xref: /linux/mm/migrate.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	struct address_space *mapping;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	/*
78 	 * Check PageMovable before holding a PG_lock because page's owner
79 	 * assumes anybody doesn't touch PG_lock of newly allocated page
80 	 * so unconditionally grabbing the lock ruins page's owner side.
81 	 */
82 	if (unlikely(!__PageMovable(page)))
83 		goto out_putpage;
84 	/*
85 	 * As movable pages are not isolated from LRU lists, concurrent
86 	 * compaction threads can race against page migration functions
87 	 * as well as race against the releasing a page.
88 	 *
89 	 * In order to avoid having an already isolated movable page
90 	 * being (wrongly) re-isolated while it is under migration,
91 	 * or to avoid attempting to isolate pages being released,
92 	 * lets be sure we have the page lock
93 	 * before proceeding with the movable page isolation steps.
94 	 */
95 	if (unlikely(!trylock_page(page)))
96 		goto out_putpage;
97 
98 	if (!PageMovable(page) || PageIsolated(page))
99 		goto out_no_isolated;
100 
101 	mapping = page_mapping(page);
102 	VM_BUG_ON_PAGE(!mapping, page);
103 
104 	if (!mapping->a_ops->isolate_page(page, mode))
105 		goto out_no_isolated;
106 
107 	/* Driver shouldn't use PG_isolated bit of page->flags */
108 	WARN_ON_ONCE(PageIsolated(page));
109 	__SetPageIsolated(page);
110 	unlock_page(page);
111 
112 	return 0;
113 
114 out_no_isolated:
115 	unlock_page(page);
116 out_putpage:
117 	put_page(page);
118 out:
119 	return -EBUSY;
120 }
121 
122 static void putback_movable_page(struct page *page)
123 {
124 	struct address_space *mapping;
125 
126 	mapping = page_mapping(page);
127 	mapping->a_ops->putback_page(page);
128 	__ClearPageIsolated(page);
129 }
130 
131 /*
132  * Put previously isolated pages back onto the appropriate lists
133  * from where they were once taken off for compaction/migration.
134  *
135  * This function shall be used whenever the isolated pageset has been
136  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137  * and isolate_huge_page().
138  */
139 void putback_movable_pages(struct list_head *l)
140 {
141 	struct page *page;
142 	struct page *page2;
143 
144 	list_for_each_entry_safe(page, page2, l, lru) {
145 		if (unlikely(PageHuge(page))) {
146 			putback_active_hugepage(page);
147 			continue;
148 		}
149 		list_del(&page->lru);
150 		/*
151 		 * We isolated non-lru movable page so here we can use
152 		 * __PageMovable because LRU page's mapping cannot have
153 		 * PAGE_MAPPING_MOVABLE.
154 		 */
155 		if (unlikely(__PageMovable(page))) {
156 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 			lock_page(page);
158 			if (PageMovable(page))
159 				putback_movable_page(page);
160 			else
161 				__ClearPageIsolated(page);
162 			unlock_page(page);
163 			put_page(page);
164 		} else {
165 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 					page_is_file_lru(page), -thp_nr_pages(page));
167 			putback_lru_page(page);
168 		}
169 	}
170 }
171 
172 /*
173  * Restore a potential migration pte to a working pte entry
174  */
175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
176 				 unsigned long addr, void *old)
177 {
178 	struct page_vma_mapped_walk pvmw = {
179 		.page = old,
180 		.vma = vma,
181 		.address = addr,
182 		.flags = PVMW_SYNC | PVMW_MIGRATION,
183 	};
184 	struct page *new;
185 	pte_t pte;
186 	swp_entry_t entry;
187 
188 	VM_BUG_ON_PAGE(PageTail(page), page);
189 	while (page_vma_mapped_walk(&pvmw)) {
190 		if (PageKsm(page))
191 			new = page;
192 		else
193 			new = page - pvmw.page->index +
194 				linear_page_index(vma, pvmw.address);
195 
196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
197 		/* PMD-mapped THP migration entry */
198 		if (!pvmw.pte) {
199 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
200 			remove_migration_pmd(&pvmw, new);
201 			continue;
202 		}
203 #endif
204 
205 		get_page(new);
206 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
207 		if (pte_swp_soft_dirty(*pvmw.pte))
208 			pte = pte_mksoft_dirty(pte);
209 
210 		/*
211 		 * Recheck VMA as permissions can change since migration started
212 		 */
213 		entry = pte_to_swp_entry(*pvmw.pte);
214 		if (is_writable_migration_entry(entry))
215 			pte = maybe_mkwrite(pte, vma);
216 		else if (pte_swp_uffd_wp(*pvmw.pte))
217 			pte = pte_mkuffd_wp(pte);
218 
219 		if (unlikely(is_device_private_page(new))) {
220 			if (pte_write(pte))
221 				entry = make_writable_device_private_entry(
222 							page_to_pfn(new));
223 			else
224 				entry = make_readable_device_private_entry(
225 							page_to_pfn(new));
226 			pte = swp_entry_to_pte(entry);
227 			if (pte_swp_soft_dirty(*pvmw.pte))
228 				pte = pte_swp_mksoft_dirty(pte);
229 			if (pte_swp_uffd_wp(*pvmw.pte))
230 				pte = pte_swp_mkuffd_wp(pte);
231 		}
232 
233 #ifdef CONFIG_HUGETLB_PAGE
234 		if (PageHuge(new)) {
235 			unsigned int shift = huge_page_shift(hstate_vma(vma));
236 
237 			pte = pte_mkhuge(pte);
238 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
239 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 			if (PageAnon(new))
241 				hugepage_add_anon_rmap(new, vma, pvmw.address);
242 			else
243 				page_dup_rmap(new, true);
244 		} else
245 #endif
246 		{
247 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248 
249 			if (PageAnon(new))
250 				page_add_anon_rmap(new, vma, pvmw.address, false);
251 			else
252 				page_add_file_rmap(new, false);
253 		}
254 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 			mlock_vma_page(new);
256 
257 		if (PageTransHuge(page) && PageMlocked(page))
258 			clear_page_mlock(page);
259 
260 		/* No need to invalidate - it was non-present before */
261 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Get rid of all migration entries and replace them by
269  * references to the indicated page.
270  */
271 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272 {
273 	struct rmap_walk_control rwc = {
274 		.rmap_one = remove_migration_pte,
275 		.arg = old,
276 	};
277 
278 	if (locked)
279 		rmap_walk_locked(new, &rwc);
280 	else
281 		rmap_walk(new, &rwc);
282 }
283 
284 /*
285  * Something used the pte of a page under migration. We need to
286  * get to the page and wait until migration is finished.
287  * When we return from this function the fault will be retried.
288  */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 				spinlock_t *ptl)
291 {
292 	pte_t pte;
293 	swp_entry_t entry;
294 	struct page *page;
295 
296 	spin_lock(ptl);
297 	pte = *ptep;
298 	if (!is_swap_pte(pte))
299 		goto out;
300 
301 	entry = pte_to_swp_entry(pte);
302 	if (!is_migration_entry(entry))
303 		goto out;
304 
305 	page = pfn_swap_entry_to_page(entry);
306 	page = compound_head(page);
307 
308 	/*
309 	 * Once page cache replacement of page migration started, page_count
310 	 * is zero; but we must not call put_and_wait_on_page_locked() without
311 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
312 	 */
313 	if (!get_page_unless_zero(page))
314 		goto out;
315 	pte_unmap_unlock(ptep, ptl);
316 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
317 	return;
318 out:
319 	pte_unmap_unlock(ptep, ptl);
320 }
321 
322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
323 				unsigned long address)
324 {
325 	spinlock_t *ptl = pte_lockptr(mm, pmd);
326 	pte_t *ptep = pte_offset_map(pmd, address);
327 	__migration_entry_wait(mm, ptep, ptl);
328 }
329 
330 void migration_entry_wait_huge(struct vm_area_struct *vma,
331 		struct mm_struct *mm, pte_t *pte)
332 {
333 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
334 	__migration_entry_wait(mm, pte, ptl);
335 }
336 
337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
339 {
340 	spinlock_t *ptl;
341 	struct page *page;
342 
343 	ptl = pmd_lock(mm, pmd);
344 	if (!is_pmd_migration_entry(*pmd))
345 		goto unlock;
346 	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
347 	if (!get_page_unless_zero(page))
348 		goto unlock;
349 	spin_unlock(ptl);
350 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 	return;
352 unlock:
353 	spin_unlock(ptl);
354 }
355 #endif
356 
357 static int expected_page_refs(struct address_space *mapping, struct page *page)
358 {
359 	int expected_count = 1;
360 
361 	/*
362 	 * Device private pages have an extra refcount as they are
363 	 * ZONE_DEVICE pages.
364 	 */
365 	expected_count += is_device_private_page(page);
366 	if (mapping)
367 		expected_count += compound_nr(page) + page_has_private(page);
368 
369 	return expected_count;
370 }
371 
372 /*
373  * Replace the page in the mapping.
374  *
375  * The number of remaining references must be:
376  * 1 for anonymous pages without a mapping
377  * 2 for pages with a mapping
378  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
379  */
380 int folio_migrate_mapping(struct address_space *mapping,
381 		struct folio *newfolio, struct folio *folio, int extra_count)
382 {
383 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
384 	struct zone *oldzone, *newzone;
385 	int dirty;
386 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
387 	long nr = folio_nr_pages(folio);
388 
389 	if (!mapping) {
390 		/* Anonymous page without mapping */
391 		if (folio_ref_count(folio) != expected_count)
392 			return -EAGAIN;
393 
394 		/* No turning back from here */
395 		newfolio->index = folio->index;
396 		newfolio->mapping = folio->mapping;
397 		if (folio_test_swapbacked(folio))
398 			__folio_set_swapbacked(newfolio);
399 
400 		return MIGRATEPAGE_SUCCESS;
401 	}
402 
403 	oldzone = folio_zone(folio);
404 	newzone = folio_zone(newfolio);
405 
406 	xas_lock_irq(&xas);
407 	if (folio_ref_count(folio) != expected_count ||
408 	    xas_load(&xas) != folio) {
409 		xas_unlock_irq(&xas);
410 		return -EAGAIN;
411 	}
412 
413 	if (!folio_ref_freeze(folio, expected_count)) {
414 		xas_unlock_irq(&xas);
415 		return -EAGAIN;
416 	}
417 
418 	/*
419 	 * Now we know that no one else is looking at the folio:
420 	 * no turning back from here.
421 	 */
422 	newfolio->index = folio->index;
423 	newfolio->mapping = folio->mapping;
424 	folio_ref_add(newfolio, nr); /* add cache reference */
425 	if (folio_test_swapbacked(folio)) {
426 		__folio_set_swapbacked(newfolio);
427 		if (folio_test_swapcache(folio)) {
428 			folio_set_swapcache(newfolio);
429 			newfolio->private = folio_get_private(folio);
430 		}
431 	} else {
432 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
433 	}
434 
435 	/* Move dirty while page refs frozen and newpage not yet exposed */
436 	dirty = folio_test_dirty(folio);
437 	if (dirty) {
438 		folio_clear_dirty(folio);
439 		folio_set_dirty(newfolio);
440 	}
441 
442 	xas_store(&xas, newfolio);
443 	if (nr > 1) {
444 		int i;
445 
446 		for (i = 1; i < nr; i++) {
447 			xas_next(&xas);
448 			xas_store(&xas, newfolio);
449 		}
450 	}
451 
452 	/*
453 	 * Drop cache reference from old page by unfreezing
454 	 * to one less reference.
455 	 * We know this isn't the last reference.
456 	 */
457 	folio_ref_unfreeze(folio, expected_count - nr);
458 
459 	xas_unlock(&xas);
460 	/* Leave irq disabled to prevent preemption while updating stats */
461 
462 	/*
463 	 * If moved to a different zone then also account
464 	 * the page for that zone. Other VM counters will be
465 	 * taken care of when we establish references to the
466 	 * new page and drop references to the old page.
467 	 *
468 	 * Note that anonymous pages are accounted for
469 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
470 	 * are mapped to swap space.
471 	 */
472 	if (newzone != oldzone) {
473 		struct lruvec *old_lruvec, *new_lruvec;
474 		struct mem_cgroup *memcg;
475 
476 		memcg = folio_memcg(folio);
477 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
478 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
479 
480 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
481 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
482 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
483 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
484 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
485 		}
486 #ifdef CONFIG_SWAP
487 		if (folio_test_swapcache(folio)) {
488 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
489 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
490 		}
491 #endif
492 		if (dirty && mapping_can_writeback(mapping)) {
493 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
494 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
495 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
496 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
497 		}
498 	}
499 	local_irq_enable();
500 
501 	return MIGRATEPAGE_SUCCESS;
502 }
503 EXPORT_SYMBOL(folio_migrate_mapping);
504 
505 /*
506  * The expected number of remaining references is the same as that
507  * of folio_migrate_mapping().
