1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 void migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 void migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 } 81 82 int isolate_movable_page(struct page *page, isolate_mode_t mode) 83 { 84 struct address_space *mapping; 85 86 /* 87 * Avoid burning cycles with pages that are yet under __free_pages(), 88 * or just got freed under us. 89 * 90 * In case we 'win' a race for a movable page being freed under us and 91 * raise its refcount preventing __free_pages() from doing its job 92 * the put_page() at the end of this block will take care of 93 * release this page, thus avoiding a nasty leakage. 94 */ 95 if (unlikely(!get_page_unless_zero(page))) 96 goto out; 97 98 /* 99 * Check PageMovable before holding a PG_lock because page's owner 100 * assumes anybody doesn't touch PG_lock of newly allocated page 101 * so unconditionally grabbing the lock ruins page's owner side. 102 */ 103 if (unlikely(!__PageMovable(page))) 104 goto out_putpage; 105 /* 106 * As movable pages are not isolated from LRU lists, concurrent 107 * compaction threads can race against page migration functions 108 * as well as race against the releasing a page. 109 * 110 * In order to avoid having an already isolated movable page 111 * being (wrongly) re-isolated while it is under migration, 112 * or to avoid attempting to isolate pages being released, 113 * lets be sure we have the page lock 114 * before proceeding with the movable page isolation steps. 115 */ 116 if (unlikely(!trylock_page(page))) 117 goto out_putpage; 118 119 if (!PageMovable(page) || PageIsolated(page)) 120 goto out_no_isolated; 121 122 mapping = page_mapping(page); 123 VM_BUG_ON_PAGE(!mapping, page); 124 125 if (!mapping->a_ops->isolate_page(page, mode)) 126 goto out_no_isolated; 127 128 /* Driver shouldn't use PG_isolated bit of page->flags */ 129 WARN_ON_ONCE(PageIsolated(page)); 130 __SetPageIsolated(page); 131 unlock_page(page); 132 133 return 0; 134 135 out_no_isolated: 136 unlock_page(page); 137 out_putpage: 138 put_page(page); 139 out: 140 return -EBUSY; 141 } 142 143 /* It should be called on page which is PG_movable */ 144 void putback_movable_page(struct page *page) 145 { 146 struct address_space *mapping; 147 148 VM_BUG_ON_PAGE(!PageLocked(page), page); 149 VM_BUG_ON_PAGE(!PageMovable(page), page); 150 VM_BUG_ON_PAGE(!PageIsolated(page), page); 151 152 mapping = page_mapping(page); 153 mapping->a_ops->putback_page(page); 154 __ClearPageIsolated(page); 155 } 156 157 /* 158 * Put previously isolated pages back onto the appropriate lists 159 * from where they were once taken off for compaction/migration. 160 * 161 * This function shall be used whenever the isolated pageset has been 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 163 * and isolate_huge_page(). 164 */ 165 void putback_movable_pages(struct list_head *l) 166 { 167 struct page *page; 168 struct page *page2; 169 170 list_for_each_entry_safe(page, page2, l, lru) { 171 if (unlikely(PageHuge(page))) { 172 putback_active_hugepage(page); 173 continue; 174 } 175 list_del(&page->lru); 176 /* 177 * We isolated non-lru movable page so here we can use 178 * __PageMovable because LRU page's mapping cannot have 179 * PAGE_MAPPING_MOVABLE. 180 */ 181 if (unlikely(__PageMovable(page))) { 182 VM_BUG_ON_PAGE(!PageIsolated(page), page); 183 lock_page(page); 184 if (PageMovable(page)) 185 putback_movable_page(page); 186 else 187 __ClearPageIsolated(page); 188 unlock_page(page); 189 put_page(page); 190 } else { 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 192 page_is_file_lru(page), -thp_nr_pages(page)); 193 putback_lru_page(page); 194 } 195 } 196 } 197 198 /* 199 * Restore a potential migration pte to a working pte entry 200 */ 201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 202 unsigned long addr, void *old) 203 { 204 struct page_vma_mapped_walk pvmw = { 205 .page = old, 206 .vma = vma, 207 .address = addr, 208 .flags = PVMW_SYNC | PVMW_MIGRATION, 209 }; 210 struct page *new; 211 pte_t pte; 212 swp_entry_t entry; 213 214 VM_BUG_ON_PAGE(PageTail(page), page); 215 while (page_vma_mapped_walk(&pvmw)) { 216 if (PageKsm(page)) 217 new = page; 218 else 219 new = page - pvmw.page->index + 220 linear_page_index(vma, pvmw.address); 221 222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 223 /* PMD-mapped THP migration entry */ 224 if (!pvmw.pte) { 225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 226 remove_migration_pmd(&pvmw, new); 227 continue; 228 } 229 #endif 230 231 get_page(new); 232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 233 if (pte_swp_soft_dirty(*pvmw.pte)) 234 pte = pte_mksoft_dirty(pte); 235 236 /* 237 * Recheck VMA as permissions can change since migration started 238 */ 239 entry = pte_to_swp_entry(*pvmw.pte); 240 if (is_write_migration_entry(entry)) 241 pte = maybe_mkwrite(pte, vma); 242 else if (pte_swp_uffd_wp(*pvmw.pte)) 243 pte = pte_mkuffd_wp(pte); 244 245 if (unlikely(is_device_private_page(new))) { 246 entry = make_device_private_entry(new, pte_write(pte)); 247 pte = swp_entry_to_pte(entry); 248 if (pte_swp_soft_dirty(*pvmw.pte)) 249 pte = pte_swp_mksoft_dirty(pte); 250 if (pte_swp_uffd_wp(*pvmw.pte)) 251 pte = pte_swp_mkuffd_wp(pte); 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 if (PageTransHuge(page) && PageMlocked(page)) 277 clear_page_mlock(page); 278 279 /* No need to invalidate - it was non-present before */ 280 update_mmu_cache(vma, pvmw.address, pvmw.pte); 281 } 282 283 return true; 284 } 285 286 /* 287 * Get rid of all migration entries and replace them by 288 * references to the indicated page. 289 */ 290 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 291 { 292 struct rmap_walk_control rwc = { 293 .rmap_one = remove_migration_pte, 294 .arg = old, 295 }; 296 297 if (locked) 298 rmap_walk_locked(new, &rwc); 299 else 300 rmap_walk(new, &rwc); 301 } 302 303 /* 304 * Something used the pte of a page under migration. We need to 305 * get to the page and wait until migration is finished. 306 * When we return from this function the fault will be retried. 307 */ 308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 309 spinlock_t *ptl) 310 { 311 pte_t pte; 312 swp_entry_t entry; 313 struct page *page; 314 315 spin_lock(ptl); 316 pte = *ptep; 317 if (!is_swap_pte(pte)) 318 goto out; 319 320 entry = pte_to_swp_entry(pte); 321 if (!is_migration_entry(entry)) 322 goto out; 323 324 page = migration_entry_to_page(entry); 325 326 /* 327 * Once page cache replacement of page migration started, page_count 328 * is zero; but we must not call put_and_wait_on_page_locked() without 329 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int expected_page_refs(struct address_space *mapping, struct page *page) 376 { 377 int expected_count = 1; 378 379 /* 380 * Device private pages have an extra refcount as they are 381 * ZONE_DEVICE pages. 382 */ 383 expected_count += is_device_private_page(page); 384 if (mapping) 385 expected_count += thp_nr_pages(page) + page_has_private(page); 386 387 return expected_count; 388 } 389 390 /* 391 * Replace the page in the mapping. 392 * 393 * The number of remaining references must be: 394 * 1 for anonymous pages without a mapping 395 * 2 for pages with a mapping 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 397 */ 398 int migrate_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page, int extra_count) 400 { 401 XA_STATE(xas, &mapping->i_pages, page_index(page)); 402 struct zone *oldzone, *newzone; 403 int dirty; 404 int expected_count = expected_page_refs(mapping, page) + extra_count; 405 int nr = thp_nr_pages(page); 406 407 if (!mapping) { 408 /* Anonymous page without mapping */ 409 if (page_count(page) != expected_count) 410 return -EAGAIN; 411 412 /* No turning back from here */ 413 newpage->index = page->index; 414 newpage->mapping = page->mapping; 415 if (PageSwapBacked(page)) 416 __SetPageSwapBacked(newpage); 417 418 return MIGRATEPAGE_SUCCESS; 419 } 420 421 oldzone = page_zone(page); 422 newzone = page_zone(newpage); 423 424 xas_lock_irq(&xas); 425 if (page_count(page) != expected_count || xas_load(&xas) != page) { 426 xas_unlock_irq(&xas); 427 return -EAGAIN; 428 } 429 430 if (!page_ref_freeze(page, expected_count)) { 431 xas_unlock_irq(&xas); 432 return -EAGAIN; 433 } 434 435 /* 436 * Now we know that no one else is looking at the page: 437 * no turning back from here. 438 */ 439 newpage->index = page->index; 440 newpage->mapping = page->mapping; 441 page_ref_add(newpage, nr); /* add cache reference */ 442 if (PageSwapBacked(page)) { 443 __SetPageSwapBacked(newpage); 444 if (PageSwapCache(page)) { 445 SetPageSwapCache(newpage); 446 set_page_private(newpage, page_private(page)); 447 } 448 } else { 449 VM_BUG_ON_PAGE(PageSwapCache(page), page); 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = PageDirty(page); 454 if (dirty) { 455 ClearPageDirty(page); 456 SetPageDirty(newpage); 457 } 458 459 xas_store(&xas, newpage); 460 if (PageTransHuge(page)) { 461 int i; 462 463 for (i = 1; i < nr; i++) { 464 xas_next(&xas); 465 xas_store(&xas, newpage); 466 } 467 } 468 469 /* 470 * Drop cache reference from old page by unfreezing 471 * to one less reference. 472 * We know this isn't the last reference. 473 */ 474 page_ref_unfreeze(page, expected_count - nr); 475 476 xas_unlock(&xas); 477 /* Leave irq disabled to prevent preemption while updating stats */ 478 479 /* 480 * If moved to a different zone then also account 481 * the page for that zone. Other VM counters will be 482 * taken care of when we establish references to the 483 * new page and drop references to the old page. 484 * 485 * Note that anonymous pages are accounted for 486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 487 * are mapped to swap space. 488 */ 489 if (newzone != oldzone) { 490 struct lruvec *old_lruvec, *new_lruvec; 491 struct mem_cgroup *memcg; 492 493 memcg = page_memcg(page); 494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 496 497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 499 if (PageSwapBacked(page) && !PageSwapCache(page)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 502 } 503 #ifdef CONFIG_SWAP 504 if (PageSwapCache(page)) { 505 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 506 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 507 } 508 #endif 509 if (dirty && mapping_can_writeback(mapping)) { 510 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 511 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 512 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 513 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 514 } 515 } 516 local_irq_enable(); 517 518 return MIGRATEPAGE_SUCCESS; 519 } 520 EXPORT_SYMBOL(migrate_page_move_mapping); 521 522 /* 523 * The expected number of remaining references is the same as that 524 * of migrate_page_move_mapping(). 