xref: /linux/mm/migrate.c (revision db2c190a54bf24746ace253b1b0dacbe92d2ca57)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Memory Migration functionality - linux/mm/migrate.c
4   *
5   * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6   *
7   * Page migration was first developed in the context of the memory hotplug
8   * project. The main authors of the migration code are:
9   *
10   * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11   * Hirokazu Takahashi <taka@valinux.co.jp>
12   * Dave Hansen <haveblue@us.ibm.com>
13   * Christoph Lameter
14   */
15  
16  #include <linux/migrate.h>
17  #include <linux/export.h>
18  #include <linux/swap.h>
19  #include <linux/swapops.h>
20  #include <linux/pagemap.h>
21  #include <linux/buffer_head.h>
22  #include <linux/mm_inline.h>
23  #include <linux/nsproxy.h>
24  #include <linux/ksm.h>
25  #include <linux/rmap.h>
26  #include <linux/topology.h>
27  #include <linux/cpu.h>
28  #include <linux/cpuset.h>
29  #include <linux/writeback.h>
30  #include <linux/mempolicy.h>
31  #include <linux/vmalloc.h>
32  #include <linux/security.h>
33  #include <linux/backing-dev.h>
34  #include <linux/compaction.h>
35  #include <linux/syscalls.h>
36  #include <linux/compat.h>
37  #include <linux/hugetlb.h>
38  #include <linux/hugetlb_cgroup.h>
39  #include <linux/gfp.h>
40  #include <linux/pfn_t.h>
41  #include <linux/memremap.h>
42  #include <linux/userfaultfd_k.h>
43  #include <linux/balloon_compaction.h>
44  #include <linux/page_idle.h>
45  #include <linux/page_owner.h>
46  #include <linux/sched/mm.h>
47  #include <linux/ptrace.h>
48  #include <linux/oom.h>
49  #include <linux/memory.h>
50  #include <linux/random.h>
51  #include <linux/sched/sysctl.h>
52  #include <linux/memory-tiers.h>
53  
54  #include <asm/tlbflush.h>
55  
56  #include <trace/events/migrate.h>
57  
58  #include "internal.h"
59  
60  bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61  {
62  	struct folio *folio = folio_get_nontail_page(page);
63  	const struct movable_operations *mops;
64  
65  	/*
66  	 * Avoid burning cycles with pages that are yet under __free_pages(),
67  	 * or just got freed under us.
68  	 *
69  	 * In case we 'win' a race for a movable page being freed under us and
70  	 * raise its refcount preventing __free_pages() from doing its job
71  	 * the put_page() at the end of this block will take care of
72  	 * release this page, thus avoiding a nasty leakage.
73  	 */
74  	if (!folio)
75  		goto out;
76  
77  	if (unlikely(folio_test_slab(folio)))
78  		goto out_putfolio;
79  	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80  	smp_rmb();
81  	/*
82  	 * Check movable flag before taking the page lock because
83  	 * we use non-atomic bitops on newly allocated page flags so
84  	 * unconditionally grabbing the lock ruins page's owner side.
85  	 */
86  	if (unlikely(!__folio_test_movable(folio)))
87  		goto out_putfolio;
88  	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89  	smp_rmb();
90  	if (unlikely(folio_test_slab(folio)))
91  		goto out_putfolio;
92  
93  	/*
94  	 * As movable pages are not isolated from LRU lists, concurrent
95  	 * compaction threads can race against page migration functions
96  	 * as well as race against the releasing a page.
97  	 *
98  	 * In order to avoid having an already isolated movable page
99  	 * being (wrongly) re-isolated while it is under migration,
100  	 * or to avoid attempting to isolate pages being released,
101  	 * lets be sure we have the page lock
102  	 * before proceeding with the movable page isolation steps.
103  	 */
104  	if (unlikely(!folio_trylock(folio)))
105  		goto out_putfolio;
106  
107  	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108  		goto out_no_isolated;
109  
110  	mops = folio_movable_ops(folio);
111  	VM_BUG_ON_FOLIO(!mops, folio);
112  
113  	if (!mops->isolate_page(&folio->page, mode))
114  		goto out_no_isolated;
115  
116  	/* Driver shouldn't use the isolated flag */
117  	WARN_ON_ONCE(folio_test_isolated(folio));
118  	folio_set_isolated(folio);
119  	folio_unlock(folio);
120  
121  	return true;
122  
123  out_no_isolated:
124  	folio_unlock(folio);
125  out_putfolio:
126  	folio_put(folio);
127  out:
128  	return false;
129  }
130  
131  static void putback_movable_folio(struct folio *folio)
132  {
133  	const struct movable_operations *mops = folio_movable_ops(folio);
134  
135  	mops->putback_page(&folio->page);
136  	folio_clear_isolated(folio);
137  }
138  
139  /*
140   * Put previously isolated pages back onto the appropriate lists
141   * from where they were once taken off for compaction/migration.
142   *
143   * This function shall be used whenever the isolated pageset has been
144   * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145   * and isolate_hugetlb().
146   */
147  void putback_movable_pages(struct list_head *l)
148  {
149  	struct folio *folio;
150  	struct folio *folio2;
151  
152  	list_for_each_entry_safe(folio, folio2, l, lru) {
153  		if (unlikely(folio_test_hugetlb(folio))) {
154  			folio_putback_active_hugetlb(folio);
155  			continue;
156  		}
157  		list_del(&folio->lru);
158  		/*
159  		 * We isolated non-lru movable folio so here we can use
160  		 * __folio_test_movable because LRU folio's mapping cannot
161  		 * have PAGE_MAPPING_MOVABLE.
162  		 */
163  		if (unlikely(__folio_test_movable(folio))) {
164  			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165  			folio_lock(folio);
166  			if (folio_test_movable(folio))
167  				putback_movable_folio(folio);
168  			else
169  				folio_clear_isolated(folio);
170  			folio_unlock(folio);
171  			folio_put(folio);
172  		} else {
173  			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174  					folio_is_file_lru(folio), -folio_nr_pages(folio));
175  			folio_putback_lru(folio);
176  		}
177  	}
178  }
179  
180  /*
181   * Restore a potential migration pte to a working pte entry
182   */
183  static bool remove_migration_pte(struct folio *folio,
184  		struct vm_area_struct *vma, unsigned long addr, void *old)
185  {
186  	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187  
188  	while (page_vma_mapped_walk(&pvmw)) {
189  		rmap_t rmap_flags = RMAP_NONE;
190  		pte_t old_pte;
191  		pte_t pte;
192  		swp_entry_t entry;
193  		struct page *new;
194  		unsigned long idx = 0;
195  
196  		/* pgoff is invalid for ksm pages, but they are never large */
197  		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198  			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199  		new = folio_page(folio, idx);
200  
201  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202  		/* PMD-mapped THP migration entry */
203  		if (!pvmw.pte) {
204  			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205  					!folio_test_pmd_mappable(folio), folio);
206  			remove_migration_pmd(&pvmw, new);
207  			continue;
208  		}
209  #endif
210  
211  		folio_get(folio);
212  		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213  		old_pte = ptep_get(pvmw.pte);
214  
215  		entry = pte_to_swp_entry(old_pte);
216  		if (!is_migration_entry_young(entry))
217  			pte = pte_mkold(pte);
218  		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
219  			pte = pte_mkdirty(pte);
220  		if (pte_swp_soft_dirty(old_pte))
221  			pte = pte_mksoft_dirty(pte);
222  		else
223  			pte = pte_clear_soft_dirty(pte);
224  
225  		if (is_writable_migration_entry(entry))
226  			pte = pte_mkwrite(pte, vma);
227  		else if (pte_swp_uffd_wp(old_pte))
228  			pte = pte_mkuffd_wp(pte);
229  
230  		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231  			rmap_flags |= RMAP_EXCLUSIVE;
232  
233  		if (unlikely(is_device_private_page(new))) {
234  			if (pte_write(pte))
235  				entry = make_writable_device_private_entry(
236  							page_to_pfn(new));
237  			else
238  				entry = make_readable_device_private_entry(
239  							page_to_pfn(new));
240  			pte = swp_entry_to_pte(entry);
241  			if (pte_swp_soft_dirty(old_pte))
242  				pte = pte_swp_mksoft_dirty(pte);
243  			if (pte_swp_uffd_wp(old_pte))
244  				pte = pte_swp_mkuffd_wp(pte);
245  		}
246  
247  #ifdef CONFIG_HUGETLB_PAGE
248  		if (folio_test_hugetlb(folio)) {
249  			struct hstate *h = hstate_vma(vma);
250  			unsigned int shift = huge_page_shift(h);
251  			unsigned long psize = huge_page_size(h);
252  
253  			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
254  			if (folio_test_anon(folio))
255  				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
256  						      rmap_flags);
257  			else
258  				hugetlb_add_file_rmap(folio);
259  			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
260  					psize);
261  		} else
262  #endif
263  		{
264  			if (folio_test_anon(folio))
265  				folio_add_anon_rmap_pte(folio, new, vma,
266  							pvmw.address, rmap_flags);
267  			else
268  				folio_add_file_rmap_pte(folio, new, vma);
269  			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270  		}
271  		if (vma->vm_flags & VM_LOCKED)
272  			mlock_drain_local();
273  
274  		trace_remove_migration_pte(pvmw.address, pte_val(pte),
275  					   compound_order(new));
276  
277  		/* No need to invalidate - it was non-present before */
278  		update_mmu_cache(vma, pvmw.address, pvmw.pte);
279  	}
280  
281  	return true;
282  }
283  
284  /*
285   * Get rid of all migration entries and replace them by
286   * references to the indicated page.
287   */
288  void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
289  {
290  	struct rmap_walk_control rwc = {
291  		.rmap_one = remove_migration_pte,
292  		.arg = src,
293  	};
294  
295  	if (locked)
296  		rmap_walk_locked(dst, &rwc);
297  	else
298  		rmap_walk(dst, &rwc);
299  }
300  
301  /*
302   * Something used the pte of a page under migration. We need to
303   * get to the page and wait until migration is finished.
304   * When we return from this function the fault will be retried.
305   */
306  void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
307  			  unsigned long address)
308  {
309  	spinlock_t *ptl;
310  	pte_t *ptep;
311  	pte_t pte;
312  	swp_entry_t entry;
313  
314  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
315  	if (!ptep)
316  		return;
317  
318  	pte = ptep_get(ptep);
319  	pte_unmap(ptep);
320  
321  	if (!is_swap_pte(pte))
322  		goto out;
323  
324  	entry = pte_to_swp_entry(pte);
325  	if (!is_migration_entry(entry))
326  		goto out;
327  
328  	migration_entry_wait_on_locked(entry, ptl);
329  	return;
330  out:
331  	spin_unlock(ptl);
332  }
333  
334  #ifdef CONFIG_HUGETLB_PAGE
335  /*
336   * The vma read lock must be held upon entry. Holding that lock prevents either
337   * the pte or the ptl from being freed.
338   *
339   * This function will release the vma lock before returning.