508  */
509 int migrate_huge_page_move_mapping(struct address_space *mapping,
510 				   struct page *newpage, struct page *page)
511 {
512 	XA_STATE(xas, &mapping->i_pages, page_index(page));
513 	int expected_count;
514 
515 	xas_lock_irq(&xas);
516 	expected_count = 2 + page_has_private(page);
517 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
518 		xas_unlock_irq(&xas);
519 		return -EAGAIN;
520 	}
521 
522 	if (!page_ref_freeze(page, expected_count)) {
523 		xas_unlock_irq(&xas);
524 		return -EAGAIN;
525 	}
526 
527 	newpage->index = page->index;
528 	newpage->mapping = page->mapping;
529 
530 	get_page(newpage);
531 
532 	xas_store(&xas, newpage);
533 
534 	page_ref_unfreeze(page, expected_count - 1);
535 
536 	xas_unlock_irq(&xas);
537 
538 	return MIGRATEPAGE_SUCCESS;
539 }
540 
541 /*
542  * Copy the flags and some other ancillary information
543  */
544 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
545 {
546 	int cpupid;
547 
548 	if (folio_test_error(folio))
549 		folio_set_error(newfolio);
550 	if (folio_test_referenced(folio))
551 		folio_set_referenced(newfolio);
552 	if (folio_test_uptodate(folio))
553 		folio_mark_uptodate(newfolio);
554 	if (folio_test_clear_active(folio)) {
555 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
556 		folio_set_active(newfolio);
557 	} else if (folio_test_clear_unevictable(folio))
558 		folio_set_unevictable(newfolio);
559 	if (folio_test_workingset(folio))
560 		folio_set_workingset(newfolio);
561 	if (folio_test_checked(folio))
562 		folio_set_checked(newfolio);
563 	if (folio_test_mappedtodisk(folio))
564 		folio_set_mappedtodisk(newfolio);
565 
566 	/* Move dirty on pages not done by folio_migrate_mapping() */
567 	if (folio_test_dirty(folio))
568 		folio_set_dirty(newfolio);
569 
570 	if (folio_test_young(folio))
571 		folio_set_young(newfolio);
572 	if (folio_test_idle(folio))
573 		folio_set_idle(newfolio);
574 
575 	/*
576 	 * Copy NUMA information to the new page, to prevent over-eager
577 	 * future migrations of this same page.
578 	 */
579 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
580 	page_cpupid_xchg_last(&newfolio->page, cpupid);
581 
582 	folio_migrate_ksm(newfolio, folio);
583 	/*
584 	 * Please do not reorder this without considering how mm/ksm.c's
585 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
586 	 */
587 	if (folio_test_swapcache(folio))
588 		folio_clear_swapcache(folio);
589 	folio_clear_private(folio);
590 
591 	/* page->private contains hugetlb specific flags */
592 	if (!folio_test_hugetlb(folio))
593 		folio->private = NULL;
594 
595 	/*
596 	 * If any waiters have accumulated on the new page then
597 	 * wake them up.
598 	 */
599 	if (folio_test_writeback(newfolio))
600 		folio_end_writeback(newfolio);
601 
602 	/*
603 	 * PG_readahead shares the same bit with PG_reclaim.  The above
604 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
605 	 * bit after that.
606 	 */
607 	if (folio_test_readahead(folio))
608 		folio_set_readahead(newfolio);
609 
610 	folio_copy_owner(newfolio, folio);
611 
612 	if (!folio_test_hugetlb(folio))
613 		mem_cgroup_migrate(folio, newfolio);
614 }
615 EXPORT_SYMBOL(folio_migrate_flags);
616 
617 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
618 {
619 	folio_copy(newfolio, folio);
620 	folio_migrate_flags(newfolio, folio);
621 }
622 EXPORT_SYMBOL(folio_migrate_copy);
623 
624 /************************************************************
625  *                    Migration functions
626  ***********************************************************/
627 
628 /*
629  * Common logic to directly migrate a single LRU page suitable for
630  * pages that do not use PagePrivate/PagePrivate2.
631  *
632  * Pages are locked upon entry and exit.
633  */
634 int migrate_page(struct address_space *mapping,
635 		struct page *newpage, struct page *page,
636 		enum migrate_mode mode)
637 {
638 	struct folio *newfolio = page_folio(newpage);
639 	struct folio *folio = page_folio(page);
640 	int rc;
641 
642 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
643 
644 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
645 
646 	if (rc != MIGRATEPAGE_SUCCESS)
647 		return rc;
648 
649 	if (mode != MIGRATE_SYNC_NO_COPY)
650 		folio_migrate_copy(newfolio, folio);
651 	else
652 		folio_migrate_flags(newfolio, folio);
653 	return MIGRATEPAGE_SUCCESS;
654 }
655 EXPORT_SYMBOL(migrate_page);
656 
657 #ifdef CONFIG_BLOCK
658 /* Returns true if all buffers are successfully locked */
659 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
660 							enum migrate_mode mode)
661 {
662 	struct buffer_head *bh = head;
663 
664 	/* Simple case, sync compaction */
665 	if (mode != MIGRATE_ASYNC) {
666 		do {
667 			lock_buffer(bh);
668 			bh = bh->b_this_page;
669 
670 		} while (bh != head);
671 
672 		return true;
673 	}
674 
675 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
676 	do {
677 		if (!trylock_buffer(bh)) {
678 			/*
679 			 * We failed to lock the buffer and cannot stall in
680 			 * async migration. Release the taken locks
681 			 */
682 			struct buffer_head *failed_bh = bh;
683 			bh = head;
684 			while (bh != failed_bh) {
685 				unlock_buffer(bh);
686 				bh = bh->b_this_page;
687 			}
688 			return false;
689 		}
690 
691 		bh = bh->b_this_page;
692 	} while (bh != head);
693 	return true;
694 }
695 
696 static int __buffer_migrate_page(struct address_space *mapping,
697 		struct page *newpage, struct page *page, enum migrate_mode mode,
698 		bool check_refs)
699 {
700 	struct buffer_head *bh, *head;
701 	int rc;
702 	int expected_count;
703 
704 	if (!page_has_buffers(page))
705 		return migrate_page(mapping, newpage, page, mode);
706 
707 	/* Check whether page does not have extra refs before we do more work */
708 	expected_count = expected_page_refs(mapping, page);
709 	if (page_count(page) != expected_count)
710 		return -EAGAIN;
711 
712 	head = page_buffers(page);
713 	if (!buffer_migrate_lock_buffers(head, mode))
714 		return -EAGAIN;
715 
716 	if (check_refs) {
717 		bool busy;
718 		bool invalidated = false;
719 
720 recheck_buffers:
721 		busy = false;
722 		spin_lock(&mapping->private_lock);
723 		bh = head;
724 		do {
725 			if (atomic_read(&bh->b_count)) {
726 				busy = true;
727 				break;
728 			}
729 			bh = bh->b_this_page;
730 		} while (bh != head);
731 		if (busy) {
732 			if (invalidated) {
733 				rc = -EAGAIN;
734 				goto unlock_buffers;
735 			}
736 			spin_unlock(&mapping->private_lock);
737 			invalidate_bh_lrus();
738 			invalidated = true;
739 			goto recheck_buffers;
740 		}
741 	}
742 
743 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
744 	if (rc != MIGRATEPAGE_SUCCESS)
745 		goto unlock_buffers;
746 
747 	attach_page_private(newpage, detach_page_private(page));
748 
749 	bh = head;
750 	do {
751 		set_bh_page(bh, newpage, bh_offset(bh));
752 		bh = bh->b_this_page;
753 
754 	} while (bh != head);
755 
756 	if (mode != MIGRATE_SYNC_NO_COPY)
757 		migrate_page_copy(newpage, page);
758 	else
759 		migrate_page_states(newpage, page);
760 
761 	rc = MIGRATEPAGE_SUCCESS;
762 unlock_buffers:
763 	if (check_refs)
764 		spin_unlock(&mapping->private_lock);
765 	bh = head;
766 	do {
767 		unlock_buffer(bh);
768 		bh = bh->b_this_page;
769 
770 	} while (bh != head);
771 
772 	return rc;
773 }
774 
775 /*
776  * Migration function for pages with buffers. This function can only be used
777  * if the underlying filesystem guarantees that no other references to "page"
778  * exist. For example attached buffer heads are accessed only under page lock.
779  */
780 int buffer_migrate_page(struct address_space *mapping,
781 		struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
784 }
785 EXPORT_SYMBOL(buffer_migrate_page);
786 
787 /*
788  * Same as above except that this variant is more careful and checks that there
789  * are also no buffer head references. This function is the right one for
790  * mappings where buffer heads are directly looked up and referenced (such as
791  * block device mappings).
792  */
793 int buffer_migrate_page_norefs(struct address_space *mapping,
794 		struct page *newpage, struct page *page, enum migrate_mode mode)
795 {
796 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
797 }
798 #endif
799 
800 /*
801  * Writeback a page to clean the dirty state
802  */
803 static int writeout(struct address_space *mapping, struct page *page)
804 {
805 	struct writeback_control wbc = {
806 		.sync_mode = WB_SYNC_NONE,
807 		.nr_to_write = 1,
808 		.range_start = 0,
809 		.range_end = LLONG_MAX,
810 		.for_reclaim = 1
811 	};
812 	int rc;
813 
814 	if (!mapping->a_ops->writepage)
815 		/* No write method for the address space */
816 		return -EINVAL;
817 
818 	if (!clear_page_dirty_for_io(page))
819 		/* Someone else already triggered a write */
820 		return -EAGAIN;
821 
822 	/*
823 	 * A dirty page may imply that the underlying filesystem has
824 	 * the page on some queue. So the page must be clean for
825 	 * migration. Writeout may mean we loose the lock and the
826 	 * page state is no longer what we checked for earlier.
827 	 * At this point we know that the migration attempt cannot
828 	 * be successful.
829 	 */
830 	remove_migration_ptes(page, page, false);
831 
832 	rc = mapping->a_ops->writepage(page, &wbc);
833 
834 	if (rc != AOP_WRITEPAGE_ACTIVATE)
835 		/* unlocked. Relock */
836 		lock_page(page);
837 
838 	return (rc < 0) ? -EIO : -EAGAIN;
839 }
840 
841 /*
842  * Default handling if a filesystem does not provide a migration function.
843  */
844 static int fallback_migrate_page(struct address_space *mapping,
845 	struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847 	if (PageDirty(page)) {
848 		/* Only writeback pages in full synchronous migration */
849 		switch (mode) {
850 		case MIGRATE_SYNC:
851 		case MIGRATE_SYNC_NO_COPY:
852 			break;
853 		default:
854 			return -EBUSY;
855 		}
856 		return writeout(mapping, page);
857 	}
858 
859 	/*
860 	 * Buffers may be managed in a filesystem specific way.
861 	 * We must have no buffers or drop them.
862 	 */
863 	if (page_has_private(page) &&
864 	    !try_to_release_page(page, GFP_KERNEL))
865 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
866 
867 	return migrate_page(mapping, newpage, page, mode);
868 }
869 
870 /*
871  * Move a page to a newly allocated page
872  * The page is locked and all ptes have been successfully removed.
873  *
874  * The new page will have replaced the old page if this function
875  * is successful.
876  *
877  * Return value:
878  *   < 0 - error code
879  *  MIGRATEPAGE_SUCCESS - success
880  */
881 static int move_to_new_page(struct page *newpage, struct page *page,
882 				enum migrate_mode mode)
883 {
884 	struct address_space *mapping;
885 	int rc = -EAGAIN;
886 	bool is_lru = !__PageMovable(page);
887 
888 	VM_BUG_ON_PAGE(!PageLocked(page), page);
889 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
890 
891 	mapping = page_mapping(page);
892 
893 	if (likely(is_lru)) {
894 		if (!mapping)
895 			rc = migrate_page(mapping, newpage, page, mode);
896 		else if (mapping->a_ops->migratepage)
897 			/*
898 			 * Most pages have a mapping and most filesystems
899 			 * provide a migratepage callback. Anonymous pages
900 			 * are part of swap space which also has its own
901 			 * migratepage callback. This is the most common path
902 			 * for page migration.
903 			 */
904 			rc = mapping->a_ops->migratepage(mapping, newpage,
905 							page, mode);
906 		else
907 			rc = fallback_migrate_page(mapping, newpage,
908 							page, mode);
909 	} else {
910 		/*
911 		 * In case of non-lru page, it could be released after
912 		 * isolation step. In that case, we shouldn't try migration.
913 		 */
914 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
915 		if (!PageMovable(page)) {
916 			rc = MIGRATEPAGE_SUCCESS;
917 			__ClearPageIsolated(page);
918 			goto out;
919 		}
920 
921 		rc = mapping->a_ops->migratepage(mapping, newpage,
922 						page, mode);
923 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
924 			!PageIsolated(page));
925 	}
926 
927 	/*
928 	 * When successful, old pagecache page->mapping must be cleared before
929 	 * page is freed; but stats require that PageAnon be left as PageAnon.
930 	 */
931 	if (rc == MIGRATEPAGE_SUCCESS) {
932 		if (__PageMovable(page)) {
933 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
934 
935 			/*
936 			 * We clear PG_movable under page_lock so any compactor
937 			 * cannot try to migrate this page.
