head(page); 307 308 /* 309 * Once page cache replacement of page migration started, page_count 310 * is zero; but we must not call put_and_wait_on_page_locked() without 311 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 312 */ 313 if (!get_page_unless_zero(page)) 314 goto out; 315 pte_unmap_unlock(ptep, ptl); 316 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 317 return; 318 out: 319 pte_unmap_unlock(ptep, ptl); 320 } 321 322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 323 unsigned long address) 324 { 325 spinlock_t *ptl = pte_lockptr(mm, pmd); 326 pte_t *ptep = pte_offset_map(pmd, address); 327 __migration_entry_wait(mm, ptep, ptl); 328 } 329 330 void migration_entry_wait_huge(struct vm_area_struct *vma, 331 struct mm_struct *mm, pte_t *pte) 332 { 333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 334 __migration_entry_wait(mm, pte, ptl); 335 } 336 337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 339 { 340 spinlock_t *ptl; 341 struct page *page; 342 343 ptl = pmd_lock(mm, pmd); 344 if (!is_pmd_migration_entry(*pmd)) 345 goto unlock; 346 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd)); 347 if (!get_page_unless_zero(page)) 348 goto unlock; 349 spin_unlock(ptl); 350 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 351 return; 352 unlock: 353 spin_unlock(ptl); 354 } 355 #endif 356 357 static int expected_page_refs(struct address_space *mapping, struct page *page) 358 { 359 int expected_count = 1; 360 361 /* 362 * Device private pages have an extra refcount as they are 363 * ZONE_DEVICE pages. 364 */ 365 expected_count += is_device_private_page(page); 366 if (mapping) 367 expected_count += compound_nr(page) + page_has_private(page); 368 369 return expected_count; 370 } 371 372 /* 373 * Replace the page in the mapping. 374 * 375 * The number of remaining references must be: 376 * 1 for anonymous pages without a mapping 377 * 2 for pages with a mapping 378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 379 */ 380 int folio_migrate_mapping(struct address_space *mapping, 381 struct folio *newfolio, struct folio *folio, int extra_count) 382 { 383 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 384 struct zone *oldzone, *newzone; 385 int dirty; 386 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 387 long nr = folio_nr_pages(folio); 388 389 if (!mapping) { 390 /* Anonymous page without mapping */ 391 if (folio_ref_count(folio) != expected_count) 392 return -EAGAIN; 393 394 /* No turning back from here */ 395 newfolio->index = folio->index; 396 newfolio->mapping = folio->mapping; 397 if (folio_test_swapbacked(folio)) 398 __folio_set_swapbacked(newfolio); 399 400 return MIGRATEPAGE_SUCCESS; 401 } 402 403 oldzone = folio_zone(folio); 404 newzone = folio_zone(newfolio); 405 406 xas_lock_irq(&xas); 407 if (folio_ref_count(folio) != expected_count || 408 xas_load(&xas) != folio) { 409 xas_unlock_irq(&xas); 410 return -EAGAIN; 411 } 412 413 if (!folio_ref_freeze(folio, expected_count)) { 414 xas_unlock_irq(&xas); 415 return -EAGAIN; 416 } 417 418 /* 419 * Now we know that no one else is looking at the folio: 420 * no turning back from here. 421 */ 422 newfolio->index = folio->index; 423 newfolio->mapping = folio->mapping; 424 folio_ref_add(newfolio, nr); /* add cache reference */ 425 if (folio_test_swapbacked(folio)) { 426 __folio_set_swapbacked(newfolio); 427 if (folio_test_swapcache(folio)) { 428 folio_set_swapcache(newfolio); 429 newfolio->private = folio_get_private(folio); 430 } 431 } else { 432 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 433 } 434 435 /* Move dirty while page refs frozen and newpage not yet exposed */ 436 dirty = folio_test_dirty(folio); 437 if (dirty) { 438 folio_clear_dirty(folio); 439 folio_set_dirty(newfolio); 440 } 441 442 xas_store(&xas, newfolio); 443 if (nr > 1) { 444 int i; 445 446 for (i = 1; i < nr; i++) { 447 xas_next(&xas); 448 xas_store(&xas, newfolio); 449 } 450 } 451 452 /* 453 * Drop cache reference from old page by unfreezing 454 * to one less reference. 455 * We know this isn't the last reference. 456 */ 457 folio_ref_unfreeze(folio, expected_count - nr); 458 459 xas_unlock(&xas); 460 /* Leave irq disabled to prevent preemption while updating stats */ 461 462 /* 463 * If moved to a different zone then also account 464 * the page for that zone. Other VM counters will be 465 * taken care of when we establish references to the 466 * new page and drop references to the old page. 467 * 468 * Note that anonymous pages are accounted for 469 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 470 * are mapped to swap space. 471 */ 472 if (newzone != oldzone) { 473 struct lruvec *old_lruvec, *new_lruvec; 474 struct mem_cgroup *memcg; 475 476 memcg = folio_memcg(folio); 477 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 478 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 479 480 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 481 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 482 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 483 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 484 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 485 } 486 #ifdef CONFIG_SWAP 487 if (folio_test_swapcache(folio)) { 488 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 489 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 490 } 491 #endif 492 if (dirty && mapping_can_writeback(mapping)) { 493 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 494 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 495 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 496 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 497 } 498 } 499 local_irq_enable(); 500 501 return MIGRATEPAGE_SUCCESS; 502 } 503 EXPORT_SYMBOL(folio_migrate_mapping); 504 505 /* 506 * The expected number of remaining references is the same as that 507 * of folio_migrate_mapping(). 508 */ 509 int migrate_huge_page_move_mapping(struct address_space *mapping, 510 struct page *newpage, struct page *page) 511 { 512 XA_STATE(xas, &mapping->i_pages, page_index(page)); 513 int expected_count; 514 515 xas_lock_irq(&xas); 516 expected_count = 2 + page_has_private(page); 517 if (page_count(page) != expected_count || xas_load(&xas) != page) { 518 xas_unlock_irq(&xas); 519 return -EAGAIN; 520 } 521 522 if (!page_ref_freeze(page, expected_count)) { 523 xas_unlock_irq(&xas); 524 return -EAGAIN; 525 } 526 527 newpage->index = page->index; 528 newpage->mapping = page->mapping; 529 530 get_page(newpage); 531 532 xas_store(&xas, newpage); 533 534 page_ref_unfreeze(page, expected_count - 1); 535 536 xas_unlock_irq(&xas); 537 538 return MIGRATEPAGE_SUCCESS; 539 } 540 541 /* 542 * Copy the flags and some other ancillary information 543 */ 544 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 545 { 546 int cpupid; 547 548 if (folio_test_error(folio)) 549 folio_set_error(newfolio); 550 if (folio_test_referenced(folio)) 551 folio_set_referenced(newfolio); 552 if (folio_test_uptodate(folio)) 553 folio_mark_uptodate(newfolio); 554 if (folio_test_clear_active(folio)) { 555 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 556 folio_set_active(newfolio); 557 } else if (folio_test_clear_unevictable(folio)) 558 folio_set_unevictable(newfolio); 559 if (folio_test_workingset(folio)) 560 folio_set_workingset(newfolio); 561 if (folio_test_checked(folio)) 562 folio_set_checked(newfolio); 563 if (folio_test_mappedtodisk(folio)) 564 folio_set_mappedtodisk(newfolio); 565 566 /* Move dirty on pages not done by folio_migrate_mapping() */ 567 if (folio_test_dirty(folio)) 568 folio_set_dirty(newfolio); 569 570 if (folio_test_young(folio)) 571 folio_set_young(newfolio); 572 if (folio_test_idle(folio)) 573 folio_set_idle(newfolio); 574 575 /* 576 * Copy NUMA information to the new page, to prevent over-eager 577 * future migrations of this same page. 578 */ 579 cpupid = page_cpupid_xchg_last(&folio->page, -1); 580 page_cpupid_xchg_last(&newfolio->page, cpupid); 581 582 folio_migrate_ksm(newfolio, folio); 583 /* 584 * Please do not reorder this without considering how mm/ksm.c's 585 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 586 */ 587 if (folio_test_swapcache(folio)) 588 folio_clear_swapcache(folio); 589 folio_clear_private(folio); 590 591 /* page->private contains hugetlb specific flags */ 592 if (!folio_test_hugetlb(folio)) 593 folio->private = NULL; 594 595 /* 596 * If any waiters have accumulated on the new page then 597 * wake them up. 598 */ 599 if (folio_test_writeback(newfolio)) 600 folio_end_writeback(newfolio); 601 602 /* 603 * PG_readahead shares the same bit with PG_reclaim. The above 604 * end_page_writeback() may clear PG_readahead mistakenly, so set the 605 * bit after that. 606 */ 607 if (folio_test_readahead(folio)) 608 folio_set_readahead(newfolio); 609 610 folio_copy_owner(newfolio, folio); 611 612 if (!folio_test_hugetlb(folio)) 613 mem_cgroup_migrate(folio, newfolio); 614 } 615 EXPORT_SYMBOL(folio_migrate_flags); 616 617 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 618 { 619 folio_copy(newfolio, folio); 620 folio_migrate_flags(newfolio, folio); 621 } 622 EXPORT_SYMBOL(folio_migrate_copy); 623 624 /************************************************************ 625 * Migration functions 626 ***********************************************************/ 627 628 /* 629 * Common logic to directly migrate a single LRU page suitable for 630 * pages that do not use PagePrivate/PagePrivate2. 631 * 632 * Pages are locked upon entry and exit. 633 */ 634 int migrate_page(struct address_space *mapping, 635 struct page *newpage, struct page *page, 636 enum migrate_mode mode) 637 { 638 struct folio *newfolio = page_folio(newpage); 639 struct folio *folio = page_folio(page); 640 int rc; 641 642 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 643 644 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 645 646 if (rc != MIGRATEPAGE_SUCCESS) 647 return rc; 648 649 if (mode != MIGRATE_SYNC_NO_COPY) 650 folio_migrate_copy(newfolio, folio); 651 else 652 folio_migrate_flags(newfolio, folio); 653 return MIGRATEPAGE_SUCCESS; 654 } 655 EXPORT_SYMBOL(migrate_page); 656 657 #ifdef CONFIG_BLOCK 658 /* Returns true if all buffers are successfully locked */ 659 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 660 enum migrate_mode mode) 661 { 662 struct buffer_head *bh = head; 663 664 /* Simple case, sync compaction */ 665 if (mode != MIGRATE_ASYNC) { 666 do { 667 lock_buffer(bh); 668 bh = bh->b_this_page; 669 670 } while (bh != head); 671 672 return true; 673 } 674 675 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 676 do { 677 if (!trylock_buffer(bh)) { 678 /* 679 * We failed to lock the buffer and cannot stall in 680 * async migration. Release the taken locks 681 */ 682 struct buffer_head *failed_bh = bh; 683 bh = head; 684 while (bh != failed_bh) { 685 unlock_buffer(bh); 686 bh = bh->b_this_page; 687 } 688 return false; 689 } 690 691 bh = bh->b_this_page; 692 } while (bh != head); 693 return true; 694 } 695 696 static int __buffer_migrate_page(struct address_space *mapping, 697 struct page *newpage, struct page *page, enum migrate_mode mode, 698 bool check_refs) 699 { 700 struct buffer_head *bh, *head; 701 int rc; 702 int expected_count; 