525 */ 526 int migrate_huge_page_move_mapping(struct address_space *mapping, 527 struct page *newpage, struct page *page) 528 { 529 XA_STATE(xas, &mapping->i_pages, page_index(page)); 530 int expected_count; 531 532 xas_lock_irq(&xas); 533 expected_count = 2 + page_has_private(page); 534 if (page_count(page) != expected_count || xas_load(&xas) != page) { 535 xas_unlock_irq(&xas); 536 return -EAGAIN; 537 } 538 539 if (!page_ref_freeze(page, expected_count)) { 540 xas_unlock_irq(&xas); 541 return -EAGAIN; 542 } 543 544 newpage->index = page->index; 545 newpage->mapping = page->mapping; 546 547 get_page(newpage); 548 549 xas_store(&xas, newpage); 550 551 page_ref_unfreeze(page, expected_count - 1); 552 553 xas_unlock_irq(&xas); 554 555 return MIGRATEPAGE_SUCCESS; 556 } 557 558 /* 559 * Gigantic pages are so large that we do not guarantee that page++ pointer 560 * arithmetic will work across the entire page. We need something more 561 * specialized. 562 */ 563 static void __copy_gigantic_page(struct page *dst, struct page *src, 564 int nr_pages) 565 { 566 int i; 567 struct page *dst_base = dst; 568 struct page *src_base = src; 569 570 for (i = 0; i < nr_pages; ) { 571 cond_resched(); 572 copy_highpage(dst, src); 573 574 i++; 575 dst = mem_map_next(dst, dst_base, i); 576 src = mem_map_next(src, src_base, i); 577 } 578 } 579 580 static void copy_huge_page(struct page *dst, struct page *src) 581 { 582 int i; 583 int nr_pages; 584 585 if (PageHuge(src)) { 586 /* hugetlbfs page */ 587 struct hstate *h = page_hstate(src); 588 nr_pages = pages_per_huge_page(h); 589 590 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 591 __copy_gigantic_page(dst, src, nr_pages); 592 return; 593 } 594 } else { 595 /* thp page */ 596 BUG_ON(!PageTransHuge(src)); 597 nr_pages = thp_nr_pages(src); 598 } 599 600 for (i = 0; i < nr_pages; i++) { 601 cond_resched(); 602 copy_highpage(dst + i, src + i); 603 } 604 } 605 606 /* 607 * Copy the page to its new location 608 */ 609 void migrate_page_states(struct page *newpage, struct page *page) 610 { 611 int cpupid; 612 613 if (PageError(page)) 614 SetPageError(newpage); 615 if (PageReferenced(page)) 616 SetPageReferenced(newpage); 617 if (PageUptodate(page)) 618 SetPageUptodate(newpage); 619 if (TestClearPageActive(page)) { 620 VM_BUG_ON_PAGE(PageUnevictable(page), page); 621 SetPageActive(newpage); 622 } else if (TestClearPageUnevictable(page)) 623 SetPageUnevictable(newpage); 624 if (PageWorkingset(page)) 625 SetPageWorkingset(newpage); 626 if (PageChecked(page)) 627 SetPageChecked(newpage); 628 if (PageMappedToDisk(page)) 629 SetPageMappedToDisk(newpage); 630 631 /* Move dirty on pages not done by migrate_page_move_mapping() */ 632 if (PageDirty(page)) 633 SetPageDirty(newpage); 634 635 if (page_is_young(page)) 636 set_page_young(newpage); 637 if (page_is_idle(page)) 638 set_page_idle(newpage); 639 640 /* 641 * Copy NUMA information to the new page, to prevent over-eager 642 * future migrations of this same page. 643 */ 644 cpupid = page_cpupid_xchg_last(page, -1); 645 page_cpupid_xchg_last(newpage, cpupid); 646 647 ksm_migrate_page(newpage, page); 648 /* 649 * Please do not reorder this without considering how mm/ksm.c's 650 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 651 */ 652 if (PageSwapCache(page)) 653 ClearPageSwapCache(page); 654 ClearPagePrivate(page); 655 set_page_private(page, 0); 656 657 /* 658 * If any waiters have accumulated on the new page then 659 * wake them up. 660 */ 661 if (PageWriteback(newpage)) 662 end_page_writeback(newpage); 663 664 /* 665 * PG_readahead shares the same bit with PG_reclaim. The above 666 * end_page_writeback() may clear PG_readahead mistakenly, so set the 667 * bit after that. 668 */ 669 if (PageReadahead(page)) 670 SetPageReadahead(newpage); 671 672 copy_page_owner(page, newpage); 673 674 if (!PageHuge(page)) 675 mem_cgroup_migrate(page, newpage); 676 } 677 EXPORT_SYMBOL(migrate_page_states); 678 679 void migrate_page_copy(struct page *newpage, struct page *page) 680 { 681 if (PageHuge(page) || PageTransHuge(page)) 682 copy_huge_page(newpage, page); 683 else 684 copy_highpage(newpage, page); 685 686 migrate_page_states(newpage, page); 687 } 688 EXPORT_SYMBOL(migrate_page_copy); 689 690 /************************************************************ 691 * Migration functions 692 ***********************************************************/ 693 694 /* 695 * Common logic to directly migrate a single LRU page suitable for 696 * pages that do not use PagePrivate/PagePrivate2. 697 * 698 * Pages are locked upon entry and exit. 699 */ 700 int migrate_page(struct address_space *mapping, 701 struct page *newpage, struct page *page, 702 enum migrate_mode mode) 703 { 704 int rc; 705 706 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 707 708 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 709 710 if (rc != MIGRATEPAGE_SUCCESS) 711 return rc; 712 713 if (mode != MIGRATE_SYNC_NO_COPY) 714 migrate_page_copy(newpage, page); 715 else 716 migrate_page_states(newpage, page); 717 return MIGRATEPAGE_SUCCESS; 718 } 719 EXPORT_SYMBOL(migrate_page); 720 721 #ifdef CONFIG_BLOCK 722 /* Returns true if all buffers are successfully locked */ 723 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 724 enum migrate_mode mode) 725 { 726 struct buffer_head *bh = head; 727 728 /* Simple case, sync compaction */ 729 if (mode != MIGRATE_ASYNC) { 730 do { 731 lock_buffer(bh); 732 bh = bh->b_this_page; 733 734 } while (bh != head); 735 736 return true; 737 } 738 739 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 740 do { 741 if (!trylock_buffer(bh)) { 742 /* 743 * We failed to lock the buffer and cannot stall in 744 * async migration. Release the taken locks 745 */ 746 struct buffer_head *failed_bh = bh; 747 bh = head; 748 while (bh != failed_bh) { 749 unlock_buffer(bh); 750 bh = bh->b_this_page; 751 } 752 return false; 753 } 754 755 bh = bh->b_this_page; 756 } while (bh != head); 757 return true; 758 } 759 760 static int __buffer_migrate_page(struct address_space *mapping, 761 struct page *newpage, struct page *page, enum migrate_mode mode, 762 bool check_refs) 763 { 764 struct buffer_head *bh, *head; 765 int rc; 766 int expected_count; 767 768 if (!page_has_buffers(page)) 769 return migrate_page(mapping, newpage, page, mode); 770 771 /* Check whether page does not have extra refs before we do more work */ 772 expected_count = expected_page_refs(mapping, page); 773 if (page_count(page) != expected_count) 774 return -EAGAIN; 775 776 head = page_buffers(page); 777 if (!buffer_migrate_lock_buffers(head, mode)) 778 return -EAGAIN; 779 780 if (check_refs) { 781 bool busy; 782 bool invalidated = false; 783 784 recheck_buffers: 785 busy = false; 786 spin_lock(&mapping->private_lock); 787 bh = head; 788 do { 789 if (atomic_read(&bh->b_count)) { 790 busy = true; 791 break; 792 } 793 bh = bh->b_this_page; 794 } while (bh != head); 795 if (busy) { 796 if (invalidated) { 797 rc = -EAGAIN; 798 goto unlock_buffers; 799 } 800 spin_unlock(&mapping->private_lock); 801 invalidate_bh_lrus(); 802 invalidated = true; 803 goto recheck_buffers; 804 } 805 } 806 807 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 808 if (rc != MIGRATEPAGE_SUCCESS) 809 goto unlock_buffers; 810 811 attach_page_private(newpage, detach_page_private(page)); 812 813 bh = head; 814 do { 815 set_bh_page(bh, newpage, bh_offset(bh)); 816 bh = bh->b_this_page; 817 818 } while (bh != head); 819 820 if (mode != MIGRATE_SYNC_NO_COPY) 821 migrate_page_copy(newpage, page); 822 else 823 migrate_page_states(newpage, page); 824 825 rc = MIGRATEPAGE_SUCCESS; 826 unlock_buffers: 827 if (check_refs) 828 spin_unlock(&mapping->private_lock); 829 bh = head; 830 do { 831 unlock_buffer(bh); 832 bh = bh->b_this_page; 833 834 } while (bh != head); 835 836 return rc; 837 } 838 839 /* 840 * Migration function for pages with buffers. This function can only be used 841 * if the underlying filesystem guarantees that no other references to "page" 842 * exist. For example attached buffer heads are accessed only under page lock. 843 */ 844 int buffer_migrate_page(struct address_space *mapping, 845 struct page *newpage, struct page *page, enum migrate_mode mode) 846 { 847 return __buffer_migrate_page(mapping, newpage, page, mode, false); 848 } 849 EXPORT_SYMBOL(buffer_migrate_page); 850 851 /* 852 * Same as above except that this variant is more careful and checks that there 853 * are also no buffer head references. This function is the right one for 854 * mappings where buffer heads are directly looked up and referenced (such as 855 * block device mappings). 856 */ 857 int buffer_migrate_page_norefs(struct address_space *mapping, 858 struct page *newpage, struct page *page, enum migrate_mode mode) 859 { 860 return __buffer_migrate_page(mapping, newpage, page, mode, true); 861 } 862 #endif 863 864 /* 865 * Writeback a page to clean the dirty state 866 */ 867 static int writeout(struct address_space *mapping, struct page *page) 868 { 869 struct writeback_control wbc = { 870 .sync_mode = WB_SYNC_NONE, 871 .nr_to_write = 1, 872 .range_start = 0, 873 .range_end = LLONG_MAX, 874 .for_reclaim = 1 875 }; 876 int rc; 877 878 if (!mapping->a_ops->writepage) 879 /* No write method for the address space */ 880 return -EINVAL; 881 882 if (!clear_page_dirty_for_io(page)) 883 /* Someone else already triggered a write */ 884 return -EAGAIN; 885 886 /* 887 * A dirty page may imply that the underlying filesystem has 888 * the page on some queue. So the page must be clean for 889 * migration. Writeout may mean we loose the lock and the 890 * page state is no longer what we checked for earlier. 891 * At this point we know that the migration attempt cannot 892 * be successful. 893 */ 894 remove_migration_ptes(page, page, false); 895 896 rc = mapping->a_ops->writepage(page, &wbc); 897 898 if (rc != AOP_WRITEPAGE_ACTIVATE) 899 /* unlocked. Relock */ 900 lock_page(page); 901 902 return (rc < 0) ? -EIO : -EAGAIN; 903 } 904 905 /* 906 * Default handling if a filesystem does not provide a migration function. 907 */ 908 static int fallback_migrate_page(struct address_space *mapping, 909 struct page *newpage, struct page *page, enum migrate_mode mode) 910 { 911 if (PageDirty(page)) { 912 /* Only writeback pages in full synchronous migration */ 913 switch (mode) { 914 case MIGRATE_SYNC: 915 case MIGRATE_SYNC_NO_COPY: 916 break; 917 default: 918 return -EBUSY; 919 } 920 return writeout(mapping, page); 921 } 922 923 /* 924 * Buffers may be managed in a filesystem specific way. 925 * We must have no buffers or drop them. 926 */ 927 if (page_has_private(page) && 928 !try_to_release_page(page, GFP_KERNEL)) 929 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 930 931 return migrate_page(mapping, newpage, page, mode); 932 } 933 934 /* 935 * Move a page to a newly allocated page 936 * The page is locked and all ptes have been successfully removed. 937 * 938 * The new page will have replaced the old page if this function 939 * is successful. 940 * 941 * Return value: 942 * < 0 - error code 943 * MIGRATEPAGE_SUCCESS - success 944 */ 945 static int move_to_new_page(struct page *newpage, struct page *page, 946 enum migrate_mode mode) 947 { 948 struct address_space *mapping; 949 int rc = -EAGAIN; 950 bool is_lru = !