938 			 */
939 			__ClearPageIsolated(page);
940 		}
941 
942 		/*
943 		 * Anonymous and movable page->mapping will be cleared by
944 		 * free_pages_prepare so don't reset it here for keeping
945 		 * the type to work PageAnon, for example.
946 		 */
947 		if (!PageMappingFlags(page))
948 			page->mapping = NULL;
949 
950 		if (likely(!is_zone_device_page(newpage)))
951 			flush_dcache_page(newpage);
952 
953 	}
954 out:
955 	return rc;
956 }
957 
958 static int __unmap_and_move(struct page *page, struct page *newpage,
959 				int force, enum migrate_mode mode)
960 {
961 	int rc = -EAGAIN;
962 	bool page_was_mapped = false;
963 	struct anon_vma *anon_vma = NULL;
964 	bool is_lru = !__PageMovable(page);
965 
966 	if (!trylock_page(page)) {
967 		if (!force || mode == MIGRATE_ASYNC)
968 			goto out;
969 
970 		/*
971 		 * It's not safe for direct compaction to call lock_page.
972 		 * For example, during page readahead pages are added locked
973 		 * to the LRU. Later, when the IO completes the pages are
974 		 * marked uptodate and unlocked. However, the queueing
975 		 * could be merging multiple pages for one bio (e.g.
976 		 * mpage_readahead). If an allocation happens for the
977 		 * second or third page, the process can end up locking
978 		 * the same page twice and deadlocking. Rather than
979 		 * trying to be clever about what pages can be locked,
980 		 * avoid the use of lock_page for direct compaction
981 		 * altogether.
982 		 */
983 		if (current->flags & PF_MEMALLOC)
984 			goto out;
985 
986 		lock_page(page);
987 	}
988 
989 	if (PageWriteback(page)) {
990 		/*
991 		 * Only in the case of a full synchronous migration is it
992 		 * necessary to wait for PageWriteback. In the async case,
993 		 * the retry loop is too short and in the sync-light case,
994 		 * the overhead of stalling is too much
995 		 */
996 		switch (mode) {
997 		case MIGRATE_SYNC:
998 		case MIGRATE_SYNC_NO_COPY:
999 			break;
1000 		default:
1001 			rc = -EBUSY;
1002 			goto out_unlock;
1003 		}
1004 		if (!force)
1005 			goto out_unlock;
1006 		wait_on_page_writeback(page);
1007 	}
1008 
1009 	/*
1010 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1011 	 * we cannot notice that anon_vma is freed while we migrates a page.
1012 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1013 	 * of migration. File cache pages are no problem because of page_lock()
1014 	 * File Caches may use write_page() or lock_page() in migration, then,
1015 	 * just care Anon page here.
1016 	 *
1017 	 * Only page_get_anon_vma() understands the subtleties of
1018 	 * getting a hold on an anon_vma from outside one of its mms.
1019 	 * But if we cannot get anon_vma, then we won't need it anyway,
1020 	 * because that implies that the anon page is no longer mapped
1021 	 * (and cannot be remapped so long as we hold the page lock).
1022 	 */
1023 	if (PageAnon(page) && !PageKsm(page))
1024 		anon_vma = page_get_anon_vma(page);
1025 
1026 	/*
1027 	 * Block others from accessing the new page when we get around to
1028 	 * establishing additional references. We are usually the only one
1029 	 * holding a reference to newpage at this point. We used to have a BUG
1030 	 * here if trylock_page(newpage) fails, but would like to allow for
1031 	 * cases where there might be a race with the previous use of newpage.
1032 	 * This is much like races on refcount of oldpage: just don't BUG().
1033 	 */
1034 	if (unlikely(!trylock_page(newpage)))
1035 		goto out_unlock;
1036 
1037 	if (unlikely(!is_lru)) {
1038 		rc = move_to_new_page(newpage, page, mode);
1039 		goto out_unlock_both;
1040 	}
1041 
1042 	/*
1043 	 * Corner case handling:
1044 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1045 	 * and treated as swapcache but it has no rmap yet.
1046 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1047 	 * trigger a BUG.  So handle it here.
1048 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1049 	 * fs-private metadata. The page can be picked up due to memory
1050 	 * offlining.  Everywhere else except page reclaim, the page is
1051 	 * invisible to the vm, so the page can not be migrated.  So try to
1052 	 * free the metadata, so the page can be freed.
1053 	 */
1054 	if (!page->mapping) {
1055 		VM_BUG_ON_PAGE(PageAnon(page), page);
1056 		if (page_has_private(page)) {
1057 			try_to_free_buffers(page);
1058 			goto out_unlock_both;
1059 		}
1060 	} else if (page_mapped(page)) {
1061 		/* Establish migration ptes */
1062 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063 				page);
1064 		try_to_migrate(page, 0);
1065 		page_was_mapped = true;
1066 	}
1067 
1068 	if (!page_mapped(page))
1069 		rc = move_to_new_page(newpage, page, mode);
1070 
1071 	if (page_was_mapped)
1072 		remove_migration_ptes(page,
1073 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074 
1075 out_unlock_both:
1076 	unlock_page(newpage);
1077 out_unlock:
1078 	/* Drop an anon_vma reference if we took one */
1079 	if (anon_vma)
1080 		put_anon_vma(anon_vma);
1081 	unlock_page(page);
1082 out:
1083 	/*
1084 	 * If migration is successful, decrease refcount of the newpage
1085 	 * which will not free the page because new page owner increased
1086 	 * refcounter. As well, if it is LRU page, add the page to LRU
1087 	 * list in here. Use the old state of the isolated source page to
1088 	 * determine if we migrated a LRU page. newpage was already unlocked
1089 	 * and possibly modified by its owner - don't rely on the page
1090 	 * state.
1091 	 */
1092 	if (rc == MIGRATEPAGE_SUCCESS) {
1093 		if (unlikely(!is_lru))
1094 			put_page(newpage);
1095 		else
1096 			putback_lru_page(newpage);
1097 	}
1098 
1099 	return rc;
1100 }
1101 
1102 
1103 /*
1104  * node_demotion[] example:
1105  *
1106  * Consider a system with two sockets.  Each socket has
1107  * three classes of memory attached: fast, medium and slow.
1108  * Each memory class is placed in its own NUMA node.  The
1109  * CPUs are placed in the node with the "fast" memory.  The
1110  * 6 NUMA nodes (0-5) might be split among the sockets like
1111  * this:
1112  *
1113  *	Socket A: 0, 1, 2
1114  *	Socket B: 3, 4, 5
1115  *
1116  * When Node 0 fills up, its memory should be migrated to
1117  * Node 1.  When Node 1 fills up, it should be migrated to
1118  * Node 2.  The migration path start on the nodes with the
1119  * processors (since allocations default to this node) and
1120  * fast memory, progress through medium and end with the
1121  * slow memory:
1122  *
1123  *	0 -> 1 -> 2 -> stop
1124  *	3 -> 4 -> 5 -> stop
1125  *
1126  * This is represented in the node_demotion[] like this:
1127  *
1128  *	{  1, // Node 0 migrates to 1
1129  *	   2, // Node 1 migrates to 2
1130  *	  -1, // Node 2 does not migrate
1131  *	   4, // Node 3 migrates to 4
1132  *	   5, // Node 4 migrates to 5
1133  *	  -1} // Node 5 does not migrate
1134  */
1135 
1136 /*
1137  * Writes to this array occur without locking.  Cycles are
1138  * not allowed: Node X demotes to Y which demotes to X...
1139  *
1140  * If multiple reads are performed, a single rcu_read_lock()
1141  * must be held over all reads to ensure that no cycles are
1142  * observed.
1143  */
1144 static int node_demotion[MAX_NUMNODES] __read_mostly =
1145 	{[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE};
1146 
1147 /**
1148  * next_demotion_node() - Get the next node in the demotion path
1149  * @node: The starting node to lookup the next node
1150  *
1151  * Return: node id for next memory node in the demotion path hierarchy
1152  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
1153  * @node online or guarantee that it *continues* to be the next demotion
1154  * target.
1155  */
1156 int next_demotion_node(int node)
1157 {
1158 	int target;
1159 
1160 	/*
1161 	 * node_demotion[] is updated without excluding this
1162 	 * function from running.  RCU doesn't provide any
1163 	 * compiler barriers, so the READ_ONCE() is required
1164 	 * to avoid compiler reordering or read merging.
1165 	 *
1166 	 * Make sure to use RCU over entire code blocks if
1167 	 * node_demotion[] reads need to be consistent.
1168 	 */
1169 	rcu_read_lock();
1170 	target = READ_ONCE(node_demotion[node]);
1171 	rcu_read_unlock();
1172 
1173 	return target;
1174 }
1175 
1176 /*
1177  * Obtain the lock on page, remove all ptes and migrate the page
1178  * to the newly allocated page in newpage.
1179  */
1180 static int unmap_and_move(new_page_t get_new_page,
1181 				   free_page_t put_new_page,
1182 				   unsigned long private, struct page *page,
1183 				   int force, enum migrate_mode mode,
1184 				   enum migrate_reason reason,
1185 				   struct list_head *ret)
1186 {
1187 	int rc = MIGRATEPAGE_SUCCESS;
1188 	struct page *newpage = NULL;
1189 
1190 	if (!thp_migration_supported() && PageTransHuge(page))
1191 		return -ENOSYS;
1192 
1193 	if (page_count(page) == 1) {
1194 		/* page was freed from under us. So we are done. */
1195 		ClearPageActive(page);
1196 		ClearPageUnevictable(page);
1197 		if (unlikely(__PageMovable(page))) {
1198 			lock_page(page);
1199 			if (!PageMovable(page))
1200 				__ClearPageIsolated(page);
1201 			unlock_page(page);
1202 		}
1203 		goto out;
1204 	}
1205 
1206 	newpage = get_new_page(page, private);
1207 	if (!newpage)
1208 		return -ENOMEM;
1209 
1210 	rc = __unmap_and_move(page, newpage, force, mode);
1211 	if (rc == MIGRATEPAGE_SUCCESS)
1212 		set_page_owner_migrate_reason(newpage, reason);
1213 
1214 out:
1215 	if (rc != -EAGAIN) {
1216 		/*
1217 		 * A page that has been migrated has all references
1218 		 * removed and will be freed. A page that has not been
1219 		 * migrated will have kept its references and be restored.
1220 		 */
1221 		list_del(&page->lru);
1222 	}
1223 
1224 	/*
1225 	 * If migration is successful, releases reference grabbed during
1226 	 * isolation. Otherwise, restore the page to right list unless
1227 	 * we want to retry.
1228 	 */
1229 	if (rc == MIGRATEPAGE_SUCCESS) {
1230 		/*
1231 		 * Compaction can migrate also non-LRU pages which are
1232 		 * not accounted to NR_ISOLATED_*. They can be recognized
1233 		 * as __PageMovable
1234 		 */
1235 		if (likely(!__PageMovable(page)))
1236 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1237 					page_is_file_lru(page), -thp_nr_pages(page));
1238 
1239 		if (reason != MR_MEMORY_FAILURE)
1240 			/*
1241 			 * We release the page in page_handle_poison.
1242 			 */
1243 			put_page(page);
1244 	} else {
1245 		if (rc != -EAGAIN)
1246 			list_add_tail(&page->lru, ret);
1247 
1248 		if (put_new_page)
1249 			put_new_page(newpage, private);
1250 		else
1251 			put_page(newpage);
1252 	}
1253 
1254 	return rc;
1255 }
1256 
1257 /*
1258  * Counterpart of unmap_and_move_page() for hugepage migration.
1259  *
1260  * This function doesn't wait the completion of hugepage I/O
1261  * because there is no race between I/O and migration for hugepage.
1262  * Note that currently hugepage I/O occurs only in direct I/O
1263  * where no lock is held and PG_writeback is irrelevant,
1264  * and writeback status of all subpages are counted in the reference
1265  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1266  * under direct I/O, the reference of the head page is 512 and a bit more.)
1267  * This means that when we try to migrate hugepage whose subpages are
1268  * doing direct I/O, some references remain after try_to_unmap() and
1269  * hugepage migration fails without data corruption.
1270  *
1271  * There is also no race when direct I/O is issued on the page under migration,
1272  * because then pte is replaced with migration swap entry and direct I/O code
1273  * will wait in the page fault for migration to complete.
1274  */
1275 static int unmap_and_move_huge_page(new_page_t get_new_page,
1276 				free_page_t put_new_page, unsigned long private,
1277 				struct page *hpage, int force,
1278 				enum migrate_mode mode, int reason,
1279 				struct list_head *ret)
1280 {
1281 	int rc = -EAGAIN;
1282 	int page_was_mapped = 0;
1283 	struct page *new_hpage;
1284 	struct anon_vma *anon_vma = NULL;
1285 	struct address_space *mapping = NULL;
1286 
1287 	/*
1288 	 * Migratability of hugepages depends on architectures and their size.
1289 	 * This check is necessary because some callers of hugepage migration
1290 	 * like soft offline and memory hotremove don't walk through page
1291 	 * tables or check whether the hugepage is pmd-based or not before
1292 	 * kicking migration.