703 704 if (!page_has_buffers(page)) 705 return migrate_page(mapping, newpage, page, mode); 706 707 /* Check whether page does not have extra refs before we do more work */ 708 expected_count = expected_page_refs(mapping, page); 709 if (page_count(page) != expected_count) 710 return -EAGAIN; 711 712 head = page_buffers(page); 713 if (!buffer_migrate_lock_buffers(head, mode)) 714 return -EAGAIN; 715 716 if (check_refs) { 717 bool busy; 718 bool invalidated = false; 719 720 recheck_buffers: 721 busy = false; 722 spin_lock(&mapping->private_lock); 723 bh = head; 724 do { 725 if (atomic_read(&bh->b_count)) { 726 busy = true; 727 break; 728 } 729 bh = bh->b_this_page; 730 } while (bh != head); 731 if (busy) { 732 if (invalidated) { 733 rc = -EAGAIN; 734 goto unlock_buffers; 735 } 736 spin_unlock(&mapping->private_lock); 737 invalidate_bh_lrus(); 738 invalidated = true; 739 goto recheck_buffers; 740 } 741 } 742 743 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 744 if (rc != MIGRATEPAGE_SUCCESS) 745 goto unlock_buffers; 746 747 attach_page_private(newpage, detach_page_private(page)); 748 749 bh = head; 750 do { 751 set_bh_page(bh, newpage, bh_offset(bh)); 752 bh = bh->b_this_page; 753 754 } while (bh != head); 755 756 if (mode != MIGRATE_SYNC_NO_COPY) 757 migrate_page_copy(newpage, page); 758 else 759 migrate_page_states(newpage, page); 760 761 rc = MIGRATEPAGE_SUCCESS; 762 unlock_buffers: 763 if (check_refs) 764 spin_unlock(&mapping->private_lock); 765 bh = head; 766 do { 767 unlock_buffer(bh); 768 bh = bh->b_this_page; 769 770 } while (bh != head); 771 772 return rc; 773 } 774 775 /* 776 * Migration function for pages with buffers. This function can only be used 777 * if the underlying filesystem guarantees that no other references to "page" 778 * exist. For example attached buffer heads are accessed only under page lock. 779 */ 780 int buffer_migrate_page(struct address_space *mapping, 781 struct page *newpage, struct page *page, enum migrate_mode mode) 782 { 783 return __buffer_migrate_page(mapping, newpage, page, mode, false); 784 } 785 EXPORT_SYMBOL(buffer_migrate_page); 786 787 /* 788 * Same as above except that this variant is more careful and checks that there 789 * are also no buffer head references. This function is the right one for 790 * mappings where buffer heads are directly looked up and referenced (such as 791 * block device mappings). 792 */ 793 int buffer_migrate_page_norefs(struct address_space *mapping, 794 struct page *newpage, struct page *page, enum migrate_mode mode) 795 { 796 return __buffer_migrate_page(mapping, newpage, page, mode, true); 797 } 798 #endif 799 800 /* 801 * Writeback a page to clean the dirty state 802 */ 803 static int writeout(struct address_space *mapping, struct page *page) 804 { 805 struct writeback_control wbc = { 806 .sync_mode = WB_SYNC_NONE, 807 .nr_to_write = 1, 808 .range_start = 0, 809 .range_end = LLONG_MAX, 810 .for_reclaim = 1 811 }; 812 int rc; 813 814 if (!mapping->a_ops->writepage) 815 /* No write method for the address space */ 816 return -EINVAL; 817 818 if (!clear_page_dirty_for_io(page)) 819 /* Someone else already triggered a write */ 820 return -EAGAIN; 821 822 /* 823 * A dirty page may imply that the underlying filesystem has 824 * the page on some queue. So the page must be clean for 825 * migration. Writeout may mean we loose the lock and the 826 * page state is no longer what we checked for earlier. 827 * At this point we know that the migration attempt cannot 828 * be successful. 829 */ 830 remove_migration_ptes(page, page, false); 831 832 rc = mapping->a_ops->writepage(page, &wbc); 833 834 if (rc != AOP_WRITEPAGE_ACTIVATE) 835 /* unlocked. Relock */ 836 lock_page(page); 837 838 return (rc < 0) ? -EIO : -EAGAIN; 839 } 840 841 /* 842 * Default handling if a filesystem does not provide a migration function. 843 */ 844 static int fallback_migrate_page(struct address_space *mapping, 845 struct page *newpage, struct page *page, enum migrate_mode mode) 846 { 847 if (PageDirty(page)) { 848 /* Only writeback pages in full synchronous migration */ 849 switch (mode) { 850 case MIGRATE_SYNC: 851 case MIGRATE_SYNC_NO_COPY: 852 break; 853 default: 854 return -EBUSY; 855 } 856 return writeout(mapping, page); 857 } 858 859 /* 860 * Buffers may be managed in a filesystem specific way. 861 * We must have no buffers or drop them. 862 */ 863 if (page_has_private(page) && 864 !try_to_release_page(page, GFP_KERNEL)) 865 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 866 867 return migrate_page(mapping, newpage, page, mode); 868 } 869 870 /* 871 * Move a page to a newly allocated page 872 * The page is locked and all ptes have been successfully removed. 873 * 874 * The new page will have replaced the old page if this function 875 * is successful. 876 * 877 * Return value: 878 * < 0 - error code 879 * MIGRATEPAGE_SUCCESS - success 880 */ 881 static int move_to_new_page(struct page *newpage, struct page *page, 882 enum migrate_mode mode) 883 { 884 struct address_space *mapping; 885 int rc = -EAGAIN; 886 bool is_lru = !__PageMovable(page); 887 888 VM_BUG_ON_PAGE(!PageLocked(page), page); 889 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 890 891 mapping = page_mapping(page); 892 893 if (likely(is_lru)) { 894 if (!mapping) 895 rc = migrate_page(mapping, newpage, page, mode); 896 else if (mapping->a_ops->migratepage) 897 /* 898 * Most pages have a mapping and most filesystems 899 * provide a migratepage callback. Anonymous pages 900 * are part of swap space which also has its own 901 * migratepage callback. This is the most common path 902 * for page migration. 903 */ 904 rc = mapping->a_ops->migratepage(mapping, newpage, 905 page, mode); 906 else 907 rc = fallback_migrate_page(mapping, newpage, 908 page, mode); 909 } else { 910 /* 911 * In case of non-lru page, it could be released after 912 * isolation step. In that case, we shouldn't try migration. 913 */ 914 VM_BUG_ON_PAGE(!PageIsolated(page), page); 915 if (!PageMovable(page)) { 916 rc = MIGRATEPAGE_SUCCESS; 917 __ClearPageIsolated(page); 918 goto out; 919 } 920 921 rc = mapping->a_ops->migratepage(mapping, newpage, 922 page, mode); 923 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 924 !PageIsolated(page)); 925 } 926 927 /* 928 * When successful, old pagecache page->mapping must be cleared before 929 * page is freed; but stats require that PageAnon be left as PageAnon. 930 */ 931 if (rc == MIGRATEPAGE_SUCCESS) { 932 if (__PageMovable(page)) { 933 VM_BUG_ON_PAGE(!PageIsolated(page), page); 934 935 /* 936 * We clear PG_movable under page_lock so any compactor 937 * cannot try to migrate this page. 938 */ 939 __ClearPageIsolated(page); 940 } 941 942 /* 943 * Anonymous and movable page->mapping will be cleared by 944 * free_pages_prepare so don't reset it here for keeping 945 * the type to work PageAnon, for example. 946 */ 947 if (!PageMappingFlags(page)) 948 page->mapping = NULL; 949 950 if (likely(!is_zone_device_page(newpage))) 951 flush_dcache_page(newpage); 952 953 } 954 out: 955 return rc; 956 } 957 958 static int __unmap_and_move(struct page *page, struct page *newpage, 959 int force, enum migrate_mode mode) 960 { 961 int rc = -EAGAIN; 962 bool page_was_mapped = false; 963 struct anon_vma *anon_vma = NULL; 964 bool is_lru = !__PageMovable(page); 965 966 if (!trylock_page(page)) { 967 if (!force || mode == MIGRATE_ASYNC) 968 goto out; 969 970 /* 971 * It's not safe for direct compaction to call lock_page. 972 * For example, during page readahead pages are added locked 973 * to the LRU. Later, when the IO completes the pages are 974 * marked uptodate and unlocked. However, the queueing 975 * could be merging multiple pages for one bio (e.g. 976 * mpage_readahead). If an allocation happens for the 977 * second or third page, the process can end up locking 978 * the same page twice and deadlocking. Rather than 979 * trying to be clever about what pages can be locked, 980 * avoid the use of lock_page for direct compaction 981 * altogether. 982 */ 983 if (current->flags & PF_MEMALLOC) 984 goto out; 985 986 lock_page(page); 987 } 988 989 if (PageWriteback(page)) { 990 /* 991 * Only in the case of a full synchronous migration is it 992 * necessary to wait for PageWriteback. In the async case, 993 * the retry loop is too short and in the sync-light case, 994 * the overhead of stalling is too much 995 */ 996 switch (mode) { 997 case MIGRATE_SYNC: 998 case MIGRATE_SYNC_NO_COPY: 999 break; 1000 default: 1001 rc = -EBUSY; 1002 goto out_unlock; 1003 } 1004 if (!force) 1005 goto out_unlock; 1006 wait_on_page_writeback(page); 1007 } 1008 1009 /* 1010 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 1011 * we cannot notice that anon_vma is freed while we migrates a page. 1012 * This get_anon_vma() delays freeing anon_vma pointer until the end 1013 * of migration. File cache pages are no problem because of page_lock() 1014 * File Caches may use write_page() or lock_page() in migration, then, 1015 * just care Anon page here. 1016 * 1017 * Only page_get_anon_vma() understands the subtleties of 1018 * getting a hold on an anon_vma from outside one of its mms. 1019 * But if we cannot get anon_vma, then we won't need it anyway, 1020 * because that implies that the anon page is no longer mapped 1021 * (and cannot be remapped so long as we hold the page lock). 1022 */ 1023 if (PageAnon(page) && !PageKsm(page)) 1024 anon_vma = page_get_anon_vma(page); 1025 1026 /* 1027 * Block others from accessing the new page when we get around to 1028 * establishing additional references. We are usually the only one 1029 * holding a reference to newpage at this point. We used to have a BUG 1030 * here if trylock_page(newpage) fails, but would like to allow for 1031 * cases where there might be a race with the previous use of newpage. 1032 * This is much like races on refcount of oldpage: just don't BUG(). 1033 */ 1034 if (unlikely(!trylock_page(newpage))) 1035 goto out_unlock; 1036 1037 if (unlikely(!is_lru)) { 1038 rc = move_to_new_page(newpage, page, mode); 1039 goto out_unlock_both; 1040 } 1041 1042 /* 1043 * Corner case handling: 1044 * 1. When a new swap-cache page is read into, it is added to the LRU 1045 * and treated as swapcache but it has no rmap yet. 1046 * Calling try_to_unmap() against a page->mapping==NULL page will 1047 * trigger a BUG. So handle it here. 1048 * 2. An orphaned page (see truncate_cleanup_page) might have 1049 * fs-private metadata. The page can be picked up due to memory 1050 * offlining. Everywhere else except page reclaim, the page is 1051 * invisible to the vm, so the page can not be migrated. So try to 1052 * free the metadata, so the page can be freed. 