340   */
341  void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
342  {
343  	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
344  	pte_t pte;
345  
346  	hugetlb_vma_assert_locked(vma);
347  	spin_lock(ptl);
348  	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
349  
350  	if (unlikely(!is_hugetlb_entry_migration(pte))) {
351  		spin_unlock(ptl);
352  		hugetlb_vma_unlock_read(vma);
353  	} else {
354  		/*
355  		 * If migration entry existed, safe to release vma lock
356  		 * here because the pgtable page won't be freed without the
357  		 * pgtable lock released.  See comment right above pgtable
358  		 * lock release in migration_entry_wait_on_locked().
359  		 */
360  		hugetlb_vma_unlock_read(vma);
361  		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
362  	}
363  }
364  #endif
365  
366  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
367  void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
368  {
369  	spinlock_t *ptl;
370  
371  	ptl = pmd_lock(mm, pmd);
372  	if (!is_pmd_migration_entry(*pmd))
373  		goto unlock;
374  	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
375  	return;
376  unlock:
377  	spin_unlock(ptl);
378  }
379  #endif
380  
381  static int folio_expected_refs(struct address_space *mapping,
382  		struct folio *folio)
383  {
384  	int refs = 1;
385  	if (!mapping)
386  		return refs;
387  
388  	refs += folio_nr_pages(folio);
389  	if (folio_test_private(folio))
390  		refs++;
391  
392  	return refs;
393  }
394  
395  /*
396   * Replace the folio in the mapping.
397   *
398   * The number of remaining references must be:
399   * 1 for anonymous folios without a mapping
400   * 2 for folios with a mapping
401   * 3 for folios with a mapping and PagePrivate/PagePrivate2 set.
402   */
403  static int __folio_migrate_mapping(struct address_space *mapping,
404  		struct folio *newfolio, struct folio *folio, int expected_count)
405  {
406  	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
407  	struct zone *oldzone, *newzone;
408  	int dirty;
409  	long nr = folio_nr_pages(folio);
410  	long entries, i;
411  
412  	if (!mapping) {
413  		/* Take off deferred split queue while frozen and memcg set */
414  		if (folio_test_large(folio) &&
415  		    folio_test_large_rmappable(folio)) {
416  			if (!folio_ref_freeze(folio, expected_count))
417  				return -EAGAIN;
418  			folio_undo_large_rmappable(folio);
419  			folio_ref_unfreeze(folio, expected_count);
420  		}
421  
422  		/* No turning back from here */
423  		newfolio->index = folio->index;
424  		newfolio->mapping = folio->mapping;
425  		if (folio_test_swapbacked(folio))
426  			__folio_set_swapbacked(newfolio);
427  
428  		return MIGRATEPAGE_SUCCESS;
429  	}
430  
431  	oldzone = folio_zone(folio);
432  	newzone = folio_zone(newfolio);
433  
434  	xas_lock_irq(&xas);
435  	if (!folio_ref_freeze(folio, expected_count)) {
436  		xas_unlock_irq(&xas);
437  		return -EAGAIN;
438  	}
439  
440  	/* Take off deferred split queue while frozen and memcg set */
441  	folio_undo_large_rmappable(folio);
442  
443  	/*
444  	 * Now we know that no one else is looking at the folio:
445  	 * no turning back from here.
446  	 */
447  	newfolio->index = folio->index;
448  	newfolio->mapping = folio->mapping;
449  	folio_ref_add(newfolio, nr); /* add cache reference */
450  	if (folio_test_swapbacked(folio)) {
451  		__folio_set_swapbacked(newfolio);
452  		if (folio_test_swapcache(folio)) {
453  			folio_set_swapcache(newfolio);
454  			newfolio->private = folio_get_private(folio);
455  		}
456  		entries = nr;
457  	} else {
458  		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
459  		entries = 1;
460  	}
461  
462  	/* Move dirty while folio refs frozen and newfolio not yet exposed */
463  	dirty = folio_test_dirty(folio);
464  	if (dirty) {
465  		folio_clear_dirty(folio);
466  		folio_set_dirty(newfolio);
467  	}
468  
469  	/* Swap cache still stores N entries instead of a high-order entry */
470  	for (i = 0; i < entries; i++) {
471  		xas_store(&xas, newfolio);
472  		xas_next(&xas);
473  	}
474  
475  	/*
476  	 * Drop cache reference from old folio by unfreezing
477  	 * to one less reference.
478  	 * We know this isn't the last reference.
479  	 */
480  	folio_ref_unfreeze(folio, expected_count - nr);
481  
482  	xas_unlock(&xas);
483  	/* Leave irq disabled to prevent preemption while updating stats */
484  
485  	/*
486  	 * If moved to a different zone then also account
487  	 * the folio for that zone. Other VM counters will be
488  	 * taken care of when we establish references to the
489  	 * new folio and drop references to the old folio.
490  	 *
491  	 * Note that anonymous folios are accounted for
492  	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
493  	 * are mapped to swap space.
494  	 */
495  	if (newzone != oldzone) {
496  		struct lruvec *old_lruvec, *new_lruvec;
497  		struct mem_cgroup *memcg;
498  
499  		memcg = folio_memcg(folio);
500  		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
501  		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
502  
503  		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
504  		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
505  		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
506  			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
507  			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
508  
509  			if (folio_test_pmd_mappable(folio)) {
510  				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
511  				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
512  			}
513  		}
514  #ifdef CONFIG_SWAP
515  		if (folio_test_swapcache(folio)) {
516  			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
517  			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
518  		}
519  #endif
520  		if (dirty && mapping_can_writeback(mapping)) {
521  			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
522  			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
523  			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
524  			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
525  		}
526  	}
527  	local_irq_enable();
528  
529  	return MIGRATEPAGE_SUCCESS;
530  }
531  
532  int folio_migrate_mapping(struct address_space *mapping,
533  		struct folio *newfolio, struct folio *folio, int extra_count)
534  {
535  	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
536  
537  	if (folio_ref_count(folio) != expected_count)
538  		return -EAGAIN;
539  
540  	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
541  }
542  EXPORT_SYMBOL(folio_migrate_mapping);
543  
544  /*
545   * The expected number of remaining references is the same as that
546   * of folio_migrate_mapping().
547   */
548  int migrate_huge_page_move_mapping(struct address_space *mapping,
549  				   struct folio *dst, struct folio *src)
550  {
551  	XA_STATE(xas, &mapping->i_pages, folio_index(src));
552  	int rc, expected_count = folio_expected_refs(mapping, src);
553  
554  	if (folio_ref_count(src) != expected_count)
555  		return -EAGAIN;
556  
557  	rc = folio_mc_copy(dst, src);
558  	if (unlikely(rc))
559  		return rc;
560  
561  	xas_lock_irq(&xas);
562  	if (!folio_ref_freeze(src, expected_count)) {
563  		xas_unlock_irq(&xas);
564  		return -EAGAIN;
565  	}
566  
567  	dst->index = src->index;
568  	dst->mapping = src->mapping;
569  
570  	folio_ref_add(dst, folio_nr_pages(dst));
571  
572  	xas_store(&xas, dst);
573  
574  	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
575  
576  	xas_unlock_irq(&xas);
577  
578  	return MIGRATEPAGE_SUCCESS;
579  }
580  
581  /*
582   * Copy the flags and some other ancillary information
583   */
584  void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
585  {
586  	int cpupid;
587  
588  	if (folio_test_error(folio))
589  		folio_set_error(newfolio);
590  	if (folio_test_referenced(folio))
591  		folio_set_referenced(newfolio);
592  	if (folio_test_uptodate(folio))
593  		folio_mark_uptodate(newfolio);
594  	if (folio_test_clear_active(folio)) {
595  		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
596  		folio_set_active(newfolio);
597  	} else if (folio_test_clear_unevictable(folio))
598  		folio_set_unevictable(newfolio);
599  	if (folio_test_workingset(folio))
600  		folio_set_workingset(newfolio);
601  	if (folio_test_checked(folio))
602  		folio_set_checked(newfolio);
603  	/*
604  	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
605  	 * migration entries. We can still have PG_anon_exclusive set on an
606  	 * effectively unmapped and unreferenced first sub-pages of an
607  	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
608  	 */
609  	if (folio_test_mappedtodisk(folio))
610  		folio_set_mappedtodisk(newfolio);
611  
612  	/* Move dirty on pages not done by folio_migrate_mapping() */
613  	if (folio_test_dirty(folio))
614  		folio_set_dirty(newfolio);
615  
616  	if (folio_test_young(folio))
617  		folio_set_young(newfolio);
618  	if (folio_test_idle(folio))
619  		folio_set_idle(newfolio);
620  
621  	/*
622  	 * Copy NUMA information to the new page, to prevent over-eager
623  	 * future migrations of this same page.
624  	 */
625  	cpupid = folio_xchg_last_cpupid(folio, -1);
626  	/*
627  	 * For memory tiering mode, when migrate between slow and fast
628  	 * memory node, reset cpupid, because that is used to record
629  	 * page access time in slow memory node.
630  	 */
631  	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
632  		bool f_toptier = node_is_toptier(folio_nid(folio));
633  		bool t_toptier = node_is_toptier(folio_nid(newfolio));
634  
635  		if (f_toptier != t_toptier)
636  			cpupid = -1;
637  	}
638  	folio_xchg_last_cpupid(newfolio, cpupid);
639  
640  	folio_migrate_ksm(newfolio, folio);
641  	/*
642  	 * Please do not reorder this without considering how mm/ksm.c's
643  	 * ksm_get_folio() depends upon ksm_migrate_page() and PageSwapCache().
644  	 */
645  	if (folio_test_swapcache(folio))
646  		folio_clear_swapcache(folio);
647  	folio_clear_private(folio);
648  
649  	/* page->private contains hugetlb specific flags */
650  	if (!folio_test_hugetlb(folio))
651  		folio->private = NULL;
652  
653  	/*
654  	 * If any waiters have accumulated on the new page then
655  	 * wake them up.
656  	 */
657  	if (folio_test_writeback(newfolio))
658  		folio_end_writeback(newfolio);
659  
660  	/*
661  	 * PG_readahead shares the same bit with PG_reclaim.  The above
662  	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
663  	 * bit after that.
664  	 */
665  	if (folio_test_readahead(folio))
666  		folio_set_readahead(newfolio);
667  
668  	folio_copy_owner(newfolio, folio);
669  
670  	mem_cgroup_migrate(folio, newfolio);
671  }
672  EXPORT_SYMBOL(folio_migrate_flags);
673  
674  /************************************************************
675   *                    Migration functions
676   ***********************************************************/
677  
678  static int __migrate_folio(struct address_space *mapping, struct folio *dst,
679  			   struct folio *src, void *src_private,
680  			   enum migrate_mode mode)
681  {
682  	int rc, expected_count = folio_expected_refs(mapping, src);
683  
684  	/* Check whether src does not have extra refs before we do more work */
685  	if (folio_ref_count(src) != expected_count)
686  		return -EAGAIN;
687  
688  	rc = folio_mc_copy(dst, src);
689  	if (unlikely(rc))
690  		return rc;
691  
692  	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
693  	if (rc != MIGRATEPAGE_SUCCESS)
694  		return rc;
695  
696  	if (src_private)
697  		folio_attach_private(dst, folio_detach_private(src));
698  
699  	folio_migrate_flags(dst, src);
700  	return MIGRATEPAGE_SUCCESS;
701  }
702  
703  /**
704   * migrate_folio() - Simple folio migration.