1293 	 */
1294 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1295 		list_move_tail(&hpage->lru, ret);
1296 		return -ENOSYS;
1297 	}
1298 
1299 	if (page_count(hpage) == 1) {
1300 		/* page was freed from under us. So we are done. */
1301 		putback_active_hugepage(hpage);
1302 		return MIGRATEPAGE_SUCCESS;
1303 	}
1304 
1305 	new_hpage = get_new_page(hpage, private);
1306 	if (!new_hpage)
1307 		return -ENOMEM;
1308 
1309 	if (!trylock_page(hpage)) {
1310 		if (!force)
1311 			goto out;
1312 		switch (mode) {
1313 		case MIGRATE_SYNC:
1314 		case MIGRATE_SYNC_NO_COPY:
1315 			break;
1316 		default:
1317 			goto out;
1318 		}
1319 		lock_page(hpage);
1320 	}
1321 
1322 	/*
1323 	 * Check for pages which are in the process of being freed.  Without
1324 	 * page_mapping() set, hugetlbfs specific move page routine will not
1325 	 * be called and we could leak usage counts for subpools.
1326 	 */
1327 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1328 		rc = -EBUSY;
1329 		goto out_unlock;
1330 	}
1331 
1332 	if (PageAnon(hpage))
1333 		anon_vma = page_get_anon_vma(hpage);
1334 
1335 	if (unlikely(!trylock_page(new_hpage)))
1336 		goto put_anon;
1337 
1338 	if (page_mapped(hpage)) {
1339 		bool mapping_locked = false;
1340 		enum ttu_flags ttu = 0;
1341 
1342 		if (!PageAnon(hpage)) {
1343 			/*
1344 			 * In shared mappings, try_to_unmap could potentially
1345 			 * call huge_pmd_unshare.  Because of this, take
1346 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1347 			 * to let lower levels know we have taken the lock.
1348 			 */
1349 			mapping = hugetlb_page_mapping_lock_write(hpage);
1350 			if (unlikely(!mapping))
1351 				goto unlock_put_anon;
1352 
1353 			mapping_locked = true;
1354 			ttu |= TTU_RMAP_LOCKED;
1355 		}
1356 
1357 		try_to_migrate(hpage, ttu);
1358 		page_was_mapped = 1;
1359 
1360 		if (mapping_locked)
1361 			i_mmap_unlock_write(mapping);
1362 	}
1363 
1364 	if (!page_mapped(hpage))
1365 		rc = move_to_new_page(new_hpage, hpage, mode);
1366 
1367 	if (page_was_mapped)
1368 		remove_migration_ptes(hpage,
1369 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1370 
1371 unlock_put_anon:
1372 	unlock_page(new_hpage);
1373 
1374 put_anon:
1375 	if (anon_vma)
1376 		put_anon_vma(anon_vma);
1377 
1378 	if (rc == MIGRATEPAGE_SUCCESS) {
1379 		move_hugetlb_state(hpage, new_hpage, reason);
1380 		put_new_page = NULL;
1381 	}
1382 
1383 out_unlock:
1384 	unlock_page(hpage);
1385 out:
1386 	if (rc == MIGRATEPAGE_SUCCESS)
1387 		putback_active_hugepage(hpage);
1388 	else if (rc != -EAGAIN)
1389 		list_move_tail(&hpage->lru, ret);
1390 
1391 	/*
1392 	 * If migration was not successful and there's a freeing callback, use
1393 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1394 	 * isolation.
1395 	 */
1396 	if (put_new_page)
1397 		put_new_page(new_hpage, private);
1398 	else
1399 		putback_active_hugepage(new_hpage);
1400 
1401 	return rc;
1402 }
1403 
1404 static inline int try_split_thp(struct page *page, struct page **page2,
1405 				struct list_head *from)
1406 {
1407 	int rc = 0;
1408 
1409 	lock_page(page);
1410 	rc = split_huge_page_to_list(page, from);
1411 	unlock_page(page);
1412 	if (!rc)
1413 		list_safe_reset_next(page, *page2, lru);
1414 
1415 	return rc;
1416 }
1417 
1418 /*
1419  * migrate_pages - migrate the pages specified in a list, to the free pages
1420  *		   supplied as the target for the page migration
1421  *
1422  * @from:		The list of pages to be migrated.
1423  * @get_new_page:	The function used to allocate free pages to be used
1424  *			as the target of the page migration.
1425  * @put_new_page:	The function used to free target pages if migration
1426  *			fails, or NULL if no special handling is necessary.
1427  * @private:		Private data to be passed on to get_new_page()
1428  * @mode:		The migration mode that specifies the constraints for
1429  *			page migration, if any.
1430  * @reason:		The reason for page migration.
1431  * @ret_succeeded:	Set to the number of pages migrated successfully if
1432  *			the caller passes a non-NULL pointer.
1433  *
1434  * The function returns after 10 attempts or if no pages are movable any more
1435  * because the list has become empty or no retryable pages exist any more.
1436  * It is caller's responsibility to call putback_movable_pages() to return pages
1437  * to the LRU or free list only if ret != 0.
1438  *
1439  * Returns the number of pages that were not migrated, or an error code.
1440  */
1441 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1442 		free_page_t put_new_page, unsigned long private,
1443 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1444 {
1445 	int retry = 1;
1446 	int thp_retry = 1;
1447 	int nr_failed = 0;
1448 	int nr_succeeded = 0;
1449 	int nr_thp_succeeded = 0;
1450 	int nr_thp_failed = 0;
1451 	int nr_thp_split = 0;
1452 	int pass = 0;
1453 	bool is_thp = false;
1454 	struct page *page;
1455 	struct page *page2;
1456 	int swapwrite = current->flags & PF_SWAPWRITE;
1457 	int rc, nr_subpages;
1458 	LIST_HEAD(ret_pages);
1459 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1460 
1461 	trace_mm_migrate_pages_start(mode, reason);
1462 
1463 	if (!swapwrite)
1464 		current->flags |= PF_SWAPWRITE;
1465 
1466 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1467 		retry = 0;
1468 		thp_retry = 0;
1469 
1470 		list_for_each_entry_safe(page, page2, from, lru) {
1471 retry:
1472 			/*
1473 			 * THP statistics is based on the source huge page.
1474 			 * Capture required information that might get lost
1475 			 * during migration.
1476 			 */
1477 			is_thp = PageTransHuge(page) && !PageHuge(page);
1478 			nr_subpages = thp_nr_pages(page);
1479 			cond_resched();
1480 
1481 			if (PageHuge(page))
1482 				rc = unmap_and_move_huge_page(get_new_page,
1483 						put_new_page, private, page,
1484 						pass > 2, mode, reason,
1485 						&ret_pages);
1486 			else
1487 				rc = unmap_and_move(get_new_page, put_new_page,
1488 						private, page, pass > 2, mode,
1489 						reason, &ret_pages);
1490 			/*
1491 			 * The rules are:
1492 			 *	Success: non hugetlb page will be freed, hugetlb
1493 			 *		 page will be put back
1494 			 *	-EAGAIN: stay on the from list
1495 			 *	-ENOMEM: stay on the from list
1496 			 *	Other errno: put on ret_pages list then splice to
1497 			 *		     from list
1498 			 */
1499 			switch(rc) {
1500 			/*
1501 			 * THP migration might be unsupported or the
1502 			 * allocation could've failed so we should
1503 			 * retry on the same page with the THP split
1504 			 * to base pages.
1505 			 *
1506 			 * Head page is retried immediately and tail
1507 			 * pages are added to the tail of the list so
1508 			 * we encounter them after the rest of the list
1509 			 * is processed.
1510 			 */
1511 			case -ENOSYS:
1512 				/* THP migration is unsupported */
1513 				if (is_thp) {
1514 					if (!try_split_thp(page, &page2, from)) {
1515 						nr_thp_split++;
1516 						goto retry;
1517 					}
1518 
1519 					nr_thp_failed++;
1520 					nr_failed += nr_subpages;
1521 					break;
1522 				}
1523 
1524 				/* Hugetlb migration is unsupported */
1525 				nr_failed++;
1526 				break;
1527 			case -ENOMEM:
1528 				/*
1529 				 * When memory is low, don't bother to try to migrate
1530 				 * other pages, just exit.
1531 				 * THP NUMA faulting doesn't split THP to retry.
1532 				 */
1533 				if (is_thp && !nosplit) {
1534 					if (!try_split_thp(page, &page2, from)) {
1535 						nr_thp_split++;
1536 						goto retry;
1537 					}
1538 
1539 					nr_thp_failed++;
1540 					nr_failed += nr_subpages;
1541 					goto out;
1542 				}
1543 				nr_failed++;
1544 				goto out;
1545 			case -EAGAIN:
1546 				if (is_thp) {
1547 					thp_retry++;
1548 					break;
1549 				}
1550 				retry++;
1551 				break;
1552 			case MIGRATEPAGE_SUCCESS:
1553 				if (is_thp) {
1554 					nr_thp_succeeded++;
1555 					nr_succeeded += nr_subpages;
1556 					break;
1557 				}
1558 				nr_succeeded++;
1559 				break;
1560 			default:
1561 				/*
1562 				 * Permanent failure (-EBUSY, etc.):
1563 				 * unlike -EAGAIN case, the failed page is
1564 				 * removed from migration page list and not
1565 				 * retried in the next outer loop.
1566 				 */
1567 				if (is_thp) {
1568 					nr_thp_failed++;
1569 					nr_failed += nr_subpages;
1570 					break;
1571 				}
1572 				nr_failed++;
1573 				break;
1574 			}
1575 		}
1576 	}
1577 	nr_failed += retry + thp_retry;
1578 	nr_thp_failed += thp_retry;
1579 	rc = nr_failed;
1580 out:
1581 	/*
1582 	 * Put the permanent failure page back to migration list, they
1583 	 * will be put back to the right list by the caller.
1584 	 */
1585 	list_splice(&ret_pages, from);
1586 
1587 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1588 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1589 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1590 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1591 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1592 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1593 			       nr_thp_failed, nr_thp_split, mode, reason);
1594 
1595 	if (!swapwrite)
1596 		current->flags &= ~PF_SWAPWRITE;
1597 
1598 	if (ret_succeeded)
1599 		*ret_succeeded = nr_succeeded;
1600 
1601 	return rc;
1602 }
1603 
1604 struct page *alloc_migration_target(struct page *page, unsigned long private)
1605 {
1606 	struct migration_target_control *mtc;
1607 	gfp_t gfp_mask;
1608 	unsigned int order = 0;
1609 	struct page *new_page = NULL;
1610 	int nid;
1611 	int zidx;
1612 
1613 	mtc = (struct migration_target_control *)private;
1614 	gfp_mask = mtc->gfp_mask;
1615 	nid = mtc->nid;
1616 	if (nid == NUMA_NO_NODE)
1617 		nid = page_to_nid(page);
1618 
1619 	if (PageHuge(page)) {
1620 		struct hstate *h = page_hstate(compound_head(page));
1621 
1622 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1623 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1624 	}
1625 
1626 	if (PageTransHuge(page)) {
1627 		/*
1628 		 * clear __GFP_RECLAIM to make the migration callback
1629 		 * consistent with regular THP allocations.
1630 		 */
1631 		gfp_mask &= ~__GFP_RECLAIM;
1632 		gfp_mask |= GFP_TRANSHUGE;
1633 		order = HPAGE_PMD_ORDER;
1634 	}
1635 	zidx = zone_idx(page_zone(page));
1636 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1637 		gfp_mask |= __GFP_HIGHMEM;
1638 
1639 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1640 
1641 	if (new_page && PageTransHuge(new_page))
1642 		prep_transhuge_page(new_page);
1643 
1644 	return new_page;
1645 }
1646 
1647 #ifdef CONFIG_NUMA
1648 
1649 static int store_status(int __user *status, int start, int value, int nr)
1650 {
1651 	while (nr-- > 0) {
1652 		if (put_user(value, status + start))
1653 			return -EFAULT;
1654 		start++;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static int do_move_pages_to_node(struct mm_struct *mm,
1661 		struct list_head *pagelist, int node)
1662 {
1663 	int err;
1664 	struct migration_target_control mtc = {
1665 		.nid = node,
1666 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1667 	};
1668 
1669 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1670 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1671 	if (err)
1672 		putback_movable_pages(pagelist);
1673 	return err;
1674 }
1675 
1676 /*
1677  * Resolves the given address to a struct page, isolates it from the LRU and
1678  * puts it to the given pagelist.