__PageMovable(page); 951 952 VM_BUG_ON_PAGE(!PageLocked(page), page); 953 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 954 955 mapping = page_mapping(page); 956 957 if (likely(is_lru)) { 958 if (!mapping) 959 rc = migrate_page(mapping, newpage, page, mode); 960 else if (mapping->a_ops->migratepage) 961 /* 962 * Most pages have a mapping and most filesystems 963 * provide a migratepage callback. Anonymous pages 964 * are part of swap space which also has its own 965 * migratepage callback. This is the most common path 966 * for page migration. 967 */ 968 rc = mapping->a_ops->migratepage(mapping, newpage, 969 page, mode); 970 else 971 rc = fallback_migrate_page(mapping, newpage, 972 page, mode); 973 } else { 974 /* 975 * In case of non-lru page, it could be released after 976 * isolation step. In that case, we shouldn't try migration. 977 */ 978 VM_BUG_ON_PAGE(!PageIsolated(page), page); 979 if (!PageMovable(page)) { 980 rc = MIGRATEPAGE_SUCCESS; 981 __ClearPageIsolated(page); 982 goto out; 983 } 984 985 rc = mapping->a_ops->migratepage(mapping, newpage, 986 page, mode); 987 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 988 !PageIsolated(page)); 989 } 990 991 /* 992 * When successful, old pagecache page->mapping must be cleared before 993 * page is freed; but stats require that PageAnon be left as PageAnon. 994 */ 995 if (rc == MIGRATEPAGE_SUCCESS) { 996 if (__PageMovable(page)) { 997 VM_BUG_ON_PAGE(!PageIsolated(page), page); 998 999 /* 1000 * We clear PG_movable under page_lock so any compactor 1001 * cannot try to migrate this page. 1002 */ 1003 __ClearPageIsolated(page); 1004 } 1005 1006 /* 1007 * Anonymous and movable page->mapping will be cleared by 1008 * free_pages_prepare so don't reset it here for keeping 1009 * the type to work PageAnon, for example. 1010 */ 1011 if (!PageMappingFlags(page)) 1012 page->mapping = NULL; 1013 1014 if (likely(!is_zone_device_page(newpage))) 1015 flush_dcache_page(newpage); 1016 1017 } 1018 out: 1019 return rc; 1020 } 1021 1022 static int __unmap_and_move(struct page *page, struct page *newpage, 1023 int force, enum migrate_mode mode) 1024 { 1025 int rc = -EAGAIN; 1026 int page_was_mapped = 0; 1027 struct anon_vma *anon_vma = NULL; 1028 bool is_lru = !__PageMovable(page); 1029 1030 if (!trylock_page(page)) { 1031 if (!force || mode == MIGRATE_ASYNC) 1032 goto out; 1033 1034 /* 1035 * It's not safe for direct compaction to call lock_page. 1036 * For example, during page readahead pages are added locked 1037 * to the LRU. Later, when the IO completes the pages are 1038 * marked uptodate and unlocked. However, the queueing 1039 * could be merging multiple pages for one bio (e.g. 1040 * mpage_readahead). If an allocation happens for the 1041 * second or third page, the process can end up locking 1042 * the same page twice and deadlocking. Rather than 1043 * trying to be clever about what pages can be locked, 1044 * avoid the use of lock_page for direct compaction 1045 * altogether. 1046 */ 1047 if (current->flags & PF_MEMALLOC) 1048 goto out; 1049 1050 lock_page(page); 1051 } 1052 1053 if (PageWriteback(page)) { 1054 /* 1055 * Only in the case of a full synchronous migration is it 1056 * necessary to wait for PageWriteback. In the async case, 1057 * the retry loop is too short and in the sync-light case, 1058 * the overhead of stalling is too much 1059 */ 1060 switch (mode) { 1061 case MIGRATE_SYNC: 1062 case MIGRATE_SYNC_NO_COPY: 1063 break; 1064 default: 1065 rc = -EBUSY; 1066 goto out_unlock; 1067 } 1068 if (!force) 1069 goto out_unlock; 1070 wait_on_page_writeback(page); 1071 } 1072 1073 /* 1074 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1075 * we cannot notice that anon_vma is freed while we migrates a page. 1076 * This get_anon_vma() delays freeing anon_vma pointer until the end 1077 * of migration. File cache pages are no problem because of page_lock() 1078 * File Caches may use write_page() or lock_page() in migration, then, 1079 * just care Anon page here. 1080 * 1081 * Only page_get_anon_vma() understands the subtleties of 1082 * getting a hold on an anon_vma from outside one of its mms. 1083 * But if we cannot get anon_vma, then we won't need it anyway, 1084 * because that implies that the anon page is no longer mapped 1085 * (and cannot be remapped so long as we hold the page lock). 1086 */ 1087 if (PageAnon(page) && !PageKsm(page)) 1088 anon_vma = page_get_anon_vma(page); 1089 1090 /* 1091 * Block others from accessing the new page when we get around to 1092 * establishing additional references. We are usually the only one 1093 * holding a reference to newpage at this point. We used to have a BUG 1094 * here if trylock_page(newpage) fails, but would like to allow for 1095 * cases where there might be a race with the previous use of newpage. 1096 * This is much like races on refcount of oldpage: just don't BUG(). 1097 */ 1098 if (unlikely(!trylock_page(newpage))) 1099 goto out_unlock; 1100 1101 if (unlikely(!is_lru)) { 1102 rc = move_to_new_page(newpage, page, mode); 1103 goto out_unlock_both; 1104 } 1105 1106 /* 1107 * Corner case handling: 1108 * 1. When a new swap-cache page is read into, it is added to the LRU 1109 * and treated as swapcache but it has no rmap yet. 1110 * Calling try_to_unmap() against a page->mapping==NULL page will 1111 * trigger a BUG. So handle it here. 1112 * 2. An orphaned page (see truncate_cleanup_page) might have 1113 * fs-private metadata. The page can be picked up due to memory 1114 * offlining. Everywhere else except page reclaim, the page is 1115 * invisible to the vm, so the page can not be migrated. So try to 1116 * free the metadata, so the page can be freed. 1117 */ 1118 if (!page->mapping) { 1119 VM_BUG_ON_PAGE(PageAnon(page), page); 1120 if (page_has_private(page)) { 1121 try_to_free_buffers(page); 1122 goto out_unlock_both; 1123 } 1124 } else if (page_mapped(page)) { 1125 /* Establish migration ptes */ 1126 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1127 page); 1128 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1129 page_was_mapped = 1; 1130 } 1131 1132 if (!page_mapped(page)) 1133 rc = move_to_new_page(newpage, page, mode); 1134 1135 if (page_was_mapped) 1136 remove_migration_ptes(page, 1137 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1138 1139 out_unlock_both: 1140 unlock_page(newpage); 1141 out_unlock: 1142 /* Drop an anon_vma reference if we took one */ 1143 if (anon_vma) 1144 put_anon_vma(anon_vma); 1145 unlock_page(page); 1146 out: 1147 /* 1148 * If migration is successful, decrease refcount of the newpage 1149 * which will not free the page because new page owner increased 1150 * refcounter. As well, if it is LRU page, add the page to LRU 1151 * list in here. Use the old state of the isolated source page to 1152 * determine if we migrated a LRU page. newpage was already unlocked 1153 * and possibly modified by its owner - don't rely on the page 1154 * state. 1155 */ 1156 if (rc == MIGRATEPAGE_SUCCESS) { 1157 if (unlikely(!is_lru)) 1158 put_page(newpage); 1159 else 1160 putback_lru_page(newpage); 1161 } 1162 1163 return rc; 1164 } 1165 1166 /* 1167 * Obtain the lock on page, remove all ptes and migrate the page 1168 * to the newly allocated page in newpage. 1169 */ 1170 static int unmap_and_move(new_page_t get_new_page, 1171 free_page_t put_new_page, 1172 unsigned long private, struct page *page, 1173 int force, enum migrate_mode mode, 1174 enum migrate_reason reason, 1175 struct list_head *ret) 1176 { 1177 int rc = MIGRATEPAGE_SUCCESS; 1178 struct page *newpage = NULL; 1179 1180 if (!thp_migration_supported() && PageTransHuge(page)) 1181 return -ENOSYS; 1182 1183 if (page_count(page) == 1) { 1184 /* page was freed from under us. So we are done. */ 1185 ClearPageActive(page); 1186 ClearPageUnevictable(page); 1187 if (unlikely(__PageMovable(page))) { 1188 lock_page(page); 1189 if (!PageMovable(page)) 1190 __ClearPageIsolated(page); 1191 unlock_page(page); 1192 } 1193 goto out; 1194 } 1195 1196 newpage = get_new_page(page, private); 1197 if (!newpage) 1198 return -ENOMEM; 1199 1200 rc = __unmap_and_move(page, newpage, force, mode); 1201 if (rc == MIGRATEPAGE_SUCCESS) 1202 set_page_owner_migrate_reason(newpage, reason); 1203 1204 out: 1205 if (rc != -EAGAIN) { 1206 /* 1207 * A page that has been migrated has all references 1208 * removed and will be freed. A page that has not been 1209 * migrated will have kept its references and be restored. 1210 */ 1211 list_del(&page->lru); 1212 } 1213 1214 /* 1215 * If migration is successful, releases reference grabbed during 1216 * isolation. Otherwise, restore the page to right list unless 1217 * we want to retry. 1218 */ 1219 if (rc == MIGRATEPAGE_SUCCESS) { 1220 /* 1221 * Compaction can migrate also non-LRU pages which are 1222 * not accounted to NR_ISOLATED_*. They can be recognized 1223 * as __PageMovable 1224 */ 1225 if (likely(!__PageMovable(page))) 1226 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1227 page_is_file_lru(page), -thp_nr_pages(page)); 1228 1229 if (reason != MR_MEMORY_FAILURE) 1230 /* 1231 * We release the page in page_handle_poison. 1232 */ 1233 put_page(page); 1234 } else { 1235 if (rc != -EAGAIN) 1236 list_add_tail(&page->lru, ret); 1237 1238 if (put_new_page) 1239 put_new_page(newpage, private); 1240 else 1241 put_page(newpage); 1242 } 1243 1244 return rc; 1245 } 1246 1247 /* 1248 * Counterpart of unmap_and_move_page() for hugepage migration. 1249 * 1250 * This function doesn't wait the completion of hugepage I/O 1251 * because there is no race between I/O and migration for hugepage. 1252 * Note that currently hugepage I/O occurs only in direct I/O 1253 * where no lock is held and PG_writeback is irrelevant, 1254 * and writeback status of all subpages are counted in the reference 1255 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1256 * under direct I/O, the reference of the head page is 512 and a bit more.) 1257 * This means that when we try to migrate hugepage whose subpages are 1258 * doing direct I/O, some references remain after try_to_unmap() and 1259 * hugepage migration fails without data corruption. 1260 * 1261 * There is also no race when direct I/O is issued on the page under migration, 1262 * because then pte is replaced with migration swap entry and direct I/O code 1263 * will wait in the page fault for migration to complete. 1264 */ 1265 static int unmap_and_move_huge_page(new_page_t get_new_page, 1266 free_page_t put_new_page, unsigned long private, 1267 struct page *hpage, int force, 1268 enum migrate_mode mode, int reason, 1269 struct list_head *ret) 1270 { 1271 int rc = -EAGAIN; 1272 int page_was_mapped = 0; 1273 struct page *new_hpage; 1274 struct anon_vma *anon_vma = NULL; 1275 struct address_space *mapping = NULL; 1276 1277 /* 1278 * Migratability of hugepages depends on architectures and their size. 1279 * This check is necessary because some callers of hugepage migration 1280 * like soft offline and memory hotremove don't walk through page 1281 * tables or check whether the hugepage is pmd-based or not before 1282 * kicking migration. 