1053 */ 1054 if (!page->mapping) { 1055 VM_BUG_ON_PAGE(PageAnon(page), page); 1056 if (page_has_private(page)) { 1057 try_to_free_buffers(page); 1058 goto out_unlock_both; 1059 } 1060 } else if (page_mapped(page)) { 1061 /* Establish migration ptes */ 1062 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1063 page); 1064 try_to_migrate(page, 0); 1065 page_was_mapped = true; 1066 } 1067 1068 if (!page_mapped(page)) 1069 rc = move_to_new_page(newpage, page, mode); 1070 1071 if (page_was_mapped) 1072 remove_migration_ptes(page, 1073 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1074 1075 out_unlock_both: 1076 unlock_page(newpage); 1077 out_unlock: 1078 /* Drop an anon_vma reference if we took one */ 1079 if (anon_vma) 1080 put_anon_vma(anon_vma); 1081 unlock_page(page); 1082 out: 1083 /* 1084 * If migration is successful, decrease refcount of the newpage 1085 * which will not free the page because new page owner increased 1086 * refcounter. As well, if it is LRU page, add the page to LRU 1087 * list in here. Use the old state of the isolated source page to 1088 * determine if we migrated a LRU page. newpage was already unlocked 1089 * and possibly modified by its owner - don't rely on the page 1090 * state. 1091 */ 1092 if (rc == MIGRATEPAGE_SUCCESS) { 1093 if (unlikely(!is_lru)) 1094 put_page(newpage); 1095 else 1096 putback_lru_page(newpage); 1097 } 1098 1099 return rc; 1100 } 1101 1102 1103 /* 1104 * node_demotion[] example: 1105 * 1106 * Consider a system with two sockets. Each socket has 1107 * three classes of memory attached: fast, medium and slow. 1108 * Each memory class is placed in its own NUMA node. The 1109 * CPUs are placed in the node with the "fast" memory. The 1110 * 6 NUMA nodes (0-5) might be split among the sockets like 1111 * this: 1112 * 1113 * Socket A: 0, 1, 2 1114 * Socket B: 3, 4, 5 1115 * 1116 * When Node 0 fills up, its memory should be migrated to 1117 * Node 1. When Node 1 fills up, it should be migrated to 1118 * Node 2. The migration path start on the nodes with the 1119 * processors (since allocations default to this node) and 1120 * fast memory, progress through medium and end with the 1121 * slow memory: 1122 * 1123 * 0 -> 1 -> 2 -> stop 1124 * 3 -> 4 -> 5 -> stop 1125 * 1126 * This is represented in the node_demotion[] like this: 1127 * 1128 * { 1, // Node 0 migrates to 1 1129 * 2, // Node 1 migrates to 2 1130 * -1, // Node 2 does not migrate 1131 * 4, // Node 3 migrates to 4 1132 * 5, // Node 4 migrates to 5 1133 * -1} // Node 5 does not migrate 1134 */ 1135 1136 /* 1137 * Writes to this array occur without locking. Cycles are 1138 * not allowed: Node X demotes to Y which demotes to X... 1139 * 1140 * If multiple reads are performed, a single rcu_read_lock() 1141 * must be held over all reads to ensure that no cycles are 1142 * observed. 1143 */ 1144 static int node_demotion[MAX_NUMNODES] __read_mostly = 1145 {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE}; 1146 1147 /** 1148 * next_demotion_node() - Get the next node in the demotion path 1149 * @node: The starting node to lookup the next node 1150 * 1151 * Return: node id for next memory node in the demotion path hierarchy 1152 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 1153 * @node online or guarantee that it *continues* to be the next demotion 1154 * target. 1155 */ 1156 int next_demotion_node(int node) 1157 { 1158 int target; 1159 1160 /* 1161 * node_demotion[] is updated without excluding this 1162 * function from running. RCU doesn't provide any 1163 * compiler barriers, so the READ_ONCE() is required 1164 * to avoid compiler reordering or read merging. 1165 * 1166 * Make sure to use RCU over entire code blocks if 1167 * node_demotion[] reads need to be consistent. 1168 */ 1169 rcu_read_lock(); 1170 target = READ_ONCE(node_demotion[node]); 1171 rcu_read_unlock(); 1172 1173 return target; 1174 } 1175 1176 /* 1177 * Obtain the lock on page, remove all ptes and migrate the page 1178 * to the newly allocated page in newpage. 1179 */ 1180 static int unmap_and_move(new_page_t get_new_page, 1181 free_page_t put_new_page, 1182 unsigned long private, struct page *page, 1183 int force, enum migrate_mode mode, 1184 enum migrate_reason reason, 1185 struct list_head *ret) 1186 { 1187 int rc = MIGRATEPAGE_SUCCESS; 1188 struct page *newpage = NULL; 1189 1190 if (!thp_migration_supported() && PageTransHuge(page)) 1191 return -ENOSYS; 1192 1193 if (page_count(page) == 1) { 1194 /* page was freed from under us. So we are done. */ 1195 ClearPageActive(page); 1196 ClearPageUnevictable(page); 1197 if (unlikely(__PageMovable(page))) { 1198 lock_page(page); 1199 if (!PageMovable(page)) 1200 __ClearPageIsolated(page); 1201 unlock_page(page); 1202 } 1203 goto out; 1204 } 1205 1206 newpage = get_new_page(page, private); 1207 if (!newpage) 1208 return -ENOMEM; 1209 1210 rc = __unmap_and_move(page, newpage, force, mode); 1211 if (rc == MIGRATEPAGE_SUCCESS) 1212 set_page_owner_migrate_reason(newpage, reason); 1213 1214 out: 1215 if (rc != -EAGAIN) { 1216 /* 1217 * A page that has been migrated has all references 1218 * removed and will be freed. A page that has not been 1219 * migrated will have kept its references and be restored. 1220 */ 1221 list_del(&page->lru); 1222 } 1223 1224 /* 1225 * If migration is successful, releases reference grabbed during 1226 * isolation. Otherwise, restore the page to right list unless 1227 * we want to retry. 1228 */ 1229 if (rc == MIGRATEPAGE_SUCCESS) { 1230 /* 1231 * Compaction can migrate also non-LRU pages which are 1232 * not accounted to NR_ISOLATED_*. They can be recognized 1233 * as __PageMovable 1234 */ 1235 if (likely(!__PageMovable(page))) 1236 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1237 page_is_file_lru(page), -thp_nr_pages(page)); 1238 1239 if (reason != MR_MEMORY_FAILURE) 1240 /* 1241 * We release the page in page_handle_poison. 1242 */ 1243 put_page(page); 1244 } else { 1245 if (rc != -EAGAIN) 1246 list_add_tail(&page->lru, ret); 1247 1248 if (put_new_page) 1249 put_new_page(newpage, private); 1250 else 1251 put_page(newpage); 1252 } 1253 1254 return rc; 1255 } 1256 1257 /* 1258 * Counterpart of unmap_and_move_page() for hugepage migration. 1259 * 1260 * This function doesn't wait the completion of hugepage I/O 1261 * because there is no race between I/O and migration for hugepage. 1262 * Note that currently hugepage I/O occurs only in direct I/O 1263 * where no lock is held and PG_writeback is irrelevant, 1264 * and writeback status of all subpages are counted in the reference 1265 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1266 * under direct I/O, the reference of the head page is 512 and a bit more.) 1267 * This means that when we try to migrate hugepage whose subpages are 1268 * doing direct I/O, some references remain after try_to_unmap() and 1269 * hugepage migration fails without data corruption. 1270 * 1271 * There is also no race when direct I/O is issued on the page under migration, 1272 * because then pte is replaced with migration swap entry and direct I/O code 1273 * will wait in the page fault for migration to complete. 1274 */ 1275 static int unmap_and_move_huge_page(new_page_t get_new_page, 1276 free_page_t put_new_page, unsigned long private, 1277 struct page *hpage, int force, 1278 enum migrate_mode mode, int reason, 1279 struct list_head *ret) 1280 { 1281 int rc = -EAGAIN; 1282 int page_was_mapped = 0; 1283 struct page *new_hpage; 1284 struct anon_vma *anon_vma = NULL; 1285 struct address_space *mapping = NULL; 1286 1287 /* 1288 * Migratability of hugepages depends on architectures and their size. 1289 * This check is necessary because some callers of hugepage migration 1290 * like soft offline and memory hotremove don't walk through page 1291 * tables or check whether the hugepage is pmd-based or not before 1292 * kicking migration. 1293 */ 1294 if (!hugepage_migration_supported(page_hstate(hpage))) { 1295 list_move_tail(&hpage->lru, ret); 1296 return -ENOSYS; 1297 } 1298 1299 if (page_count(hpage) == 1) { 1300 /* page was freed from under us. So we are done. */ 1301 putback_active_hugepage(hpage); 1302 return MIGRATEPAGE_SUCCESS; 1303 } 1304 1305 new_hpage = get_new_page(hpage, private); 1306 if (!new_hpage) 1307 return -ENOMEM; 1308 1309 if (!trylock_page(hpage)) { 1310 if (!force) 1311 goto out; 1312 switch (mode) { 1313 case MIGRATE_SYNC: 1314 case MIGRATE_SYNC_NO_COPY: 1315 break; 1316 default: 1317 goto out; 1318 } 1319 lock_page(hpage); 1320 } 1321 1322 /* 1323 * Check for pages which are in the process of being freed. Without 1324 * page_mapping() set, hugetlbfs specific move page routine will not 1325 * be called and we could leak usage counts for subpools. 1326 */ 1327 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1328 rc = -EBUSY; 1329 goto out_unlock; 1330 } 1331 1332 if (PageAnon(hpage)) 1333 anon_vma = page_get_anon_vma(hpage); 1334 1335 if (unlikely(!trylock_page(new_hpage))) 1336 goto put_anon; 1337 1338 if (page_mapped(hpage)) { 1339 bool mapping_locked = false; 1340 enum ttu_flags ttu = 0; 1341 1342 if (!PageAnon(hpage)) { 1343 /* 1344 * In shared mappings, try_to_unmap could potentially 1345 * call huge_pmd_unshare. Because of this, take 1346 * semaphore in write mode here and set TTU_RMAP_LOCKED 1347 * to let lower levels know we have taken the lock. 1348 */ 1349 mapping = hugetlb_page_mapping_lock_write(hpage); 1350 if (unlikely(!mapping)) 1351 goto unlock_put_anon; 1352 1353 mapping_locked = true; 1354 ttu |= TTU_RMAP_LOCKED; 1355 } 1356 1357 try_to_migrate(hpage, ttu); 1358 page_was_mapped = 1; 1359 1360 if (mapping_locked) 1361 i_mmap_unlock_write(mapping); 1362 } 1363 1364 if (!page_mapped(hpage)) 1365 rc = move_to_new_page(new_hpage, hpage, mode); 1366 1367 if (page_was_mapped) 1368 remove_migration_ptes(hpage, 1369 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1370 1371 unlock_put_anon: 1372 unlock_page(new_hpage); 1373 1374 put_anon: 1375 if (anon_vma) 1376 put_anon_vma(anon_vma); 1377 1378 if (rc == MIGRATEPAGE_SUCCESS) { 1379 move_hugetlb_state(hpage, new_hpage, reason); 1380 put_new_page = NULL; 1381 } 1382 1383 out_unlock: 1384 unlock_page(hpage); 1385 out: 1386 if (rc == MIGRATEPAGE_SUCCESS) 1387 putback_active_hugepage(hpage); 1388 else if (rc != -EAGAIN) 1389 list_move_tail(&hpage->lru, ret); 1390 1391 /* 1392 * If migration was not successful and there's a freeing callback, use 1393 * it. Otherwise, put_page() will drop the reference grabbed during 1394 * isolation. 1395 */ 1396 if (put_new_page) 1397 put_new_page(new_hpage, private); 1398 else 1399 putback_active_hugepage(new_hpage); 1400 1401 return rc; 1402 } 1403 1404 static inline int try_split_thp(struct page *page, struct page **page2, 1405 struct list_head *from) 1406 { 1407 int rc = 0; 1408 1409 lock_page(page); 1410 rc = split_huge_page_to_list(page, from); 1411 unlock_page(page); 1412 if (!rc) 1413 list_safe_reset_next(page, *page2, lru); 1414 1415 return rc; 1416 } 1417 1418 /* 1419 * migrate_pages - migrate the pages specified in a list, to the free pages 1420 * supplied as the target for the page migration 1421 * 1422 * @from: The list of pages to be migrated. 1423 * @get_new_page: The function used to allocate free pages to be used 1424 * as the target of the page migration. 1425 * @put_new_page: The function used to free target pages if migration 1426 * fails, or NULL if no special handling is necessary. 1427 * @private: Private data to be passed on to get_new_page() 1428 * @mode: The migration mode that specifies the constraints for 1429 * page migration, if any. 1430 * @reason: The reason for page migration. 1431 * @ret_succeeded: Set to the number of pages migrated successfully if 1432 * the caller passes a non-NULL pointer. 