1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -hpage_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_zone_device_page(new))) { 250 if (is_device_private_page(new)) { 251 entry = make_device_private_entry(new, pte_write(pte)); 252 pte = swp_entry_to_pte(entry); 253 if (pte_swp_uffd_wp(*pvmw.pte)) 254 pte = pte_mkuffd_wp(pte); 255 } 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device public or private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += hpage_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 495 if (PageSwapBacked(page) && !PageSwapCache(page)) { 496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 498 } 499 if (dirty && mapping_cap_account_dirty(mapping)) { 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 504 } 505 } 506 local_irq_enable(); 507 508 return MIGRATEPAGE_SUCCESS; 509 } 510 EXPORT_SYMBOL(migrate_page_move_mapping); 511 512 /* 513 * The expected number of remaining references is the same as that 514 * of migrate_page_move_mapping(). 515 */ 516 int migrate_huge_page_move_mapping(struct address_space *mapping, 517 struct page *newpage, struct page *page) 518 { 519 XA_STATE(xas, &mapping->i_pages, page_index(page)); 520 int expected_count; 521 522 xas_lock_irq(&xas); 523 expected_count = 2 + page_has_private(page); 524 if (page_count(page) != expected_count || xas_load(&xas) != page) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 if (!page_ref_freeze(page, expected_count)) { 530 xas_unlock_irq(&xas); 531 return -EAGAIN; 532 } 533 534 newpage->index = page->index; 535 newpage->mapping = page->mapping; 536 537 get_page(newpage); 538 539 xas_store(&xas, newpage); 540 541 page_ref_unfreeze(page, expected_count - 1); 542 543 xas_unlock_irq(&xas); 544 545 return MIGRATEPAGE_SUCCESS; 546 } 547 548 /* 549 * Gigantic pages are so large that we do not guarantee that page++ pointer 550 * arithmetic will work across the entire page. We need something more 551 * specialized. 552 */ 553 static void __copy_gigantic_page(struct page *dst, struct page *src, 554 int nr_pages) 555 { 556 int i; 557 struct page *dst_base = dst; 558 struct page *src_base = src; 559 560 for (i = 0; i < nr_pages; ) { 561 cond_resched(); 562 copy_highpage(dst, src); 563 564 i++; 565 dst = mem_map_next(dst, dst_base, i); 566 src = mem_map_next(src, src_base, i); 567 } 568 } 569 570 static void copy_huge_page(struct page *dst, struct page *src) 571 { 572 int i; 573 int nr_pages; 574 575 if (PageHuge(src)) { 576 /* hugetlbfs page */ 577 struct hstate *h = page_hstate(src); 578 nr_pages = pages_per_huge_page(h); 579 580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 581 __copy_gigantic_page(dst, src, nr_pages); 582 return; 583 } 584 } else { 585 /* thp page */ 586 BUG_ON(!PageTransHuge(src)); 587 nr_pages = hpage_nr_pages(src); 588 } 589 590 for (i = 0; i < nr_pages; i++) { 591 cond_resched(); 592 copy_highpage(dst + i, src + i); 593 } 594 } 595 596 /* 597 * Copy the page to its new location 598 */ 599 void migrate_page_states(struct page *newpage, struct page *page) 600 { 601 int cpupid; 602 603 if (PageError(page)) 604 SetPageError(newpage); 605 if (PageReferenced(page)) 606 SetPageReferenced(newpage); 607 if (PageUptodate(page)) 608 SetPageUptodate(newpage); 609 if (TestClearPageActive(page)) { 610 VM_BUG_ON_PAGE(PageUnevictable(page), page); 611 SetPageActive(newpage); 612 } else if (TestClearPageUnevictable(page)) 613 SetPageUnevictable(newpage); 614 if (PageWorkingset(page)) 615 SetPageWorkingset(newpage); 616 if (PageChecked(page)) 617 SetPageChecked(newpage); 618 if (PageMappedToDisk(page)) 619 SetPageMappedToDisk(newpage); 620 621 /* Move dirty on pages not done by migrate_page_move_mapping() */ 622 if (PageDirty(page)) 623 SetPageDirty(newpage); 624 625 if (page_is_young(page)) 626 set_page_young(newpage); 627 if (page_is_idle(page)) 628 set_page_idle(newpage); 629 630 /* 631 * Copy NUMA information to the new page, to prevent over-eager 632 * future migrations of this same page. 633 */ 634 cpupid = page_cpupid_xchg_last(page, -1); 635 page_cpupid_xchg_last(newpage, cpupid); 636 637 ksm_migrate_page(newpage, page); 638 /* 639 * Please do not reorder this without considering how mm/ksm.c's 640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 641 */ 642 if (PageSwapCache(page)) 643 ClearPageSwapCache(page); 644 ClearPagePrivate(page); 645 set_page_private(page, 0); 646 647 /* 648 * If any waiters have accumulated on the new page then 649 * wake them up. 650 */ 651 if (PageWriteback(newpage)) 652 end_page_writeback(newpage); 653 654 /* 655 * PG_readahead shares the same bit with PG_reclaim. The above 656 * end_page_writeback() may clear PG_readahead mistakenly, so set the 657 * bit after that. 658 */ 659 if (PageReadahead(page)) 660 SetPageReadahead(newpage); 661 662 copy_page_owner(page, newpage); 663 664 mem_cgroup_migrate(page, newpage); 665 } 666 EXPORT_SYMBOL(migrate_page_states); 667 668 void migrate_page_copy(struct page *newpage, struct page *page) 669 { 670 if (PageHuge(page) || PageTransHuge(page)) 671 copy_huge_page(newpage, page); 672 else 673 copy_highpage(newpage, page); 674 675 migrate_page_states(newpage, page); 676 } 677 EXPORT_SYMBOL(migrate_page_copy); 678 679 /************************************************************ 680 * Migration functions 681 ***********************************************************/ 682 683 /* 684 * Common logic to directly migrate a single LRU page suitable for 685 * pages that do not use PagePrivate/PagePrivate2. 