1679  * Returns:
1680  *     errno - if the page cannot be found/isolated
1681  *     0 - when it doesn't have to be migrated because it is already on the
1682  *         target node
1683  *     1 - when it has been queued
1684  */
1685 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1686 		int node, struct list_head *pagelist, bool migrate_all)
1687 {
1688 	struct vm_area_struct *vma;
1689 	struct page *page;
1690 	unsigned int follflags;
1691 	int err;
1692 
1693 	mmap_read_lock(mm);
1694 	err = -EFAULT;
1695 	vma = find_vma(mm, addr);
1696 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1697 		goto out;
1698 
1699 	/* FOLL_DUMP to ignore special (like zero) pages */
1700 	follflags = FOLL_GET | FOLL_DUMP;
1701 	page = follow_page(vma, addr, follflags);
1702 
1703 	err = PTR_ERR(page);
1704 	if (IS_ERR(page))
1705 		goto out;
1706 
1707 	err = -ENOENT;
1708 	if (!page)
1709 		goto out;
1710 
1711 	err = 0;
1712 	if (page_to_nid(page) == node)
1713 		goto out_putpage;
1714 
1715 	err = -EACCES;
1716 	if (page_mapcount(page) > 1 && !migrate_all)
1717 		goto out_putpage;
1718 
1719 	if (PageHuge(page)) {
1720 		if (PageHead(page)) {
1721 			isolate_huge_page(page, pagelist);
1722 			err = 1;
1723 		}
1724 	} else {
1725 		struct page *head;
1726 
1727 		head = compound_head(page);
1728 		err = isolate_lru_page(head);
1729 		if (err)
1730 			goto out_putpage;
1731 
1732 		err = 1;
1733 		list_add_tail(&head->lru, pagelist);
1734 		mod_node_page_state(page_pgdat(head),
1735 			NR_ISOLATED_ANON + page_is_file_lru(head),
1736 			thp_nr_pages(head));
1737 	}
1738 out_putpage:
1739 	/*
1740 	 * Either remove the duplicate refcount from
1741 	 * isolate_lru_page() or drop the page ref if it was
1742 	 * not isolated.
1743 	 */
1744 	put_page(page);
1745 out:
1746 	mmap_read_unlock(mm);
1747 	return err;
1748 }
1749 
1750 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1751 		struct list_head *pagelist, int __user *status,
1752 		int start, int i, unsigned long nr_pages)
1753 {
1754 	int err;
1755 
1756 	if (list_empty(pagelist))
1757 		return 0;
1758 
1759 	err = do_move_pages_to_node(mm, pagelist, node);
1760 	if (err) {
1761 		/*
1762 		 * Positive err means the number of failed
1763 		 * pages to migrate.  Since we are going to
1764 		 * abort and return the number of non-migrated
1765 		 * pages, so need to include the rest of the
1766 		 * nr_pages that have not been attempted as
1767 		 * well.
1768 		 */
1769 		if (err > 0)
1770 			err += nr_pages - i - 1;
1771 		return err;
1772 	}
1773 	return store_status(status, start, node, i - start);
1774 }
1775 
1776 /*
1777  * Migrate an array of page address onto an array of nodes and fill
1778  * the corresponding array of status.
1779  */
1780 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1781 			 unsigned long nr_pages,
1782 			 const void __user * __user *pages,
1783 			 const int __user *nodes,
1784 			 int __user *status, int flags)
1785 {
1786 	int current_node = NUMA_NO_NODE;
1787 	LIST_HEAD(pagelist);
1788 	int start, i;
1789 	int err = 0, err1;
1790 
1791 	lru_cache_disable();
1792 
1793 	for (i = start = 0; i < nr_pages; i++) {
1794 		const void __user *p;
1795 		unsigned long addr;
1796 		int node;
1797 
1798 		err = -EFAULT;
1799 		if (get_user(p, pages + i))
1800 			goto out_flush;
1801 		if (get_user(node, nodes + i))
1802 			goto out_flush;
1803 		addr = (unsigned long)untagged_addr(p);
1804 
1805 		err = -ENODEV;
1806 		if (node < 0 || node >= MAX_NUMNODES)
1807 			goto out_flush;
1808 		if (!node_state(node, N_MEMORY))
1809 			goto out_flush;
1810 
1811 		err = -EACCES;
1812 		if (!node_isset(node, task_nodes))
1813 			goto out_flush;
1814 
1815 		if (current_node == NUMA_NO_NODE) {
1816 			current_node = node;
1817 			start = i;
1818 		} else if (node != current_node) {
1819 			err = move_pages_and_store_status(mm, current_node,
1820 					&pagelist, status, start, i, nr_pages);
1821 			if (err)
1822 				goto out;
1823 			start = i;
1824 			current_node = node;
1825 		}
1826 
1827 		/*
1828 		 * Errors in the page lookup or isolation are not fatal and we simply
1829 		 * report them via status
1830 		 */
1831 		err = add_page_for_migration(mm, addr, current_node,
1832 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1833 
1834 		if (err > 0) {
1835 			/* The page is successfully queued for migration */
1836 			continue;
1837 		}
1838 
1839 		/*
1840 		 * If the page is already on the target node (!err), store the
1841 		 * node, otherwise, store the err.
1842 		 */
1843 		err = store_status(status, i, err ? : current_node, 1);
1844 		if (err)
1845 			goto out_flush;
1846 
1847 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1848 				status, start, i, nr_pages);
1849 		if (err)
1850 			goto out;
1851 		current_node = NUMA_NO_NODE;
1852 	}
1853 out_flush:
1854 	/* Make sure we do not overwrite the existing error */
1855 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1856 				status, start, i, nr_pages);
1857 	if (err >= 0)
1858 		err = err1;
1859 out:
1860 	lru_cache_enable();
1861 	return err;
1862 }
1863 
1864 /*
1865  * Determine the nodes of an array of pages and store it in an array of status.
1866  */
1867 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1868 				const void __user **pages, int *status)
1869 {
1870 	unsigned long i;
1871 
1872 	mmap_read_lock(mm);
1873 
1874 	for (i = 0; i < nr_pages; i++) {
1875 		unsigned long addr = (unsigned long)(*pages);
1876 		struct vm_area_struct *vma;
1877 		struct page *page;
1878 		int err = -EFAULT;
1879 
1880 		vma = vma_lookup(mm, addr);
1881 		if (!vma)
1882 			goto set_status;
1883 
1884 		/* FOLL_DUMP to ignore special (like zero) pages */
1885 		page = follow_page(vma, addr, FOLL_DUMP);
1886 
1887 		err = PTR_ERR(page);
1888 		if (IS_ERR(page))
1889 			goto set_status;
1890 
1891 		err = page ? page_to_nid(page) : -ENOENT;
1892 set_status:
1893 		*status = err;
1894 
1895 		pages++;
1896 		status++;
1897 	}
1898 
1899 	mmap_read_unlock(mm);
1900 }
1901 
1902 static int get_compat_pages_array(const void __user *chunk_pages[],
1903 				  const void __user * __user *pages,
1904 				  unsigned long chunk_nr)
1905 {
1906 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1907 	compat_uptr_t p;
1908 	int i;
1909 
1910 	for (i = 0; i < chunk_nr; i++) {
1911 		if (get_user(p, pages32 + i))
1912 			return -EFAULT;
1913 		chunk_pages[i] = compat_ptr(p);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /*
1920  * Determine the nodes of a user array of pages and store it in
1921  * a user array of status.
1922  */
1923 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1924 			 const void __user * __user *pages,
1925 			 int __user *status)
1926 {
1927 #define DO_PAGES_STAT_CHUNK_NR 16
1928 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1929 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1930 
1931 	while (nr_pages) {
1932 		unsigned long chunk_nr;
1933 
1934 		chunk_nr = nr_pages;
1935 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1936 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1937 
1938 		if (in_compat_syscall()) {
1939 			if (get_compat_pages_array(chunk_pages, pages,
1940 						   chunk_nr))
1941 				break;
1942 		} else {
1943 			if (copy_from_user(chunk_pages, pages,
1944 				      chunk_nr * sizeof(*chunk_pages)))
1945 				break;
1946 		}
1947 
1948 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1949 
1950 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1951 			break;
1952 
1953 		pages += chunk_nr;
1954 		status += chunk_nr;
1955 		nr_pages -= chunk_nr;
1956 	}
1957 	return nr_pages ? -EFAULT : 0;
1958 }
1959 
1960 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1961 {
1962 	struct task_struct *task;
1963 	struct mm_struct *mm;
1964 
1965 	/*
1966 	 * There is no need to check if current process has the right to modify
1967 	 * the specified process when they are same.
1968 	 */
1969 	if (!pid) {
1970 		mmget(current->mm);
1971 		*mem_nodes = cpuset_mems_allowed(current);
1972 		return current->mm;
1973 	}
1974 
1975 	/* Find the mm_struct */
1976 	rcu_read_lock();
1977 	task = find_task_by_vpid(pid);
1978 	if (!task) {
1979 		rcu_read_unlock();
1980 		return ERR_PTR(-ESRCH);
1981 	}
1982 	get_task_struct(task);
1983 
1984 	/*
1985 	 * Check if this process has the right to modify the specified
1986 	 * process. Use the regular "ptrace_may_access()" checks.
1987 	 */
1988 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1989 		rcu_read_unlock();
1990 		mm = ERR_PTR(-EPERM);
1991 		goto out;
1992 	}
1993 	rcu_read_unlock();
1994 
1995 	mm = ERR_PTR(security_task_movememory(task));
1996 	if (IS_ERR(mm))
1997 		goto out;
1998 	*mem_nodes = cpuset_mems_allowed(task);
1999 	mm = get_task_mm(task);
2000 out:
2001 	put_task_struct(task);
2002 	if (!mm)
2003 		mm = ERR_PTR(-EINVAL);
2004 	return mm;
2005 }
2006 
2007 /*
2008  * Move a list of pages in the address space of the currently executing
2009  * process.
2010  */
2011 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2012 			     const void __user * __user *pages,
2013 			     const int __user *nodes,
2014 			     int __user *status, int flags)
2015 {
2016 	struct mm_struct *mm;
2017 	int err;
2018 	nodemask_t task_nodes;
2019 
2020 	/* Check flags */
2021 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2022 		return -EINVAL;
2023 
2024 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2025 		return -EPERM;
2026 
2027 	mm = find_mm_struct(pid, &task_nodes);
2028 	if (IS_ERR(mm))
2029 		return PTR_ERR(mm);
2030 
2031 	if (nodes)
2032 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2033 				    nodes, status, flags);
2034 	else
2035 		err = do_pages_stat(mm, nr_pages, pages, status);
2036 
2037 	mmput(mm);
2038 	return err;
2039 }
2040 
2041 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2042 		const void __user * __user *, pages,
2043 		const int __user *, nodes,
2044 		int __user *, status, int, flags)
2045 {
2046 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2047 }
2048 
2049 #ifdef CONFIG_NUMA_BALANCING
2050 /*
2051  * Returns true if this is a safe migration target node for misplaced NUMA
2052  * pages. Currently it only checks the watermarks which crude
2053  */
2054 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2055 				   unsigned long nr_migrate_pages)
2056 {
2057 	int z;
2058 
2059 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2060 		struct zone *zone = pgdat->node_zones + z;
2061 
2062 		if (!populated_zone(zone))
2063 			continue;
2064 
2065 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2066 		if (!zone_watermark_ok(zone, 0,
2067 				       high_wmark_pages(zone) +
2068 				       nr_migrate_pages,
2069 				       ZONE_MOVABLE, 0))
2070 			continue;
2071 		return true;
2072 	}
2073 	return false;
2074 }
2075 
2076 static struct page *alloc_misplaced_dst_page(struct page *page,
2077 					   unsigned long data)
2078 {
2079 	int nid = (int) data;
2080 	struct page *newpage;
2081 
2082 	newpage = __alloc_pages_node(nid,
2083 					 (GFP_HIGHUSER_MOVABLE |
2084 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2085 					  __GFP_NORETRY | __GFP_NOWARN) &
2086 					 ~__GFP_RECLAIM, 0);
2087 
2088 	return newpage;
2089 }
2090 
2091 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2092 						 unsigned long data)
2093 {
2094 	int nid = (int) data;
2095 	struct page *newpage;
2096 
2097 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2098 				   HPAGE_PMD_ORDER);
2099 	if (!newpage)
2100 		goto out;
2101 
2102 	prep_transhuge_page(newpage);
2103 
2104 out:
2105 	return newpage;
2106 }
2107 
2108 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2109 {
2110 	int page_lru;
2111 	int nr_pages = thp_nr_pages(page);
2112 
2113 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2114 
2115 	/* Do not migrate THP mapped by multiple processes */
2116 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2117 		return 0;
2118 
2119 	/* Avoid migrating to a node that is nearly full */
2120 	if (!migrate_balanced_pgdat(pgdat, nr_pages))
2121 		return 0;
2122 
2123 	if (isolate_lru_page(page))
2124 		return 0;
2125 
2126 	page_lru = page_is_file_lru(page);
2127 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2128 			    nr_pages);
2129 
2130 	/*
2131 	 * Isolating the page has taken another reference, so the
2132 	 * caller's reference can be safely dropped without the page
2133 	 * disappearing underneath us during migration.
2134 	 */
2135 	put_page(page);
2136 	return 1;
2137 }
2138 
2139 /*
2140  * Attempt to migrate a misplaced page to the specified destination
2141  * node. Caller is expected to have an elevated reference count on
2142  * the page that will be dropped by this function before returning.
2143  */
2144 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2145 			   int node)
2146 {
2147 	pg_data_t *pgdat = NODE_DATA(node);
2148 	int isolated;
2149 	int nr_remaining;
2150 	LIST_HEAD(migratepages);
2151 	new_page_t *new;
2152 	bool compound;
2153 	int nr_pages = thp_nr_pages(page);
2154 
2155 	/*
2156 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2157 	 * be either base page or THP.  And it must be head page if it is
2158 	 * THP.