1433 * 1434 * The function returns after 10 attempts or if no pages are movable any more 1435 * because the list has become empty or no retryable pages exist any more. 1436 * It is caller's responsibility to call putback_movable_pages() to return pages 1437 * to the LRU or free list only if ret != 0. 1438 * 1439 * Returns the number of pages that were not migrated, or an error code. 1440 */ 1441 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1442 free_page_t put_new_page, unsigned long private, 1443 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1444 { 1445 int retry = 1; 1446 int thp_retry = 1; 1447 int nr_failed = 0; 1448 int nr_succeeded = 0; 1449 int nr_thp_succeeded = 0; 1450 int nr_thp_failed = 0; 1451 int nr_thp_split = 0; 1452 int pass = 0; 1453 bool is_thp = false; 1454 struct page *page; 1455 struct page *page2; 1456 int swapwrite = current->flags & PF_SWAPWRITE; 1457 int rc, nr_subpages; 1458 LIST_HEAD(ret_pages); 1459 bool nosplit = (reason == MR_NUMA_MISPLACED); 1460 1461 trace_mm_migrate_pages_start(mode, reason); 1462 1463 if (!swapwrite) 1464 current->flags |= PF_SWAPWRITE; 1465 1466 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1467 retry = 0; 1468 thp_retry = 0; 1469 1470 list_for_each_entry_safe(page, page2, from, lru) { 1471 retry: 1472 /* 1473 * THP statistics is based on the source huge page. 1474 * Capture required information that might get lost 1475 * during migration. 1476 */ 1477 is_thp = PageTransHuge(page) && !PageHuge(page); 1478 nr_subpages = thp_nr_pages(page); 1479 cond_resched(); 1480 1481 if (PageHuge(page)) 1482 rc = unmap_and_move_huge_page(get_new_page, 1483 put_new_page, private, page, 1484 pass > 2, mode, reason, 1485 &ret_pages); 1486 else 1487 rc = unmap_and_move(get_new_page, put_new_page, 1488 private, page, pass > 2, mode, 1489 reason, &ret_pages); 1490 /* 1491 * The rules are: 1492 * Success: non hugetlb page will be freed, hugetlb 1493 * page will be put back 1494 * -EAGAIN: stay on the from list 1495 * -ENOMEM: stay on the from list 1496 * Other errno: put on ret_pages list then splice to 1497 * from list 1498 */ 1499 switch(rc) { 1500 /* 1501 * THP migration might be unsupported or the 1502 * allocation could've failed so we should 1503 * retry on the same page with the THP split 1504 * to base pages. 1505 * 1506 * Head page is retried immediately and tail 1507 * pages are added to the tail of the list so 1508 * we encounter them after the rest of the list 1509 * is processed. 1510 */ 1511 case -ENOSYS: 1512 /* THP migration is unsupported */ 1513 if (is_thp) { 1514 if (!try_split_thp(page, &page2, from)) { 1515 nr_thp_split++; 1516 goto retry; 1517 } 1518 1519 nr_thp_failed++; 1520 nr_failed += nr_subpages; 1521 break; 1522 } 1523 1524 /* Hugetlb migration is unsupported */ 1525 nr_failed++; 1526 break; 1527 case -ENOMEM: 1528 /* 1529 * When memory is low, don't bother to try to migrate 1530 * other pages, just exit. 1531 * THP NUMA faulting doesn't split THP to retry. 1532 */ 1533 if (is_thp && !nosplit) { 1534 if (!try_split_thp(page, &page2, from)) { 1535 nr_thp_split++; 1536 goto retry; 1537 } 1538 1539 nr_thp_failed++; 1540 nr_failed += nr_subpages; 1541 goto out; 1542 } 1543 nr_failed++; 1544 goto out; 1545 case -EAGAIN: 1546 if (is_thp) { 1547 thp_retry++; 1548 break; 1549 } 1550 retry++; 1551 break; 1552 case MIGRATEPAGE_SUCCESS: 1553 if (is_thp) { 1554 nr_thp_succeeded++; 1555 nr_succeeded += nr_subpages; 1556 break; 1557 } 1558 nr_succeeded++; 1559 break; 1560 default: 1561 /* 1562 * Permanent failure (-EBUSY, etc.): 1563 * unlike -EAGAIN case, the failed page is 1564 * removed from migration page list and not 1565 * retried in the next outer loop. 1566 */ 1567 if (is_thp) { 1568 nr_thp_failed++; 1569 nr_failed += nr_subpages; 1570 break; 1571 } 1572 nr_failed++; 1573 break; 1574 } 1575 } 1576 } 1577 nr_failed += retry + thp_retry; 1578 nr_thp_failed += thp_retry; 1579 rc = nr_failed; 1580 out: 1581 /* 1582 * Put the permanent failure page back to migration list, they 1583 * will be put back to the right list by the caller. 1584 */ 1585 list_splice(&ret_pages, from); 1586 1587 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1588 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1589 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1590 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1591 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1592 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1593 nr_thp_failed, nr_thp_split, mode, reason); 1594 1595 if (!swapwrite) 1596 current->flags &= ~PF_SWAPWRITE; 1597 1598 if (ret_succeeded) 1599 *ret_succeeded = nr_succeeded; 1600 1601 return rc; 1602 } 1603 1604 struct page *alloc_migration_target(struct page *page, unsigned long private) 1605 { 1606 struct migration_target_control *mtc; 1607 gfp_t gfp_mask; 1608 unsigned int order = 0; 1609 struct page *new_page = NULL; 1610 int nid; 1611 int zidx; 1612 1613 mtc = (struct migration_target_control *)private; 1614 gfp_mask = mtc->gfp_mask; 1615 nid = mtc->nid; 1616 if (nid == NUMA_NO_NODE) 1617 nid = page_to_nid(page); 1618 1619 if (PageHuge(page)) { 1620 struct hstate *h = page_hstate(compound_head(page)); 1621 1622 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1623 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1624 } 1625 1626 if (PageTransHuge(page)) { 1627 /* 1628 * clear __GFP_RECLAIM to make the migration callback 1629 * consistent with regular THP allocations. 1630 */ 1631 gfp_mask &= ~__GFP_RECLAIM; 1632 gfp_mask |= GFP_TRANSHUGE; 1633 order = HPAGE_PMD_ORDER; 1634 } 1635 zidx = zone_idx(page_zone(page)); 1636 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1637 gfp_mask |= __GFP_HIGHMEM; 1638 1639 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1640 1641 if (new_page && PageTransHuge(new_page)) 1642 prep_transhuge_page(new_page); 1643 1644 return new_page; 1645 } 1646 1647 #ifdef CONFIG_NUMA 1648 1649 static int store_status(int __user *status, int start, int value, int nr) 1650 { 1651 while (nr-- > 0) { 1652 if (put_user(value, status + start)) 1653 return -EFAULT; 1654 start++; 1655 } 1656 1657 return 0; 1658 } 1659 1660 static int do_move_pages_to_node(struct mm_struct *mm, 1661 struct list_head *pagelist, int node) 1662 { 1663 int err; 1664 struct migration_target_control mtc = { 1665 .nid = node, 1666 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1667 }; 1668 1669 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1670 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1671 if (err) 1672 putback_movable_pages(pagelist); 1673 return err; 1674 } 1675 1676 /* 1677 * Resolves the given address to a struct page, isolates it from the LRU and 1678 * puts it to the given pagelist. 1679 * Returns: 1680 * errno - if the page cannot be found/isolated 1681 * 0 - when it doesn't have to be migrated because it is already on the 1682 * target node 1683 * 1 - when it has been queued 1684 */ 1685 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1686 int node, struct list_head *pagelist, bool migrate_all) 1687 { 1688 struct vm_area_struct *vma; 1689 struct page *page; 1690 unsigned int follflags; 1691 int err; 1692 1693 mmap_read_lock(mm); 1694 err = -EFAULT; 1695 vma = find_vma(mm, addr); 1696 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1697 goto out; 1698 1699 /* FOLL_DUMP to ignore special (like zero) pages */ 1700 follflags = FOLL_GET | FOLL_DUMP; 1701 page = follow_page(vma, addr, follflags); 1702 1703 err = PTR_ERR(page); 1704 if (IS_ERR(page)) 1705 goto out; 1706 1707 err = -ENOENT; 1708 if (!page) 1709 goto out; 1710 1711 err = 0; 1712 if (page_to_nid(page) == node) 1713 goto out_putpage; 1714 1715 err = -EACCES; 1716 if (page_mapcount(page) > 1 && !migrate_all) 1717 goto out_putpage; 1718 1719 if (PageHuge(page)) { 1720 if (PageHead(page)) { 1721 isolate_huge_page(page, pagelist); 1722 err = 1; 1723 } 1724 } else { 1725 struct page *head; 1726 1727 head = compound_head(page); 1728 err = isolate_lru_page(head); 1729 if (err) 1730 goto out_putpage; 1731 1732 err = 1; 1733 list_add_tail(&head->lru, pagelist); 1734 mod_node_page_state(page_pgdat(head), 1735 NR_ISOLATED_ANON + page_is_file_lru(head), 1736 thp_nr_pages(head)); 1737 } 1738 out_putpage: 1739 /* 1740 * Either remove the duplicate refcount from 1741 * isolate_lru_page() or drop the page ref if it was 1742 * not isolated. 1743 */ 1744 put_page(page); 1745 out: 1746 mmap_read_unlock(mm); 1747 return err; 1748 } 1749 1750 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1751 struct list_head *pagelist, int __user *status, 1752 int start, int i, unsigned long nr_pages) 1753 { 1754 int err; 1755 1756 if (list_empty(pagelist)) 1757 return 0; 1758 1759 err = do_move_pages_to_node(mm, pagelist, node); 1760 if (err) { 1761 /* 1762 * Positive err means the number of failed 1763 * pages to migrate. Since we are going to 1764 * abort and return the number of non-migrated 1765 * pages, so need to include the rest of the 1766 * nr_pages that have not been attempted as 1767 * well. 1768 */ 1769 if (err > 0) 1770 err += nr_pages - i - 1; 1771 return err; 1772 } 1773 return store_status(status, start, node, i - start); 1774 } 1775 1776 /* 1777 * Migrate an array of page address onto an array of nodes and fill 1778 * the corresponding array of status. 1779 */ 1780 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1781 unsigned long nr_pages, 1782 const void __user * __user *pages, 1783 const int __user *nodes, 1784 int __user *status, int flags) 1785 { 1786 int current_node = NUMA_NO_NODE; 1787 LIST_HEAD(pagelist); 1788 int start, i; 1789 int err = 0, err1; 1790 1791 lru_cache_disable(); 1792 1793 for (i = start = 0; i < nr_pages; i++) { 1794 const void __user *p; 1795 unsigned long addr; 1796 int node; 1797 1798 err = -EFAULT; 1799 if (get_user(p, pages + i)) 1800 goto out_flush; 1801 if (get_user(node, nodes + i)) 1802 goto out_flush; 1803 addr = (unsigned long)untagged_addr(p); 1804 1805 err = -ENODEV; 1806 if (node < 0 || node >= MAX_NUMNODES) 1807 goto out_flush; 1808 if (!node_state(node, N_MEMORY)) 1809 goto out_flush; 1810 1811 err = -EACCES; 1812 if (!node_isset(node, task_nodes)) 1813 goto out_flush; 1814 1815 if (current_node == NUMA_NO_NODE) { 1816 current_node = node; 1817 start = i; 1818 } else if (node != current_node) { 1819 err = move_pages_and_store_status(mm, current_node, 1820 &pagelist, status, start, i, nr_pages); 1821 if (err) 1822 goto out; 1823 start = i; 1824 current_node = node; 1825 } 1826 1827 /* 1828 * Errors in the page lookup or isolation are not fatal and we simply 1829 * report them via status 1830 */ 1831 err = add_page_for_migration(mm, addr, current_node, 1832 &pagelist, flags & MPOL_MF_MOVE_ALL); 1833 1834 if (err > 0) { 1835 /* The page is successfully queued for migration */ 1836 continue; 1837 } 1838 1839 /* 1840 * If the page is already on the target node (!err), store the 1841 * node, otherwise, store the err. 1842 */ 1843 err = store_status(status, i, err ? : current_node, 1); 1844 if (err) 1845 goto out_flush; 1846 1847 err = move_pages_and_store_status(mm, current_node, &pagelist, 1848 status, start, i, nr_pages); 1849 if (err) 1850 goto out; 1851 current_node = NUMA_NO_NODE; 1852 } 1853 out_flush: 1854 /* Make sure we do not overwrite the existing error */ 1855 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1856 status, start, i, nr_pages); 1857 if (err >= 0) 1858 err = err1; 1859 out: 1860 lru_cache_enable(); 1861 return err; 1862 } 1863 1864 /* 1865 * Determine the nodes of an array of pages and store it in an array of status. 