686 * 687 * Pages are locked upon entry and exit. 688 */ 689 int migrate_page(struct address_space *mapping, 690 struct page *newpage, struct page *page, 691 enum migrate_mode mode) 692 { 693 int rc; 694 695 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 696 697 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 698 699 if (rc != MIGRATEPAGE_SUCCESS) 700 return rc; 701 702 if (mode != MIGRATE_SYNC_NO_COPY) 703 migrate_page_copy(newpage, page); 704 else 705 migrate_page_states(newpage, page); 706 return MIGRATEPAGE_SUCCESS; 707 } 708 EXPORT_SYMBOL(migrate_page); 709 710 #ifdef CONFIG_BLOCK 711 /* Returns true if all buffers are successfully locked */ 712 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 713 enum migrate_mode mode) 714 { 715 struct buffer_head *bh = head; 716 717 /* Simple case, sync compaction */ 718 if (mode != MIGRATE_ASYNC) { 719 do { 720 lock_buffer(bh); 721 bh = bh->b_this_page; 722 723 } while (bh != head); 724 725 return true; 726 } 727 728 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 729 do { 730 if (!trylock_buffer(bh)) { 731 /* 732 * We failed to lock the buffer and cannot stall in 733 * async migration. Release the taken locks 734 */ 735 struct buffer_head *failed_bh = bh; 736 bh = head; 737 while (bh != failed_bh) { 738 unlock_buffer(bh); 739 bh = bh->b_this_page; 740 } 741 return false; 742 } 743 744 bh = bh->b_this_page; 745 } while (bh != head); 746 return true; 747 } 748 749 static int __buffer_migrate_page(struct address_space *mapping, 750 struct page *newpage, struct page *page, enum migrate_mode mode, 751 bool check_refs) 752 { 753 struct buffer_head *bh, *head; 754 int rc; 755 int expected_count; 756 757 if (!page_has_buffers(page)) 758 return migrate_page(mapping, newpage, page, mode); 759 760 /* Check whether page does not have extra refs before we do more work */ 761 expected_count = expected_page_refs(mapping, page); 762 if (page_count(page) != expected_count) 763 return -EAGAIN; 764 765 head = page_buffers(page); 766 if (!buffer_migrate_lock_buffers(head, mode)) 767 return -EAGAIN; 768 769 if (check_refs) { 770 bool busy; 771 bool invalidated = false; 772 773 recheck_buffers: 774 busy = false; 775 spin_lock(&mapping->private_lock); 776 bh = head; 777 do { 778 if (atomic_read(&bh->b_count)) { 779 busy = true; 780 break; 781 } 782 bh = bh->b_this_page; 783 } while (bh != head); 784 if (busy) { 785 if (invalidated) { 786 rc = -EAGAIN; 787 goto unlock_buffers; 788 } 789 spin_unlock(&mapping->private_lock); 790 invalidate_bh_lrus(); 791 invalidated = true; 792 goto recheck_buffers; 793 } 794 } 795 796 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 797 if (rc != MIGRATEPAGE_SUCCESS) 798 goto unlock_buffers; 799 800 attach_page_private(newpage, detach_page_private(page)); 801 802 bh = head; 803 do { 804 set_bh_page(bh, newpage, bh_offset(bh)); 805 bh = bh->b_this_page; 806 807 } while (bh != head); 808 809 if (mode != MIGRATE_SYNC_NO_COPY) 810 migrate_page_copy(newpage, page); 811 else 812 migrate_page_states(newpage, page); 813 814 rc = MIGRATEPAGE_SUCCESS; 815 unlock_buffers: 816 if (check_refs) 817 spin_unlock(&mapping->private_lock); 818 bh = head; 819 do { 820 unlock_buffer(bh); 821 bh = bh->b_this_page; 822 823 } while (bh != head); 824 825 return rc; 826 } 827 828 /* 829 * Migration function for pages with buffers. This function can only be used 830 * if the underlying filesystem guarantees that no other references to "page" 831 * exist. For example attached buffer heads are accessed only under page lock. 832 */ 833 int buffer_migrate_page(struct address_space *mapping, 834 struct page *newpage, struct page *page, enum migrate_mode mode) 835 { 836 return __buffer_migrate_page(mapping, newpage, page, mode, false); 837 } 838 EXPORT_SYMBOL(buffer_migrate_page); 839 840 /* 841 * Same as above except that this variant is more careful and checks that there 842 * are also no buffer head references. This function is the right one for 843 * mappings where buffer heads are directly looked up and referenced (such as 844 * block device mappings). 845 */ 846 int buffer_migrate_page_norefs(struct address_space *mapping, 847 struct page *newpage, struct page *page, enum migrate_mode mode) 848 { 849 return __buffer_migrate_page(mapping, newpage, page, mode, true); 850 } 851 #endif 852 853 /* 854 * Writeback a page to clean the dirty state 855 */ 856 static int writeout(struct address_space *mapping, struct page *page) 857 { 858 struct writeback_control wbc = { 859 .sync_mode = WB_SYNC_NONE, 860 .nr_to_write = 1, 861 .range_start = 0, 862 .range_end = LLONG_MAX, 863 .for_reclaim = 1 864 }; 865 int rc; 866 867 if (!mapping->a_ops->writepage) 868 /* No write method for the address space */ 869 return -EINVAL; 870 871 if (!clear_page_dirty_for_io(page)) 872 /* Someone else already triggered a write */ 873 return -EAGAIN; 874 875 /* 876 * A dirty page may imply that the underlying filesystem has 877 * the page on some queue. So the page must be clean for 878 * migration. Writeout may mean we loose the lock and the 879 * page state is no longer what we checked for earlier. 880 * At this point we know that the migration attempt cannot 881 * be successful. 882 */ 883 remove_migration_ptes(page, page, false); 884 885 rc = mapping->a_ops->writepage(page, &wbc); 886 887 if (rc != AOP_WRITEPAGE_ACTIVATE) 888 /* unlocked. Relock */ 889 lock_page(page); 890 891 return (rc < 0) ? -EIO : -EAGAIN; 892 } 893 894 /* 895 * Default handling if a filesystem does not provide a migration function. 