1283 */ 1284 if (!hugepage_migration_supported(page_hstate(hpage))) { 1285 list_move_tail(&hpage->lru, ret); 1286 return -ENOSYS; 1287 } 1288 1289 if (page_count(hpage) == 1) { 1290 /* page was freed from under us. So we are done. */ 1291 putback_active_hugepage(hpage); 1292 return MIGRATEPAGE_SUCCESS; 1293 } 1294 1295 new_hpage = get_new_page(hpage, private); 1296 if (!new_hpage) 1297 return -ENOMEM; 1298 1299 if (!trylock_page(hpage)) { 1300 if (!force) 1301 goto out; 1302 switch (mode) { 1303 case MIGRATE_SYNC: 1304 case MIGRATE_SYNC_NO_COPY: 1305 break; 1306 default: 1307 goto out; 1308 } 1309 lock_page(hpage); 1310 } 1311 1312 /* 1313 * Check for pages which are in the process of being freed. Without 1314 * page_mapping() set, hugetlbfs specific move page routine will not 1315 * be called and we could leak usage counts for subpools. 1316 */ 1317 if (page_private(hpage) && !page_mapping(hpage)) { 1318 rc = -EBUSY; 1319 goto out_unlock; 1320 } 1321 1322 if (PageAnon(hpage)) 1323 anon_vma = page_get_anon_vma(hpage); 1324 1325 if (unlikely(!trylock_page(new_hpage))) 1326 goto put_anon; 1327 1328 if (page_mapped(hpage)) { 1329 bool mapping_locked = false; 1330 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1331 1332 if (!PageAnon(hpage)) { 1333 /* 1334 * In shared mappings, try_to_unmap could potentially 1335 * call huge_pmd_unshare. Because of this, take 1336 * semaphore in write mode here and set TTU_RMAP_LOCKED 1337 * to let lower levels know we have taken the lock. 1338 */ 1339 mapping = hugetlb_page_mapping_lock_write(hpage); 1340 if (unlikely(!mapping)) 1341 goto unlock_put_anon; 1342 1343 mapping_locked = true; 1344 ttu |= TTU_RMAP_LOCKED; 1345 } 1346 1347 try_to_unmap(hpage, ttu); 1348 page_was_mapped = 1; 1349 1350 if (mapping_locked) 1351 i_mmap_unlock_write(mapping); 1352 } 1353 1354 if (!page_mapped(hpage)) 1355 rc = move_to_new_page(new_hpage, hpage, mode); 1356 1357 if (page_was_mapped) 1358 remove_migration_ptes(hpage, 1359 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1360 1361 unlock_put_anon: 1362 unlock_page(new_hpage); 1363 1364 put_anon: 1365 if (anon_vma) 1366 put_anon_vma(anon_vma); 1367 1368 if (rc == MIGRATEPAGE_SUCCESS) { 1369 move_hugetlb_state(hpage, new_hpage, reason); 1370 put_new_page = NULL; 1371 } 1372 1373 out_unlock: 1374 unlock_page(hpage); 1375 out: 1376 if (rc == MIGRATEPAGE_SUCCESS) 1377 putback_active_hugepage(hpage); 1378 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS) 1379 list_move_tail(&hpage->lru, ret); 1380 1381 /* 1382 * If migration was not successful and there's a freeing callback, use 1383 * it. Otherwise, put_page() will drop the reference grabbed during 1384 * isolation. 1385 */ 1386 if (put_new_page) 1387 put_new_page(new_hpage, private); 1388 else 1389 putback_active_hugepage(new_hpage); 1390 1391 return rc; 1392 } 1393 1394 static inline int try_split_thp(struct page *page, struct page **page2, 1395 struct list_head *from) 1396 { 1397 int rc = 0; 1398 1399 lock_page(page); 1400 rc = split_huge_page_to_list(page, from); 1401 unlock_page(page); 1402 if (!rc) 1403 list_safe_reset_next(page, *page2, lru); 1404 1405 return rc; 1406 } 1407 1408 /* 1409 * migrate_pages - migrate the pages specified in a list, to the free pages 1410 * supplied as the target for the page migration 1411 * 1412 * @from: The list of pages to be migrated. 1413 * @get_new_page: The function used to allocate free pages to be used 1414 * as the target of the page migration. 1415 * @put_new_page: The function used to free target pages if migration 1416 * fails, or NULL if no special handling is necessary. 1417 * @private: Private data to be passed on to get_new_page() 1418 * @mode: The migration mode that specifies the constraints for 1419 * page migration, if any. 1420 * @reason: The reason for page migration. 1421 * 1422 * The function returns after 10 attempts or if no pages are movable any more 1423 * because the list has become empty or no retryable pages exist any more. 1424 * It is caller's responsibility to call putback_movable_pages() to return pages 1425 * to the LRU or free list only if ret != 0. 1426 * 1427 * Returns the number of pages that were not migrated, or an error code. 1428 */ 1429 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1430 free_page_t put_new_page, unsigned long private, 1431 enum migrate_mode mode, int reason) 1432 { 1433 int retry = 1; 1434 int thp_retry = 1; 1435 int nr_failed = 0; 1436 int nr_succeeded = 0; 1437 int nr_thp_succeeded = 0; 1438 int nr_thp_failed = 0; 1439 int nr_thp_split = 0; 1440 int pass = 0; 1441 bool is_thp = false; 1442 struct page *page; 1443 struct page *page2; 1444 int swapwrite = current->flags & PF_SWAPWRITE; 1445 int rc, nr_subpages; 1446 LIST_HEAD(ret_pages); 1447 1448 if (!swapwrite) 1449 current->flags |= PF_SWAPWRITE; 1450 1451 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1452 retry = 0; 1453 thp_retry = 0; 1454 1455 list_for_each_entry_safe(page, page2, from, lru) { 1456 retry: 1457 /* 1458 * THP statistics is based on the source huge page. 1459 * Capture required information that might get lost 1460 * during migration. 1461 */ 1462 is_thp = PageTransHuge(page) && !PageHuge(page); 1463 nr_subpages = thp_nr_pages(page); 1464 cond_resched(); 1465 1466 if (PageHuge(page)) 1467 rc = unmap_and_move_huge_page(get_new_page, 1468 put_new_page, private, page, 1469 pass > 2, mode, reason, 1470 &ret_pages); 1471 else 1472 rc = unmap_and_move(get_new_page, put_new_page, 1473 private, page, pass > 2, mode, 1474 reason, &ret_pages); 1475 /* 1476 * The rules are: 1477 * Success: non hugetlb page will be freed, hugetlb 1478 * page will be put back 1479 * -EAGAIN: stay on the from list 1480 * -ENOMEM: stay on the from list 1481 * Other errno: put on ret_pages list then splice to 1482 * from list 1483 */ 1484 switch(rc) { 1485 /* 1486 * THP migration might be unsupported or the 1487 * allocation could've failed so we should 1488 * retry on the same page with the THP split 1489 * to base pages. 1490 * 1491 * Head page is retried immediately and tail 1492 * pages are added to the tail of the list so 1493 * we encounter them after the rest of the list 1494 * is processed. 1495 */ 1496 case -ENOSYS: 1497 /* THP migration is unsupported */ 1498 if (is_thp) { 1499 if (!try_split_thp(page, &page2, from)) { 1500 nr_thp_split++; 1501 goto retry; 1502 } 1503 1504 nr_thp_failed++; 1505 nr_failed += nr_subpages; 1506 break; 1507 } 1508 1509 /* Hugetlb migration is unsupported */ 1510 nr_failed++; 1511 break; 1512 case -ENOMEM: 1513 /* 1514 * When memory is low, don't bother to try to migrate 1515 * other pages, just exit. 1516 */ 1517 if (is_thp) { 1518 if (!try_split_thp(page, &page2, from)) { 1519 nr_thp_split++; 1520 goto retry; 1521 } 1522 1523 nr_thp_failed++; 1524 nr_failed += nr_subpages; 1525 goto out; 1526 } 1527 nr_failed++; 1528 goto out; 1529 case -EAGAIN: 1530 if (is_thp) { 1531 thp_retry++; 1532 break; 1533 } 1534 retry++; 1535 break; 1536 case MIGRATEPAGE_SUCCESS: 1537 if (is_thp) { 1538 nr_thp_succeeded++; 1539 nr_succeeded += nr_subpages; 1540 break; 1541 } 1542 nr_succeeded++; 1543 break; 1544 default: 1545 /* 1546 * Permanent failure (-EBUSY, etc.): 1547 * unlike -EAGAIN case, the failed page is 1548 * removed from migration page list and not 1549 * retried in the next outer loop. 1550 */ 1551 if (is_thp) { 1552 nr_thp_failed++; 1553 nr_failed += nr_subpages; 1554 break; 1555 } 1556 nr_failed++; 1557 break; 1558 } 1559 } 1560 } 1561 nr_failed += retry + thp_retry; 1562 nr_thp_failed += thp_retry; 1563 rc = nr_failed; 1564 out: 1565 /* 1566 * Put the permanent failure page back to migration list, they 1567 * will be put back to the right list by the caller. 1568 */ 1569 list_splice(&ret_pages, from); 1570 1571 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1572 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1573 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1574 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1575 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1576 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1577 nr_thp_failed, nr_thp_split, mode, reason); 1578 1579 if (!swapwrite) 1580 current->flags &= ~PF_SWAPWRITE; 1581 1582 return rc; 1583 } 1584 1585 struct page *alloc_migration_target(struct page *page, unsigned long private) 1586 { 1587 struct migration_target_control *mtc; 1588 gfp_t gfp_mask; 1589 unsigned int order = 0; 1590 struct page *new_page = NULL; 1591 int nid; 1592 int zidx; 1593 1594 mtc = (struct migration_target_control *)private; 1595 gfp_mask = mtc->gfp_mask; 1596 nid = mtc->nid; 1597 if (nid == NUMA_NO_NODE) 1598 nid = page_to_nid(page); 1599 1600 if (PageHuge(page)) { 1601 struct hstate *h = page_hstate(compound_head(page)); 1602 1603 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1604 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1605 } 1606 1607 if (PageTransHuge(page)) { 1608 /* 1609 * clear __GFP_RECLAIM to make the migration callback 1610 * consistent with regular THP allocations. 1611 */ 1612 gfp_mask &= ~__GFP_RECLAIM; 1613 gfp_mask |= GFP_TRANSHUGE; 1614 order = HPAGE_PMD_ORDER; 1615 } 1616 zidx = zone_idx(page_zone(page)); 1617 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1618 gfp_mask |= __GFP_HIGHMEM; 1619 1620 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1621 1622 if (new_page && PageTransHuge(new_page)) 1623 prep_transhuge_page(new_page); 1624 1625 return new_page; 1626 } 1627 1628 #ifdef CONFIG_NUMA 1629 1630 static int store_status(int __user *status, int start, int value, int nr) 1631 { 1632 while (nr-- > 0) { 1633 if (put_user(value, status + start)) 1634 return -EFAULT; 1635 start++; 1636 } 1637 1638 return 0; 1639 } 1640 1641 static int do_move_pages_to_node(struct mm_struct *mm, 1642 struct list_head *pagelist, int node) 1643 { 1644 int err; 1645 struct migration_target_control mtc = { 1646 .nid = node, 1647 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1648 }; 1649 1650 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1651 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1652 if (err) 1653 putback_movable_pages(pagelist); 1654 return err; 1655 } 1656 1657 /* 1658 * Resolves the given address to a struct page, isolates it from the LRU and 1659 * puts it to the given pagelist. 