2159 	 */
2160 	compound = PageTransHuge(page);
2161 
2162 	if (compound)
2163 		new = alloc_misplaced_dst_page_thp;
2164 	else
2165 		new = alloc_misplaced_dst_page;
2166 
2167 	/*
2168 	 * Don't migrate file pages that are mapped in multiple processes
2169 	 * with execute permissions as they are probably shared libraries.
2170 	 */
2171 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2172 	    (vma->vm_flags & VM_EXEC))
2173 		goto out;
2174 
2175 	/*
2176 	 * Also do not migrate dirty pages as not all filesystems can move
2177 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2178 	 */
2179 	if (page_is_file_lru(page) && PageDirty(page))
2180 		goto out;
2181 
2182 	isolated = numamigrate_isolate_page(pgdat, page);
2183 	if (!isolated)
2184 		goto out;
2185 
2186 	list_add(&page->lru, &migratepages);
2187 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2188 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2189 	if (nr_remaining) {
2190 		if (!list_empty(&migratepages)) {
2191 			list_del(&page->lru);
2192 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2193 					page_is_file_lru(page), -nr_pages);
2194 			putback_lru_page(page);
2195 		}
2196 		isolated = 0;
2197 	} else
2198 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2199 	BUG_ON(!list_empty(&migratepages));
2200 	return isolated;
2201 
2202 out:
2203 	put_page(page);
2204 	return 0;
2205 }
2206 #endif /* CONFIG_NUMA_BALANCING */
2207 #endif /* CONFIG_NUMA */
2208 
2209 #ifdef CONFIG_DEVICE_PRIVATE
2210 static int migrate_vma_collect_skip(unsigned long start,
2211 				    unsigned long end,
2212 				    struct mm_walk *walk)
2213 {
2214 	struct migrate_vma *migrate = walk->private;
2215 	unsigned long addr;
2216 
2217 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2218 		migrate->dst[migrate->npages] = 0;
2219 		migrate->src[migrate->npages++] = 0;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 static int migrate_vma_collect_hole(unsigned long start,
2226 				    unsigned long end,
2227 				    __always_unused int depth,
2228 				    struct mm_walk *walk)
2229 {
2230 	struct migrate_vma *migrate = walk->private;
2231 	unsigned long addr;
2232 
2233 	/* Only allow populating anonymous memory. */
2234 	if (!vma_is_anonymous(walk->vma))
2235 		return migrate_vma_collect_skip(start, end, walk);
2236 
2237 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2238 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2239 		migrate->dst[migrate->npages] = 0;
2240 		migrate->npages++;
2241 		migrate->cpages++;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2248 				   unsigned long start,
2249 				   unsigned long end,
2250 				   struct mm_walk *walk)
2251 {
2252 	struct migrate_vma *migrate = walk->private;
2253 	struct vm_area_struct *vma = walk->vma;
2254 	struct mm_struct *mm = vma->vm_mm;
2255 	unsigned long addr = start, unmapped = 0;
2256 	spinlock_t *ptl;
2257 	pte_t *ptep;
2258 
2259 again:
2260 	if (pmd_none(*pmdp))
2261 		return migrate_vma_collect_hole(start, end, -1, walk);
2262 
2263 	if (pmd_trans_huge(*pmdp)) {
2264 		struct page *page;
2265 
2266 		ptl = pmd_lock(mm, pmdp);
2267 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2268 			spin_unlock(ptl);
2269 			goto again;
2270 		}
2271 
2272 		page = pmd_page(*pmdp);
2273 		if (is_huge_zero_page(page)) {
2274 			spin_unlock(ptl);
2275 			split_huge_pmd(vma, pmdp, addr);
2276 			if (pmd_trans_unstable(pmdp))
2277 				return migrate_vma_collect_skip(start, end,
2278 								walk);
2279 		} else {
2280 			int ret;
2281 
2282 			get_page(page);
2283 			spin_unlock(ptl);
2284 			if (unlikely(!trylock_page(page)))
2285 				return migrate_vma_collect_skip(start, end,
2286 								walk);
2287 			ret = split_huge_page(page);
2288 			unlock_page(page);
2289 			put_page(page);
2290 			if (ret)
2291 				return migrate_vma_collect_skip(start, end,
2292 								walk);
2293 			if (pmd_none(*pmdp))
2294 				return migrate_vma_collect_hole(start, end, -1,
2295 								walk);
2296 		}
2297 	}
2298 
2299 	if (unlikely(pmd_bad(*pmdp)))
2300 		return migrate_vma_collect_skip(start, end, walk);
2301 
2302 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2303 	arch_enter_lazy_mmu_mode();
2304 
2305 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2306 		unsigned long mpfn = 0, pfn;
2307 		struct page *page;
2308 		swp_entry_t entry;
2309 		pte_t pte;
2310 
2311 		pte = *ptep;
2312 
2313 		if (pte_none(pte)) {
2314 			if (vma_is_anonymous(vma)) {
2315 				mpfn = MIGRATE_PFN_MIGRATE;
2316 				migrate->cpages++;
2317 			}
2318 			goto next;
2319 		}
2320 
2321 		if (!pte_present(pte)) {
2322 			/*
2323 			 * Only care about unaddressable device page special
2324 			 * page table entry. Other special swap entries are not
2325 			 * migratable, and we ignore regular swapped page.
2326 			 */
2327 			entry = pte_to_swp_entry(pte);
2328 			if (!is_device_private_entry(entry))
2329 				goto next;
2330 
2331 			page = pfn_swap_entry_to_page(entry);
2332 			if (!(migrate->flags &
2333 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2334 			    page->pgmap->owner != migrate->pgmap_owner)
2335 				goto next;
2336 
2337 			mpfn = migrate_pfn(page_to_pfn(page)) |
2338 					MIGRATE_PFN_MIGRATE;
2339 			if (is_writable_device_private_entry(entry))
2340 				mpfn |= MIGRATE_PFN_WRITE;
2341 		} else {
2342 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2343 				goto next;
2344 			pfn = pte_pfn(pte);
2345 			if (is_zero_pfn(pfn)) {
2346 				mpfn = MIGRATE_PFN_MIGRATE;
2347 				migrate->cpages++;
2348 				goto next;
2349 			}
2350 			page = vm_normal_page(migrate->vma, addr, pte);
2351 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2352 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2353 		}
2354 
2355 		/* FIXME support THP */
2356 		if (!page || !page->mapping || PageTransCompound(page)) {
2357 			mpfn = 0;
2358 			goto next;
2359 		}
2360 
2361 		/*
2362 		 * By getting a reference on the page we pin it and that blocks
2363 		 * any kind of migration. Side effect is that it "freezes" the
2364 		 * pte.
2365 		 *
2366 		 * We drop this reference after isolating the page from the lru
2367 		 * for non device page (device page are not on the lru and thus
2368 		 * can't be dropped from it).
2369 		 */
2370 		get_page(page);
2371 		migrate->cpages++;
2372 
2373 		/*
2374 		 * Optimize for the common case where page is only mapped once
2375 		 * in one process. If we can lock the page, then we can safely
2376 		 * set up a special migration page table entry now.
2377 		 */
2378 		if (trylock_page(page)) {
2379 			pte_t swp_pte;
2380 
2381 			mpfn |= MIGRATE_PFN_LOCKED;
2382 			ptep_get_and_clear(mm, addr, ptep);
2383 
2384 			/* Setup special migration page table entry */
2385 			if (mpfn & MIGRATE_PFN_WRITE)
2386 				entry = make_writable_migration_entry(
2387 							page_to_pfn(page));
2388 			else
2389 				entry = make_readable_migration_entry(
2390 							page_to_pfn(page));
2391 			swp_pte = swp_entry_to_pte(entry);
2392 			if (pte_present(pte)) {
2393 				if (pte_soft_dirty(pte))
2394 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2395 				if (pte_uffd_wp(pte))
2396 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2397 			} else {
2398 				if (pte_swp_soft_dirty(pte))
2399 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2400 				if (pte_swp_uffd_wp(pte))
2401 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2402 			}
2403 			set_pte_at(mm, addr, ptep, swp_pte);
2404 
2405 			/*
2406 			 * This is like regular unmap: we remove the rmap and
2407 			 * drop page refcount. Page won't be freed, as we took
2408 			 * a reference just above.
2409 			 */
2410 			page_remove_rmap(page, false);
2411 			put_page(page);
2412 
2413 			if (pte_present(pte))
2414 				unmapped++;
2415 		}
2416 
2417 next:
2418 		migrate->dst[migrate->npages] = 0;
2419 		migrate->src[migrate->npages++] = mpfn;
2420 	}
2421 	arch_leave_lazy_mmu_mode();
2422 	pte_unmap_unlock(ptep - 1, ptl);
2423 
2424 	/* Only flush the TLB if we actually modified any entries */
2425 	if (unmapped)
2426 		flush_tlb_range(walk->vma, start, end);
2427 
2428 	return 0;
2429 }
2430 
2431 static const struct mm_walk_ops migrate_vma_walk_ops = {
2432 	.pmd_entry		= migrate_vma_collect_pmd,
2433 	.pte_hole		= migrate_vma_collect_hole,
2434 };
2435 
2436 /*
2437  * migrate_vma_collect() - collect pages over a range of virtual addresses
2438  * @migrate: migrate struct containing all migration information
2439  *
2440  * This will walk the CPU page table. For each virtual address backed by a
2441  * valid page, it updates the src array and takes a reference on the page, in
2442  * order to pin the page until we lock it and unmap it.
2443  */
2444 static void migrate_vma_collect(struct migrate_vma *migrate)
2445 {
2446 	struct mmu_notifier_range range;
2447 
2448 	/*
2449 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2450 	 * that the registered device driver can skip invalidating device
2451 	 * private page mappings that won't be migrated.
2452 	 */
2453 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2454 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2455 		migrate->pgmap_owner);
2456 	mmu_notifier_invalidate_range_start(&range);
2457 
2458 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2459 			&migrate_vma_walk_ops, migrate);
2460 
2461 	mmu_notifier_invalidate_range_end(&range);
2462 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2463 }
2464 
2465 /*
2466  * migrate_vma_check_page() - check if page is pinned or not
2467  * @page: struct page to check
2468  *
2469  * Pinned pages cannot be migrated. This is the same test as in
2470  * folio_migrate_mapping(), except that here we allow migration of a
2471  * ZONE_DEVICE page.
2472  */
2473 static bool migrate_vma_check_page(struct page *page)
2474 {
2475 	/*
2476 	 * One extra ref because caller holds an extra reference, either from
2477 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2478 	 * a device page.
2479 	 */
2480 	int extra = 1;
2481 
2482 	/*
2483 	 * FIXME support THP (transparent huge page), it is bit more complex to
2484 	 * check them than regular pages, because they can be mapped with a pmd
2485 	 * or with a pte (split pte mapping).
2486 	 */
2487 	if (PageCompound(page))
2488 		return false;
2489 
2490 	/* Page from ZONE_DEVICE have one extra reference */
2491 	if (is_zone_device_page(page)) {
2492 		/*
2493 		 * Private page can never be pin as they have no valid pte and
2494 		 * GUP will fail for those. Yet if there is a pending migration
2495 		 * a thread might try to wait on the pte migration entry and
2496 		 * will bump the page reference count. Sadly there is no way to
2497 		 * differentiate a regular pin from migration wait. Hence to
2498 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2499 		 * infinite loop (one stopping migration because the other is
2500 		 * waiting on pte migration entry). We always return true here.
2501 		 *
2502 		 * FIXME proper solution is to rework migration_entry_wait() so
2503 		 * it does not need to take a reference on page.
2504 		 */
2505 		return is_device_private_page(page);
2506 	}
2507 
2508 	/* For file back page */
2509 	if (page_mapping(page))
2510 		extra += 1 + page_has_private(page);
2511 
2512 	if ((page_count(page) - extra) > page_mapcount(page))
2513 		return false;
2514 
2515 	return true;
2516 }
2517 
2518 /*
2519  * migrate_vma_prepare() - lock pages and isolate them from the lru
2520  * @migrate: migrate struct containing all migration information
2521  *
2522  * This locks pages that have been collected by migrate_vma_collect(). Once each
2523  * page is locked it is isolated from the lru (for non-device pages). Finally,
2524  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2525  * migrated by concurrent kernel threads.
2526  */
2527 static void migrate_vma_prepare(struct migrate_vma *migrate)
2528 {
2529 	const unsigned long npages = migrate->npages;
2530 	const unsigned long start = migrate->start;
2531 	unsigned long addr, i, restore = 0;
2532 	bool allow_drain = true;
2533 
2534 	lru_add_drain();
2535 
2536 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2537 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2538 		bool remap = true;
2539 
2540 		if (!page)
2541 			continue;
2542 
2543 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2544 			/*
2545 			 * Because we are migrating several pages there can be
2546 			 * a deadlock between 2 concurrent migration where each
2547 			 * are waiting on each other page lock.