896 */ 897 static int fallback_migrate_page(struct address_space *mapping, 898 struct page *newpage, struct page *page, enum migrate_mode mode) 899 { 900 if (PageDirty(page)) { 901 /* Only writeback pages in full synchronous migration */ 902 switch (mode) { 903 case MIGRATE_SYNC: 904 case MIGRATE_SYNC_NO_COPY: 905 break; 906 default: 907 return -EBUSY; 908 } 909 return writeout(mapping, page); 910 } 911 912 /* 913 * Buffers may be managed in a filesystem specific way. 914 * We must have no buffers or drop them. 915 */ 916 if (page_has_private(page) && 917 !try_to_release_page(page, GFP_KERNEL)) 918 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 919 920 return migrate_page(mapping, newpage, page, mode); 921 } 922 923 /* 924 * Move a page to a newly allocated page 925 * The page is locked and all ptes have been successfully removed. 926 * 927 * The new page will have replaced the old page if this function 928 * is successful. 929 * 930 * Return value: 931 * < 0 - error code 932 * MIGRATEPAGE_SUCCESS - success 933 */ 934 static int move_to_new_page(struct page *newpage, struct page *page, 935 enum migrate_mode mode) 936 { 937 struct address_space *mapping; 938 int rc = -EAGAIN; 939 bool is_lru = !__PageMovable(page); 940 941 VM_BUG_ON_PAGE(!PageLocked(page), page); 942 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 943 944 mapping = page_mapping(page); 945 946 if (likely(is_lru)) { 947 if (!mapping) 948 rc = migrate_page(mapping, newpage, page, mode); 949 else if (mapping->a_ops->migratepage) 950 /* 951 * Most pages have a mapping and most filesystems 952 * provide a migratepage callback. Anonymous pages 953 * are part of swap space which also has its own 954 * migratepage callback. This is the most common path 955 * for page migration. 956 */ 957 rc = mapping->a_ops->migratepage(mapping, newpage, 958 page, mode); 959 else 960 rc = fallback_migrate_page(mapping, newpage, 961 page, mode); 962 } else { 963 /* 964 * In case of non-lru page, it could be released after 965 * isolation step. In that case, we shouldn't try migration. 966 */ 967 VM_BUG_ON_PAGE(!PageIsolated(page), page); 968 if (!PageMovable(page)) { 969 rc = MIGRATEPAGE_SUCCESS; 970 __ClearPageIsolated(page); 971 goto out; 972 } 973 974 rc = mapping->a_ops->migratepage(mapping, newpage, 975 page, mode); 976 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 977 !PageIsolated(page)); 978 } 979 980 /* 981 * When successful, old pagecache page->mapping must be cleared before 982 * page is freed; but stats require that PageAnon be left as PageAnon. 983 */ 984 if (rc == MIGRATEPAGE_SUCCESS) { 985 if (__PageMovable(page)) { 986 VM_BUG_ON_PAGE(!PageIsolated(page), page); 987 988 /* 989 * We clear PG_movable under page_lock so any compactor 990 * cannot try to migrate this page. 991 */ 992 __ClearPageIsolated(page); 993 } 994 995 /* 996 * Anonymous and movable page->mapping will be cleared by 997 * free_pages_prepare so don't reset it here for keeping 998 * the type to work PageAnon, for example. 999 */ 1000 if (!PageMappingFlags(page)) 1001 page->mapping = NULL; 1002 1003 if (likely(!is_zone_device_page(newpage))) 1004 flush_dcache_page(newpage); 1005 1006 } 1007 out: 1008 return rc; 1009 } 1010 1011 static int __unmap_and_move(struct page *page, struct page *newpage, 1012 int force, enum migrate_mode mode) 1013 { 1014 int rc = -EAGAIN; 1015 int page_was_mapped = 0; 1016 struct anon_vma *anon_vma = NULL; 1017 bool is_lru = !__PageMovable(page); 1018 1019 if (!trylock_page(page)) { 1020 if (!force || mode == MIGRATE_ASYNC) 1021 goto out; 1022 1023 /* 1024 * It's not safe for direct compaction to call lock_page. 1025 * For example, during page readahead pages are added locked 1026 * to the LRU. Later, when the IO completes the pages are 1027 * marked uptodate and unlocked. However, the queueing 1028 * could be merging multiple pages for one bio (e.g. 1029 * mpage_readahead). If an allocation happens for the 1030 * second or third page, the process can end up locking 1031 * the same page twice and deadlocking. Rather than 1032 * trying to be clever about what pages can be locked, 1033 * avoid the use of lock_page for direct compaction 1034 * altogether. 1035 */ 1036 if (current->flags & PF_MEMALLOC) 1037 goto out; 1038 1039 lock_page(page); 1040 } 1041 1042 if (PageWriteback(page)) { 1043 /* 1044 * Only in the case of a full synchronous migration is it 1045 * necessary to wait for PageWriteback. In the async case, 1046 * the retry loop is too short and in the sync-light case, 1047 * the overhead of stalling is too much 1048 */ 1049 switch (mode) { 1050 case MIGRATE_SYNC: 1051 case MIGRATE_SYNC_NO_COPY: 1052 break; 1053 default: 1054 rc = -EBUSY; 1055 goto out_unlock; 1056 } 1057 if (!force) 1058 goto out_unlock; 1059 wait_on_page_writeback(page); 1060 } 1061 1062 /* 1063 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1064 * we cannot notice that anon_vma is freed while we migrates a page. 1065 * This get_anon_vma() delays freeing anon_vma pointer until the end 1066 * of migration. File cache pages are no problem because of page_lock() 1067 * File Caches may use write_page() or lock_page() in migration, then, 1068 * just care Anon page here. 1069 * 1070 * Only page_get_anon_vma() understands the subtleties of 1071 * getting a hold on an anon_vma from outside one of its mms. 1072 * But if we cannot get anon_vma, then we won't need it anyway, 1073 * because that implies that the anon page is no longer mapped 1074 * (and cannot be remapped so long as we hold the page lock). 