705   * @mapping: The address_space containing the folio.
706   * @dst: The folio to migrate the data to.
707   * @src: The folio containing the current data.
708   * @mode: How to migrate the page.
709   *
710   * Common logic to directly migrate a single LRU folio suitable for
711   * folios that do not use PagePrivate/PagePrivate2.
712   *
713   * Folios are locked upon entry and exit.
714   */
715  int migrate_folio(struct address_space *mapping, struct folio *dst,
716  		  struct folio *src, enum migrate_mode mode)
717  {
718  	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
719  	return __migrate_folio(mapping, dst, src, NULL, mode);
720  }
721  EXPORT_SYMBOL(migrate_folio);
722  
723  #ifdef CONFIG_BUFFER_HEAD
724  /* Returns true if all buffers are successfully locked */
725  static bool buffer_migrate_lock_buffers(struct buffer_head *head,
726  							enum migrate_mode mode)
727  {
728  	struct buffer_head *bh = head;
729  	struct buffer_head *failed_bh;
730  
731  	do {
732  		if (!trylock_buffer(bh)) {
733  			if (mode == MIGRATE_ASYNC)
734  				goto unlock;
735  			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
736  				goto unlock;
737  			lock_buffer(bh);
738  		}
739  
740  		bh = bh->b_this_page;
741  	} while (bh != head);
742  
743  	return true;
744  
745  unlock:
746  	/* We failed to lock the buffer and cannot stall. */
747  	failed_bh = bh;
748  	bh = head;
749  	while (bh != failed_bh) {
750  		unlock_buffer(bh);
751  		bh = bh->b_this_page;
752  	}
753  
754  	return false;
755  }
756  
757  static int __buffer_migrate_folio(struct address_space *mapping,
758  		struct folio *dst, struct folio *src, enum migrate_mode mode,
759  		bool check_refs)
760  {
761  	struct buffer_head *bh, *head;
762  	int rc;
763  	int expected_count;
764  
765  	head = folio_buffers(src);
766  	if (!head)
767  		return migrate_folio(mapping, dst, src, mode);
768  
769  	/* Check whether page does not have extra refs before we do more work */
770  	expected_count = folio_expected_refs(mapping, src);
771  	if (folio_ref_count(src) != expected_count)
772  		return -EAGAIN;
773  
774  	if (!buffer_migrate_lock_buffers(head, mode))
775  		return -EAGAIN;
776  
777  	if (check_refs) {
778  		bool busy;
779  		bool invalidated = false;
780  
781  recheck_buffers:
782  		busy = false;
783  		spin_lock(&mapping->i_private_lock);
784  		bh = head;
785  		do {
786  			if (atomic_read(&bh->b_count)) {
787  				busy = true;
788  				break;
789  			}
790  			bh = bh->b_this_page;
791  		} while (bh != head);
792  		if (busy) {
793  			if (invalidated) {
794  				rc = -EAGAIN;
795  				goto unlock_buffers;
796  			}
797  			spin_unlock(&mapping->i_private_lock);
798  			invalidate_bh_lrus();
799  			invalidated = true;
800  			goto recheck_buffers;
801  		}
802  	}
803  
804  	rc = filemap_migrate_folio(mapping, dst, src, mode);
805  	if (rc != MIGRATEPAGE_SUCCESS)
806  		goto unlock_buffers;
807  
808  	bh = head;
809  	do {
810  		folio_set_bh(bh, dst, bh_offset(bh));
811  		bh = bh->b_this_page;
812  	} while (bh != head);
813  
814  unlock_buffers:
815  	if (check_refs)
816  		spin_unlock(&mapping->i_private_lock);
817  	bh = head;
818  	do {
819  		unlock_buffer(bh);
820  		bh = bh->b_this_page;
821  	} while (bh != head);
822  
823  	return rc;
824  }
825  
826  /**
827   * buffer_migrate_folio() - Migration function for folios with buffers.
828   * @mapping: The address space containing @src.
829   * @dst: The folio to migrate to.
830   * @src: The folio to migrate from.
831   * @mode: How to migrate the folio.
832   *
833   * This function can only be used if the underlying filesystem guarantees
834   * that no other references to @src exist. For example attached buffer
835   * heads are accessed only under the folio lock.  If your filesystem cannot
836   * provide this guarantee, buffer_migrate_folio_norefs() may be more
837   * appropriate.
838   *
839   * Return: 0 on success or a negative errno on failure.
840   */
841  int buffer_migrate_folio(struct address_space *mapping,
842  		struct folio *dst, struct folio *src, enum migrate_mode mode)
843  {
844  	return __buffer_migrate_folio(mapping, dst, src, mode, false);
845  }
846  EXPORT_SYMBOL(buffer_migrate_folio);
847  
848  /**
849   * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
850   * @mapping: The address space containing @src.
851   * @dst: The folio to migrate to.
852   * @src: The folio to migrate from.
853   * @mode: How to migrate the folio.
854   *
855   * Like buffer_migrate_folio() except that this variant is more careful
856   * and checks that there are also no buffer head references. This function
857   * is the right one for mappings where buffer heads are directly looked
858   * up and referenced (such as block device mappings).
859   *
860   * Return: 0 on success or a negative errno on failure.
861   */
862  int buffer_migrate_folio_norefs(struct address_space *mapping,
863  		struct folio *dst, struct folio *src, enum migrate_mode mode)
864  {
865  	return __buffer_migrate_folio(mapping, dst, src, mode, true);
866  }
867  EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
868  #endif /* CONFIG_BUFFER_HEAD */
869  
870  int filemap_migrate_folio(struct address_space *mapping,
871  		struct folio *dst, struct folio *src, enum migrate_mode mode)
872  {
873  	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
874  }
875  EXPORT_SYMBOL_GPL(filemap_migrate_folio);
876  
877  /*
878   * Writeback a folio to clean the dirty state
879   */
880  static int writeout(struct address_space *mapping, struct folio *folio)
881  {
882  	struct writeback_control wbc = {
883  		.sync_mode = WB_SYNC_NONE,
884  		.nr_to_write = 1,
885  		.range_start = 0,
886  		.range_end = LLONG_MAX,
887  		.for_reclaim = 1
888  	};
889  	int rc;
890  
891  	if (!mapping->a_ops->writepage)
892  		/* No write method for the address space */
893  		return -EINVAL;
894  
895  	if (!folio_clear_dirty_for_io(folio))
896  		/* Someone else already triggered a write */
897  		return -EAGAIN;
898  
899  	/*
900  	 * A dirty folio may imply that the underlying filesystem has
901  	 * the folio on some queue. So the folio must be clean for
902  	 * migration. Writeout may mean we lose the lock and the
903  	 * folio state is no longer what we checked for earlier.
904  	 * At this point we know that the migration attempt cannot
905  	 * be successful.
906  	 */
907  	remove_migration_ptes(folio, folio, false);
908  
909  	rc = mapping->a_ops->writepage(&folio->page, &wbc);
910  
911  	if (rc != AOP_WRITEPAGE_ACTIVATE)
912  		/* unlocked. Relock */
913  		folio_lock(folio);
914  
915  	return (rc < 0) ? -EIO : -EAGAIN;
916  }
917  
918  /*
919   * Default handling if a filesystem does not provide a migration function.
920   */
921  static int fallback_migrate_folio(struct address_space *mapping,
922  		struct folio *dst, struct folio *src, enum migrate_mode mode)
923  {
924  	if (folio_test_dirty(src)) {
925  		/* Only writeback folios in full synchronous migration */
926  		switch (mode) {
927  		case MIGRATE_SYNC:
928  			break;
929  		default:
930  			return -EBUSY;
931  		}
932  		return writeout(mapping, src);
933  	}
934  
935  	/*
936  	 * Buffers may be managed in a filesystem specific way.
937  	 * We must have no buffers or drop them.
938  	 */
939  	if (!filemap_release_folio(src, GFP_KERNEL))
940  		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
941  
942  	return migrate_folio(mapping, dst, src, mode);
943  }
944  
945  /*
946   * Move a page to a newly allocated page
947   * The page is locked and all ptes have been successfully removed.
948   *
949   * The new page will have replaced the old page if this function
950   * is successful.
951   *
952   * Return value:
953   *   < 0 - error code
954   *  MIGRATEPAGE_SUCCESS - success
955   */
956  static int move_to_new_folio(struct folio *dst, struct folio *src,
957  				enum migrate_mode mode)
958  {
959  	int rc = -EAGAIN;
960  	bool is_lru = !__folio_test_movable(src);
961  
962  	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
963  	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
964  
965  	if (likely(is_lru)) {
966  		struct address_space *mapping = folio_mapping(src);
967  
968  		if (!mapping)
969  			rc = migrate_folio(mapping, dst, src, mode);
970  		else if (mapping_inaccessible(mapping))
971  			rc = -EOPNOTSUPP;
972  		else if (mapping->a_ops->migrate_folio)
973  			/*
974  			 * Most folios have a mapping and most filesystems
975  			 * provide a migrate_folio callback. Anonymous folios
976  			 * are part of swap space which also has its own
977  			 * migrate_folio callback. This is the most common path
978  			 * for page migration.
979  			 */
980  			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
981  								mode);
982  		else
983  			rc = fallback_migrate_folio(mapping, dst, src, mode);
984  	} else {
985  		const struct movable_operations *mops;
986  
987  		/*
988  		 * In case of non-lru page, it could be released after
989  		 * isolation step. In that case, we shouldn't try migration.
990  		 */
991  		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
992  		if (!folio_test_movable(src)) {
993  			rc = MIGRATEPAGE_SUCCESS;
994  			folio_clear_isolated(src);
995  			goto out;
996  		}
997  
998  		mops = folio_movable_ops(src);
999  		rc = mops->migrate_page(&dst->page, &src->page, mode);
1000  		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1001  				!folio_test_isolated(src));
1002  	}
1003  
1004  	/*
1005  	 * When successful, old pagecache src->mapping must be cleared before
1006  	 * src is freed; but stats require that PageAnon be left as PageAnon.
1007  	 */
1008  	if (rc == MIGRATEPAGE_SUCCESS) {
1009  		if (__folio_test_movable(src)) {
1010  			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1011  
1012  			/*
1013  			 * We clear PG_movable under page_lock so any compactor
1014  			 * cannot try to migrate this page.
1015  			 */
1016  			folio_clear_isolated(src);
1017  		}
1018  
1019  		/*
1020  		 * Anonymous and movable src->mapping will be cleared by
1021  		 * free_pages_prepare so don't reset it here for keeping
1022  		 * the type to work PageAnon, for example.
1023  		 */
1024  		if (!folio_mapping_flags(src))
1025  			src->mapping = NULL;
1026  
1027  		if (likely(!folio_is_zone_device(dst)))
1028  			flush_dcache_folio(dst);
1029  	}
1030  out:
1031  	return rc;
1032  }
1033  
1034  /*
1035   * To record some information during migration, we use unused private
1036   * field of struct folio of the newly allocated destination folio.