1660 * Returns: 1661 * errno - if the page cannot be found/isolated 1662 * 0 - when it doesn't have to be migrated because it is already on the 1663 * target node 1664 * 1 - when it has been queued 1665 */ 1666 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1667 int node, struct list_head *pagelist, bool migrate_all) 1668 { 1669 struct vm_area_struct *vma; 1670 struct page *page; 1671 unsigned int follflags; 1672 int err; 1673 1674 mmap_read_lock(mm); 1675 err = -EFAULT; 1676 vma = find_vma(mm, addr); 1677 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1678 goto out; 1679 1680 /* FOLL_DUMP to ignore special (like zero) pages */ 1681 follflags = FOLL_GET | FOLL_DUMP; 1682 page = follow_page(vma, addr, follflags); 1683 1684 err = PTR_ERR(page); 1685 if (IS_ERR(page)) 1686 goto out; 1687 1688 err = -ENOENT; 1689 if (!page) 1690 goto out; 1691 1692 err = 0; 1693 if (page_to_nid(page) == node) 1694 goto out_putpage; 1695 1696 err = -EACCES; 1697 if (page_mapcount(page) > 1 && !migrate_all) 1698 goto out_putpage; 1699 1700 if (PageHuge(page)) { 1701 if (PageHead(page)) { 1702 isolate_huge_page(page, pagelist); 1703 err = 1; 1704 } 1705 } else { 1706 struct page *head; 1707 1708 head = compound_head(page); 1709 err = isolate_lru_page(head); 1710 if (err) 1711 goto out_putpage; 1712 1713 err = 1; 1714 list_add_tail(&head->lru, pagelist); 1715 mod_node_page_state(page_pgdat(head), 1716 NR_ISOLATED_ANON + page_is_file_lru(head), 1717 thp_nr_pages(head)); 1718 } 1719 out_putpage: 1720 /* 1721 * Either remove the duplicate refcount from 1722 * isolate_lru_page() or drop the page ref if it was 1723 * not isolated. 1724 */ 1725 put_page(page); 1726 out: 1727 mmap_read_unlock(mm); 1728 return err; 1729 } 1730 1731 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1732 struct list_head *pagelist, int __user *status, 1733 int start, int i, unsigned long nr_pages) 1734 { 1735 int err; 1736 1737 if (list_empty(pagelist)) 1738 return 0; 1739 1740 err = do_move_pages_to_node(mm, pagelist, node); 1741 if (err) { 1742 /* 1743 * Positive err means the number of failed 1744 * pages to migrate. Since we are going to 1745 * abort and return the number of non-migrated 1746 * pages, so need to include the rest of the 1747 * nr_pages that have not been attempted as 1748 * well. 1749 */ 1750 if (err > 0) 1751 err += nr_pages - i - 1; 1752 return err; 1753 } 1754 return store_status(status, start, node, i - start); 1755 } 1756 1757 /* 1758 * Migrate an array of page address onto an array of nodes and fill 1759 * the corresponding array of status. 1760 */ 1761 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1762 unsigned long nr_pages, 1763 const void __user * __user *pages, 1764 const int __user *nodes, 1765 int __user *status, int flags) 1766 { 1767 int current_node = NUMA_NO_NODE; 1768 LIST_HEAD(pagelist); 1769 int start, i; 1770 int err = 0, err1; 1771 1772 migrate_prep(); 1773 1774 for (i = start = 0; i < nr_pages; i++) { 1775 const void __user *p; 1776 unsigned long addr; 1777 int node; 1778 1779 err = -EFAULT; 1780 if (get_user(p, pages + i)) 1781 goto out_flush; 1782 if (get_user(node, nodes + i)) 1783 goto out_flush; 1784 addr = (unsigned long)untagged_addr(p); 1785 1786 err = -ENODEV; 1787 if (node < 0 || node >= MAX_NUMNODES) 1788 goto out_flush; 1789 if (!node_state(node, N_MEMORY)) 1790 goto out_flush; 1791 1792 err = -EACCES; 1793 if (!node_isset(node, task_nodes)) 1794 goto out_flush; 1795 1796 if (current_node == NUMA_NO_NODE) { 1797 current_node = node; 1798 start = i; 1799 } else if (node != current_node) { 1800 err = move_pages_and_store_status(mm, current_node, 1801 &pagelist, status, start, i, nr_pages); 1802 if (err) 1803 goto out; 1804 start = i; 1805 current_node = node; 1806 } 1807 1808 /* 1809 * Errors in the page lookup or isolation are not fatal and we simply 1810 * report them via status 1811 */ 1812 err = add_page_for_migration(mm, addr, current_node, 1813 &pagelist, flags & MPOL_MF_MOVE_ALL); 1814 1815 if (err > 0) { 1816 /* The page is successfully queued for migration */ 1817 continue; 1818 } 1819 1820 /* 1821 * If the page is already on the target node (!err), store the 1822 * node, otherwise, store the err. 1823 */ 1824 err = store_status(status, i, err ? : current_node, 1); 1825 if (err) 1826 goto out_flush; 1827 1828 err = move_pages_and_store_status(mm, current_node, &pagelist, 1829 status, start, i, nr_pages); 1830 if (err) 1831 goto out; 1832 current_node = NUMA_NO_NODE; 1833 } 1834 out_flush: 1835 /* Make sure we do not overwrite the existing error */ 1836 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1837 status, start, i, nr_pages); 1838 if (err >= 0) 1839 err = err1; 1840 out: 1841 return err; 1842 } 1843 1844 /* 1845 * Determine the nodes of an array of pages and store it in an array of status. 1846 */ 1847 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1848 const void __user **pages, int *status) 1849 { 1850 unsigned long i; 1851 1852 mmap_read_lock(mm); 1853 1854 for (i = 0; i < nr_pages; i++) { 1855 unsigned long addr = (unsigned long)(*pages); 1856 struct vm_area_struct *vma; 1857 struct page *page; 1858 int err = -EFAULT; 1859 1860 vma = find_vma(mm, addr); 1861 if (!vma || addr < vma->vm_start) 1862 goto set_status; 1863 1864 /* FOLL_DUMP to ignore special (like zero) pages */ 1865 page = follow_page(vma, addr, FOLL_DUMP); 1866 1867 err = PTR_ERR(page); 1868 if (IS_ERR(page)) 1869 goto set_status; 1870 1871 err = page ? page_to_nid(page) : -ENOENT; 1872 set_status: 1873 *status = err; 1874 1875 pages++; 1876 status++; 1877 } 1878 1879 mmap_read_unlock(mm); 1880 } 1881 1882 /* 1883 * Determine the nodes of a user array of pages and store it in 1884 * a user array of status. 1885 */ 1886 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1887 const void __user * __user *pages, 1888 int __user *status) 1889 { 1890 #define DO_PAGES_STAT_CHUNK_NR 16 1891 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1892 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1893 1894 while (nr_pages) { 1895 unsigned long chunk_nr; 1896 1897 chunk_nr = nr_pages; 1898 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1899 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1900 1901 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1902 break; 1903 1904 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1905 1906 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1907 break; 1908 1909 pages += chunk_nr; 1910 status += chunk_nr; 1911 nr_pages -= chunk_nr; 1912 } 1913 return nr_pages ? -EFAULT : 0; 1914 } 1915 1916 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1917 { 1918 struct task_struct *task; 1919 struct mm_struct *mm; 1920 1921 /* 1922 * There is no need to check if current process has the right to modify 1923 * the specified process when they are same. 1924 */ 1925 if (!pid) { 1926 mmget(current->mm); 1927 *mem_nodes = cpuset_mems_allowed(current); 1928 return current->mm; 1929 } 1930 1931 /* Find the mm_struct */ 1932 rcu_read_lock(); 1933 task = find_task_by_vpid(pid); 1934 if (!task) { 1935 rcu_read_unlock(); 1936 return ERR_PTR(-ESRCH); 1937 } 1938 get_task_struct(task); 1939 1940 /* 1941 * Check if this process has the right to modify the specified 1942 * process. Use the regular "ptrace_may_access()" checks. 1943 */ 1944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1945 rcu_read_unlock(); 1946 mm = ERR_PTR(-EPERM); 1947 goto out; 1948 } 1949 rcu_read_unlock(); 1950 1951 mm = ERR_PTR(security_task_movememory(task)); 1952 if (IS_ERR(mm)) 1953 goto out; 1954 *mem_nodes = cpuset_mems_allowed(task); 1955 mm = get_task_mm(task); 1956 out: 1957 put_task_struct(task); 1958 if (!mm) 1959 mm = ERR_PTR(-EINVAL); 1960 return mm; 1961 } 1962 1963 /* 1964 * Move a list of pages in the address space of the currently executing 1965 * process. 1966 */ 1967 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1968 const void __user * __user *pages, 1969 const int __user *nodes, 1970 int __user *status, int flags) 1971 { 1972 struct mm_struct *mm; 1973 int err; 1974 nodemask_t task_nodes; 1975 1976 /* Check flags */ 1977 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1978 return -EINVAL; 1979 1980 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1981 return -EPERM; 1982 1983 mm = find_mm_struct(pid, &task_nodes); 1984 if (IS_ERR(mm)) 1985 return PTR_ERR(mm); 1986 1987 if (nodes) 1988 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1989 nodes, status, flags); 1990 else 1991 err = do_pages_stat(mm, nr_pages, pages, status); 1992 1993 mmput(mm); 1994 return err; 1995 } 1996 1997 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1998 const void __user * __user *, pages, 1999 const int __user *, nodes, 2000 int __user *, status, int, flags) 2001 { 2002 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2003 } 2004 2005 #ifdef CONFIG_COMPAT 2006 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 2007 compat_uptr_t __user *, pages32, 2008 const int __user *, nodes, 2009 int __user *, status, 2010 int, flags) 2011 { 2012 const void __user * __user *pages; 2013 int i; 2014 2015 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 2016 for (i = 0; i < nr_pages; i++) { 2017 compat_uptr_t p; 2018 2019 if (get_user(p, pages32 + i) || 2020 put_user(compat_ptr(p), pages + i)) 2021 return -EFAULT; 2022 } 2023 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2024 } 2025 #endif /* CONFIG_COMPAT */ 2026 2027 #ifdef CONFIG_NUMA_BALANCING 2028 /* 2029 * Returns true if this is a safe migration target node for misplaced NUMA 2030 * pages. Currently it only checks the watermarks which crude 2031 */ 2032 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2033 unsigned long nr_migrate_pages) 2034 { 2035 int z; 2036 2037 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2038 struct zone *zone = pgdat->node_zones + z; 2039 2040 if (!populated_zone(zone)) 2041 continue; 2042 2043 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2044 if (!zone_watermark_ok(zone, 0, 2045 high_wmark_pages(zone) + 2046 nr_migrate_pages, 2047 ZONE_MOVABLE, 0)) 2048 continue; 2049 return true; 2050 } 2051 return false; 2052 } 2053 2054 static struct page *alloc_misplaced_dst_page(struct page *page, 2055 unsigned long data) 2056 { 2057 int nid = (int) data; 2058 struct page *newpage; 2059 2060 newpage = __alloc_pages_node(nid, 2061 (GFP_HIGHUSER_MOVABLE | 2062 __GFP_THISNODE | __GFP_NOMEMALLOC | 2063 __GFP_NORETRY | __GFP_NOWARN) & 2064 ~__GFP_RECLAIM, 0); 2065 2066 return newpage; 2067 } 2068 2069 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2070 { 2071 int page_lru; 2072 2073 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2074 2075 /* Avoid migrating to a node that is nearly full */ 2076 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2077 return 0; 2078 2079 if (isolate_lru_page(page)) 2080 return 0; 2081 2082 /* 2083 * migrate_misplaced_transhuge_page() skips page migration's usual 2084 * check on page_count(), so we must do it here, now that the page 2085 * has been isolated: a GUP pin, or any other pin, prevents migration. 2086 * The expected page count is 3: 1 for page's mapcount and 1 for the 2087 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2088 */ 2089 if (PageTransHuge(page) && page_count(page) != 3) { 2090 putback_lru_page(page); 2091 return 0; 2092 } 2093 2094 page_lru = page_is_file_lru(page); 2095 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2096 thp_nr_pages(page)); 2097 2098 /* 2099 * Isolating the page has taken another reference, so the 2100 * caller's reference can be safely dropped without the page 2101 * disappearing underneath us during migration. 