1075 */ 1076 if (PageAnon(page) && !PageKsm(page)) 1077 anon_vma = page_get_anon_vma(page); 1078 1079 /* 1080 * Block others from accessing the new page when we get around to 1081 * establishing additional references. We are usually the only one 1082 * holding a reference to newpage at this point. We used to have a BUG 1083 * here if trylock_page(newpage) fails, but would like to allow for 1084 * cases where there might be a race with the previous use of newpage. 1085 * This is much like races on refcount of oldpage: just don't BUG(). 1086 */ 1087 if (unlikely(!trylock_page(newpage))) 1088 goto out_unlock; 1089 1090 if (unlikely(!is_lru)) { 1091 rc = move_to_new_page(newpage, page, mode); 1092 goto out_unlock_both; 1093 } 1094 1095 /* 1096 * Corner case handling: 1097 * 1. When a new swap-cache page is read into, it is added to the LRU 1098 * and treated as swapcache but it has no rmap yet. 1099 * Calling try_to_unmap() against a page->mapping==NULL page will 1100 * trigger a BUG. So handle it here. 1101 * 2. An orphaned page (see truncate_complete_page) might have 1102 * fs-private metadata. The page can be picked up due to memory 1103 * offlining. Everywhere else except page reclaim, the page is 1104 * invisible to the vm, so the page can not be migrated. So try to 1105 * free the metadata, so the page can be freed. 1106 */ 1107 if (!page->mapping) { 1108 VM_BUG_ON_PAGE(PageAnon(page), page); 1109 if (page_has_private(page)) { 1110 try_to_free_buffers(page); 1111 goto out_unlock_both; 1112 } 1113 } else if (page_mapped(page)) { 1114 /* Establish migration ptes */ 1115 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1116 page); 1117 try_to_unmap(page, 1118 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1119 page_was_mapped = 1; 1120 } 1121 1122 if (!page_mapped(page)) 1123 rc = move_to_new_page(newpage, page, mode); 1124 1125 if (page_was_mapped) 1126 remove_migration_ptes(page, 1127 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1128 1129 out_unlock_both: 1130 unlock_page(newpage); 1131 out_unlock: 1132 /* Drop an anon_vma reference if we took one */ 1133 if (anon_vma) 1134 put_anon_vma(anon_vma); 1135 unlock_page(page); 1136 out: 1137 /* 1138 * If migration is successful, decrease refcount of the newpage 1139 * which will not free the page because new page owner increased 1140 * refcounter. As well, if it is LRU page, add the page to LRU 1141 * list in here. Use the old state of the isolated source page to 1142 * determine if we migrated a LRU page. newpage was already unlocked 1143 * and possibly modified by its owner - don't rely on the page 1144 * state. 1145 */ 1146 if (rc == MIGRATEPAGE_SUCCESS) { 1147 if (unlikely(!is_lru)) 1148 put_page(newpage); 1149 else 1150 putback_lru_page(newpage); 1151 } 1152 1153 return rc; 1154 } 1155 1156 /* 1157 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1158 * around it. 1159 */ 1160 #if defined(CONFIG_ARM) && \ 1161 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1162 #define ICE_noinline noinline 1163 #else 1164 #define ICE_noinline 1165 #endif 1166 1167 /* 1168 * Obtain the lock on page, remove all ptes and migrate the page 1169 * to the newly allocated page in newpage. 1170 */ 1171 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1172 free_page_t put_new_page, 1173 unsigned long private, struct page *page, 1174 int force, enum migrate_mode mode, 1175 enum migrate_reason reason) 1176 { 1177 int rc = MIGRATEPAGE_SUCCESS; 1178 struct page *newpage = NULL; 1179 1180 if (!thp_migration_supported() && PageTransHuge(page)) 1181 return -ENOMEM; 1182 1183 if (page_count(page) == 1) { 1184 /* page was freed from under us. So we are done. */ 1185 ClearPageActive(page); 1186 ClearPageUnevictable(page); 1187 if (unlikely(__PageMovable(page))) { 1188 lock_page(page); 1189 if (!PageMovable(page)) 1190 __ClearPageIsolated(page); 1191 unlock_page(page); 1192 } 1193 goto out; 1194 } 1195 1196 newpage = get_new_page(page, private); 1197 if (!newpage) 1198 return -ENOMEM; 1199 1200 rc = __unmap_and_move(page, newpage, force, mode); 1201 if (rc == MIGRATEPAGE_SUCCESS) 1202 set_page_owner_migrate_reason(newpage, reason); 1203 1204 out: 1205 if (rc != -EAGAIN) { 1206 /* 1207 * A page that has been migrated has all references 1208 * removed and will be freed. A page that has not been 1209 * migrated will have kept its references and be restored. 1210 */ 1211 list_del(&page->lru); 1212 1213 /* 1214 * Compaction can migrate also non-LRU pages which are 1215 * not accounted to NR_ISOLATED_*. They can be recognized 1216 * as __PageMovable 1217 */ 1218 if (likely(!__PageMovable(page))) 1219 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1220 page_is_file_lru(page), -hpage_nr_pages(page)); 1221 } 1222 1223 /* 1224 * If migration is successful, releases reference grabbed during 1225 * isolation. Otherwise, restore the page to right list unless 1226 * we want to retry. 1227 */ 1228 if (rc == MIGRATEPAGE_SUCCESS) { 1229 put_page(page); 1230 if (reason == MR_MEMORY_FAILURE) { 1231 /* 1232 * Set PG_HWPoison on just freed page 1233 * intentionally. Although it's rather weird, 1234 * it's how HWPoison flag works at the moment. 1235 */ 1236 if (set_hwpoison_free_buddy_page(page)) 1237 num_poisoned_pages_inc(); 1238 } 1239 } else { 1240 if (rc != -EAGAIN) { 1241 if (likely(!__PageMovable(page))) { 1242 putback_lru_page(page); 1243 goto put_new; 1244 } 1245 1246 lock_page(page); 1247 if (PageMovable(page)) 1248 putback_movable_page(page); 1249 else 1250 __ClearPageIsolated(page); 1251 unlock_page(page); 1252 put_page(page); 1253 } 1254 put_new: 1255 if (put_new_page) 1256 put_new_page(newpage, private); 1257 else 1258 put_page(newpage); 1259 } 1260 1261 return rc; 1262 } 1263 1264 /* 1265 * Counterpart of unmap_and_move_page() for hugepage migration. 