1866 */ 1867 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1868 const void __user **pages, int *status) 1869 { 1870 unsigned long i; 1871 1872 mmap_read_lock(mm); 1873 1874 for (i = 0; i < nr_pages; i++) { 1875 unsigned long addr = (unsigned long)(*pages); 1876 struct vm_area_struct *vma; 1877 struct page *page; 1878 int err = -EFAULT; 1879 1880 vma = vma_lookup(mm, addr); 1881 if (!vma) 1882 goto set_status; 1883 1884 /* FOLL_DUMP to ignore special (like zero) pages */ 1885 page = follow_page(vma, addr, FOLL_DUMP); 1886 1887 err = PTR_ERR(page); 1888 if (IS_ERR(page)) 1889 goto set_status; 1890 1891 err = page ? page_to_nid(page) : -ENOENT; 1892 set_status: 1893 *status = err; 1894 1895 pages++; 1896 status++; 1897 } 1898 1899 mmap_read_unlock(mm); 1900 } 1901 1902 static int get_compat_pages_array(const void __user *chunk_pages[], 1903 const void __user * __user *pages, 1904 unsigned long chunk_nr) 1905 { 1906 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1907 compat_uptr_t p; 1908 int i; 1909 1910 for (i = 0; i < chunk_nr; i++) { 1911 if (get_user(p, pages32 + i)) 1912 return -EFAULT; 1913 chunk_pages[i] = compat_ptr(p); 1914 } 1915 1916 return 0; 1917 } 1918 1919 /* 1920 * Determine the nodes of a user array of pages and store it in 1921 * a user array of status. 1922 */ 1923 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1924 const void __user * __user *pages, 1925 int __user *status) 1926 { 1927 #define DO_PAGES_STAT_CHUNK_NR 16 1928 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1929 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1930 1931 while (nr_pages) { 1932 unsigned long chunk_nr; 1933 1934 chunk_nr = nr_pages; 1935 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1936 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1937 1938 if (in_compat_syscall()) { 1939 if (get_compat_pages_array(chunk_pages, pages, 1940 chunk_nr)) 1941 break; 1942 } else { 1943 if (copy_from_user(chunk_pages, pages, 1944 chunk_nr * sizeof(*chunk_pages))) 1945 break; 1946 } 1947 1948 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1949 1950 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1951 break; 1952 1953 pages += chunk_nr; 1954 status += chunk_nr; 1955 nr_pages -= chunk_nr; 1956 } 1957 return nr_pages ? -EFAULT : 0; 1958 } 1959 1960 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1961 { 1962 struct task_struct *task; 1963 struct mm_struct *mm; 1964 1965 /* 1966 * There is no need to check if current process has the right to modify 1967 * the specified process when they are same. 1968 */ 1969 if (!pid) { 1970 mmget(current->mm); 1971 *mem_nodes = cpuset_mems_allowed(current); 1972 return current->mm; 1973 } 1974 1975 /* Find the mm_struct */ 1976 rcu_read_lock(); 1977 task = find_task_by_vpid(pid); 1978 if (!task) { 1979 rcu_read_unlock(); 1980 return ERR_PTR(-ESRCH); 1981 } 1982 get_task_struct(task); 1983 1984 /* 1985 * Check if this process has the right to modify the specified 1986 * process. Use the regular "ptrace_may_access()" checks. 1987 */ 1988 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1989 rcu_read_unlock(); 1990 mm = ERR_PTR(-EPERM); 1991 goto out; 1992 } 1993 rcu_read_unlock(); 1994 1995 mm = ERR_PTR(security_task_movememory(task)); 1996 if (IS_ERR(mm)) 1997 goto out; 1998 *mem_nodes = cpuset_mems_allowed(task); 1999 mm = get_task_mm(task); 2000 out: 2001 put_task_struct(task); 2002 if (!mm) 2003 mm = ERR_PTR(-EINVAL); 2004 return mm; 2005 } 2006 2007 /* 2008 * Move a list of pages in the address space of the currently executing 2009 * process. 2010 */ 2011 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2012 const void __user * __user *pages, 2013 const int __user *nodes, 2014 int __user *status, int flags) 2015 { 2016 struct mm_struct *mm; 2017 int err; 2018 nodemask_t task_nodes; 2019 2020 /* Check flags */ 2021 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2022 return -EINVAL; 2023 2024 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2025 return -EPERM; 2026 2027 mm = find_mm_struct(pid, &task_nodes); 2028 if (IS_ERR(mm)) 2029 return PTR_ERR(mm); 2030 2031 if (nodes) 2032 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2033 nodes, status, flags); 2034 else 2035 err = do_pages_stat(mm, nr_pages, pages, status); 2036 2037 mmput(mm); 2038 return err; 2039 } 2040 2041 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2042 const void __user * __user *, pages, 2043 const int __user *, nodes, 2044 int __user *, status, int, flags) 2045 { 2046 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2047 } 2048 2049 #ifdef CONFIG_NUMA_BALANCING 2050 /* 2051 * Returns true if this is a safe migration target node for misplaced NUMA 2052 * pages. Currently it only checks the watermarks which crude 2053 */ 2054 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2055 unsigned long nr_migrate_pages) 2056 { 2057 int z; 2058 2059 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2060 struct zone *zone = pgdat->node_zones + z; 2061 2062 if (!populated_zone(zone)) 2063 continue; 2064 2065 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2066 if (!zone_watermark_ok(zone, 0, 2067 high_wmark_pages(zone) + 2068 nr_migrate_pages, 2069 ZONE_MOVABLE, 0)) 2070 continue; 2071 return true; 2072 } 2073 return false; 2074 } 2075 2076 static struct page *alloc_misplaced_dst_page(struct page *page, 2077 unsigned long data) 2078 { 2079 int nid = (int) data; 2080 struct page *newpage; 2081 2082 newpage = __alloc_pages_node(nid, 2083 (GFP_HIGHUSER_MOVABLE | 2084 __GFP_THISNODE | __GFP_NOMEMALLOC | 2085 __GFP_NORETRY | __GFP_NOWARN) & 2086 ~__GFP_RECLAIM, 0); 2087 2088 return newpage; 2089 } 2090 2091 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2092 unsigned long data) 2093 { 2094 int nid = (int) data; 2095 struct page *newpage; 2096 2097 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2098 HPAGE_PMD_ORDER); 2099 if (!newpage) 2100 goto out; 2101 2102 prep_transhuge_page(newpage); 2103 2104 out: 2105 return newpage; 2106 } 2107 2108 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2109 { 2110 int page_lru; 2111 int nr_pages = thp_nr_pages(page); 2112 2113 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2114 2115 /* Do not migrate THP mapped by multiple processes */ 2116 if (PageTransHuge(page) && total_mapcount(page) > 1) 2117 return 0; 2118 2119 /* Avoid migrating to a node that is nearly full */ 2120 if (!migrate_balanced_pgdat(pgdat, nr_pages)) 2121 return 0; 2122 2123 if (isolate_lru_page(page)) 2124 return 0; 2125 2126 page_lru = page_is_file_lru(page); 2127 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2128 nr_pages); 2129 2130 /* 2131 * Isolating the page has taken another reference, so the 2132 * caller's reference can be safely dropped without the page 2133 * disappearing underneath us during migration. 2134 */ 2135 put_page(page); 2136 return 1; 2137 } 2138 2139 /* 2140 * Attempt to migrate a misplaced page to the specified destination 2141 * node. Caller is expected to have an elevated reference count on 2142 * the page that will be dropped by this function before returning. 2143 */ 2144 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2145 int node) 2146 { 2147 pg_data_t *pgdat = NODE_DATA(node); 2148 int isolated; 2149 int nr_remaining; 2150 LIST_HEAD(migratepages); 2151 new_page_t *new; 2152 bool compound; 2153 int nr_pages = thp_nr_pages(page); 2154 2155 /* 2156 * PTE mapped THP or HugeTLB page can't reach here so the page could 2157 * be either base page or THP. And it must be head page if it is 2158 * THP. 2159 */ 2160 compound = PageTransHuge(page); 2161 2162 if (compound) 2163 new = alloc_misplaced_dst_page_thp; 2164 else 2165 new = alloc_misplaced_dst_page; 2166 2167 /* 2168 * Don't migrate file pages that are mapped in multiple processes 2169 * with execute permissions as they are probably shared libraries. 2170 */ 2171 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2172 (vma->vm_flags & VM_EXEC)) 2173 goto out; 2174 2175 /* 2176 * Also do not migrate dirty pages as not all filesystems can move 2177 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2178 */ 2179 if (page_is_file_lru(page) && PageDirty(page)) 2180 goto out; 2181 2182 isolated = numamigrate_isolate_page(pgdat, page); 2183 if (!isolated) 2184 goto out; 2185 2186 list_add(&page->lru, &migratepages); 2187 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2188 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL); 2189 if (nr_remaining) { 2190 if (!list_empty(&migratepages)) { 2191 list_del(&page->lru); 2192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2193 page_is_file_lru(page), -nr_pages); 2194 putback_lru_page(page); 2195 } 2196 isolated = 0; 2197 } else 2198 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); 2199 BUG_ON(!list_empty(&migratepages)); 2200 return isolated; 2201 2202 out: 2203 put_page(page); 2204 return 0; 2205 } 2206 #endif /* CONFIG_NUMA_BALANCING */ 2207 #endif /* CONFIG_NUMA */ 2208 2209 #ifdef CONFIG_DEVICE_PRIVATE 2210 static int migrate_vma_collect_skip(unsigned long start, 2211 unsigned long end, 2212 struct mm_walk *walk) 2213 { 2214 struct migrate_vma *migrate = walk->private; 2215 unsigned long addr; 2216 2217 for (addr = start; addr < end; addr += PAGE_SIZE) { 2218 migrate->dst[migrate->npages] = 0; 2219 migrate->src[migrate->npages++] = 0; 2220 } 2221 2222 return 0; 2223 } 2224 2225 static int migrate_vma_collect_hole(unsigned long start, 2226 unsigned long end, 2227 __always_unused int depth, 2228 struct mm_walk *walk) 2229 { 2230 struct migrate_vma *migrate = walk->private; 2231 unsigned long addr; 2232 2233 /* Only allow populating anonymous memory. */ 2234 if (!vma_is_anonymous(walk->vma)) 2235 return migrate_vma_collect_skip(start, end, walk); 2236 2237 for (addr = start; addr < end; addr += PAGE_SIZE) { 2238 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2239 migrate->dst[migrate->npages] = 0; 2240 migrate->npages++; 2241 migrate->cpages++; 2242 } 2243 2244 return 0; 2245 } 2246 2247 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2248 unsigned long start, 2249 unsigned long end, 2250 struct mm_walk *walk) 2251 { 2252 struct migrate_vma *migrate = walk->private; 2253 struct vm_area_struct *vma = walk->vma; 2254 struct mm_struct *mm = vma->vm_mm; 2255 unsigned long addr = start, unmapped = 0; 2256 spinlock_t *ptl; 2257 pte_t *ptep; 2258 2259 again: 2260 if (pmd_none(*pmdp)) 2261 return migrate_vma_collect_hole(start, end, -1, walk); 2262 2263 if (pmd_trans_huge(*pmdp)) { 2264 struct page *page; 2265 2266 ptl = pmd_lock(mm, pmdp); 2267 if (unlikely(!pmd_trans_huge(*pmdp))) { 2268 spin_unlock(ptl); 2269 goto again; 2270 } 2271 2272 page = pmd_page(*pmdp); 2273 if (is_huge_zero_page(page)) { 2274 spin_unlock(ptl); 2275 split_huge_pmd(vma, pmdp, addr); 2276 if (pmd_trans_unstable(pmdp)) 2277 return migrate_vma_collect_skip(start, end, 2278 walk); 2279 } else { 2280 int ret; 2281 2282 get_page(page); 2283 spin_unlock(ptl); 2284 if (unlikely(!trylock_page(page))) 2285 return migrate_vma_collect_skip(start, end, 2286 walk); 2287 ret = split_huge_page(page); 2288 unlock_page(page); 2289 put_page(page); 2290 if (ret) 2291 return migrate_vma_collect_skip(start, end, 2292 walk); 2293 if (pmd_none(*pmdp)) 2294 return migrate_vma_collect_hole(start, end, -1, 2295 walk); 2296 } 2297 } 2298 2299 if (unlikely(pmd_bad(*pmdp))) 2300 return migrate_vma_collect_skip(start, end, walk); 2301 2302 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2303 arch_enter_lazy_mmu_mode(); 2304 2305 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2306 unsigned long mpfn = 0, pfn; 2307 struct page *page; 2308 swp_entry_t entry; 2309 pte_t pte; 2310 2311 pte = *ptep; 2312 2313 if (pte_none(pte)) { 2314 if (vma_is_anonymous(vma)) { 2315 mpfn = MIGRATE_PFN_MIGRATE; 2316 migrate->cpages++; 2317 } 2318 goto next; 2319 } 2320 2321 if (!pte_present(pte)) { 2322 /* 2323 * Only care about unaddressable device page special 2324 * page table entry. Other special swap entries are not 2325 * migratable, and we ignore regular swapped page. 2326 */ 2327 entry = pte_to_swp_entry(pte); 2328 if (!is_device_private_entry(entry)) 2329 goto next; 2330 2331 page = pfn_swap_entry_to_page(entry); 2332 if (!