2102 */ 2103 put_page(page); 2104 return 1; 2105 } 2106 2107 bool pmd_trans_migrating(pmd_t pmd) 2108 { 2109 struct page *page = pmd_page(pmd); 2110 return PageLocked(page); 2111 } 2112 2113 static inline bool is_shared_exec_page(struct vm_area_struct *vma, 2114 struct page *page) 2115 { 2116 if (page_mapcount(page) != 1 && 2117 (page_is_file_lru(page) || vma_is_shmem(vma)) && 2118 (vma->vm_flags & VM_EXEC)) 2119 return true; 2120 2121 return false; 2122 } 2123 2124 /* 2125 * Attempt to migrate a misplaced page to the specified destination 2126 * node. Caller is expected to have an elevated reference count on 2127 * the page that will be dropped by this function before returning. 2128 */ 2129 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2130 int node) 2131 { 2132 pg_data_t *pgdat = NODE_DATA(node); 2133 int isolated; 2134 int nr_remaining; 2135 LIST_HEAD(migratepages); 2136 2137 /* 2138 * Don't migrate file pages that are mapped in multiple processes 2139 * with execute permissions as they are probably shared libraries. 2140 */ 2141 if (is_shared_exec_page(vma, page)) 2142 goto out; 2143 2144 /* 2145 * Also do not migrate dirty pages as not all filesystems can move 2146 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2147 */ 2148 if (page_is_file_lru(page) && PageDirty(page)) 2149 goto out; 2150 2151 isolated = numamigrate_isolate_page(pgdat, page); 2152 if (!isolated) 2153 goto out; 2154 2155 list_add(&page->lru, &migratepages); 2156 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2157 NULL, node, MIGRATE_ASYNC, 2158 MR_NUMA_MISPLACED); 2159 if (nr_remaining) { 2160 if (!list_empty(&migratepages)) { 2161 list_del(&page->lru); 2162 dec_node_page_state(page, NR_ISOLATED_ANON + 2163 page_is_file_lru(page)); 2164 putback_lru_page(page); 2165 } 2166 isolated = 0; 2167 } else 2168 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2169 BUG_ON(!list_empty(&migratepages)); 2170 return isolated; 2171 2172 out: 2173 put_page(page); 2174 return 0; 2175 } 2176 #endif /* CONFIG_NUMA_BALANCING */ 2177 2178 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2179 /* 2180 * Migrates a THP to a given target node. page must be locked and is unlocked 2181 * before returning. 2182 */ 2183 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2184 struct vm_area_struct *vma, 2185 pmd_t *pmd, pmd_t entry, 2186 unsigned long address, 2187 struct page *page, int node) 2188 { 2189 spinlock_t *ptl; 2190 pg_data_t *pgdat = NODE_DATA(node); 2191 int isolated = 0; 2192 struct page *new_page = NULL; 2193 int page_lru = page_is_file_lru(page); 2194 unsigned long start = address & HPAGE_PMD_MASK; 2195 2196 if (is_shared_exec_page(vma, page)) 2197 goto out; 2198 2199 new_page = alloc_pages_node(node, 2200 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2201 HPAGE_PMD_ORDER); 2202 if (!new_page) 2203 goto out_fail; 2204 prep_transhuge_page(new_page); 2205 2206 isolated = numamigrate_isolate_page(pgdat, page); 2207 if (!isolated) { 2208 put_page(new_page); 2209 goto out_fail; 2210 } 2211 2212 /* Prepare a page as a migration target */ 2213 __SetPageLocked(new_page); 2214 if (PageSwapBacked(page)) 2215 __SetPageSwapBacked(new_page); 2216 2217 /* anon mapping, we can simply copy page->mapping to the new page: */ 2218 new_page->mapping = page->mapping; 2219 new_page->index = page->index; 2220 /* flush the cache before copying using the kernel virtual address */ 2221 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2222 migrate_page_copy(new_page, page); 2223 WARN_ON(PageLRU(new_page)); 2224 2225 /* Recheck the target PMD */ 2226 ptl = pmd_lock(mm, pmd); 2227 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2228 spin_unlock(ptl); 2229 2230 /* Reverse changes made by migrate_page_copy() */ 2231 if (TestClearPageActive(new_page)) 2232 SetPageActive(page); 2233 if (TestClearPageUnevictable(new_page)) 2234 SetPageUnevictable(page); 2235 2236 unlock_page(new_page); 2237 put_page(new_page); /* Free it */ 2238 2239 /* Retake the callers reference and putback on LRU */ 2240 get_page(page); 2241 putback_lru_page(page); 2242 mod_node_page_state(page_pgdat(page), 2243 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2244 2245 goto out_unlock; 2246 } 2247 2248 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2249 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2250 2251 /* 2252 * Overwrite the old entry under pagetable lock and establish 2253 * the new PTE. Any parallel GUP will either observe the old 2254 * page blocking on the page lock, block on the page table 2255 * lock or observe the new page. The SetPageUptodate on the 2256 * new page and page_add_new_anon_rmap guarantee the copy is 2257 * visible before the pagetable update. 2258 */ 2259 page_add_anon_rmap(new_page, vma, start, true); 2260 /* 2261 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2262 * has already been flushed globally. So no TLB can be currently 2263 * caching this non present pmd mapping. There's no need to clear the 2264 * pmd before doing set_pmd_at(), nor to flush the TLB after 2265 * set_pmd_at(). Clearing the pmd here would introduce a race 2266 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2267 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2268 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2269 * pmd. 2270 */ 2271 set_pmd_at(mm, start, pmd, entry); 2272 update_mmu_cache_pmd(vma, address, &entry); 2273 2274 page_ref_unfreeze(page, 2); 2275 mlock_migrate_page(new_page, page); 2276 page_remove_rmap(page, true); 2277 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2278 2279 spin_unlock(ptl); 2280 2281 /* Take an "isolate" reference and put new page on the LRU. */ 2282 get_page(new_page); 2283 putback_lru_page(new_page); 2284 2285 unlock_page(new_page); 2286 unlock_page(page); 2287 put_page(page); /* Drop the rmap reference */ 2288 put_page(page); /* Drop the LRU isolation reference */ 2289 2290 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2291 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2292 2293 mod_node_page_state(page_pgdat(page), 2294 NR_ISOLATED_ANON + page_lru, 2295 -HPAGE_PMD_NR); 2296 return isolated; 2297 2298 out_fail: 2299 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2300 ptl = pmd_lock(mm, pmd); 2301 if (pmd_same(*pmd, entry)) { 2302 entry = pmd_modify(entry, vma->vm_page_prot); 2303 set_pmd_at(mm, start, pmd, entry); 2304 update_mmu_cache_pmd(vma, address, &entry); 2305 } 2306 spin_unlock(ptl); 2307 2308 out_unlock: 2309 unlock_page(page); 2310 out: 2311 put_page(page); 2312 return 0; 2313 } 2314 #endif /* CONFIG_NUMA_BALANCING */ 2315 2316 #endif /* CONFIG_NUMA */ 2317 2318 #ifdef CONFIG_DEVICE_PRIVATE 2319 static int migrate_vma_collect_hole(unsigned long start, 2320 unsigned long end, 2321 __always_unused int depth, 2322 struct mm_walk *walk) 2323 { 2324 struct migrate_vma *migrate = walk->private; 2325 unsigned long addr; 2326 2327 /* Only allow populating anonymous memory. */ 2328 if (!vma_is_anonymous(walk->vma)) { 2329 for (addr = start; addr < end; addr += PAGE_SIZE) { 2330 migrate->src[migrate->npages] = 0; 2331 migrate->dst[migrate->npages] = 0; 2332 migrate->npages++; 2333 } 2334 return 0; 2335 } 2336 2337 for (addr = start; addr < end; addr += PAGE_SIZE) { 2338 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2339 migrate->dst[migrate->npages] = 0; 2340 migrate->npages++; 2341 migrate->cpages++; 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int migrate_vma_collect_skip(unsigned long start, 2348 unsigned long end, 2349 struct mm_walk *walk) 2350 { 2351 struct migrate_vma *migrate = walk->private; 2352 unsigned long addr; 2353 2354 for (addr = start; addr < end; addr += PAGE_SIZE) { 2355 migrate->dst[migrate->npages] = 0; 2356 migrate->src[migrate->npages++] = 0; 2357 } 2358 2359 return 0; 2360 } 2361 2362 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2363 unsigned long start, 2364 unsigned long end, 2365 struct mm_walk *walk) 2366 { 2367 struct migrate_vma *migrate = walk->private; 2368 struct vm_area_struct *vma = walk->vma; 2369 struct mm_struct *mm = vma->vm_mm; 2370 unsigned long addr = start, unmapped = 0; 2371 spinlock_t *ptl; 2372 pte_t *ptep; 2373 2374 again: 2375 if (pmd_none(*pmdp)) 2376 return migrate_vma_collect_hole(start, end, -1, walk); 2377 2378 if (pmd_trans_huge(*pmdp)) { 2379 struct page *page; 2380 2381 ptl = pmd_lock(mm, pmdp); 2382 if (unlikely(!pmd_trans_huge(*pmdp))) { 2383 spin_unlock(ptl); 2384 goto again; 2385 } 2386 2387 page = pmd_page(*pmdp); 2388 if (is_huge_zero_page(page)) { 2389 spin_unlock(ptl); 2390 split_huge_pmd(vma, pmdp, addr); 2391 if (pmd_trans_unstable(pmdp)) 2392 return migrate_vma_collect_skip(start, end, 2393 walk); 2394 } else { 2395 int ret; 2396 2397 get_page(page); 2398 spin_unlock(ptl); 2399 if (unlikely(!trylock_page(page))) 2400 return migrate_vma_collect_skip(start, end, 2401 walk); 2402 ret = split_huge_page(page); 2403 unlock_page(page); 2404 put_page(page); 2405 if (ret) 2406 return migrate_vma_collect_skip(start, end, 2407 walk); 2408 if (pmd_none(*pmdp)) 2409 return migrate_vma_collect_hole(start, end, -1, 2410 walk); 2411 } 2412 } 2413 2414 if (unlikely(pmd_bad(*pmdp))) 2415 return migrate_vma_collect_skip(start, end, walk); 2416 2417 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2418 arch_enter_lazy_mmu_mode(); 2419 2420 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2421 unsigned long mpfn = 0, pfn; 2422 struct page *page; 2423 swp_entry_t entry; 2424 pte_t pte; 2425 2426 pte = *ptep; 2427 2428 if (pte_none(pte)) { 2429 if (vma_is_anonymous(vma)) { 2430 mpfn = MIGRATE_PFN_MIGRATE; 2431 migrate->cpages++; 2432 } 2433 goto next; 2434 } 2435 2436 if (!pte_present(pte)) { 2437 /* 2438 * Only care about unaddressable device page special 2439 * page table entry. Other special swap entries are not 2440 * migratable, and we ignore regular swapped page. 2441 */ 2442 entry = pte_to_swp_entry(pte); 2443 if (!is_device_private_entry(entry)) 2444 goto next; 2445 2446 page = device_private_entry_to_page(entry); 2447 if (!(migrate->flags & 2448 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2449 page->pgmap->owner != migrate->pgmap_owner) 2450 goto next; 2451 2452 mpfn = migrate_pfn(page_to_pfn(page)) | 2453 MIGRATE_PFN_MIGRATE; 2454 if (is_write_device_private_entry(entry)) 2455 mpfn |= MIGRATE_PFN_WRITE; 2456 } else { 2457 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2458 goto next; 2459 pfn = pte_pfn(pte); 2460 if (is_zero_pfn(pfn)) { 2461 mpfn = MIGRATE_PFN_MIGRATE; 2462 migrate->cpages++; 2463 goto next; 2464 } 2465 page = vm_normal_page(migrate->vma, addr, pte); 2466 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2467 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2468 } 2469 2470 /* FIXME support THP */ 2471 if (!page || !page->mapping || PageTransCompound(page)) { 2472 mpfn = 0; 2473 goto next; 2474 } 2475 2476 /* 2477 * By getting a reference on the page we pin it and that blocks 2478 * any kind of migration. Side effect is that it "freezes" the 2479 * pte. 2480 * 2481 * We drop this reference after isolating the page from the lru 2482 * for non device page (device page are not on the lru and thus 2483 * can't be dropped from it). 