1266 * 1267 * This function doesn't wait the completion of hugepage I/O 1268 * because there is no race between I/O and migration for hugepage. 1269 * Note that currently hugepage I/O occurs only in direct I/O 1270 * where no lock is held and PG_writeback is irrelevant, 1271 * and writeback status of all subpages are counted in the reference 1272 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1273 * under direct I/O, the reference of the head page is 512 and a bit more.) 1274 * This means that when we try to migrate hugepage whose subpages are 1275 * doing direct I/O, some references remain after try_to_unmap() and 1276 * hugepage migration fails without data corruption. 1277 * 1278 * There is also no race when direct I/O is issued on the page under migration, 1279 * because then pte is replaced with migration swap entry and direct I/O code 1280 * will wait in the page fault for migration to complete. 1281 */ 1282 static int unmap_and_move_huge_page(new_page_t get_new_page, 1283 free_page_t put_new_page, unsigned long private, 1284 struct page *hpage, int force, 1285 enum migrate_mode mode, int reason) 1286 { 1287 int rc = -EAGAIN; 1288 int page_was_mapped = 0; 1289 struct page *new_hpage; 1290 struct anon_vma *anon_vma = NULL; 1291 struct address_space *mapping = NULL; 1292 1293 /* 1294 * Migratability of hugepages depends on architectures and their size. 1295 * This check is necessary because some callers of hugepage migration 1296 * like soft offline and memory hotremove don't walk through page 1297 * tables or check whether the hugepage is pmd-based or not before 1298 * kicking migration. 1299 */ 1300 if (!hugepage_migration_supported(page_hstate(hpage))) { 1301 putback_active_hugepage(hpage); 1302 return -ENOSYS; 1303 } 1304 1305 new_hpage = get_new_page(hpage, private); 1306 if (!new_hpage) 1307 return -ENOMEM; 1308 1309 if (!trylock_page(hpage)) { 1310 if (!force) 1311 goto out; 1312 switch (mode) { 1313 case MIGRATE_SYNC: 1314 case MIGRATE_SYNC_NO_COPY: 1315 break; 1316 default: 1317 goto out; 1318 } 1319 lock_page(hpage); 1320 } 1321 1322 /* 1323 * Check for pages which are in the process of being freed. Without 1324 * page_mapping() set, hugetlbfs specific move page routine will not 1325 * be called and we could leak usage counts for subpools. 1326 */ 1327 if (page_private(hpage) && !page_mapping(hpage)) { 1328 rc = -EBUSY; 1329 goto out_unlock; 1330 } 1331 1332 if (PageAnon(hpage)) 1333 anon_vma = page_get_anon_vma(hpage); 1334 1335 if (unlikely(!trylock_page(new_hpage))) 1336 goto put_anon; 1337 1338 if (page_mapped(hpage)) { 1339 /* 1340 * try_to_unmap could potentially call huge_pmd_unshare. 1341 * Because of this, take semaphore in write mode here and 1342 * set TTU_RMAP_LOCKED to let lower levels know we have 1343 * taken the lock. 1344 */ 1345 mapping = hugetlb_page_mapping_lock_write(hpage); 1346 if (unlikely(!mapping)) 1347 goto unlock_put_anon; 1348 1349 try_to_unmap(hpage, 1350 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1351 TTU_RMAP_LOCKED); 1352 page_was_mapped = 1; 1353 /* 1354 * Leave mapping locked until after subsequent call to 1355 * remove_migration_ptes() 1356 */ 1357 } 1358 1359 if (!page_mapped(hpage)) 1360 rc = move_to_new_page(new_hpage, hpage, mode); 1361 1362 if (page_was_mapped) { 1363 remove_migration_ptes(hpage, 1364 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1365 i_mmap_unlock_write(mapping); 1366 } 1367 1368 unlock_put_anon: 1369 unlock_page(new_hpage); 1370 1371 put_anon: 1372 if (anon_vma) 1373 put_anon_vma(anon_vma); 1374 1375 if (rc == MIGRATEPAGE_SUCCESS) { 1376 move_hugetlb_state(hpage, new_hpage, reason); 1377 put_new_page = NULL; 1378 } 1379 1380 out_unlock: 1381 unlock_page(hpage); 1382 out: 1383 if (rc != -EAGAIN) 1384 putback_active_hugepage(hpage); 1385 1386 /* 1387 * If migration was not successful and there's a freeing callback, use 1388 * it. Otherwise, put_page() will drop the reference grabbed during 1389 * isolation. 1390 */ 1391 if (put_new_page) 1392 put_new_page(new_hpage, private); 1393 else 1394 putback_active_hugepage(new_hpage); 1395 1396 return rc; 1397 } 1398 1399 /* 1400 * migrate_pages - migrate the pages specified in a list, to the free pages 1401 * supplied as the target for the page migration 1402 * 1403 * @from: The list of pages to be migrated. 1404 * @get_new_page: The function used to allocate free pages to be used 1405 * as the target of the page migration. 1406 * @put_new_page: The function used to free target pages if migration 1407 * fails, or NULL if no special handling is necessary. 1408 * @private: Private data to be passed on to get_new_page() 1409 * @mode: The migration mode that specifies the constraints for 1410 * page migration, if any. 1411 * @reason: The reason for page migration. 1412 * 1413 * The function returns after 10 attempts or if no pages are movable any more 1414 * because the list has become empty or no retryable pages exist any more. 1415 * The caller should call putback_movable_pages() to return pages to the LRU 1416 * or free list only if ret != 0. 