(migrate->flags & 2333 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2334 page->pgmap->owner != migrate->pgmap_owner) 2335 goto next; 2336 2337 mpfn = migrate_pfn(page_to_pfn(page)) | 2338 MIGRATE_PFN_MIGRATE; 2339 if (is_writable_device_private_entry(entry)) 2340 mpfn |= MIGRATE_PFN_WRITE; 2341 } else { 2342 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2343 goto next; 2344 pfn = pte_pfn(pte); 2345 if (is_zero_pfn(pfn)) { 2346 mpfn = MIGRATE_PFN_MIGRATE; 2347 migrate->cpages++; 2348 goto next; 2349 } 2350 page = vm_normal_page(migrate->vma, addr, pte); 2351 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2352 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2353 } 2354 2355 /* FIXME support THP */ 2356 if (!page || !page->mapping || PageTransCompound(page)) { 2357 mpfn = 0; 2358 goto next; 2359 } 2360 2361 /* 2362 * By getting a reference on the page we pin it and that blocks 2363 * any kind of migration. Side effect is that it "freezes" the 2364 * pte. 2365 * 2366 * We drop this reference after isolating the page from the lru 2367 * for non device page (device page are not on the lru and thus 2368 * can't be dropped from it). 2369 */ 2370 get_page(page); 2371 migrate->cpages++; 2372 2373 /* 2374 * Optimize for the common case where page is only mapped once 2375 * in one process. If we can lock the page, then we can safely 2376 * set up a special migration page table entry now. 2377 */ 2378 if (trylock_page(page)) { 2379 pte_t swp_pte; 2380 2381 mpfn |= MIGRATE_PFN_LOCKED; 2382 ptep_get_and_clear(mm, addr, ptep); 2383 2384 /* Setup special migration page table entry */ 2385 if (mpfn & MIGRATE_PFN_WRITE) 2386 entry = make_writable_migration_entry( 2387 page_to_pfn(page)); 2388 else 2389 entry = make_readable_migration_entry( 2390 page_to_pfn(page)); 2391 swp_pte = swp_entry_to_pte(entry); 2392 if (pte_present(pte)) { 2393 if (pte_soft_dirty(pte)) 2394 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2395 if (pte_uffd_wp(pte)) 2396 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2397 } else { 2398 if (pte_swp_soft_dirty(pte)) 2399 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2400 if (pte_swp_uffd_wp(pte)) 2401 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2402 } 2403 set_pte_at(mm, addr, ptep, swp_pte); 2404 2405 /* 2406 * This is like regular unmap: we remove the rmap and 2407 * drop page refcount. Page won't be freed, as we took 2408 * a reference just above. 2409 */ 2410 page_remove_rmap(page, false); 2411 put_page(page); 2412 2413 if (pte_present(pte)) 2414 unmapped++; 2415 } 2416 2417 next: 2418 migrate->dst[migrate->npages] = 0; 2419 migrate->src[migrate->npages++] = mpfn; 2420 } 2421 arch_leave_lazy_mmu_mode(); 2422 pte_unmap_unlock(ptep - 1, ptl); 2423 2424 /* Only flush the TLB if we actually modified any entries */ 2425 if (unmapped) 2426 flush_tlb_range(walk->vma, start, end); 2427 2428 return 0; 2429 } 2430 2431 static const struct mm_walk_ops migrate_vma_walk_ops = { 2432 .pmd_entry = migrate_vma_collect_pmd, 2433 .pte_hole = migrate_vma_collect_hole, 2434 }; 2435 2436 /* 2437 * migrate_vma_collect() - collect pages over a range of virtual addresses 2438 * @migrate: migrate struct containing all migration information 2439 * 2440 * This will walk the CPU page table. For each virtual address backed by a 2441 * valid page, it updates the src array and takes a reference on the page, in 2442 * order to pin the page until we lock it and unmap it. 2443 */ 2444 static void migrate_vma_collect(struct migrate_vma *migrate) 2445 { 2446 struct mmu_notifier_range range; 2447 2448 /* 2449 * Note that the pgmap_owner is passed to the mmu notifier callback so 2450 * that the registered device driver can skip invalidating device 2451 * private page mappings that won't be migrated. 2452 */ 2453 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 2454 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 2455 migrate->pgmap_owner); 2456 mmu_notifier_invalidate_range_start(&range); 2457 2458 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2459 &migrate_vma_walk_ops, migrate); 2460 2461 mmu_notifier_invalidate_range_end(&range); 2462 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2463 } 2464 2465 /* 2466 * migrate_vma_check_page() - check if page is pinned or not 2467 * @page: struct page to check 2468 * 2469 * Pinned pages cannot be migrated. This is the same test as in 2470 * folio_migrate_mapping(), except that here we allow migration of a 2471 * ZONE_DEVICE page. 2472 */ 2473 static bool migrate_vma_check_page(struct page *page) 2474 { 2475 /* 2476 * One extra ref because caller holds an extra reference, either from 2477 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2478 * a device page. 2479 */ 2480 int extra = 1; 2481 2482 /* 2483 * FIXME support THP (transparent huge page), it is bit more complex to 2484 * check them than regular pages, because they can be mapped with a pmd 2485 * or with a pte (split pte mapping). 2486 */ 2487 if (PageCompound(page)) 2488 return false; 2489 2490 /* Page from ZONE_DEVICE have one extra reference */ 2491 if (is_zone_device_page(page)) { 2492 /* 2493 * Private page can never be pin as they have no valid pte and 2494 * GUP will fail for those. Yet if there is a pending migration 2495 * a thread might try to wait on the pte migration entry and 2496 * will bump the page reference count. Sadly there is no way to 2497 * differentiate a regular pin from migration wait. Hence to 2498 * avoid 2 racing thread trying to migrate back to CPU to enter 2499 * infinite loop (one stopping migration because the other is 2500 * waiting on pte migration entry). We always return true here. 2501 * 2502 * FIXME proper solution is to rework migration_entry_wait() so 2503 * it does not need to take a reference on page. 2504 */ 2505 return is_device_private_page(page); 2506 } 2507 2508 /* For file back page */ 2509 if (page_mapping(page)) 2510 extra += 1 + page_has_private(page); 2511 2512 if ((page_count(page) - extra) > page_mapcount(page)) 2513 return false; 2514 2515 return true; 2516 } 2517 2518 /* 2519 * migrate_vma_prepare() - lock pages and isolate them from the lru 2520 * @migrate: migrate struct containing all migration information 2521 * 2522 * This locks pages that have been collected by migrate_vma_collect(). Once each 2523 * page is locked it is isolated from the lru (for non-device pages). Finally, 2524 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2525 * migrated by concurrent kernel threads. 2526 */ 2527 static void migrate_vma_prepare(struct migrate_vma *migrate) 2528 { 2529 const unsigned long npages = migrate->npages; 2530 const unsigned long start = migrate->start; 2531 unsigned long addr, i, restore = 0; 2532 bool allow_drain = true; 2533 2534 lru_add_drain(); 2535 2536 for (i = 0; (i < npages) && migrate->cpages; i++) { 2537 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2538 bool remap = true; 2539 2540 if (!page) 2541 continue; 2542 2543 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2544 /* 2545 * Because we are migrating several pages there can be 2546 * a deadlock between 2 concurrent migration where each 2547 * are waiting on each other page lock. 2548 * 2549 * Make migrate_vma() a best effort thing and backoff 2550 * for any page we can not lock right away. 2551 */ 2552 if (!trylock_page(page)) { 2553 migrate->src[i] = 0; 2554 migrate->cpages--; 2555 put_page(page); 2556 continue; 2557 } 2558 remap = false; 2559 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2560 } 2561 2562 /* ZONE_DEVICE pages are not on LRU */ 2563 if (!is_zone_device_page(page)) { 2564 if (!PageLRU(page) && allow_drain) { 2565 /* Drain CPU's pagevec */ 2566 lru_add_drain_all(); 2567 allow_drain = false; 2568 } 2569 2570 if (isolate_lru_page(page)) { 2571 if (remap) { 2572 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2573 migrate->cpages--; 2574 restore++; 2575 } else { 2576 migrate->src[i] = 0; 2577 unlock_page(page); 2578 migrate->cpages--; 2579 put_page(page); 2580 } 2581 continue; 2582 } 2583 2584 /* Drop the reference we took in collect */ 2585 put_page(page); 2586 } 2587 2588 if (!migrate_vma_check_page(page)) { 2589 if (remap) { 2590 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2591 migrate->cpages--; 2592 restore++; 2593 2594 if (!is_zone_device_page(page)) { 2595 get_page(page); 2596 putback_lru_page(page); 2597 } 2598 } else { 2599 migrate->src[i] = 0; 2600 unlock_page(page); 2601 migrate->cpages--; 2602 2603 if (!is_zone_device_page(page)) 2604 putback_lru_page(page); 2605 else 2606 put_page(page); 2607 } 2608 } 2609 } 2610 2611 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2612 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2613 2614 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2615 continue; 2616 2617 remove_migration_pte(page, migrate->vma, addr, page); 2618 2619 migrate->src[i] = 0; 2620 unlock_page(page); 2621 put_page(page); 2622 restore--; 2623 } 2624 } 2625 2626 /* 2627 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2628 * @migrate: migrate struct containing all migration information 2629 * 2630 * Replace page mapping (CPU page table pte) with a special migration pte entry 2631 * and check again if it has been pinned. Pinned pages are restored because we 2632 * cannot migrate them. 2633 * 2634 * This is the last step before we call the device driver callback to allocate 2635 * destination memory and copy contents of original page over to new page. 2636 */ 2637 static void migrate_vma_unmap(struct migrate_vma *migrate) 2638 { 2639 const unsigned long npages = migrate->npages; 2640 const unsigned long start = migrate->start; 2641 unsigned long addr, i, restore = 0; 2642 2643 for (i = 0; i < npages; i++) { 2644 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2645 2646 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2647 continue; 2648 2649 if (page_mapped(page)) { 2650 try_to_migrate(page, 0); 2651 if (page_mapped(page)) 2652 goto restore; 2653 } 2654 2655 if (migrate_vma_check_page(page)) 2656 continue; 2657 2658 restore: 2659 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2660 migrate->cpages--; 2661 restore++; 2662 } 2663 2664 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2665 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2666 2667 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2668 continue; 2669 2670 remove_migration_ptes(page, page, false); 2671 2672 migrate->src[i] = 0; 2673 unlock_page(page); 2674 restore--; 2675 2676 if (is_zone_device_page(page)) 2677 put_page(page); 2678 else 2679 putback_lru_page(page); 2680 } 2681 } 2682 2683 /** 2684 * migrate_vma_setup() - prepare to migrate a range of memory 2685 * @args: contains the vma, start, and pfns arrays for the migration 2686 * 2687 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2688 * without an error. 