1037   * This is safe because nobody is using it except us.
1038   */
1039  enum {
1040  	PAGE_WAS_MAPPED = BIT(0),
1041  	PAGE_WAS_MLOCKED = BIT(1),
1042  	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1043  };
1044  
1045  static void __migrate_folio_record(struct folio *dst,
1046  				   int old_page_state,
1047  				   struct anon_vma *anon_vma)
1048  {
1049  	dst->private = (void *)anon_vma + old_page_state;
1050  }
1051  
1052  static void __migrate_folio_extract(struct folio *dst,
1053  				   int *old_page_state,
1054  				   struct anon_vma **anon_vmap)
1055  {
1056  	unsigned long private = (unsigned long)dst->private;
1057  
1058  	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1059  	*old_page_state = private & PAGE_OLD_STATES;
1060  	dst->private = NULL;
1061  }
1062  
1063  /* Restore the source folio to the original state upon failure */
1064  static void migrate_folio_undo_src(struct folio *src,
1065  				   int page_was_mapped,
1066  				   struct anon_vma *anon_vma,
1067  				   bool locked,
1068  				   struct list_head *ret)
1069  {
1070  	if (page_was_mapped)
1071  		remove_migration_ptes(src, src, false);
1072  	/* Drop an anon_vma reference if we took one */
1073  	if (anon_vma)
1074  		put_anon_vma(anon_vma);
1075  	if (locked)
1076  		folio_unlock(src);
1077  	if (ret)
1078  		list_move_tail(&src->lru, ret);
1079  }
1080  
1081  /* Restore the destination folio to the original state upon failure */
1082  static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1083  		free_folio_t put_new_folio, unsigned long private)
1084  {
1085  	if (locked)
1086  		folio_unlock(dst);
1087  	if (put_new_folio)
1088  		put_new_folio(dst, private);
1089  	else
1090  		folio_put(dst);
1091  }
1092  
1093  /* Cleanup src folio upon migration success */
1094  static void migrate_folio_done(struct folio *src,
1095  			       enum migrate_reason reason)
1096  {
1097  	/*
1098  	 * Compaction can migrate also non-LRU pages which are
1099  	 * not accounted to NR_ISOLATED_*. They can be recognized
1100  	 * as __folio_test_movable
1101  	 */
1102  	if (likely(!__folio_test_movable(src)))
1103  		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1104  				    folio_is_file_lru(src), -folio_nr_pages(src));
1105  
1106  	if (reason != MR_MEMORY_FAILURE)
1107  		/* We release the page in page_handle_poison. */
1108  		folio_put(src);
1109  }
1110  
1111  /* Obtain the lock on page, remove all ptes. */
1112  static int migrate_folio_unmap(new_folio_t get_new_folio,
1113  		free_folio_t put_new_folio, unsigned long private,
1114  		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1115  		enum migrate_reason reason, struct list_head *ret)
1116  {
1117  	struct folio *dst;
1118  	int rc = -EAGAIN;
1119  	int old_page_state = 0;
1120  	struct anon_vma *anon_vma = NULL;
1121  	bool is_lru = !__folio_test_movable(src);
1122  	bool locked = false;
1123  	bool dst_locked = false;
1124  
1125  	if (folio_ref_count(src) == 1) {
1126  		/* Folio was freed from under us. So we are done. */
1127  		folio_clear_active(src);
1128  		folio_clear_unevictable(src);
1129  		/* free_pages_prepare() will clear PG_isolated. */
1130  		list_del(&src->lru);
1131  		migrate_folio_done(src, reason);
1132  		return MIGRATEPAGE_SUCCESS;
1133  	}
1134  
1135  	dst = get_new_folio(src, private);
1136  	if (!dst)
1137  		return -ENOMEM;
1138  	*dstp = dst;
1139  
1140  	dst->private = NULL;
1141  
1142  	if (!folio_trylock(src)) {
1143  		if (mode == MIGRATE_ASYNC)
1144  			goto out;
1145  
1146  		/*
1147  		 * It's not safe for direct compaction to call lock_page.
1148  		 * For example, during page readahead pages are added locked
1149  		 * to the LRU. Later, when the IO completes the pages are
1150  		 * marked uptodate and unlocked. However, the queueing
1151  		 * could be merging multiple pages for one bio (e.g.
1152  		 * mpage_readahead). If an allocation happens for the
1153  		 * second or third page, the process can end up locking
1154  		 * the same page twice and deadlocking. Rather than
1155  		 * trying to be clever about what pages can be locked,
1156  		 * avoid the use of lock_page for direct compaction
1157  		 * altogether.
1158  		 */
1159  		if (current->flags & PF_MEMALLOC)
1160  			goto out;
1161  
1162  		/*
1163  		 * In "light" mode, we can wait for transient locks (eg
1164  		 * inserting a page into the page table), but it's not
1165  		 * worth waiting for I/O.
1166  		 */
1167  		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1168  			goto out;
1169  
1170  		folio_lock(src);
1171  	}
1172  	locked = true;
1173  	if (folio_test_mlocked(src))
1174  		old_page_state |= PAGE_WAS_MLOCKED;
1175  
1176  	if (folio_test_writeback(src)) {
1177  		/*
1178  		 * Only in the case of a full synchronous migration is it
1179  		 * necessary to wait for PageWriteback. In the async case,
1180  		 * the retry loop is too short and in the sync-light case,
1181  		 * the overhead of stalling is too much
1182  		 */
1183  		switch (mode) {
1184  		case MIGRATE_SYNC:
1185  			break;
1186  		default:
1187  			rc = -EBUSY;
1188  			goto out;
1189  		}
1190  		folio_wait_writeback(src);
1191  	}
1192  
1193  	/*
1194  	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1195  	 * we cannot notice that anon_vma is freed while we migrate a page.
1196  	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1197  	 * of migration. File cache pages are no problem because of page_lock()
1198  	 * File Caches may use write_page() or lock_page() in migration, then,
1199  	 * just care Anon page here.
1200  	 *
1201  	 * Only folio_get_anon_vma() understands the subtleties of
1202  	 * getting a hold on an anon_vma from outside one of its mms.
1203  	 * But if we cannot get anon_vma, then we won't need it anyway,
1204  	 * because that implies that the anon page is no longer mapped
1205  	 * (and cannot be remapped so long as we hold the page lock).
1206  	 */
1207  	if (folio_test_anon(src) && !folio_test_ksm(src))
1208  		anon_vma = folio_get_anon_vma(src);
1209  
1210  	/*
1211  	 * Block others from accessing the new page when we get around to
1212  	 * establishing additional references. We are usually the only one
1213  	 * holding a reference to dst at this point. We used to have a BUG
1214  	 * here if folio_trylock(dst) fails, but would like to allow for
1215  	 * cases where there might be a race with the previous use of dst.
1216  	 * This is much like races on refcount of oldpage: just don't BUG().
1217  	 */
1218  	if (unlikely(!folio_trylock(dst)))
1219  		goto out;
1220  	dst_locked = true;
1221  
1222  	if (unlikely(!is_lru)) {
1223  		__migrate_folio_record(dst, old_page_state, anon_vma);
1224  		return MIGRATEPAGE_UNMAP;
1225  	}
1226  
1227  	/*
1228  	 * Corner case handling:
1229  	 * 1. When a new swap-cache page is read into, it is added to the LRU
1230  	 * and treated as swapcache but it has no rmap yet.
1231  	 * Calling try_to_unmap() against a src->mapping==NULL page will
1232  	 * trigger a BUG.  So handle it here.
1233  	 * 2. An orphaned page (see truncate_cleanup_page) might have
1234  	 * fs-private metadata. The page can be picked up due to memory
1235  	 * offlining.  Everywhere else except page reclaim, the page is
1236  	 * invisible to the vm, so the page can not be migrated.  So try to
1237  	 * free the metadata, so the page can be freed.
1238  	 */
1239  	if (!src->mapping) {
1240  		if (folio_test_private(src)) {
1241  			try_to_free_buffers(src);
1242  			goto out;
1243  		}
1244  	} else if (folio_mapped(src)) {
1245  		/* Establish migration ptes */
1246  		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1247  			       !folio_test_ksm(src) && !anon_vma, src);
1248  		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1249  		old_page_state |= PAGE_WAS_MAPPED;
1250  	}
1251  
1252  	if (!folio_mapped(src)) {
1253  		__migrate_folio_record(dst, old_page_state, anon_vma);
1254  		return MIGRATEPAGE_UNMAP;
1255  	}
1256  
1257  out:
1258  	/*
1259  	 * A folio that has not been unmapped will be restored to
1260  	 * right list unless we want to retry.
1261  	 */
1262  	if (rc == -EAGAIN)
1263  		ret = NULL;
1264  
1265  	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1266  			       anon_vma, locked, ret);
1267  	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1268  
1269  	return rc;
1270  }
1271  
1272  /* Migrate the folio to the newly allocated folio in dst. */
1273  static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1274  			      struct folio *src, struct folio *dst,
1275  			      enum migrate_mode mode, enum migrate_reason reason,
1276  			      struct list_head *ret)
1277  {
1278  	int rc;
1279  	int old_page_state = 0;
1280  	struct anon_vma *anon_vma = NULL;
1281  	bool is_lru = !__folio_test_movable(src);
1282  	struct list_head *prev;
1283  
1284  	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1285  	prev = dst->lru.prev;
1286  	list_del(&dst->lru);
1287  
1288  	rc = move_to_new_folio(dst, src, mode);
1289  	if (rc)
1290  		goto out;
1291  
1292  	if (unlikely(!is_lru))
1293  		goto out_unlock_both;
1294  
1295  	/*
1296  	 * When successful, push dst to LRU immediately: so that if it
1297  	 * turns out to be an mlocked page, remove_migration_ptes() will
1298  	 * automatically build up the correct dst->mlock_count for it.
1299  	 *
1300  	 * We would like to do something similar for the old page, when
1301  	 * unsuccessful, and other cases when a page has been temporarily
1302  	 * isolated from the unevictable LRU: but this case is the easiest.
1303  	 */
1304  	folio_add_lru(dst);
1305  	if (old_page_state & PAGE_WAS_MLOCKED)
1306  		lru_add_drain();
1307  
1308  	if (old_page_state & PAGE_WAS_MAPPED)
1309  		remove_migration_ptes(src, dst, false);
1310  
1311  out_unlock_both:
1312  	folio_unlock(dst);
1313  	set_page_owner_migrate_reason(&dst->page, reason);
1314  	/*
1315  	 * If migration is successful, decrease refcount of dst,
1316  	 * which will not free the page because new page owner increased
1317  	 * refcounter.
1318  	 */
1319  	folio_put(dst);
1320  
1321  	/*
1322  	 * A folio that has been migrated has all references removed
1323  	 * and will be freed.
1324  	 */
1325  	list_del(&src->lru);
1326  	/* Drop an anon_vma reference if we took one */
1327  	if (anon_vma)
1328  		put_anon_vma(anon_vma);
1329  	folio_unlock(src);
1330  	migrate_folio_done(src, reason);
1331  
1332  	return rc;
1333  out:
1334  	/*
1335  	 * A folio that has not been migrated will be restored to
1336  	 * right list unless we want to retry.