1417 * 1418 * Returns the number of pages that were not migrated, or an error code. 1419 */ 1420 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1421 free_page_t put_new_page, unsigned long private, 1422 enum migrate_mode mode, int reason) 1423 { 1424 int retry = 1; 1425 int nr_failed = 0; 1426 int nr_succeeded = 0; 1427 int pass = 0; 1428 struct page *page; 1429 struct page *page2; 1430 int swapwrite = current->flags & PF_SWAPWRITE; 1431 int rc; 1432 1433 if (!swapwrite) 1434 current->flags |= PF_SWAPWRITE; 1435 1436 for(pass = 0; pass < 10 && retry; pass++) { 1437 retry = 0; 1438 1439 list_for_each_entry_safe(page, page2, from, lru) { 1440 retry: 1441 cond_resched(); 1442 1443 if (PageHuge(page)) 1444 rc = unmap_and_move_huge_page(get_new_page, 1445 put_new_page, private, page, 1446 pass > 2, mode, reason); 1447 else 1448 rc = unmap_and_move(get_new_page, put_new_page, 1449 private, page, pass > 2, mode, 1450 reason); 1451 1452 switch(rc) { 1453 case -ENOMEM: 1454 /* 1455 * THP migration might be unsupported or the 1456 * allocation could've failed so we should 1457 * retry on the same page with the THP split 1458 * to base pages. 1459 * 1460 * Head page is retried immediately and tail 1461 * pages are added to the tail of the list so 1462 * we encounter them after the rest of the list 1463 * is processed. 1464 */ 1465 if (PageTransHuge(page) && !PageHuge(page)) { 1466 lock_page(page); 1467 rc = split_huge_page_to_list(page, from); 1468 unlock_page(page); 1469 if (!rc) { 1470 list_safe_reset_next(page, page2, lru); 1471 goto retry; 1472 } 1473 } 1474 nr_failed++; 1475 goto out; 1476 case -EAGAIN: 1477 retry++; 1478 break; 1479 case MIGRATEPAGE_SUCCESS: 1480 nr_succeeded++; 1481 break; 1482 default: 1483 /* 1484 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1485 * unlike -EAGAIN case, the failed page is 1486 * removed from migration page list and not 1487 * retried in the next outer loop. 1488 */ 1489 nr_failed++; 1490 break; 1491 } 1492 } 1493 } 1494 nr_failed += retry; 1495 rc = nr_failed; 1496 out: 1497 if (nr_succeeded) 1498 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1499 if (nr_failed) 1500 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1501 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1502 1503 if (!swapwrite) 1504 current->flags &= ~PF_SWAPWRITE; 1505 1506 return rc; 1507 } 1508 1509 #ifdef CONFIG_NUMA 1510 1511 static int store_status(int __user *status, int start, int value, int nr) 1512 { 1513 while (nr-- > 0) { 1514 if (put_user(value, status + start)) 1515 return -EFAULT; 1516 start++; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static int do_move_pages_to_node(struct mm_struct *mm, 1523 struct list_head *pagelist, int node) 1524 { 1525 int err; 1526 1527 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1528 MIGRATE_SYNC, MR_SYSCALL); 1529 if (err) 1530 putback_movable_pages(pagelist); 1531 return err; 1532 } 1533 1534 /* 1535 * Resolves the given address to a struct page, isolates it from the LRU and 1536 * puts it to the given pagelist. 1537 * Returns: 1538 * errno - if the page cannot be found/isolated 1539 * 0 - when it doesn't have to be migrated because it is already on the 1540 * target node 1541 * 1 - when it has been queued 1542 */ 1543 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1544 int node, struct list_head *pagelist, bool migrate_all) 1545 { 1546 struct vm_area_struct *vma; 1547 struct page *page; 1548 unsigned int follflags; 1549 int err; 1550 1551 down_read(&mm->mmap_sem); 1552 err = -EFAULT; 1553 vma = find_vma(mm, addr); 1554 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1555 goto out; 1556 1557 /* FOLL_DUMP to ignore special (like zero) pages */ 1558 follflags = FOLL_GET | FOLL_DUMP; 1559 page = follow_page(vma, addr, follflags); 1560 1561 err = PTR_ERR(page); 1562 if (IS_ERR(page)) 1563 goto out; 1564 1565 err = -ENOENT; 1566 if (!page) 1567 goto out; 1568 1569 err = 0; 1570 if (page_to_nid(page) == node) 1571 goto out_putpage; 1572 1573 err = -EACCES; 1574 if (page_mapcount(page) > 1 && !migrate_all) 1575 goto out_putpage; 1576 1577 if (PageHuge(page)) { 1578 if (PageHead(page)) { 1579 isolate_huge_page(page, pagelist); 1580 err = 1; 1581 } 1582 } else { 1583 struct page *head; 1584 1585 head = compound_head(page); 1586 err = isolate_lru_page(head); 1587 if (err) 1588 goto out_putpage; 1589 1590 err = 1; 1591 list_add_tail(&head->lru, pagelist); 1592 mod_node_page_state(page_pgdat(head), 1593 NR_ISOLATED_ANON + page_is_file_lru(head), 1594 hpage_nr_pages(head)); 1595 } 1596 out_putpage: 1597 /* 1598 * Either remove the duplicate refcount from 1599 * isolate_lru_page() or drop the page ref if it was 1600 * not isolated. 1601 */ 1602 put_page(page); 1603 out: 1604 up_read(&mm->mmap_sem); 1605 return err; 1606 } 1607 1608 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1609 struct list_head *pagelist, int __user *status, 1610 int start, int i, unsigned long nr_pages) 1611 { 1612 int err; 1613 1614 if (list_empty(pagelist)) 1615 return 0; 1616 1617 err = do_move_pages_to_node(mm, pagelist, node); 1618 if (err) { 1619 /* 1620 * Positive err means the number of failed 1621 * pages to migrate. Since we are going to 1622 * abort and return the number of non-migrated 1623 * pages, so need to incude the rest of the 1624 * nr_pages that have not been attempted as 1625 * well. 1626 */ 1627 if (err > 0) 1628 err += nr_pages - i - 1; 1629 return err; 1630 } 1631 return store_status(status, start, node, i - start); 1632 } 1633 1634 /* 1635 * Migrate an array of page address onto an array of nodes and fill 1636 * the corresponding array of status. 