2484 */ 2485 get_page(page); 2486 migrate->cpages++; 2487 2488 /* 2489 * Optimize for the common case where page is only mapped once 2490 * in one process. If we can lock the page, then we can safely 2491 * set up a special migration page table entry now. 2492 */ 2493 if (trylock_page(page)) { 2494 pte_t swp_pte; 2495 2496 mpfn |= MIGRATE_PFN_LOCKED; 2497 ptep_get_and_clear(mm, addr, ptep); 2498 2499 /* Setup special migration page table entry */ 2500 entry = make_migration_entry(page, mpfn & 2501 MIGRATE_PFN_WRITE); 2502 swp_pte = swp_entry_to_pte(entry); 2503 if (pte_present(pte)) { 2504 if (pte_soft_dirty(pte)) 2505 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2506 if (pte_uffd_wp(pte)) 2507 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2508 } else { 2509 if (pte_swp_soft_dirty(pte)) 2510 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2511 if (pte_swp_uffd_wp(pte)) 2512 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2513 } 2514 set_pte_at(mm, addr, ptep, swp_pte); 2515 2516 /* 2517 * This is like regular unmap: we remove the rmap and 2518 * drop page refcount. Page won't be freed, as we took 2519 * a reference just above. 2520 */ 2521 page_remove_rmap(page, false); 2522 put_page(page); 2523 2524 if (pte_present(pte)) 2525 unmapped++; 2526 } 2527 2528 next: 2529 migrate->dst[migrate->npages] = 0; 2530 migrate->src[migrate->npages++] = mpfn; 2531 } 2532 arch_leave_lazy_mmu_mode(); 2533 pte_unmap_unlock(ptep - 1, ptl); 2534 2535 /* Only flush the TLB if we actually modified any entries */ 2536 if (unmapped) 2537 flush_tlb_range(walk->vma, start, end); 2538 2539 return 0; 2540 } 2541 2542 static const struct mm_walk_ops migrate_vma_walk_ops = { 2543 .pmd_entry = migrate_vma_collect_pmd, 2544 .pte_hole = migrate_vma_collect_hole, 2545 }; 2546 2547 /* 2548 * migrate_vma_collect() - collect pages over a range of virtual addresses 2549 * @migrate: migrate struct containing all migration information 2550 * 2551 * This will walk the CPU page table. For each virtual address backed by a 2552 * valid page, it updates the src array and takes a reference on the page, in 2553 * order to pin the page until we lock it and unmap it. 2554 */ 2555 static void migrate_vma_collect(struct migrate_vma *migrate) 2556 { 2557 struct mmu_notifier_range range; 2558 2559 /* 2560 * Note that the pgmap_owner is passed to the mmu notifier callback so 2561 * that the registered device driver can skip invalidating device 2562 * private page mappings that won't be migrated. 2563 */ 2564 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2565 migrate->vma->vm_mm, migrate->start, migrate->end, 2566 migrate->pgmap_owner); 2567 mmu_notifier_invalidate_range_start(&range); 2568 2569 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2570 &migrate_vma_walk_ops, migrate); 2571 2572 mmu_notifier_invalidate_range_end(&range); 2573 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2574 } 2575 2576 /* 2577 * migrate_vma_check_page() - check if page is pinned or not 2578 * @page: struct page to check 2579 * 2580 * Pinned pages cannot be migrated. This is the same test as in 2581 * migrate_page_move_mapping(), except that here we allow migration of a 2582 * ZONE_DEVICE page. 2583 */ 2584 static bool migrate_vma_check_page(struct page *page) 2585 { 2586 /* 2587 * One extra ref because caller holds an extra reference, either from 2588 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2589 * a device page. 2590 */ 2591 int extra = 1; 2592 2593 /* 2594 * FIXME support THP (transparent huge page), it is bit more complex to 2595 * check them than regular pages, because they can be mapped with a pmd 2596 * or with a pte (split pte mapping). 2597 */ 2598 if (PageCompound(page)) 2599 return false; 2600 2601 /* Page from ZONE_DEVICE have one extra reference */ 2602 if (is_zone_device_page(page)) { 2603 /* 2604 * Private page can never be pin as they have no valid pte and 2605 * GUP will fail for those. Yet if there is a pending migration 2606 * a thread might try to wait on the pte migration entry and 2607 * will bump the page reference count. Sadly there is no way to 2608 * differentiate a regular pin from migration wait. Hence to 2609 * avoid 2 racing thread trying to migrate back to CPU to enter 2610 * infinite loop (one stopping migration because the other is 2611 * waiting on pte migration entry). We always return true here. 2612 * 2613 * FIXME proper solution is to rework migration_entry_wait() so 2614 * it does not need to take a reference on page. 2615 */ 2616 return is_device_private_page(page); 2617 } 2618 2619 /* For file back page */ 2620 if (page_mapping(page)) 2621 extra += 1 + page_has_private(page); 2622 2623 if ((page_count(page) - extra) > page_mapcount(page)) 2624 return false; 2625 2626 return true; 2627 } 2628 2629 /* 2630 * migrate_vma_prepare() - lock pages and isolate them from the lru 2631 * @migrate: migrate struct containing all migration information 2632 * 2633 * This locks pages that have been collected by migrate_vma_collect(). Once each 2634 * page is locked it is isolated from the lru (for non-device pages). Finally, 2635 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2636 * migrated by concurrent kernel threads. 2637 */ 2638 static void migrate_vma_prepare(struct migrate_vma *migrate) 2639 { 2640 const unsigned long npages = migrate->npages; 2641 const unsigned long start = migrate->start; 2642 unsigned long addr, i, restore = 0; 2643 bool allow_drain = true; 2644 2645 lru_add_drain(); 2646 2647 for (i = 0; (i < npages) && migrate->cpages; i++) { 2648 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2649 bool remap = true; 2650 2651 if (!page) 2652 continue; 2653 2654 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2655 /* 2656 * Because we are migrating several pages there can be 2657 * a deadlock between 2 concurrent migration where each 2658 * are waiting on each other page lock. 2659 * 2660 * Make migrate_vma() a best effort thing and backoff 2661 * for any page we can not lock right away. 2662 */ 2663 if (!trylock_page(page)) { 2664 migrate->src[i] = 0; 2665 migrate->cpages--; 2666 put_page(page); 2667 continue; 2668 } 2669 remap = false; 2670 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2671 } 2672 2673 /* ZONE_DEVICE pages are not on LRU */ 2674 if (!is_zone_device_page(page)) { 2675 if (!PageLRU(page) && allow_drain) { 2676 /* Drain CPU's pagevec */ 2677 lru_add_drain_all(); 2678 allow_drain = false; 2679 } 2680 2681 if (isolate_lru_page(page)) { 2682 if (remap) { 2683 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2684 migrate->cpages--; 2685 restore++; 2686 } else { 2687 migrate->src[i] = 0; 2688 unlock_page(page); 2689 migrate->cpages--; 2690 put_page(page); 2691 } 2692 continue; 2693 } 2694 2695 /* Drop the reference we took in collect */ 2696 put_page(page); 2697 } 2698 2699 if (!migrate_vma_check_page(page)) { 2700 if (remap) { 2701 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2702 migrate->cpages--; 2703 restore++; 2704 2705 if (!is_zone_device_page(page)) { 2706 get_page(page); 2707 putback_lru_page(page); 2708 } 2709 } else { 2710 migrate->src[i] = 0; 2711 unlock_page(page); 2712 migrate->cpages--; 2713 2714 if (!is_zone_device_page(page)) 2715 putback_lru_page(page); 2716 else 2717 put_page(page); 2718 } 2719 } 2720 } 2721 2722 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2723 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2724 2725 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2726 continue; 2727 2728 remove_migration_pte(page, migrate->vma, addr, page); 2729 2730 migrate->src[i] = 0; 2731 unlock_page(page); 2732 put_page(page); 2733 restore--; 2734 } 2735 } 2736 2737 /* 2738 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2739 * @migrate: migrate struct containing all migration information 2740 * 2741 * Replace page mapping (CPU page table pte) with a special migration pte entry 2742 * and check again if it has been pinned. Pinned pages are restored because we 2743 * cannot migrate them. 2744 * 2745 * This is the last step before we call the device driver callback to allocate 2746 * destination memory and copy contents of original page over to new page. 2747 */ 2748 static void migrate_vma_unmap(struct migrate_vma *migrate) 2749 { 2750 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2751 const unsigned long npages = migrate->npages; 2752 const unsigned long start = migrate->start; 2753 unsigned long addr, i, restore = 0; 2754 2755 for (i = 0; i < npages; i++) { 2756 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2757 2758 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2759 continue; 2760 2761 if (page_mapped(page)) { 2762 try_to_unmap(page, flags); 2763 if (page_mapped(page)) 2764 goto restore; 2765 } 2766 2767 if (migrate_vma_check_page(page)) 2768 continue; 2769 2770 restore: 2771 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2772 migrate->cpages--; 2773 restore++; 2774 } 2775 2776 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2777 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2778 2779 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2780 continue; 2781 2782 remove_migration_ptes(page, page, false); 2783 2784 migrate->src[i] = 0; 2785 unlock_page(page); 2786 restore--; 2787 2788 if (is_zone_device_page(page)) 2789 put_page(page); 2790 else 2791 putback_lru_page(page); 2792 } 2793 } 2794 2795 /** 2796 * migrate_vma_setup() - prepare to migrate a range of memory 2797 * @args: contains the vma, start, and pfns arrays for the migration 2798 * 2799 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2800 * without an error. 2801 * 2802 * Prepare to migrate a range of memory virtual address range by collecting all 2803 * the pages backing each virtual address in the range, saving them inside the 2804 * src array. Then lock those pages and unmap them. Once the pages are locked 2805 * and unmapped, check whether each page is pinned or not. Pages that aren't 2806 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2807 * corresponding src array entry. Then restores any pages that are pinned, by 2808 * remapping and unlocking those pages. 2809 * 2810 * The caller should then allocate destination memory and copy source memory to 2811 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2812 * flag set). Once these are allocated and copied, the caller must update each 2813 * corresponding entry in the dst array with the pfn value of the destination 2814 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2815 * (destination pages must have their struct pages locked, via lock_page()). 