2689 * 2690 * Prepare to migrate a range of memory virtual address range by collecting all 2691 * the pages backing each virtual address in the range, saving them inside the 2692 * src array. Then lock those pages and unmap them. Once the pages are locked 2693 * and unmapped, check whether each page is pinned or not. Pages that aren't 2694 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2695 * corresponding src array entry. Then restores any pages that are pinned, by 2696 * remapping and unlocking those pages. 2697 * 2698 * The caller should then allocate destination memory and copy source memory to 2699 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2700 * flag set). Once these are allocated and copied, the caller must update each 2701 * corresponding entry in the dst array with the pfn value of the destination 2702 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2703 * (destination pages must have their struct pages locked, via lock_page()). 2704 * 2705 * Note that the caller does not have to migrate all the pages that are marked 2706 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2707 * device memory to system memory. If the caller cannot migrate a device page 2708 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2709 * consequences for the userspace process, so it must be avoided if at all 2710 * possible. 2711 * 2712 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2713 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2714 * allowing the caller to allocate device memory for those unbacked virtual 2715 * addresses. For this the caller simply has to allocate device memory and 2716 * properly set the destination entry like for regular migration. Note that 2717 * this can still fail, and thus inside the device driver you must check if the 2718 * migration was successful for those entries after calling migrate_vma_pages(), 2719 * just like for regular migration. 2720 * 2721 * After that, the callers must call migrate_vma_pages() to go over each entry 2722 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2723 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2724 * then migrate_vma_pages() to migrate struct page information from the source 2725 * struct page to the destination struct page. If it fails to migrate the 2726 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2727 * src array. 2728 * 2729 * At this point all successfully migrated pages have an entry in the src 2730 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2731 * array entry with MIGRATE_PFN_VALID flag set. 2732 * 2733 * Once migrate_vma_pages() returns the caller may inspect which pages were 2734 * successfully migrated, and which were not. Successfully migrated pages will 2735 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2736 * 2737 * It is safe to update device page table after migrate_vma_pages() because 2738 * both destination and source page are still locked, and the mmap_lock is held 2739 * in read mode (hence no one can unmap the range being migrated). 2740 * 2741 * Once the caller is done cleaning up things and updating its page table (if it 2742 * chose to do so, this is not an obligation) it finally calls 2743 * migrate_vma_finalize() to update the CPU page table to point to new pages 2744 * for successfully migrated pages or otherwise restore the CPU page table to 2745 * point to the original source pages. 2746 */ 2747 int migrate_vma_setup(struct migrate_vma *args) 2748 { 2749 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2750 2751 args->start &= PAGE_MASK; 2752 args->end &= PAGE_MASK; 2753 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2754 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2755 return -EINVAL; 2756 if (nr_pages <= 0) 2757 return -EINVAL; 2758 if (args->start < args->vma->vm_start || 2759 args->start >= args->vma->vm_end) 2760 return -EINVAL; 2761 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2762 return -EINVAL; 2763 if (!args->src || !args->dst) 2764 return -EINVAL; 2765 2766 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2767 args->cpages = 0; 2768 args->npages = 0; 2769 2770 migrate_vma_collect(args); 2771 2772 if (args->cpages) 2773 migrate_vma_prepare(args); 2774 if (args->cpages) 2775 migrate_vma_unmap(args); 2776 2777 /* 2778 * At this point pages are locked and unmapped, and thus they have 2779 * stable content and can safely be copied to destination memory that 2780 * is allocated by the drivers. 2781 */ 2782 return 0; 2783 2784 } 2785 EXPORT_SYMBOL(migrate_vma_setup); 2786 2787 /* 2788 * This code closely matches the code in: 2789 * __handle_mm_fault() 2790 * handle_pte_fault() 2791 * do_anonymous_page() 2792 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2793 * private page. 2794 */ 2795 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2796 unsigned long addr, 2797 struct page *page, 2798 unsigned long *src) 2799 { 2800 struct vm_area_struct *vma = migrate->vma; 2801 struct mm_struct *mm = vma->vm_mm; 2802 bool flush = false; 2803 spinlock_t *ptl; 2804 pte_t entry; 2805 pgd_t *pgdp; 2806 p4d_t *p4dp; 2807 pud_t *pudp; 2808 pmd_t *pmdp; 2809 pte_t *ptep; 2810 2811 /* Only allow populating anonymous memory */ 2812 if (!vma_is_anonymous(vma)) 2813 goto abort; 2814 2815 pgdp = pgd_offset(mm, addr); 2816 p4dp = p4d_alloc(mm, pgdp, addr); 2817 if (!p4dp) 2818 goto abort; 2819 pudp = pud_alloc(mm, p4dp, addr); 2820 if (!pudp) 2821 goto abort; 2822 pmdp = pmd_alloc(mm, pudp, addr); 2823 if (!pmdp) 2824 goto abort; 2825 2826 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2827 goto abort; 2828 2829 /* 2830 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2831 * pte_offset_map() on pmds where a huge pmd might be created 2832 * from a different thread. 2833 * 2834 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2835 * parallel threads are excluded by other means. 2836 * 2837 * Here we only have mmap_read_lock(mm). 2838 */ 2839 if (pte_alloc(mm, pmdp)) 2840 goto abort; 2841 2842 /* See the comment in pte_alloc_one_map() */ 2843 if (unlikely(pmd_trans_unstable(pmdp))) 2844 goto abort; 2845 2846 if (unlikely(anon_vma_prepare(vma))) 2847 goto abort; 2848 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 2849 goto abort; 2850 2851 /* 2852 * The memory barrier inside __SetPageUptodate makes sure that 2853 * preceding stores to the page contents become visible before 2854 * the set_pte_at() write. 2855 */ 2856 __SetPageUptodate(page); 2857 2858 if (is_zone_device_page(page)) { 2859 if (is_device_private_page(page)) { 2860 swp_entry_t swp_entry; 2861 2862 if (vma->vm_flags & VM_WRITE) 2863 swp_entry = make_writable_device_private_entry( 2864 page_to_pfn(page)); 2865 else 2866 swp_entry = make_readable_device_private_entry( 2867 page_to_pfn(page)); 2868 entry = swp_entry_to_pte(swp_entry); 2869 } else { 2870 /* 2871 * For now we only support migrating to un-addressable 2872 * device memory. 2873 */ 2874 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2875 goto abort; 2876 } 2877 } else { 2878 entry = mk_pte(page, vma->vm_page_prot); 2879 if (vma->vm_flags & VM_WRITE) 2880 entry = pte_mkwrite(pte_mkdirty(entry)); 2881 } 2882 2883 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2884 2885 if (check_stable_address_space(mm)) 2886 goto unlock_abort; 2887 2888 if (pte_present(*ptep)) { 2889 unsigned long pfn = pte_pfn(*ptep); 2890 2891 if (!is_zero_pfn(pfn)) 2892 goto unlock_abort; 2893 flush = true; 2894 } else if (!pte_none(*ptep)) 2895 goto unlock_abort; 2896 2897 /* 2898 * Check for userfaultfd but do not deliver the fault. Instead, 2899 * just back off. 2900 */ 2901 if (userfaultfd_missing(vma)) 2902 goto unlock_abort; 2903 2904 inc_mm_counter(mm, MM_ANONPAGES); 2905 page_add_new_anon_rmap(page, vma, addr, false); 2906 if (!is_zone_device_page(page)) 2907 lru_cache_add_inactive_or_unevictable(page, vma); 2908 get_page(page); 2909 2910 if (flush) { 2911 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2912 ptep_clear_flush_notify(vma, addr, ptep); 2913 set_pte_at_notify(mm, addr, ptep, entry); 2914 update_mmu_cache(vma, addr, ptep); 2915 } else { 2916 /* No need to invalidate - it was non-present before */ 2917 set_pte_at(mm, addr, ptep, entry); 2918 update_mmu_cache(vma, addr, ptep); 2919 } 2920 2921 pte_unmap_unlock(ptep, ptl); 2922 *src = MIGRATE_PFN_MIGRATE; 2923 return; 2924 2925 unlock_abort: 2926 pte_unmap_unlock(ptep, ptl); 2927 abort: 2928 *src &= ~MIGRATE_PFN_MIGRATE; 2929 } 2930 2931 /** 2932 * migrate_vma_pages() - migrate meta-data from src page to dst page 2933 * @migrate: migrate struct containing all migration information 2934 * 2935 * This migrates struct page meta-data from source struct page to destination 2936 * struct page. This effectively finishes the migration from source page to the 2937 * destination page. 2938 */ 2939 void migrate_vma_pages(struct migrate_vma *migrate) 2940 { 2941 const unsigned long npages = migrate->npages; 2942 const unsigned long start = migrate->start; 2943 struct mmu_notifier_range range; 2944 unsigned long addr, i; 2945 bool notified = false; 2946 2947 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2948 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2949 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2950 struct address_space *mapping; 2951 int r; 2952 2953 if (!newpage) { 2954 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2955 continue; 2956 } 2957 2958 if (!page) { 2959 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2960 continue; 2961 if (!notified) { 2962 notified = true; 2963 2964 mmu_notifier_range_init_owner(&range, 2965 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 2966 migrate->vma->vm_mm, addr, migrate->end, 2967 migrate->pgmap_owner); 2968 mmu_notifier_invalidate_range_start(&range); 2969 } 2970 migrate_vma_insert_page(migrate, addr, newpage, 2971 &migrate->src[i]); 2972 continue; 2973 } 2974 2975 mapping = page_mapping(page); 2976 2977 if (is_zone_device_page(newpage)) { 2978 if (is_device_private_page(newpage)) { 2979 /* 2980 * For now only support private anonymous when 2981 * migrating to un-addressable device memory. 2982 */ 2983 if (mapping) { 2984 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2985 continue; 2986 } 2987 } else { 2988 /* 2989 * Other types of ZONE_DEVICE page are not 2990 * supported. 