1637 */ 1638 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1639 unsigned long nr_pages, 1640 const void __user * __user *pages, 1641 const int __user *nodes, 1642 int __user *status, int flags) 1643 { 1644 int current_node = NUMA_NO_NODE; 1645 LIST_HEAD(pagelist); 1646 int start, i; 1647 int err = 0, err1; 1648 1649 migrate_prep(); 1650 1651 for (i = start = 0; i < nr_pages; i++) { 1652 const void __user *p; 1653 unsigned long addr; 1654 int node; 1655 1656 err = -EFAULT; 1657 if (get_user(p, pages + i)) 1658 goto out_flush; 1659 if (get_user(node, nodes + i)) 1660 goto out_flush; 1661 addr = (unsigned long)untagged_addr(p); 1662 1663 err = -ENODEV; 1664 if (node < 0 || node >= MAX_NUMNODES) 1665 goto out_flush; 1666 if (!node_state(node, N_MEMORY)) 1667 goto out_flush; 1668 1669 err = -EACCES; 1670 if (!node_isset(node, task_nodes)) 1671 goto out_flush; 1672 1673 if (current_node == NUMA_NO_NODE) { 1674 current_node = node; 1675 start = i; 1676 } else if (node != current_node) { 1677 err = move_pages_and_store_status(mm, current_node, 1678 &pagelist, status, start, i, nr_pages); 1679 if (err) 1680 goto out; 1681 start = i; 1682 current_node = node; 1683 } 1684 1685 /* 1686 * Errors in the page lookup or isolation are not fatal and we simply 1687 * report them via status 1688 */ 1689 err = add_page_for_migration(mm, addr, current_node, 1690 &pagelist, flags & MPOL_MF_MOVE_ALL); 1691 1692 if (err > 0) { 1693 /* The page is successfully queued for migration */ 1694 continue; 1695 } 1696 1697 /* 1698 * If the page is already on the target node (!err), store the 1699 * node, otherwise, store the err. 1700 */ 1701 err = store_status(status, i, err ? : current_node, 1); 1702 if (err) 1703 goto out_flush; 1704 1705 err = move_pages_and_store_status(mm, current_node, &pagelist, 1706 status, start, i, nr_pages); 1707 if (err) 1708 goto out; 1709 current_node = NUMA_NO_NODE; 1710 } 1711 out_flush: 1712 /* Make sure we do not overwrite the existing error */ 1713 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1714 status, start, i, nr_pages); 1715 if (err >= 0) 1716 err = err1; 1717 out: 1718 return err; 1719 } 1720 1721 /* 1722 * Determine the nodes of an array of pages and store it in an array of status. 1723 */ 1724 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1725 const void __user **pages, int *status) 1726 { 1727 unsigned long i; 1728 1729 down_read(&mm->mmap_sem); 1730 1731 for (i = 0; i < nr_pages; i++) { 1732 unsigned long addr = (unsigned long)(*pages); 1733 struct vm_area_struct *vma; 1734 struct page *page; 1735 int err = -EFAULT; 1736 1737 vma = find_vma(mm, addr); 1738 if (!vma || addr < vma->vm_start) 1739 goto set_status; 1740 1741 /* FOLL_DUMP to ignore special (like zero) pages */ 1742 page = follow_page(vma, addr, FOLL_DUMP); 1743 1744 err = PTR_ERR(page); 1745 if (IS_ERR(page)) 1746 goto set_status; 1747 1748 err = page ? page_to_nid(page) : -ENOENT; 1749 set_status: 1750 *status = err; 1751 1752 pages++; 1753 status++; 1754 } 1755 1756 up_read(&mm->mmap_sem); 1757 } 1758 1759 /* 1760 * Determine the nodes of a user array of pages and store it in 1761 * a user array of status. 1762 */ 1763 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1764 const void __user * __user *pages, 1765 int __user *status) 1766 { 1767 #define DO_PAGES_STAT_CHUNK_NR 16 1768 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1769 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1770 1771 while (nr_pages) { 1772 unsigned long chunk_nr; 1773 1774 chunk_nr = nr_pages; 1775 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1776 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1777 1778 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1779 break; 1780 1781 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1782 1783 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1784 break; 1785 1786 pages += chunk_nr; 1787 status += chunk_nr; 1788 nr_pages -= chunk_nr; 1789 } 1790 return nr_pages ? -EFAULT : 0; 1791 } 1792 1793 /* 1794 * Move a list of pages in the address space of the currently executing 1795 * process. 1796 */ 1797 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1798 const void __user * __user *pages, 1799 const int __user *nodes, 1800 int __user *status, int flags) 1801 { 1802 struct task_struct *task; 1803 struct mm_struct *mm; 1804 int err; 1805 nodemask_t task_nodes; 1806 1807 /* Check flags */ 1808 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1809 return -EINVAL; 1810 1811 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1812 return -EPERM; 1813 1814 /* Find the mm_struct */ 1815 rcu_read_lock(); 1816 task = pid ? find_task_by_vpid(pid) : current; 1817 if (!task) { 1818 rcu_read_unlock(); 1819 return -ESRCH; 1820 } 1821 get_task_struct(task); 1822 1823 /* 1824 * Check if this process has the right to modify the specified 1825 * process. Use the regular "ptrace_may_access()" checks. 