2548 			 *
2549 			 * Make migrate_vma() a best effort thing and backoff
2550 			 * for any page we can not lock right away.
2551 			 */
2552 			if (!trylock_page(page)) {
2553 				migrate->src[i] = 0;
2554 				migrate->cpages--;
2555 				put_page(page);
2556 				continue;
2557 			}
2558 			remap = false;
2559 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2560 		}
2561 
2562 		/* ZONE_DEVICE pages are not on LRU */
2563 		if (!is_zone_device_page(page)) {
2564 			if (!PageLRU(page) && allow_drain) {
2565 				/* Drain CPU's pagevec */
2566 				lru_add_drain_all();
2567 				allow_drain = false;
2568 			}
2569 
2570 			if (isolate_lru_page(page)) {
2571 				if (remap) {
2572 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2573 					migrate->cpages--;
2574 					restore++;
2575 				} else {
2576 					migrate->src[i] = 0;
2577 					unlock_page(page);
2578 					migrate->cpages--;
2579 					put_page(page);
2580 				}
2581 				continue;
2582 			}
2583 
2584 			/* Drop the reference we took in collect */
2585 			put_page(page);
2586 		}
2587 
2588 		if (!migrate_vma_check_page(page)) {
2589 			if (remap) {
2590 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2591 				migrate->cpages--;
2592 				restore++;
2593 
2594 				if (!is_zone_device_page(page)) {
2595 					get_page(page);
2596 					putback_lru_page(page);
2597 				}
2598 			} else {
2599 				migrate->src[i] = 0;
2600 				unlock_page(page);
2601 				migrate->cpages--;
2602 
2603 				if (!is_zone_device_page(page))
2604 					putback_lru_page(page);
2605 				else
2606 					put_page(page);
2607 			}
2608 		}
2609 	}
2610 
2611 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2612 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2613 
2614 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2615 			continue;
2616 
2617 		remove_migration_pte(page, migrate->vma, addr, page);
2618 
2619 		migrate->src[i] = 0;
2620 		unlock_page(page);
2621 		put_page(page);
2622 		restore--;
2623 	}
2624 }
2625 
2626 /*
2627  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2628  * @migrate: migrate struct containing all migration information
2629  *
2630  * Replace page mapping (CPU page table pte) with a special migration pte entry
2631  * and check again if it has been pinned. Pinned pages are restored because we
2632  * cannot migrate them.
2633  *
2634  * This is the last step before we call the device driver callback to allocate
2635  * destination memory and copy contents of original page over to new page.
2636  */
2637 static void migrate_vma_unmap(struct migrate_vma *migrate)
2638 {
2639 	const unsigned long npages = migrate->npages;
2640 	const unsigned long start = migrate->start;
2641 	unsigned long addr, i, restore = 0;
2642 
2643 	for (i = 0; i < npages; i++) {
2644 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2645 
2646 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2647 			continue;
2648 
2649 		if (page_mapped(page)) {
2650 			try_to_migrate(page, 0);
2651 			if (page_mapped(page))
2652 				goto restore;
2653 		}
2654 
2655 		if (migrate_vma_check_page(page))
2656 			continue;
2657 
2658 restore:
2659 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2660 		migrate->cpages--;
2661 		restore++;
2662 	}
2663 
2664 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2665 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2666 
2667 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2668 			continue;
2669 
2670 		remove_migration_ptes(page, page, false);
2671 
2672 		migrate->src[i] = 0;
2673 		unlock_page(page);
2674 		restore--;
2675 
2676 		if (is_zone_device_page(page))
2677 			put_page(page);
2678 		else
2679 			putback_lru_page(page);
2680 	}
2681 }
2682 
2683 /**
2684  * migrate_vma_setup() - prepare to migrate a range of memory
2685  * @args: contains the vma, start, and pfns arrays for the migration
2686  *
2687  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2688  * without an error.
2689  *
2690  * Prepare to migrate a range of memory virtual address range by collecting all
2691  * the pages backing each virtual address in the range, saving them inside the
2692  * src array.  Then lock those pages and unmap them. Once the pages are locked
2693  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2694  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2695  * corresponding src array entry.  Then restores any pages that are pinned, by
2696  * remapping and unlocking those pages.
2697  *
2698  * The caller should then allocate destination memory and copy source memory to
2699  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2700  * flag set).  Once these are allocated and copied, the caller must update each
2701  * corresponding entry in the dst array with the pfn value of the destination
2702  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2703  * (destination pages must have their struct pages locked, via lock_page()).
2704  *
2705  * Note that the caller does not have to migrate all the pages that are marked
2706  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2707  * device memory to system memory.  If the caller cannot migrate a device page
2708  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2709  * consequences for the userspace process, so it must be avoided if at all
2710  * possible.
2711  *
2712  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2713  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2714  * allowing the caller to allocate device memory for those unbacked virtual
2715  * addresses.  For this the caller simply has to allocate device memory and
2716  * properly set the destination entry like for regular migration.  Note that
2717  * this can still fail, and thus inside the device driver you must check if the
2718  * migration was successful for those entries after calling migrate_vma_pages(),
2719  * just like for regular migration.
2720  *
2721  * After that, the callers must call migrate_vma_pages() to go over each entry
2722  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2723  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2724  * then migrate_vma_pages() to migrate struct page information from the source
2725  * struct page to the destination struct page.  If it fails to migrate the
2726  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2727  * src array.
2728  *
2729  * At this point all successfully migrated pages have an entry in the src
2730  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2731  * array entry with MIGRATE_PFN_VALID flag set.
2732  *
2733  * Once migrate_vma_pages() returns the caller may inspect which pages were
2734  * successfully migrated, and which were not.  Successfully migrated pages will
2735  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2736  *
2737  * It is safe to update device page table after migrate_vma_pages() because
2738  * both destination and source page are still locked, and the mmap_lock is held
2739  * in read mode (hence no one can unmap the range being migrated).
2740  *
2741  * Once the caller is done cleaning up things and updating its page table (if it
2742  * chose to do so, this is not an obligation) it finally calls
2743  * migrate_vma_finalize() to update the CPU page table to point to new pages
2744  * for successfully migrated pages or otherwise restore the CPU page table to
2745  * point to the original source pages.
2746  */
2747 int migrate_vma_setup(struct migrate_vma *args)
2748 {
2749 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2750 
2751 	args->start &= PAGE_MASK;
2752 	args->end &= PAGE_MASK;
2753 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2754 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2755 		return -EINVAL;
2756 	if (nr_pages <= 0)
2757 		return -EINVAL;
2758 	if (args->start < args->vma->vm_start ||
2759 	    args->start >= args->vma->vm_end)
2760 		return -EINVAL;
2761 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2762 		return -EINVAL;
2763 	if (!args->src || !args->dst)
2764 		return -EINVAL;
2765 
2766 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2767 	args->cpages = 0;
2768 	args->npages = 0;
2769 
2770 	migrate_vma_collect(args);
2771 
2772 	if (args->cpages)
2773 		migrate_vma_prepare(args);
2774 	if (args->cpages)
2775 		migrate_vma_unmap(args);
2776 
2777 	/*
2778 	 * At this point pages are locked and unmapped, and thus they have
2779 	 * stable content and can safely be copied to destination memory that
2780 	 * is allocated by the drivers.
2781 	 */
2782 	return 0;
2783 
2784 }
2785 EXPORT_SYMBOL(migrate_vma_setup);
2786 
2787 /*
2788  * This code closely matches the code in:
2789  *   __handle_mm_fault()
2790  *     handle_pte_fault()
2791  *       do_anonymous_page()
2792  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2793  * private page.
2794  */
2795 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2796 				    unsigned long addr,
2797 				    struct page *page,
2798 				    unsigned long *src)
2799 {
2800 	struct vm_area_struct *vma = migrate->vma;
2801 	struct mm_struct *mm = vma->vm_mm;
2802 	bool flush = false;
2803 	spinlock_t *ptl;
2804 	pte_t entry;
2805 	pgd_t *pgdp;
2806 	p4d_t *p4dp;
2807 	pud_t *pudp;
2808 	pmd_t *pmdp;
2809 	pte_t *ptep;
2810 
2811 	/* Only allow populating anonymous memory */
2812 	if (!vma_is_anonymous(vma))
2813 		goto abort;
2814 
2815 	pgdp = pgd_offset(mm, addr);
2816 	p4dp = p4d_alloc(mm, pgdp, addr);
2817 	if (!p4dp)
2818 		goto abort;
2819 	pudp = pud_alloc(mm, p4dp, addr);
2820 	if (!pudp)
2821 		goto abort;
2822 	pmdp = pmd_alloc(mm, pudp, addr);
2823 	if (!pmdp)
2824 		goto abort;
2825 
2826 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2827 		goto abort;
2828 
2829 	/*
2830 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2831 	 * pte_offset_map() on pmds where a huge pmd might be created
2832 	 * from a different thread.
2833 	 *
2834 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2835 	 * parallel threads are excluded by other means.
2836 	 *
2837 	 * Here we only have mmap_read_lock(mm).
2838 	 */
2839 	if (pte_alloc(mm, pmdp))
2840 		goto abort;
2841 
2842 	/* See the comment in pte_alloc_one_map() */
2843 	if (unlikely(pmd_trans_unstable(pmdp)))
2844 		goto abort;
2845 
2846 	if (unlikely(anon_vma_prepare(vma)))
2847 		goto abort;
2848 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2849 		goto abort;
2850 
2851 	/*
2852 	 * The memory barrier inside __SetPageUptodate makes sure that
2853 	 * preceding stores to the page contents become visible before
2854 	 * the set_pte_at() write.
2855 	 */
2856 	__SetPageUptodate(page);
2857 
2858 	if (is_zone_device_page(page)) {
2859 		if (is_device_private_page(page)) {
2860 			swp_entry_t swp_entry;
2861 
2862 			if (vma->vm_flags & VM_WRITE)
2863 				swp_entry = make_writable_device_private_entry(
2864 							page_to_pfn(page));
2865 			else
2866 				swp_entry = make_readable_device_private_entry(
2867 							page_to_pfn(page));
2868 			entry = swp_entry_to_pte(swp_entry);
2869 		} else {
2870 			/*
2871 			 * For now we only support migrating to un-addressable
2872 			 * device memory.
2873 			 */
2874 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2875 			goto abort;
2876 		}
2877 	} else {
2878 		entry = mk_pte(page, vma->vm_page_prot);
2879 		if (vma->vm_flags & VM_WRITE)
2880 			entry = pte_mkwrite(pte_mkdirty(entry));
2881 	}
2882 
2883 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2884 
2885 	if (check_stable_address_space(mm))
2886 		goto unlock_abort;
2887 
2888 	if (pte_present(*ptep)) {
2889 		unsigned long pfn = pte_pfn(*ptep);
2890 
2891 		if (!is_zero_pfn(pfn))
2892 			goto unlock_abort;
2893 		flush = true;
2894 	} else if (!pte_none(*ptep))
2895 		goto unlock_abort;
2896 
2897 	/*
2898 	 * Check for userfaultfd but do not deliver the fault. Instead,
2899 	 * just back off.
2900 	 */
2901 	if (userfaultfd_missing(vma))
2902 		goto unlock_abort;
2903 
2904 	inc_mm_counter(mm, MM_ANONPAGES);
2905 	page_add_new_anon_rmap(page, vma, addr, false);
2906 	if (!is_zone_device_page(page))
2907 		lru_cache_add_inactive_or_unevictable(page, vma);
2908 	get_page(page);
2909 
2910 	if (flush) {
2911 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2912 		ptep_clear_flush_notify(vma, addr, ptep);
2913 		set_pte_at_notify(mm, addr, ptep, entry);
2914 		update_mmu_cache(vma, addr, ptep);
2915 	} else {
2916 		/* No need to invalidate - it was non-present before */
2917 		set_pte_at(mm, addr, ptep, entry);
2918 		update_mmu_cache(vma, addr, ptep);
2919 	}
2920 
2921 	pte_unmap_unlock(ptep, ptl);
2922 	*src = MIGRATE_PFN_MIGRATE;
2923 	return;
2924 
2925 unlock_abort:
2926 	pte_unmap_unlock(ptep, ptl);
2927 abort:
2928 	*src &= ~MIGRATE_PFN_MIGRATE;
2929 }
2930 
2931 /**
2932  * migrate_vma_pages() - migrate meta-data from src page to dst page
2933  * @migrate: migrate struct containing all migration information
2934  *
2935  * This migrates struct page meta-data from source struct page to destination
2936  * struct page. This effectively finishes the migration from source page to the
2937  * destination page.