1337  	 */
1338  	if (rc == -EAGAIN) {
1339  		list_add(&dst->lru, prev);
1340  		__migrate_folio_record(dst, old_page_state, anon_vma);
1341  		return rc;
1342  	}
1343  
1344  	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1345  			       anon_vma, true, ret);
1346  	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1347  
1348  	return rc;
1349  }
1350  
1351  /*
1352   * Counterpart of unmap_and_move_page() for hugepage migration.
1353   *
1354   * This function doesn't wait the completion of hugepage I/O
1355   * because there is no race between I/O and migration for hugepage.
1356   * Note that currently hugepage I/O occurs only in direct I/O
1357   * where no lock is held and PG_writeback is irrelevant,
1358   * and writeback status of all subpages are counted in the reference
1359   * count of the head page (i.e. if all subpages of a 2MB hugepage are
1360   * under direct I/O, the reference of the head page is 512 and a bit more.)
1361   * This means that when we try to migrate hugepage whose subpages are
1362   * doing direct I/O, some references remain after try_to_unmap() and
1363   * hugepage migration fails without data corruption.
1364   *
1365   * There is also no race when direct I/O is issued on the page under migration,
1366   * because then pte is replaced with migration swap entry and direct I/O code
1367   * will wait in the page fault for migration to complete.
1368   */
1369  static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1370  		free_folio_t put_new_folio, unsigned long private,
1371  		struct folio *src, int force, enum migrate_mode mode,
1372  		int reason, struct list_head *ret)
1373  {
1374  	struct folio *dst;
1375  	int rc = -EAGAIN;
1376  	int page_was_mapped = 0;
1377  	struct anon_vma *anon_vma = NULL;
1378  	struct address_space *mapping = NULL;
1379  
1380  	if (folio_ref_count(src) == 1) {
1381  		/* page was freed from under us. So we are done. */
1382  		folio_putback_active_hugetlb(src);
1383  		return MIGRATEPAGE_SUCCESS;
1384  	}
1385  
1386  	dst = get_new_folio(src, private);
1387  	if (!dst)
1388  		return -ENOMEM;
1389  
1390  	if (!folio_trylock(src)) {
1391  		if (!force)
1392  			goto out;
1393  		switch (mode) {
1394  		case MIGRATE_SYNC:
1395  			break;
1396  		default:
1397  			goto out;
1398  		}
1399  		folio_lock(src);
1400  	}
1401  
1402  	/*
1403  	 * Check for pages which are in the process of being freed.  Without
1404  	 * folio_mapping() set, hugetlbfs specific move page routine will not
1405  	 * be called and we could leak usage counts for subpools.
1406  	 */
1407  	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1408  		rc = -EBUSY;
1409  		goto out_unlock;
1410  	}
1411  
1412  	if (folio_test_anon(src))
1413  		anon_vma = folio_get_anon_vma(src);
1414  
1415  	if (unlikely(!folio_trylock(dst)))
1416  		goto put_anon;
1417  
1418  	if (folio_mapped(src)) {
1419  		enum ttu_flags ttu = 0;
1420  
1421  		if (!folio_test_anon(src)) {
1422  			/*
1423  			 * In shared mappings, try_to_unmap could potentially
1424  			 * call huge_pmd_unshare.  Because of this, take
1425  			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1426  			 * to let lower levels know we have taken the lock.
1427  			 */
1428  			mapping = hugetlb_folio_mapping_lock_write(src);
1429  			if (unlikely(!mapping))
1430  				goto unlock_put_anon;
1431  
1432  			ttu = TTU_RMAP_LOCKED;
1433  		}
1434  
1435  		try_to_migrate(src, ttu);
1436  		page_was_mapped = 1;
1437  
1438  		if (ttu & TTU_RMAP_LOCKED)
1439  			i_mmap_unlock_write(mapping);
1440  	}
1441  
1442  	if (!folio_mapped(src))
1443  		rc = move_to_new_folio(dst, src, mode);
1444  
1445  	if (page_was_mapped)
1446  		remove_migration_ptes(src,
1447  			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1448  
1449  unlock_put_anon:
1450  	folio_unlock(dst);
1451  
1452  put_anon:
1453  	if (anon_vma)
1454  		put_anon_vma(anon_vma);
1455  
1456  	if (rc == MIGRATEPAGE_SUCCESS) {
1457  		move_hugetlb_state(src, dst, reason);
1458  		put_new_folio = NULL;
1459  	}
1460  
1461  out_unlock:
1462  	folio_unlock(src);
1463  out:
1464  	if (rc == MIGRATEPAGE_SUCCESS)
1465  		folio_putback_active_hugetlb(src);
1466  	else if (rc != -EAGAIN)
1467  		list_move_tail(&src->lru, ret);
1468  
1469  	/*
1470  	 * If migration was not successful and there's a freeing callback, use
1471  	 * it.  Otherwise, put_page() will drop the reference grabbed during
1472  	 * isolation.
1473  	 */
1474  	if (put_new_folio)
1475  		put_new_folio(dst, private);
1476  	else
1477  		folio_putback_active_hugetlb(dst);
1478  
1479  	return rc;
1480  }
1481  
1482  static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1483  				  enum migrate_mode mode)
1484  {
1485  	int rc;
1486  
1487  	if (mode == MIGRATE_ASYNC) {
1488  		if (!folio_trylock(folio))
1489  			return -EAGAIN;
1490  	} else {
1491  		folio_lock(folio);
1492  	}
1493  	rc = split_folio_to_list(folio, split_folios);
1494  	folio_unlock(folio);
1495  	if (!rc)
1496  		list_move_tail(&folio->lru, split_folios);
1497  
1498  	return rc;
1499  }
1500  
1501  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1502  #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1503  #else
1504  #define NR_MAX_BATCHED_MIGRATION	512
1505  #endif
1506  #define NR_MAX_MIGRATE_PAGES_RETRY	10
1507  #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1508  #define NR_MAX_MIGRATE_SYNC_RETRY					\
1509  	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1510  
1511  struct migrate_pages_stats {
1512  	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1513  				   units of base pages */
1514  	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1515  				   units of base pages.  Untried folios aren't counted */
1516  	int nr_thp_succeeded;	/* THP migrated successfully */
1517  	int nr_thp_failed;	/* THP failed to be migrated */
1518  	int nr_thp_split;	/* THP split before migrating */
1519  	int nr_split;	/* Large folio (include THP) split before migrating */
1520  };
1521  
1522  /*
1523   * Returns the number of hugetlb folios that were not migrated, or an error code
1524   * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1525   * any more because the list has become empty or no retryable hugetlb folios
1526   * exist any more. It is caller's responsibility to call putback_movable_pages()
1527   * only if ret != 0.
1528   */
1529  static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1530  			    free_folio_t put_new_folio, unsigned long private,
1531  			    enum migrate_mode mode, int reason,
1532  			    struct migrate_pages_stats *stats,
1533  			    struct list_head *ret_folios)
1534  {
1535  	int retry = 1;
1536  	int nr_failed = 0;
1537  	int nr_retry_pages = 0;
1538  	int pass = 0;
1539  	struct folio *folio, *folio2;
1540  	int rc, nr_pages;
1541  
1542  	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1543  		retry = 0;
1544  		nr_retry_pages = 0;
1545  
1546  		list_for_each_entry_safe(folio, folio2, from, lru) {
1547  			if (!folio_test_hugetlb(folio))
1548  				continue;
1549  
1550  			nr_pages = folio_nr_pages(folio);
1551  
1552  			cond_resched();
1553  
1554  			/*
1555  			 * Migratability of hugepages depends on architectures and
1556  			 * their size.  This check is necessary because some callers
1557  			 * of hugepage migration like soft offline and memory
1558  			 * hotremove don't walk through page tables or check whether
1559  			 * the hugepage is pmd-based or not before kicking migration.
1560  			 */
1561  			if (!hugepage_migration_supported(folio_hstate(folio))) {
1562  				nr_failed++;
1563  				stats->nr_failed_pages += nr_pages;
1564  				list_move_tail(&folio->lru, ret_folios);
1565  				continue;
1566  			}
1567  
1568  			rc = unmap_and_move_huge_page(get_new_folio,
1569  						      put_new_folio, private,
1570  						      folio, pass > 2, mode,
1571  						      reason, ret_folios);
1572  			/*
1573  			 * The rules are:
1574  			 *	Success: hugetlb folio will be put back
1575  			 *	-EAGAIN: stay on the from list
1576  			 *	-ENOMEM: stay on the from list
1577  			 *	Other errno: put on ret_folios list
1578  			 */
1579  			switch(rc) {
1580  			case -ENOMEM:
1581  				/*
1582  				 * When memory is low, don't bother to try to migrate
1583  				 * other folios, just exit.
1584  				 */
1585  				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1586  				return -ENOMEM;
1587  			case -EAGAIN:
1588  				retry++;
1589  				nr_retry_pages += nr_pages;
1590  				break;
1591  			case MIGRATEPAGE_SUCCESS:
1592  				stats->nr_succeeded += nr_pages;
1593  				break;
1594  			default:
1595  				/*
1596  				 * Permanent failure (-EBUSY, etc.):
1597  				 * unlike -EAGAIN case, the failed folio is
1598  				 * removed from migration folio list and not
1599  				 * retried in the next outer loop.
1600  				 */
1601  				nr_failed++;
1602  				stats->nr_failed_pages += nr_pages;
1603  				break;
1604  			}
1605  		}
1606  	}
1607  	/*
1608  	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1609  	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1610  	 * folios as failed.
1611  	 */
1612  	nr_failed += retry;
1613  	stats->nr_failed_pages += nr_retry_pages;
1614  
1615  	return nr_failed;
1616  }
1617  
1618  /*
1619   * migrate_pages_batch() first unmaps folios in the from list as many as
1620   * possible, then move the unmapped folios.
1621   *
1622   * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1623   * lock or bit when we have locked more than one folio.  Which may cause
1624   * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1625   * length of the from list must be <= 1.
1626   */
1627  static int migrate_pages_batch(struct list_head *from,
1628  		new_folio_t get_new_folio, free_folio_t put_new_folio,
1629  		unsigned long private, enum migrate_mode mode, int reason,
1630  		struct list_head *ret_folios, struct list_head *split_folios,
1631  		struct migrate_pages_stats *stats, int nr_pass)
1632  {
1633  	int retry = 1;
1634  	int thp_retry = 1;
1635  	int nr_failed = 0;
1636  	int nr_retry_pages = 0;
1637  	int pass = 0;
1638  	bool is_thp = false;
1639  	bool is_large = false;
1640  	struct folio *folio, *folio2, *dst = NULL, *dst2;
1641  	int rc, rc_saved = 0, nr_pages;
1642  	LIST_HEAD(unmap_folios);
1643  	LIST_HEAD(dst_folios);
1644  	bool nosplit = (reason == MR_NUMA_MISPLACED);
1645  
1646  	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1647  			!list_empty(from) && !list_is_singular(from));
1648  
1649  	for (pass = 0; pass < nr_pass && retry; pass++) {
1650  		retry = 0;
1651  		thp_retry = 0;
1652  		nr_retry_pages = 0;
1653  
1654  		list_for_each_entry_safe(folio, folio2, from, lru) {
1655  			is_large = folio_test_large(folio);
1656  			is_thp = is_large && folio_test_pmd_mappable(folio);
1657  			nr_pages = folio_nr_pages(folio);
1658  
1659  			cond_resched();
1660  
1661  			/*
1662  			 * The rare folio on the deferred split list should
1663  			 * be split now. It should not count as a failure:
1664  			 * but increment nr_failed because, without doing so,
1665  			 * migrate_pages() may report success with (split but
1666  			 * unmigrated) pages still on its fromlist; whereas it
1667  			 * always reports success when its fromlist is empty.