2816 * 2817 * Note that the caller does not have to migrate all the pages that are marked 2818 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2819 * device memory to system memory. If the caller cannot migrate a device page 2820 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2821 * consequences for the userspace process, so it must be avoided if at all 2822 * possible. 2823 * 2824 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2825 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2826 * allowing the caller to allocate device memory for those unback virtual 2827 * address. For this the caller simply has to allocate device memory and 2828 * properly set the destination entry like for regular migration. Note that 2829 * this can still fails and thus inside the device driver must check if the 2830 * migration was successful for those entries after calling migrate_vma_pages() 2831 * just like for regular migration. 2832 * 2833 * After that, the callers must call migrate_vma_pages() to go over each entry 2834 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2835 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2836 * then migrate_vma_pages() to migrate struct page information from the source 2837 * struct page to the destination struct page. If it fails to migrate the 2838 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2839 * src array. 2840 * 2841 * At this point all successfully migrated pages have an entry in the src 2842 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2843 * array entry with MIGRATE_PFN_VALID flag set. 2844 * 2845 * Once migrate_vma_pages() returns the caller may inspect which pages were 2846 * successfully migrated, and which were not. Successfully migrated pages will 2847 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2848 * 2849 * It is safe to update device page table after migrate_vma_pages() because 2850 * both destination and source page are still locked, and the mmap_lock is held 2851 * in read mode (hence no one can unmap the range being migrated). 2852 * 2853 * Once the caller is done cleaning up things and updating its page table (if it 2854 * chose to do so, this is not an obligation) it finally calls 2855 * migrate_vma_finalize() to update the CPU page table to point to new pages 2856 * for successfully migrated pages or otherwise restore the CPU page table to 2857 * point to the original source pages. 2858 */ 2859 int migrate_vma_setup(struct migrate_vma *args) 2860 { 2861 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2862 2863 args->start &= PAGE_MASK; 2864 args->end &= PAGE_MASK; 2865 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2866 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2867 return -EINVAL; 2868 if (nr_pages <= 0) 2869 return -EINVAL; 2870 if (args->start < args->vma->vm_start || 2871 args->start >= args->vma->vm_end) 2872 return -EINVAL; 2873 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2874 return -EINVAL; 2875 if (!args->src || !args->dst) 2876 return -EINVAL; 2877 2878 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2879 args->cpages = 0; 2880 args->npages = 0; 2881 2882 migrate_vma_collect(args); 2883 2884 if (args->cpages) 2885 migrate_vma_prepare(args); 2886 if (args->cpages) 2887 migrate_vma_unmap(args); 2888 2889 /* 2890 * At this point pages are locked and unmapped, and thus they have 2891 * stable content and can safely be copied to destination memory that 2892 * is allocated by the drivers. 2893 */ 2894 return 0; 2895 2896 } 2897 EXPORT_SYMBOL(migrate_vma_setup); 2898 2899 /* 2900 * This code closely matches the code in: 2901 * __handle_mm_fault() 2902 * handle_pte_fault() 2903 * do_anonymous_page() 2904 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2905 * private page. 2906 */ 2907 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2908 unsigned long addr, 2909 struct page *page, 2910 unsigned long *src) 2911 { 2912 struct vm_area_struct *vma = migrate->vma; 2913 struct mm_struct *mm = vma->vm_mm; 2914 bool flush = false; 2915 spinlock_t *ptl; 2916 pte_t entry; 2917 pgd_t *pgdp; 2918 p4d_t *p4dp; 2919 pud_t *pudp; 2920 pmd_t *pmdp; 2921 pte_t *ptep; 2922 2923 /* Only allow populating anonymous memory */ 2924 if (!vma_is_anonymous(vma)) 2925 goto abort; 2926 2927 pgdp = pgd_offset(mm, addr); 2928 p4dp = p4d_alloc(mm, pgdp, addr); 2929 if (!p4dp) 2930 goto abort; 2931 pudp = pud_alloc(mm, p4dp, addr); 2932 if (!pudp) 2933 goto abort; 2934 pmdp = pmd_alloc(mm, pudp, addr); 2935 if (!pmdp) 2936 goto abort; 2937 2938 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2939 goto abort; 2940 2941 /* 2942 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2943 * pte_offset_map() on pmds where a huge pmd might be created 2944 * from a different thread. 2945 * 2946 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2947 * parallel threads are excluded by other means. 2948 * 2949 * Here we only have mmap_read_lock(mm). 2950 */ 2951 if (pte_alloc(mm, pmdp)) 2952 goto abort; 2953 2954 /* See the comment in pte_alloc_one_map() */ 2955 if (unlikely(pmd_trans_unstable(pmdp))) 2956 goto abort; 2957 2958 if (unlikely(anon_vma_prepare(vma))) 2959 goto abort; 2960 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2961 goto abort; 2962 2963 /* 2964 * The memory barrier inside __SetPageUptodate makes sure that 2965 * preceding stores to the page contents become visible before 2966 * the set_pte_at() write. 2967 */ 2968 __SetPageUptodate(page); 2969 2970 if (is_zone_device_page(page)) { 2971 if (is_device_private_page(page)) { 2972 swp_entry_t swp_entry; 2973 2974 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2975 entry = swp_entry_to_pte(swp_entry); 2976 } 2977 } else { 2978 entry = mk_pte(page, vma->vm_page_prot); 2979 if (vma->vm_flags & VM_WRITE) 2980 entry = pte_mkwrite(pte_mkdirty(entry)); 2981 } 2982 2983 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2984 2985 if (check_stable_address_space(mm)) 2986 goto unlock_abort; 2987 2988 if (pte_present(*ptep)) { 2989 unsigned long pfn = pte_pfn(*ptep); 2990 2991 if (!is_zero_pfn(pfn)) 2992 goto unlock_abort; 2993 flush = true; 2994 } else if (!pte_none(*ptep)) 2995 goto unlock_abort; 2996 2997 /* 2998 * Check for userfaultfd but do not deliver the fault. Instead, 2999 * just back off. 3000 */ 3001 if (userfaultfd_missing(vma)) 3002 goto unlock_abort; 3003 3004 inc_mm_counter(mm, MM_ANONPAGES); 3005 page_add_new_anon_rmap(page, vma, addr, false); 3006 if (!is_zone_device_page(page)) 3007 lru_cache_add_inactive_or_unevictable(page, vma); 3008 get_page(page); 3009 3010 if (flush) { 3011 flush_cache_page(vma, addr, pte_pfn(*ptep)); 3012 ptep_clear_flush_notify(vma, addr, ptep); 3013 set_pte_at_notify(mm, addr, ptep, entry); 3014 update_mmu_cache(vma, addr, ptep); 3015 } else { 3016 /* No need to invalidate - it was non-present before */ 3017 set_pte_at(mm, addr, ptep, entry); 3018 update_mmu_cache(vma, addr, ptep); 3019 } 3020 3021 pte_unmap_unlock(ptep, ptl); 3022 *src = MIGRATE_PFN_MIGRATE; 3023 return; 3024 3025 unlock_abort: 3026 pte_unmap_unlock(ptep, ptl); 3027 abort: 3028 *src &= ~MIGRATE_PFN_MIGRATE; 3029 } 3030 3031 /** 3032 * migrate_vma_pages() - migrate meta-data from src page to dst page 3033 * @migrate: migrate struct containing all migration information 3034 * 3035 * This migrates struct page meta-data from source struct page to destination 3036 * struct page. This effectively finishes the migration from source page to the 3037 * destination page. 3038 */ 3039 void migrate_vma_pages(struct migrate_vma *migrate) 3040 { 3041 const unsigned long npages = migrate->npages; 3042 const unsigned long start = migrate->start; 3043 struct mmu_notifier_range range; 3044 unsigned long addr, i; 3045 bool notified = false; 3046 3047 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3048 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3049 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3050 struct address_space *mapping; 3051 int r; 3052 3053 if (!newpage) { 3054 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3055 continue; 3056 } 3057 3058 if (!page) { 3059 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3060 continue; 3061 if (!notified) { 3062 notified = true; 3063 3064 mmu_notifier_range_init_migrate(&range, 0, 3065 migrate->vma, migrate->vma->vm_mm, 3066 addr, migrate->end, 3067 migrate->pgmap_owner); 3068 mmu_notifier_invalidate_range_start(&range); 3069 } 3070 migrate_vma_insert_page(migrate, addr, newpage, 3071 &migrate->src[i]); 3072 continue; 3073 } 3074 3075 mapping = page_mapping(page); 3076 3077 if (is_zone_device_page(newpage)) { 3078 if (is_device_private_page(newpage)) { 3079 /* 3080 * For now only support private anonymous when 3081 * migrating to un-addressable device memory. 3082 */ 3083 if (mapping) { 3084 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3085 continue; 3086 } 3087 } else { 3088 /* 3089 * Other types of ZONE_DEVICE page are not 3090 * supported. 3091 */ 3092 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3093 continue; 3094 } 3095 } 3096 3097 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3098 if (r != MIGRATEPAGE_SUCCESS) 3099 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3100 } 3101 3102 /* 3103 * No need to double call mmu_notifier->invalidate_range() callback as 3104 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3105 * did already call it. 3106 */ 3107 if (notified) 3108 mmu_notifier_invalidate_range_only_end(&range); 3109 } 3110 EXPORT_SYMBOL(migrate_vma_pages); 3111 3112 /** 3113 * migrate_vma_finalize() - restore CPU page table entry 3114 * @migrate: migrate struct containing all migration information 3115 * 3116 * This replaces the special migration pte entry with either a mapping to the 3117 * new page if migration was successful for that page, or to the original page 3118 * otherwise. 3119 * 3120 * This also unlocks the pages and puts them back on the lru, or drops the extra 3121 * refcount, for device pages. 3122 */ 3123 void migrate_vma_finalize(struct migrate_vma *migrate) 3124 { 3125 const unsigned long npages = migrate->npages; 3126 unsigned long i; 3127 3128 for (i = 0; i < npages; i++) { 3129 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3130 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3131 3132 if (!page) { 3133 if (newpage) { 3134 unlock_page(newpage); 3135 put_page(newpage); 3136 } 3137 continue; 3138 } 3139 3140 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3141 if (newpage) { 3142 unlock_page(newpage); 3143 put_page(newpage); 3144 } 3145 newpage = page; 3146 } 3147 3148 remove_migration_ptes(page, newpage, false); 3149 unlock_page(page); 3150 3151 if (is_zone_device_page(page)) 3152 put_page(page); 3153 else 3154 putback_lru_page(page); 3155 3156 if (newpage != page) { 3157 unlock_page(newpage); 3158 if (is_zone_device_page(newpage)) 3159 put_page(newpage); 3160 else 3161 putback_lru_page(newpage); 3162 } 3163 } 3164 } 3165 EXPORT_SYMBOL(migrate_vma_finalize); 3166 #endif /* CONFIG_DEVICE_PRIVATE */ 3167