2938  */
2939 void migrate_vma_pages(struct migrate_vma *migrate)
2940 {
2941 	const unsigned long npages = migrate->npages;
2942 	const unsigned long start = migrate->start;
2943 	struct mmu_notifier_range range;
2944 	unsigned long addr, i;
2945 	bool notified = false;
2946 
2947 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2948 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2949 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2950 		struct address_space *mapping;
2951 		int r;
2952 
2953 		if (!newpage) {
2954 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2955 			continue;
2956 		}
2957 
2958 		if (!page) {
2959 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2960 				continue;
2961 			if (!notified) {
2962 				notified = true;
2963 
2964 				mmu_notifier_range_init_owner(&range,
2965 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2966 					migrate->vma->vm_mm, addr, migrate->end,
2967 					migrate->pgmap_owner);
2968 				mmu_notifier_invalidate_range_start(&range);
2969 			}
2970 			migrate_vma_insert_page(migrate, addr, newpage,
2971 						&migrate->src[i]);
2972 			continue;
2973 		}
2974 
2975 		mapping = page_mapping(page);
2976 
2977 		if (is_zone_device_page(newpage)) {
2978 			if (is_device_private_page(newpage)) {
2979 				/*
2980 				 * For now only support private anonymous when
2981 				 * migrating to un-addressable device memory.
2982 				 */
2983 				if (mapping) {
2984 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2985 					continue;
2986 				}
2987 			} else {
2988 				/*
2989 				 * Other types of ZONE_DEVICE page are not
2990 				 * supported.
2991 				 */
2992 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2993 				continue;
2994 			}
2995 		}
2996 
2997 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2998 		if (r != MIGRATEPAGE_SUCCESS)
2999 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3000 	}
3001 
3002 	/*
3003 	 * No need to double call mmu_notifier->invalidate_range() callback as
3004 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3005 	 * did already call it.
3006 	 */
3007 	if (notified)
3008 		mmu_notifier_invalidate_range_only_end(&range);
3009 }
3010 EXPORT_SYMBOL(migrate_vma_pages);
3011 
3012 /**
3013  * migrate_vma_finalize() - restore CPU page table entry
3014  * @migrate: migrate struct containing all migration information
3015  *
3016  * This replaces the special migration pte entry with either a mapping to the
3017  * new page if migration was successful for that page, or to the original page
3018  * otherwise.
3019  *
3020  * This also unlocks the pages and puts them back on the lru, or drops the extra
3021  * refcount, for device pages.
3022  */
3023 void migrate_vma_finalize(struct migrate_vma *migrate)
3024 {
3025 	const unsigned long npages = migrate->npages;
3026 	unsigned long i;
3027 
3028 	for (i = 0; i < npages; i++) {
3029 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3030 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3031 
3032 		if (!page) {
3033 			if (newpage) {
3034 				unlock_page(newpage);
3035 				put_page(newpage);
3036 			}
3037 			continue;
3038 		}
3039 
3040 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3041 			if (newpage) {
3042 				unlock_page(newpage);
3043 				put_page(newpage);
3044 			}
3045 			newpage = page;
3046 		}
3047 
3048 		remove_migration_ptes(page, newpage, false);
3049 		unlock_page(page);
3050 
3051 		if (is_zone_device_page(page))
3052 			put_page(page);
3053 		else
3054 			putback_lru_page(page);
3055 
3056 		if (newpage != page) {
3057 			unlock_page(newpage);
3058 			if (is_zone_device_page(newpage))
3059 				put_page(newpage);
3060 			else
3061 				putback_lru_page(newpage);
3062 		}
3063 	}
3064 }
3065 EXPORT_SYMBOL(migrate_vma_finalize);
3066 #endif /* CONFIG_DEVICE_PRIVATE */
3067 
3068 #if defined(CONFIG_HOTPLUG_CPU)
3069 /* Disable reclaim-based migration. */
3070 static void __disable_all_migrate_targets(void)
3071 {
3072 	int node;
3073 
3074 	for_each_online_node(node)
3075 		node_demotion[node] = NUMA_NO_NODE;
3076 }
3077 
3078 static void disable_all_migrate_targets(void)
3079 {
3080 	__disable_all_migrate_targets();
3081 
3082 	/*
3083 	 * Ensure that the "disable" is visible across the system.
3084 	 * Readers will see either a combination of before+disable
3085 	 * state or disable+after.  They will never see before and
3086 	 * after state together.
3087 	 *
3088 	 * The before+after state together might have cycles and
3089 	 * could cause readers to do things like loop until this
3090 	 * function finishes.  This ensures they can only see a
3091 	 * single "bad" read and would, for instance, only loop
3092 	 * once.
3093 	 */
3094 	synchronize_rcu();
3095 }
3096 
3097 /*
3098  * Find an automatic demotion target for 'node'.
3099  * Failing here is OK.  It might just indicate
3100  * being at the end of a chain.
3101  */
3102 static int establish_migrate_target(int node, nodemask_t *used)
3103 {
3104 	int migration_target;
3105 
3106 	/*
3107 	 * Can not set a migration target on a
3108 	 * node with it already set.
3109 	 *
3110 	 * No need for READ_ONCE() here since this
3111 	 * in the write path for node_demotion[].
3112 	 * This should be the only thread writing.
3113 	 */
3114 	if (node_demotion[node] != NUMA_NO_NODE)
3115 		return NUMA_NO_NODE;
3116 
3117 	migration_target = find_next_best_node(node, used);
3118 	if (migration_target == NUMA_NO_NODE)
3119 		return NUMA_NO_NODE;
3120 
3121 	node_demotion[node] = migration_target;
3122 
3123 	return migration_target;
3124 }
3125 
3126 /*
3127  * When memory fills up on a node, memory contents can be
3128  * automatically migrated to another node instead of
3129  * discarded at reclaim.
3130  *
3131  * Establish a "migration path" which will start at nodes
3132  * with CPUs and will follow the priorities used to build the
3133  * page allocator zonelists.
3134  *
3135  * The difference here is that cycles must be avoided.  If
3136  * node0 migrates to node1, then neither node1, nor anything
3137  * node1 migrates to can migrate to node0.
3138  *
3139  * This function can run simultaneously with readers of
3140  * node_demotion[].  However, it can not run simultaneously
3141  * with itself.  Exclusion is provided by memory hotplug events
3142  * being single-threaded.
3143  */
3144 static void __set_migration_target_nodes(void)
3145 {
3146 	nodemask_t next_pass	= NODE_MASK_NONE;
3147 	nodemask_t this_pass	= NODE_MASK_NONE;
3148 	nodemask_t used_targets = NODE_MASK_NONE;
3149 	int node;
3150 
3151 	/*
3152 	 * Avoid any oddities like cycles that could occur
3153 	 * from changes in the topology.  This will leave
3154 	 * a momentary gap when migration is disabled.
3155 	 */
3156 	disable_all_migrate_targets();
3157 
3158 	/*
3159 	 * Allocations go close to CPUs, first.  Assume that
3160 	 * the migration path starts at the nodes with CPUs.
3161 	 */
3162 	next_pass = node_states[N_CPU];
3163 again:
3164 	this_pass = next_pass;
3165 	next_pass = NODE_MASK_NONE;
3166 	/*
3167 	 * To avoid cycles in the migration "graph", ensure
3168 	 * that migration sources are not future targets by
3169 	 * setting them in 'used_targets'.  Do this only
3170 	 * once per pass so that multiple source nodes can
3171 	 * share a target node.
3172 	 *
3173 	 * 'used_targets' will become unavailable in future
3174 	 * passes.  This limits some opportunities for
3175 	 * multiple source nodes to share a destination.
3176 	 */
3177 	nodes_or(used_targets, used_targets, this_pass);
3178 	for_each_node_mask(node, this_pass) {
3179 		int target_node = establish_migrate_target(node, &used_targets);
3180 
3181 		if (target_node == NUMA_NO_NODE)
3182 			continue;
3183 
3184 		/*
3185 		 * Visit targets from this pass in the next pass.
3186 		 * Eventually, every node will have been part of
3187 		 * a pass, and will become set in 'used_targets'.
3188 		 */
3189 		node_set(target_node, next_pass);
3190 	}
3191 	/*
3192 	 * 'next_pass' contains nodes which became migration
3193 	 * targets in this pass.  Make additional passes until
3194 	 * no more migrations targets are available.
3195 	 */
3196 	if (!nodes_empty(next_pass))
3197 		goto again;
3198 }
3199 
3200 /*
3201  * For callers that do not hold get_online_mems() already.
3202  */
3203 static void set_migration_target_nodes(void)
3204 {
3205 	get_online_mems();
3206 	__set_migration_target_nodes();
3207 	put_online_mems();
3208 }
3209 
3210 /*
3211  * This leaves migrate-on-reclaim transiently disabled between
3212  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3213  * whether reclaim-based migration is enabled or not, which
3214  * ensures that the user can turn reclaim-based migration at
3215  * any time without needing to recalculate migration targets.
3216  *
3217  * These callbacks already hold get_online_mems().  That is why
3218  * __set_migration_target_nodes() can be used as opposed to
3219  * set_migration_target_nodes().
3220  */
3221 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3222 						 unsigned long action, void *_arg)
3223 {
3224 	struct memory_notify *arg = _arg;
3225 
3226 	/*
3227 	 * Only update the node migration order when a node is
3228 	 * changing status, like online->offline.  This avoids
3229 	 * the overhead of synchronize_rcu() in most cases.
3230 	 */
3231 	if (arg->status_change_nid < 0)
3232 		return notifier_from_errno(0);
3233 
3234 	switch (action) {
3235 	case MEM_GOING_OFFLINE:
3236 		/*
3237 		 * Make sure there are not transient states where
3238 		 * an offline node is a migration target.  This
3239 		 * will leave migration disabled until the offline
3240 		 * completes and the MEM_OFFLINE case below runs.
3241 		 */
3242 		disable_all_migrate_targets();
3243 		break;
3244 	case MEM_OFFLINE:
3245 	case MEM_ONLINE:
3246 		/*
3247 		 * Recalculate the target nodes once the node
3248 		 * reaches its final state (online or offline).
3249 		 */
3250 		__set_migration_target_nodes();
3251 		break;
3252 	case MEM_CANCEL_OFFLINE:
3253 		/*
3254 		 * MEM_GOING_OFFLINE disabled all the migration
3255 		 * targets.  Reenable them.
3256 		 */
3257 		__set_migration_target_nodes();
3258 		break;
3259 	case MEM_GOING_ONLINE:
3260 	case MEM_CANCEL_ONLINE:
3261 		break;
3262 	}
3263 
3264 	return notifier_from_errno(0);
3265 }
3266 
3267 /*
3268  * React to hotplug events that might affect the migration targets
3269  * like events that online or offline NUMA nodes.
3270  *
3271  * The ordering is also currently dependent on which nodes have
3272  * CPUs.  That means we need CPU on/offline notification too.
3273  */
3274 static int migration_online_cpu(unsigned int cpu)
3275 {
3276 	set_migration_target_nodes();
3277 	return 0;
3278 }
3279 
3280 static int migration_offline_cpu(unsigned int cpu)
3281 {
3282 	set_migration_target_nodes();
3283 	return 0;
3284 }
3285 
3286 static int __init migrate_on_reclaim_init(void)
3287 {
3288 	int ret;
3289 
3290 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3291 					NULL, migration_offline_cpu);
3292 	/*
3293 	 * In the unlikely case that this fails, the automatic
3294 	 * migration targets may become suboptimal for nodes
3295 	 * where N_CPU changes.  With such a small impact in a
3296 	 * rare case, do not bother trying to do anything special.
3297 	 */
3298 	WARN_ON(ret < 0);
3299 	ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3300 				migration_online_cpu, NULL);
3301 	WARN_ON(ret < 0);
3302 
3303 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3304 	return 0;
3305 }
3306 late_initcall(migrate_on_reclaim_init);
3307 #endif /* CONFIG_HOTPLUG_CPU */
3308 
3309 bool numa_demotion_enabled = false;
3310 
3311 #ifdef CONFIG_SYSFS
3312 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3313 					  struct kobj_attribute *attr, char *buf)
3314 {
3315 	return sysfs_emit(buf, "%s\n",
3316 			  numa_demotion_enabled ? "true" : "false");
3317 }
3318 
3319 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3320 					   struct kobj_attribute *attr,
3321 					   const char *buf, size_t count)
3322 {
3323 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3324 		numa_demotion_enabled = true;
3325 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3326 		numa_demotion_enabled = false;
3327 	else
3328 		return -EINVAL;
3329 
3330 	return count;
3331 }
3332 
3333 static struct kobj_attribute numa_demotion_enabled_attr =
3334 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3335 	       numa_demotion_enabled_store);
3336 
3337 static struct attribute *numa_attrs[] = {
3338 	&numa_demotion_enabled_attr.attr,
3339 	NULL,
3340 };
3341 
3342 static const struct attribute_group numa_attr_group = {
3343 	.attrs = numa_attrs,
3344 };
3345 
3346 static int __init numa_init_sysfs(void)
3347 {
3348 	int err;
3349 	struct kobject *numa_kobj;
3350 
3351 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
3352 	if (!numa_kobj) {
3353 		pr_err("failed to create numa kobject\n");
3354 		return -ENOMEM;
3355 	}
3356 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
3357 	if (err) {
3358 		pr_err("failed to register numa group\n");
3359 		goto delete_obj;
3360 	}
3361 	return 0;
3362 
3363 delete_obj:
3364 	kobject_put(numa_kobj);
3365 	return err;
3366 }
3367 subsys_initcall(numa_init_sysfs);
3368 #endif
3369