1668  			 * stats->nr_thp_failed should be increased too,
1669  			 * otherwise stats inconsistency will happen when
1670  			 * migrate_pages_batch is called via migrate_pages()
1671  			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1672  			 *
1673  			 * Only check it without removing it from the list.
1674  			 * Since the folio can be on deferred_split_scan()
1675  			 * local list and removing it can cause the local list
1676  			 * corruption. Folio split process below can handle it
1677  			 * with the help of folio_ref_freeze().
1678  			 *
1679  			 * nr_pages > 2 is needed to avoid checking order-1
1680  			 * page cache folios. They exist, in contrast to
1681  			 * non-existent order-1 anonymous folios, and do not
1682  			 * use _deferred_list.
1683  			 */
1684  			if (nr_pages > 2 &&
1685  			   !list_empty(&folio->_deferred_list)) {
1686  				if (!try_split_folio(folio, split_folios, mode)) {
1687  					nr_failed++;
1688  					stats->nr_thp_failed += is_thp;
1689  					stats->nr_thp_split += is_thp;
1690  					stats->nr_split++;
1691  					continue;
1692  				}
1693  			}
1694  
1695  			/*
1696  			 * Large folio migration might be unsupported or
1697  			 * the allocation might be failed so we should retry
1698  			 * on the same folio with the large folio split
1699  			 * to normal folios.
1700  			 *
1701  			 * Split folios are put in split_folios, and
1702  			 * we will migrate them after the rest of the
1703  			 * list is processed.
1704  			 */
1705  			if (!thp_migration_supported() && is_thp) {
1706  				nr_failed++;
1707  				stats->nr_thp_failed++;
1708  				if (!try_split_folio(folio, split_folios, mode)) {
1709  					stats->nr_thp_split++;
1710  					stats->nr_split++;
1711  					continue;
1712  				}
1713  				stats->nr_failed_pages += nr_pages;
1714  				list_move_tail(&folio->lru, ret_folios);
1715  				continue;
1716  			}
1717  
1718  			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1719  					private, folio, &dst, mode, reason,
1720  					ret_folios);
1721  			/*
1722  			 * The rules are:
1723  			 *	Success: folio will be freed
1724  			 *	Unmap: folio will be put on unmap_folios list,
1725  			 *	       dst folio put on dst_folios list
1726  			 *	-EAGAIN: stay on the from list
1727  			 *	-ENOMEM: stay on the from list
1728  			 *	Other errno: put on ret_folios list
1729  			 */
1730  			switch(rc) {
1731  			case -ENOMEM:
1732  				/*
1733  				 * When memory is low, don't bother to try to migrate
1734  				 * other folios, move unmapped folios, then exit.
1735  				 */
1736  				nr_failed++;
1737  				stats->nr_thp_failed += is_thp;
1738  				/* Large folio NUMA faulting doesn't split to retry. */
1739  				if (is_large && !nosplit) {
1740  					int ret = try_split_folio(folio, split_folios, mode);
1741  
1742  					if (!ret) {
1743  						stats->nr_thp_split += is_thp;
1744  						stats->nr_split++;
1745  						break;
1746  					} else if (reason == MR_LONGTERM_PIN &&
1747  						   ret == -EAGAIN) {
1748  						/*
1749  						 * Try again to split large folio to
1750  						 * mitigate the failure of longterm pinning.
1751  						 */
1752  						retry++;
1753  						thp_retry += is_thp;
1754  						nr_retry_pages += nr_pages;
1755  						/* Undo duplicated failure counting. */
1756  						nr_failed--;
1757  						stats->nr_thp_failed -= is_thp;
1758  						break;
1759  					}
1760  				}
1761  
1762  				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1763  				/* nr_failed isn't updated for not used */
1764  				stats->nr_thp_failed += thp_retry;
1765  				rc_saved = rc;
1766  				if (list_empty(&unmap_folios))
1767  					goto out;
1768  				else
1769  					goto move;
1770  			case -EAGAIN:
1771  				retry++;
1772  				thp_retry += is_thp;
1773  				nr_retry_pages += nr_pages;
1774  				break;
1775  			case MIGRATEPAGE_SUCCESS:
1776  				stats->nr_succeeded += nr_pages;
1777  				stats->nr_thp_succeeded += is_thp;
1778  				break;
1779  			case MIGRATEPAGE_UNMAP:
1780  				list_move_tail(&folio->lru, &unmap_folios);
1781  				list_add_tail(&dst->lru, &dst_folios);
1782  				break;
1783  			default:
1784  				/*
1785  				 * Permanent failure (-EBUSY, etc.):
1786  				 * unlike -EAGAIN case, the failed folio is
1787  				 * removed from migration folio list and not
1788  				 * retried in the next outer loop.
1789  				 */
1790  				nr_failed++;
1791  				stats->nr_thp_failed += is_thp;
1792  				stats->nr_failed_pages += nr_pages;
1793  				break;
1794  			}
1795  		}
1796  	}
1797  	nr_failed += retry;
1798  	stats->nr_thp_failed += thp_retry;
1799  	stats->nr_failed_pages += nr_retry_pages;
1800  move:
1801  	/* Flush TLBs for all unmapped folios */
1802  	try_to_unmap_flush();
1803  
1804  	retry = 1;
1805  	for (pass = 0; pass < nr_pass && retry; pass++) {
1806  		retry = 0;
1807  		thp_retry = 0;
1808  		nr_retry_pages = 0;
1809  
1810  		dst = list_first_entry(&dst_folios, struct folio, lru);
1811  		dst2 = list_next_entry(dst, lru);
1812  		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1813  			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1814  			nr_pages = folio_nr_pages(folio);
1815  
1816  			cond_resched();
1817  
1818  			rc = migrate_folio_move(put_new_folio, private,
1819  						folio, dst, mode,
1820  						reason, ret_folios);
1821  			/*
1822  			 * The rules are:
1823  			 *	Success: folio will be freed
1824  			 *	-EAGAIN: stay on the unmap_folios list
1825  			 *	Other errno: put on ret_folios list
1826  			 */
1827  			switch(rc) {
1828  			case -EAGAIN:
1829  				retry++;
1830  				thp_retry += is_thp;
1831  				nr_retry_pages += nr_pages;
1832  				break;
1833  			case MIGRATEPAGE_SUCCESS:
1834  				stats->nr_succeeded += nr_pages;
1835  				stats->nr_thp_succeeded += is_thp;
1836  				break;
1837  			default:
1838  				nr_failed++;
1839  				stats->nr_thp_failed += is_thp;
1840  				stats->nr_failed_pages += nr_pages;
1841  				break;
1842  			}
1843  			dst = dst2;
1844  			dst2 = list_next_entry(dst, lru);
1845  		}
1846  	}
1847  	nr_failed += retry;
1848  	stats->nr_thp_failed += thp_retry;
1849  	stats->nr_failed_pages += nr_retry_pages;
1850  
1851  	rc = rc_saved ? : nr_failed;
1852  out:
1853  	/* Cleanup remaining folios */
1854  	dst = list_first_entry(&dst_folios, struct folio, lru);
1855  	dst2 = list_next_entry(dst, lru);
1856  	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1857  		int old_page_state = 0;
1858  		struct anon_vma *anon_vma = NULL;
1859  
1860  		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1861  		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1862  				       anon_vma, true, ret_folios);
1863  		list_del(&dst->lru);
1864  		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1865  		dst = dst2;
1866  		dst2 = list_next_entry(dst, lru);
1867  	}
1868  
1869  	return rc;
1870  }
1871  
1872  static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1873  		free_folio_t put_new_folio, unsigned long private,
1874  		enum migrate_mode mode, int reason,
1875  		struct list_head *ret_folios, struct list_head *split_folios,
1876  		struct migrate_pages_stats *stats)
1877  {
1878  	int rc, nr_failed = 0;
1879  	LIST_HEAD(folios);
1880  	struct migrate_pages_stats astats;
1881  
1882  	memset(&astats, 0, sizeof(astats));
1883  	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1884  	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1885  				 reason, &folios, split_folios, &astats,
1886  				 NR_MAX_MIGRATE_ASYNC_RETRY);
1887  	stats->nr_succeeded += astats.nr_succeeded;
1888  	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1889  	stats->nr_thp_split += astats.nr_thp_split;
1890  	stats->nr_split += astats.nr_split;
1891  	if (rc < 0) {
1892  		stats->nr_failed_pages += astats.nr_failed_pages;
1893  		stats->nr_thp_failed += astats.nr_thp_failed;
1894  		list_splice_tail(&folios, ret_folios);
1895  		return rc;
1896  	}
1897  	stats->nr_thp_failed += astats.nr_thp_split;
1898  	/*
1899  	 * Do not count rc, as pages will be retried below.
1900  	 * Count nr_split only, since it includes nr_thp_split.
1901  	 */
1902  	nr_failed += astats.nr_split;
1903  	/*
1904  	 * Fall back to migrate all failed folios one by one synchronously. All
1905  	 * failed folios except split THPs will be retried, so their failure
1906  	 * isn't counted
1907  	 */
1908  	list_splice_tail_init(&folios, from);
1909  	while (!list_empty(from)) {
1910  		list_move(from->next, &folios);
1911  		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1912  					 private, mode, reason, ret_folios,
1913  					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1914  		list_splice_tail_init(&folios, ret_folios);
1915  		if (rc < 0)
1916  			return rc;
1917  		nr_failed += rc;
1918  	}
1919  
1920  	return nr_failed;
1921  }
1922  
1923  /*
1924   * migrate_pages - migrate the folios specified in a list, to the free folios
1925   *		   supplied as the target for the page migration
1926   *
1927   * @from:		The list of folios to be migrated.
1928   * @get_new_folio:	The function used to allocate free folios to be used
1929   *			as the target of the folio migration.
1930   * @put_new_folio:	The function used to free target folios if migration
1931   *			fails, or NULL if no special handling is necessary.
1932   * @private:		Private data to be passed on to get_new_folio()
1933   * @mode:		The migration mode that specifies the constraints for
1934   *			folio migration, if any.
1935   * @reason:		The reason for folio migration.
1936   * @ret_succeeded:	Set to the number of folios migrated successfully if
1937   *			the caller passes a non-NULL pointer.