2991 */ 2992 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2993 continue; 2994 } 2995 } 2996 2997 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2998 if (r != MIGRATEPAGE_SUCCESS) 2999 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3000 } 3001 3002 /* 3003 * No need to double call mmu_notifier->invalidate_range() callback as 3004 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3005 * did already call it. 3006 */ 3007 if (notified) 3008 mmu_notifier_invalidate_range_only_end(&range); 3009 } 3010 EXPORT_SYMBOL(migrate_vma_pages); 3011 3012 /** 3013 * migrate_vma_finalize() - restore CPU page table entry 3014 * @migrate: migrate struct containing all migration information 3015 * 3016 * This replaces the special migration pte entry with either a mapping to the 3017 * new page if migration was successful for that page, or to the original page 3018 * otherwise. 3019 * 3020 * This also unlocks the pages and puts them back on the lru, or drops the extra 3021 * refcount, for device pages. 3022 */ 3023 void migrate_vma_finalize(struct migrate_vma *migrate) 3024 { 3025 const unsigned long npages = migrate->npages; 3026 unsigned long i; 3027 3028 for (i = 0; i < npages; i++) { 3029 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3030 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3031 3032 if (!page) { 3033 if (newpage) { 3034 unlock_page(newpage); 3035 put_page(newpage); 3036 } 3037 continue; 3038 } 3039 3040 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3041 if (newpage) { 3042 unlock_page(newpage); 3043 put_page(newpage); 3044 } 3045 newpage = page; 3046 } 3047 3048 remove_migration_ptes(page, newpage, false); 3049 unlock_page(page); 3050 3051 if (is_zone_device_page(page)) 3052 put_page(page); 3053 else 3054 putback_lru_page(page); 3055 3056 if (newpage != page) { 3057 unlock_page(newpage); 3058 if (is_zone_device_page(newpage)) 3059 put_page(newpage); 3060 else 3061 putback_lru_page(newpage); 3062 } 3063 } 3064 } 3065 EXPORT_SYMBOL(migrate_vma_finalize); 3066 #endif /* CONFIG_DEVICE_PRIVATE */ 3067 3068 #if defined(CONFIG_HOTPLUG_CPU) 3069 /* Disable reclaim-based migration. */ 3070 static void __disable_all_migrate_targets(void) 3071 { 3072 int node; 3073 3074 for_each_online_node(node) 3075 node_demotion[node] = NUMA_NO_NODE; 3076 } 3077 3078 static void disable_all_migrate_targets(void) 3079 { 3080 __disable_all_migrate_targets(); 3081 3082 /* 3083 * Ensure that the "disable" is visible across the system. 3084 * Readers will see either a combination of before+disable 3085 * state or disable+after. They will never see before and 3086 * after state together. 3087 * 3088 * The before+after state together might have cycles and 3089 * could cause readers to do things like loop until this 3090 * function finishes. This ensures they can only see a 3091 * single "bad" read and would, for instance, only loop 3092 * once. 3093 */ 3094 synchronize_rcu(); 3095 } 3096 3097 /* 3098 * Find an automatic demotion target for 'node'. 3099 * Failing here is OK. It might just indicate 3100 * being at the end of a chain. 3101 */ 3102 static int establish_migrate_target(int node, nodemask_t *used) 3103 { 3104 int migration_target; 3105 3106 /* 3107 * Can not set a migration target on a 3108 * node with it already set. 3109 * 3110 * No need for READ_ONCE() here since this 3111 * in the write path for node_demotion[]. 3112 * This should be the only thread writing. 3113 */ 3114 if (node_demotion[node] != NUMA_NO_NODE) 3115 return NUMA_NO_NODE; 3116 3117 migration_target = find_next_best_node(node, used); 3118 if (migration_target == NUMA_NO_NODE) 3119 return NUMA_NO_NODE; 3120 3121 node_demotion[node] = migration_target; 3122 3123 return migration_target; 3124 } 3125 3126 /* 3127 * When memory fills up on a node, memory contents can be 3128 * automatically migrated to another node instead of 3129 * discarded at reclaim. 3130 * 3131 * Establish a "migration path" which will start at nodes 3132 * with CPUs and will follow the priorities used to build the 3133 * page allocator zonelists. 3134 * 3135 * The difference here is that cycles must be avoided. If 3136 * node0 migrates to node1, then neither node1, nor anything 3137 * node1 migrates to can migrate to node0. 3138 * 3139 * This function can run simultaneously with readers of 3140 * node_demotion[]. However, it can not run simultaneously 3141 * with itself. Exclusion is provided by memory hotplug events 3142 * being single-threaded. 3143 */ 3144 static void __set_migration_target_nodes(void) 3145 { 3146 nodemask_t next_pass = NODE_MASK_NONE; 3147 nodemask_t this_pass = NODE_MASK_NONE; 3148 nodemask_t used_targets = NODE_MASK_NONE; 3149 int node; 3150 3151 /* 3152 * Avoid any oddities like cycles that could occur 3153 * from changes in the topology. This will leave 3154 * a momentary gap when migration is disabled. 3155 */ 3156 disable_all_migrate_targets(); 3157 3158 /* 3159 * Allocations go close to CPUs, first. Assume that 3160 * the migration path starts at the nodes with CPUs. 3161 */ 3162 next_pass = node_states[N_CPU]; 3163 again: 3164 this_pass = next_pass; 3165 next_pass = NODE_MASK_NONE; 3166 /* 3167 * To avoid cycles in the migration "graph", ensure 3168 * that migration sources are not future targets by 3169 * setting them in 'used_targets'. Do this only 3170 * once per pass so that multiple source nodes can 3171 * share a target node. 3172 * 3173 * 'used_targets' will become unavailable in future 3174 * passes. This limits some opportunities for 3175 * multiple source nodes to share a destination. 3176 */ 3177 nodes_or(used_targets, used_targets, this_pass); 3178 for_each_node_mask(node, this_pass) { 3179 int target_node = establish_migrate_target(node, &used_targets); 3180 3181 if (target_node == NUMA_NO_NODE) 3182 continue; 3183 3184 /* 3185 * Visit targets from this pass in the next pass. 3186 * Eventually, every node will have been part of 3187 * a pass, and will become set in 'used_targets'. 3188 */ 3189 node_set(target_node, next_pass); 3190 } 3191 /* 3192 * 'next_pass' contains nodes which became migration 3193 * targets in this pass. Make additional passes until 3194 * no more migrations targets are available. 3195 */ 3196 if (!nodes_empty(next_pass)) 3197 goto again; 3198 } 3199 3200 /* 3201 * For callers that do not hold get_online_mems() already. 3202 */ 3203 static void set_migration_target_nodes(void) 3204 { 3205 get_online_mems(); 3206 __set_migration_target_nodes(); 3207 put_online_mems(); 3208 } 3209 3210 /* 3211 * This leaves migrate-on-reclaim transiently disabled between 3212 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 3213 * whether reclaim-based migration is enabled or not, which 3214 * ensures that the user can turn reclaim-based migration at 3215 * any time without needing to recalculate migration targets. 3216 * 3217 * These callbacks already hold get_online_mems(). That is why 3218 * __set_migration_target_nodes() can be used as opposed to 3219 * set_migration_target_nodes(). 3220 */ 3221 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 3222 unsigned long action, void *_arg) 3223 { 3224 struct memory_notify *arg = _arg; 3225 3226 /* 3227 * Only update the node migration order when a node is 3228 * changing status, like online->offline. This avoids 3229 * the overhead of synchronize_rcu() in most cases. 3230 */ 3231 if (arg->status_change_nid < 0) 3232 return notifier_from_errno(0); 3233 3234 switch (action) { 3235 case MEM_GOING_OFFLINE: 3236 /* 3237 * Make sure there are not transient states where 3238 * an offline node is a migration target. This 3239 * will leave migration disabled until the offline 3240 * completes and the MEM_OFFLINE case below runs. 3241 */ 3242 disable_all_migrate_targets(); 3243 break; 3244 case MEM_OFFLINE: 3245 case MEM_ONLINE: 3246 /* 3247 * Recalculate the target nodes once the node 3248 * reaches its final state (online or offline). 3249 */ 3250 __set_migration_target_nodes(); 3251 break; 3252 case MEM_CANCEL_OFFLINE: 3253 /* 3254 * MEM_GOING_OFFLINE disabled all the migration 3255 * targets. Reenable them. 3256 */ 3257 __set_migration_target_nodes(); 3258 break; 3259 case MEM_GOING_ONLINE: 3260 case MEM_CANCEL_ONLINE: 3261 break; 3262 } 3263 3264 return notifier_from_errno(0); 3265 } 3266 3267 /* 3268 * React to hotplug events that might affect the migration targets 3269 * like events that online or offline NUMA nodes. 3270 * 3271 * The ordering is also currently dependent on which nodes have 3272 * CPUs. That means we need CPU on/offline notification too. 3273 */ 3274 static int migration_online_cpu(unsigned int cpu) 3275 { 3276 set_migration_target_nodes(); 3277 return 0; 3278 } 3279 3280 static int migration_offline_cpu(unsigned int cpu) 3281 { 3282 set_migration_target_nodes(); 3283 return 0; 3284 } 3285 3286 static int __init migrate_on_reclaim_init(void) 3287 { 3288 int ret; 3289 3290 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline", 3291 NULL, migration_offline_cpu); 3292 /* 3293 * In the unlikely case that this fails, the automatic 3294 * migration targets may become suboptimal for nodes 3295 * where N_CPU changes. With such a small impact in a 3296 * rare case, do not bother trying to do anything special. 3297 */ 3298 WARN_ON(ret < 0); 3299 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online", 3300 migration_online_cpu, NULL); 3301 WARN_ON(ret < 0); 3302 3303 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 3304 return 0; 3305 } 3306 late_initcall(migrate_on_reclaim_init); 3307 #endif /* CONFIG_HOTPLUG_CPU */ 3308 3309 bool numa_demotion_enabled = false; 3310 3311 #ifdef CONFIG_SYSFS 3312 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 3313 struct kobj_attribute *attr, char *buf) 3314 { 3315 return sysfs_emit(buf, "%s\n", 3316 numa_demotion_enabled ? "true" : "false"); 3317 } 3318 3319 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 3320 struct kobj_attribute *attr, 3321 const char *buf, size_t count) 3322 { 3323 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 3324 numa_demotion_enabled = true; 3325 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 3326 numa_demotion_enabled = false; 3327 else 3328 return -EINVAL; 3329 3330 return count; 3331 } 3332 3333 static struct kobj_attribute numa_demotion_enabled_attr = 3334 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 3335 numa_demotion_enabled_store); 3336 3337 static struct attribute *numa_attrs[] = { 3338 &numa_demotion_enabled_attr.attr, 3339 NULL, 3340 }; 3341 3342 static const struct attribute_group numa_attr_group = { 3343 .attrs = numa_attrs, 3344 }; 3345 3346 static int __init numa_init_sysfs(void) 3347 { 3348 int err; 3349 struct kobject *numa_kobj; 3350 3351 numa_kobj = kobject_create_and_add("numa", mm_kobj); 3352 if (!numa_kobj) { 3353 pr_err("failed to create numa kobject\n"); 3354 return -ENOMEM; 3355 } 3356 err = sysfs_create_group(numa_kobj, &numa_attr_group); 3357 if (err) { 3358 pr_err("failed to register numa group\n"); 3359 goto delete_obj; 3360 } 3361 return 0; 3362 3363 delete_obj: 3364 kobject_put(numa_kobj); 3365 return err; 3366 } 3367 subsys_initcall(numa_init_sysfs); 3368 #endif 3369