1938   *
1939   * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1940   * are movable any more because the list has become empty or no retryable folios
1941   * exist any more. It is caller's responsibility to call putback_movable_pages()
1942   * only if ret != 0.
1943   *
1944   * Returns the number of {normal folio, large folio, hugetlb} that were not
1945   * migrated, or an error code. The number of large folio splits will be
1946   * considered as the number of non-migrated large folio, no matter how many
1947   * split folios of the large folio are migrated successfully.
1948   */
1949  int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1950  		free_folio_t put_new_folio, unsigned long private,
1951  		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1952  {
1953  	int rc, rc_gather;
1954  	int nr_pages;
1955  	struct folio *folio, *folio2;
1956  	LIST_HEAD(folios);
1957  	LIST_HEAD(ret_folios);
1958  	LIST_HEAD(split_folios);
1959  	struct migrate_pages_stats stats;
1960  
1961  	trace_mm_migrate_pages_start(mode, reason);
1962  
1963  	memset(&stats, 0, sizeof(stats));
1964  
1965  	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1966  				     mode, reason, &stats, &ret_folios);
1967  	if (rc_gather < 0)
1968  		goto out;
1969  
1970  again:
1971  	nr_pages = 0;
1972  	list_for_each_entry_safe(folio, folio2, from, lru) {
1973  		/* Retried hugetlb folios will be kept in list  */
1974  		if (folio_test_hugetlb(folio)) {
1975  			list_move_tail(&folio->lru, &ret_folios);
1976  			continue;
1977  		}
1978  
1979  		nr_pages += folio_nr_pages(folio);
1980  		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1981  			break;
1982  	}
1983  	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1984  		list_cut_before(&folios, from, &folio2->lru);
1985  	else
1986  		list_splice_init(from, &folios);
1987  	if (mode == MIGRATE_ASYNC)
1988  		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1989  				private, mode, reason, &ret_folios,
1990  				&split_folios, &stats,
1991  				NR_MAX_MIGRATE_PAGES_RETRY);
1992  	else
1993  		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1994  				private, mode, reason, &ret_folios,
1995  				&split_folios, &stats);
1996  	list_splice_tail_init(&folios, &ret_folios);
1997  	if (rc < 0) {
1998  		rc_gather = rc;
1999  		list_splice_tail(&split_folios, &ret_folios);
2000  		goto out;
2001  	}
2002  	if (!list_empty(&split_folios)) {
2003  		/*
2004  		 * Failure isn't counted since all split folios of a large folio
2005  		 * is counted as 1 failure already.  And, we only try to migrate
2006  		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2007  		 */
2008  		migrate_pages_batch(&split_folios, get_new_folio,
2009  				put_new_folio, private, MIGRATE_ASYNC, reason,
2010  				&ret_folios, NULL, &stats, 1);
2011  		list_splice_tail_init(&split_folios, &ret_folios);
2012  	}
2013  	rc_gather += rc;
2014  	if (!list_empty(from))
2015  		goto again;
2016  out:
2017  	/*
2018  	 * Put the permanent failure folio back to migration list, they
2019  	 * will be put back to the right list by the caller.
2020  	 */
2021  	list_splice(&ret_folios, from);
2022  
2023  	/*
2024  	 * Return 0 in case all split folios of fail-to-migrate large folios
2025  	 * are migrated successfully.
2026  	 */
2027  	if (list_empty(from))
2028  		rc_gather = 0;
2029  
2030  	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2031  	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2032  	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2033  	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2034  	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2035  	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2036  			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2037  			       stats.nr_thp_split, stats.nr_split, mode,
2038  			       reason);
2039  
2040  	if (ret_succeeded)
2041  		*ret_succeeded = stats.nr_succeeded;
2042  
2043  	return rc_gather;
2044  }
2045  
2046  struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2047  {
2048  	struct migration_target_control *mtc;
2049  	gfp_t gfp_mask;
2050  	unsigned int order = 0;
2051  	int nid;
2052  	int zidx;
2053  
2054  	mtc = (struct migration_target_control *)private;
2055  	gfp_mask = mtc->gfp_mask;
2056  	nid = mtc->nid;
2057  	if (nid == NUMA_NO_NODE)
2058  		nid = folio_nid(src);
2059  
2060  	if (folio_test_hugetlb(src)) {
2061  		struct hstate *h = folio_hstate(src);
2062  
2063  		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2064  		return alloc_hugetlb_folio_nodemask(h, nid,
2065  						mtc->nmask, gfp_mask,
2066  						htlb_allow_alloc_fallback(mtc->reason));
2067  	}
2068  
2069  	if (folio_test_large(src)) {
2070  		/*
2071  		 * clear __GFP_RECLAIM to make the migration callback
2072  		 * consistent with regular THP allocations.
2073  		 */
2074  		gfp_mask &= ~__GFP_RECLAIM;
2075  		gfp_mask |= GFP_TRANSHUGE;
2076  		order = folio_order(src);
2077  	}
2078  	zidx = zone_idx(folio_zone(src));
2079  	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2080  		gfp_mask |= __GFP_HIGHMEM;
2081  
2082  	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2083  }
2084  
2085  #ifdef CONFIG_NUMA
2086  
2087  static int store_status(int __user *status, int start, int value, int nr)
2088  {
2089  	while (nr-- > 0) {
2090  		if (put_user(value, status + start))
2091  			return -EFAULT;
2092  		start++;
2093  	}
2094  
2095  	return 0;
2096  }
2097  
2098  static int do_move_pages_to_node(struct list_head *pagelist, int node)
2099  {
2100  	int err;
2101  	struct migration_target_control mtc = {
2102  		.nid = node,
2103  		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2104  		.reason = MR_SYSCALL,
2105  	};
2106  
2107  	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2108  		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2109  	if (err)
2110  		putback_movable_pages(pagelist);
2111  	return err;
2112  }
2113  
2114  /*
2115   * Resolves the given address to a struct page, isolates it from the LRU and
2116   * puts it to the given pagelist.
2117   * Returns:
2118   *     errno - if the page cannot be found/isolated
2119   *     0 - when it doesn't have to be migrated because it is already on the
2120   *         target node
2121   *     1 - when it has been queued
2122   */
2123  static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2124  		int node, struct list_head *pagelist, bool migrate_all)
2125  {
2126  	struct vm_area_struct *vma;
2127  	unsigned long addr;
2128  	struct page *page;
2129  	struct folio *folio;
2130  	int err;
2131  
2132  	mmap_read_lock(mm);
2133  	addr = (unsigned long)untagged_addr_remote(mm, p);
2134  
2135  	err = -EFAULT;
2136  	vma = vma_lookup(mm, addr);
2137  	if (!vma || !vma_migratable(vma))
2138  		goto out;
2139  
2140  	/* FOLL_DUMP to ignore special (like zero) pages */
2141  	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2142  
2143  	err = PTR_ERR(page);
2144  	if (IS_ERR(page))
2145  		goto out;
2146  
2147  	err = -ENOENT;
2148  	if (!page)
2149  		goto out;
2150  
2151  	folio = page_folio(page);
2152  	if (folio_is_zone_device(folio))
2153  		goto out_putfolio;
2154  
2155  	err = 0;
2156  	if (folio_nid(folio) == node)
2157  		goto out_putfolio;
2158  
2159  	err = -EACCES;
2160  	if (folio_likely_mapped_shared(folio) && !migrate_all)
2161  		goto out_putfolio;
2162  
2163  	err = -EBUSY;
2164  	if (folio_test_hugetlb(folio)) {
2165  		if (isolate_hugetlb(folio, pagelist))
2166  			err = 1;
2167  	} else {
2168  		if (!folio_isolate_lru(folio))
2169  			goto out_putfolio;
2170  
2171  		err = 1;
2172  		list_add_tail(&folio->lru, pagelist);
2173  		node_stat_mod_folio(folio,
2174  			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2175  			folio_nr_pages(folio));
2176  	}
2177  out_putfolio:
2178  	/*
2179  	 * Either remove the duplicate refcount from folio_isolate_lru()
2180  	 * or drop the folio ref if it was not isolated.
2181  	 */
2182  	folio_put(folio);
2183  out:
2184  	mmap_read_unlock(mm);
2185  	return err;
2186  }
2187  
2188  static int move_pages_and_store_status(int node,
2189  		struct list_head *pagelist, int __user *status,
2190  		int start, int i, unsigned long nr_pages)
2191  {
2192  	int err;
2193  
2194  	if (list_empty(pagelist))
2195  		return 0;
2196  
2197  	err = do_move_pages_to_node(pagelist, node);
2198  	if (err) {
2199  		/*
2200  		 * Positive err means the number of failed
2201  		 * pages to migrate.  Since we are going to
2202  		 * abort and return the number of non-migrated
2203  		 * pages, so need to include the rest of the
2204  		 * nr_pages that have not been attempted as
2205  		 * well.
2206  		 */
2207  		if (err > 0)
2208  			err += nr_pages - i;
2209  		return err;
2210  	}
2211  	return store_status(status, start, node, i - start);
2212  }
2213  
2214  /*
2215   * Migrate an array of page address onto an array of nodes and fill
2216   * the corresponding array of status.
2217   */
2218  static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2219  			 unsigned long nr_pages,
2220  			 const void __user * __user *pages,
2221  			 const int __user *nodes,
2222  			 int __user *status, int flags)
2223  {
2224  	compat_uptr_t __user *compat_pages = (void __user *)pages;
2225  	int current_node = NUMA_NO_NODE;
2226  	LIST_HEAD(pagelist);
2227  	int start, i;
2228  	int err = 0, err1;
2229  
2230  	lru_cache_disable();
2231  
2232  	for (i = start = 0; i < nr_pages; i++) {
2233  		const void __user *p;
2234  		int node;
2235  
2236  		err = -EFAULT;
2237  		if (in_compat_syscall()) {
2238  			compat_uptr_t cp;
2239  
2240  			if (get_user(cp, compat_pages + i))
2241  				goto out_flush;
2242  
2243  			p = compat_ptr(cp);
2244  		} else {
2245  			if (get_user(p, pages + i))
2246  				goto out_flush;
2247  		}
2248  		if (get_user(node, nodes + i))
2249  			goto out_flush;
2250  
2251  		err = -ENODEV;
2252  		if (node < 0 || node >= MAX_NUMNODES)
2253  			goto out_flush;
2254  		if (!node_state(node, N_MEMORY))
2255  			goto out_flush;
2256  
2257  		err = -EACCES;
2258  		if (!node_isset(node, task_nodes))
2259  			goto out_flush;
2260  
2261  		if (current_node == NUMA_NO_NODE) {
2262  			current_node = node;
2263  			start = i;
2264  		} else if (node != current_node) {
2265  			err = move_pages_and_store_status(current_node,
2266  					&pagelist, status, start, i, nr_pages);
2267  			if (err)
2268  				goto out;
2269  			start = i;
2270  			current_node = node;
2271  		}
2272  
2273  		/*
2274  		 * Errors in the page lookup or isolation are not fatal and we simply
2275  		 * report them via status
2276  		 */
2277  		err = add_page_for_migration(mm, p, current_node, &pagelist,
2278  					     flags & MPOL_MF_MOVE_ALL);
2279  
2280  		if (err > 0) {
2281  			/* The page is successfully queued for migration */
2282  			continue;
2283  		}
2284  
2285  		/*
2286  		 * The move_pages() man page does not have an -EEXIST choice, so
2287  		 * use -EFAULT instead.
2288  		 */
2289  		if (err == -EEXIST)
2290  			err = -EFAULT;
2291  
2292  		/*
2293  		 * If the page is already on the target node (!err), store the
2294  		 * node, otherwise, store the err.
2295  		 */
2296  		err = store_status(status, i, err ? : current_node, 1);
2297  		if (err)
2298  			goto out_flush;
2299  
2300  		err = move_pages_and_store_status(current_node, &pagelist,
2301  				status, start, i, nr_pages);
2302  		if (err) {
2303  			/* We have accounted for page i */
2304  			if (err > 0)
2305  				err--;
2306  			goto out;
2307  		}
2308  		current_node = NUMA_NO_NODE;
2309  	}
2310  out_flush:
2311  	/* Make sure we do not overwrite the existing error */
2312  	err1 = move_pages_and_store_status(current_node, &pagelist,
2313  				status, start, i, nr_pages);
2314  	if (err >= 0)
2315  		err = err1;
2316  out:
2317  	lru_cache_enable();
2318  	return err;
2319  }
2320  
2321  /*
2322   * Determine the nodes of an array of pages and store it in an array of status.
2323   */
2324  static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2325  				const void __user **pages, int *status)
2326  {
2327  	unsigned long i;
2328  
2329  	mmap_read_lock(mm);
2330  
2331  	for (i = 0; i < nr_pages; i++) {
2332  		unsigned long addr = (unsigned long)(*pages);
2333  		struct vm_area_struct *vma;
2334  		struct page *page;
2335  		int err = -EFAULT;
2336  
2337  		vma = vma_lookup(mm, addr);
2338  		if (!vma)
2339  			goto set_status;
2340  
2341  		/* FOLL_DUMP to ignore special (like zero) pages */
2342  		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2343  
2344  		err = PTR_ERR(page);
2345  		if (IS_ERR(page))
2346  			goto set_status;
2347  
2348  		err = -ENOENT;
2349  		if (!page)
2350  			goto set_status;
2351  
2352  		if (!is_zone_device_page(page))
2353  			err = page_to_nid(page);
2354  
2355  		put_page(page);
2356  set_status:
2357  		*status = err;
2358  
2359  		pages++;
2360  		status++;
2361  	}
2362  
2363  	mmap_read_unlock(mm);
2364  }
2365  
2366  static int get_compat_pages_array(const void __user *chunk_pages[],
2367  				  const void __user * __user *pages,
2368  				  unsigned long chunk_nr)
2369  {
2370  	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2371  	compat_uptr_t p;
2372  	int i;
2373  
2374  	for (i = 0; i < chunk_nr; i++) {
2375  		if (get_user(p, pages32 + i))
2376  			return -EFAULT;
2377  		chunk_pages[i] = compat_ptr(p);
2378  	}
2379  
2380  	return 0;
2381  }
2382  
2383  /*
2384   * Determine the nodes of a user array of pages and store it in
2385   * a user array of status.
2386   */
2387  static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2388  			 const void __user * __user *pages,
2389  			 int __user *status)
2390  {
2391  #define DO_PAGES_STAT_CHUNK_NR 16UL
2392  	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2393  	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2394  
2395  	while (nr_pages) {
2396  		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2397  
2398  		if (in_compat_syscall()) {
2399  			if (get_compat_pages_array(chunk_pages, pages,
2400  						   chunk_nr))
2401  				break;
2402  		} else {
2403  			if (copy_from_user(chunk_pages, pages,
2404  				      chunk_nr * sizeof(*chunk_pages)))
2405  				break;
2406  		}
2407  
2408  		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2409  
2410  		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2411  			break;
2412  
2413  		pages += chunk_nr;
2414  		status += chunk_nr;
2415  		nr_pages -= chunk_nr;
2416  	}
2417  	return nr_pages ? -EFAULT : 0;
2418  }
2419  
2420  static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2421  {
2422  	struct task_struct *task;
2423  	struct mm_struct *mm;
2424  
2425  	/*
2426  	 * There is no need to check if current process has the right to modify
2427  	 * the specified process when they are same.
2428  	 */
2429  	if (!pid) {
2430  		mmget(current->mm);
2431  		*mem_nodes = cpuset_mems_allowed(current);
2432  		return current->mm;
2433  	}
2434  
2435  	/* Find the mm_struct */
2436  	rcu_read_lock();
2437  	task = find_task_by_vpid(pid);
2438  	if (!task) {
2439  		rcu_read_unlock();
2440  		return ERR_PTR(-ESRCH);
2441  	}
2442  	get_task_struct(task);
2443  
2444  	/*
2445  	 * Check if this process has the right to modify the specified
2446  	 * process. Use the regular "ptrace_may_access()" checks.
2447  	 */
2448  	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2449  		rcu_read_unlock();
2450  		mm = ERR_PTR(-EPERM);
2451  		goto out;
2452  	}
2453  	rcu_read_unlock();
2454  
2455  	mm = ERR_PTR(security_task_movememory(task));
2456  	if (IS_ERR(mm))
2457  		goto out;
2458  	*mem_nodes = cpuset_mems_allowed(task);
2459  	mm = get_task_mm(task);
2460  out:
2461  	put_task_struct(task);
2462  	if (!mm)
2463  		mm = ERR_PTR(-EINVAL);
2464  	return mm;
2465  }
2466  
2467  /*
2468   * Move a list of pages in the address space of the currently executing
2469   * process.
2470   */
2471  static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2472  			     const void __user * __user *pages,
2473  			     const int __user *nodes,
2474  			     int __user *status, int flags)
2475  {
2476  	struct mm_struct *mm;
2477  	int err;
2478  	nodemask_t task_nodes;
2479  
2480  	/* Check flags */
2481  	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2482  		return -EINVAL;
2483  
2484  	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2485  		return -EPERM;
2486  
2487  	mm = find_mm_struct(pid, &task_nodes);
2488  	if (IS_ERR(mm))
2489  		return PTR_ERR(mm);
2490  
2491  	if (nodes)
2492  		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2493  				    nodes, status, flags);
2494  	else
2495  		err = do_pages_stat(mm, nr_pages, pages, status);
2496  
2497  	mmput(mm);
2498  	return err;
2499  }
2500  
2501  SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2502  		const void __user * __user *, pages,
2503  		const int __user *, nodes,
2504  		int __user *, status, int, flags)
2505  {
2506  	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2507  }
2508  
2509  #ifdef CONFIG_NUMA_BALANCING
2510  /*
2511   * Returns true if this is a safe migration target node for misplaced NUMA
2512   * pages. Currently it only checks the watermarks which is crude.
2513   */
2514  static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2515  				   unsigned long nr_migrate_pages)
2516  {
2517  	int z;
2518  
2519  	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2520  		struct zone *zone = pgdat->node_zones + z;
2521  
2522  		if (!managed_zone(zone))
2523  			continue;
2524  
2525  		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2526  		if (!zone_watermark_ok(zone, 0,
2527  				       high_wmark_pages(zone) +
2528  				       nr_migrate_pages,
2529  				       ZONE_MOVABLE, 0))
2530  			continue;
2531  		return true;
2532  	}
2533  	return false;
2534  }
2535  
2536  static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2537  					   unsigned long data)
2538  {
2539  	int nid = (int) data;
2540  	int order = folio_order(src);
2541  	gfp_t gfp = __GFP_THISNODE;
2542  
2543  	if (order > 0)
2544  		gfp |= GFP_TRANSHUGE_LIGHT;
2545  	else {
2546  		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2547  			__GFP_NOWARN;
2548  		gfp &= ~__GFP_RECLAIM;
2549  	}
2550  	return __folio_alloc_node(gfp, order, nid);
2551  }
2552  
2553  /*
2554   * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2555   * permitted. Must be called with the PTL still held.
2556   */
2557  int migrate_misplaced_folio_prepare(struct folio *folio,
2558  		struct vm_area_struct *vma, int node)
2559  {
2560  	int nr_pages = folio_nr_pages(folio);
2561  	pg_data_t *pgdat = NODE_DATA(node);
2562  
2563  	if (folio_is_file_lru(folio)) {
2564  		/*
2565  		 * Do not migrate file folios that are mapped in multiple
2566  		 * processes with execute permissions as they are probably
2567  		 * shared libraries.
2568  		 *
2569  		 * See folio_likely_mapped_shared() on possible imprecision
2570  		 * when we cannot easily detect if a folio is shared.
2571  		 */
2572  		if ((vma->vm_flags & VM_EXEC) &&
2573  		    folio_likely_mapped_shared(folio))
2574  			return -EACCES;
2575  
2576  		/*
2577  		 * Do not migrate dirty folios as not all filesystems can move
2578  		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2579  		 * cycles.
2580  		 */
2581  		if (folio_test_dirty(folio))
2582  			return -EAGAIN;
2583  	}
2584  
2585  	/* Avoid migrating to a node that is nearly full */
2586  	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2587  		int z;
2588  
2589  		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2590  			return -EAGAIN;
2591  		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2592  			if (managed_zone(pgdat->node_zones + z))
2593  				break;
2594  		}
2595  
2596  		/*
2597  		 * If there are no managed zones, it should not proceed
2598  		 * further.
2599  		 */
2600  		if (z < 0)
2601  			return -EAGAIN;
2602  
2603  		wakeup_kswapd(pgdat->node_zones + z, 0,
2604  			      folio_order(folio), ZONE_MOVABLE);
2605  		return -EAGAIN;
2606  	}
2607  
2608  	if (!folio_isolate_lru(folio))
2609  		return -EAGAIN;
2610  
2611  	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2612  			    nr_pages);
2613  	return 0;
2614  }
2615  
2616  /*
2617   * Attempt to migrate a misplaced folio to the specified destination
2618   * node. Caller is expected to have isolated the folio by calling
2619   * migrate_misplaced_folio_prepare(), which will result in an
2620   * elevated reference count on the folio. This function will un-isolate the
2621   * folio, dereferencing the folio before returning.
2622   */
2623  int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2624  			    int node)
2625  {
2626  	pg_data_t *pgdat = NODE_DATA(node);
2627  	int nr_remaining;
2628  	unsigned int nr_succeeded;
2629  	LIST_HEAD(migratepages);
2630  
2631  	list_add(&folio->lru, &migratepages);
2632  	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2633  				     NULL, node, MIGRATE_ASYNC,
2634  				     MR_NUMA_MISPLACED, &nr_succeeded);
2635  	if (nr_remaining && !list_empty(&migratepages))
2636  		putback_movable_pages(&migratepages);
2637  	if (nr_succeeded) {
2638  		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2639  		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2640  			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2641  					    nr_succeeded);
2642  	}
2643  	BUG_ON(!list_empty(&migratepages));
2644  	return nr_remaining ? -EAGAIN : 0;
2645  }
2646  #endif /* CONFIG_NUMA_BALANCING */
2647  #endif /* CONFIG_NUMA */
2648