1826 */ 1827 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1828 rcu_read_unlock(); 1829 err = -EPERM; 1830 goto out; 1831 } 1832 rcu_read_unlock(); 1833 1834 err = security_task_movememory(task); 1835 if (err) 1836 goto out; 1837 1838 task_nodes = cpuset_mems_allowed(task); 1839 mm = get_task_mm(task); 1840 put_task_struct(task); 1841 1842 if (!mm) 1843 return -EINVAL; 1844 1845 if (nodes) 1846 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1847 nodes, status, flags); 1848 else 1849 err = do_pages_stat(mm, nr_pages, pages, status); 1850 1851 mmput(mm); 1852 return err; 1853 1854 out: 1855 put_task_struct(task); 1856 return err; 1857 } 1858 1859 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1860 const void __user * __user *, pages, 1861 const int __user *, nodes, 1862 int __user *, status, int, flags) 1863 { 1864 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1865 } 1866 1867 #ifdef CONFIG_COMPAT 1868 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1869 compat_uptr_t __user *, pages32, 1870 const int __user *, nodes, 1871 int __user *, status, 1872 int, flags) 1873 { 1874 const void __user * __user *pages; 1875 int i; 1876 1877 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1878 for (i = 0; i < nr_pages; i++) { 1879 compat_uptr_t p; 1880 1881 if (get_user(p, pages32 + i) || 1882 put_user(compat_ptr(p), pages + i)) 1883 return -EFAULT; 1884 } 1885 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1886 } 1887 #endif /* CONFIG_COMPAT */ 1888 1889 #ifdef CONFIG_NUMA_BALANCING 1890 /* 1891 * Returns true if this is a safe migration target node for misplaced NUMA 1892 * pages. Currently it only checks the watermarks which crude 1893 */ 1894 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1895 unsigned long nr_migrate_pages) 1896 { 1897 int z; 1898 1899 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1900 struct zone *zone = pgdat->node_zones + z; 1901 1902 if (!populated_zone(zone)) 1903 continue; 1904 1905 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1906 if (!zone_watermark_ok(zone, 0, 1907 high_wmark_pages(zone) + 1908 nr_migrate_pages, 1909 ZONE_MOVABLE, 0)) 1910 continue; 1911 return true; 1912 } 1913 return false; 1914 } 1915 1916 static struct page *alloc_misplaced_dst_page(struct page *page, 1917 unsigned long data) 1918 { 1919 int nid = (int) data; 1920 struct page *newpage; 1921 1922 newpage = __alloc_pages_node(nid, 1923 (GFP_HIGHUSER_MOVABLE | 1924 __GFP_THISNODE | __GFP_NOMEMALLOC | 1925 __GFP_NORETRY | __GFP_NOWARN) & 1926 ~__GFP_RECLAIM, 0); 1927 1928 return newpage; 1929 } 1930 1931 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1932 { 1933 int page_lru; 1934 1935 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1936 1937 /* Avoid migrating to a node that is nearly full */ 1938 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 1939 return 0; 1940 1941 if (isolate_lru_page(page)) 1942 return 0; 1943 1944 /* 1945 * migrate_misplaced_transhuge_page() skips page migration's usual 1946 * check on page_count(), so we must do it here, now that the page 1947 * has been isolated: a GUP pin, or any other pin, prevents migration. 1948 * The expected page count is 3: 1 for page's mapcount and 1 for the 1949 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1950 */ 1951 if (PageTransHuge(page) && page_count(page) != 3) { 1952 putback_lru_page(page); 1953 return 0; 1954 } 1955 1956 page_lru = page_is_file_lru(page); 1957 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1958 hpage_nr_pages(page)); 1959 1960 /* 1961 * Isolating the page has taken another reference, so the 1962 * caller's reference can be safely dropped without the page 1963 * disappearing underneath us during migration. 1964 */ 1965 put_page(page); 1966 return 1; 1967 } 1968 1969 bool pmd_trans_migrating(pmd_t pmd) 1970 { 1971 struct page *page = pmd_page(pmd); 1972 return PageLocked(page); 1973 } 1974 1975 /* 1976 * Attempt to migrate a misplaced page to the specified destination 1977 * node. Caller is expected to have an elevated reference count on 1978 * the page that will be dropped by this function before returning. 1979 */ 1980 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1981 int node) 1982 { 1983 pg_data_t *pgdat = NODE_DATA(node); 1984 int isolated; 1985 int nr_remaining; 1986 LIST_HEAD(migratepages); 1987 1988 /* 1989 * Don't migrate file pages that are mapped in multiple processes 1990 * with execute permissions as they are probably shared libraries. 1991 */ 1992 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 1993 (vma->vm_flags & VM_EXEC)) 1994 goto out; 1995 1996 /* 1997 * Also do not migrate dirty pages as not all filesystems can move 1998 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1999 */ 2000 if (page_is_file_lru(page) && PageDirty(page)) 2001 goto out; 2002 2003 isolated = numamigrate_isolate_page(pgdat, page); 2004 if (!isolated) 2005 goto out; 2006 2007 list_add(&page->lru, &migratepages); 2008 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2009 NULL, node, MIGRATE_ASYNC, 2010 MR_NUMA_MISPLACED); 2011 if (nr_remaining) { 2012 if (!list_empty(&migratepages)) { 2013 list_del(&page->lru); 2014 dec_node_page_state(page, NR_ISOLATED_ANON + 2015 page_is_file_lru(page)); 2016 putback_lru_page(page); 2017 } 2018 isolated = 0; 2019 } else 2020 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2021 BUG_ON(!list_empty(&migratepages)); 2022 return isolated; 2023 2024 out: 2025 put_page(page); 2026 return 0; 2027 } 2028 #endif /* CONFIG_NUMA_BALANCING */ 2029 2030 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2031 /* 2032 * Migrates a THP to a given target node. page must be locked and is unlocked 2033 * before returning. 2034 */ 2035 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2036 struct vm_area_struct *vma, 2037 pmd_t *pmd, pmd_t entry, 2038 unsigned long address, 2039 struct page *page, int node) 2040 { 2041 spinlock_t *ptl; 2042 pg_data_t *pgdat = NODE_DATA(node); 2043 int isolated = 0; 2044 struct page *new_page = NULL; 2045 int page_lru = page_is_file_lru(page); 2046 unsigned long start = address & HPAGE_PMD_MASK; 2047 2048 new_page = alloc_pages_node(node, 2049 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2050 HPAGE_PMD_ORDER); 2051 if (!new_page) 2052 goto out_fail; 2053 prep_transhuge_page(new_page); 2054 2055 isolated = numamigrate_isolate_page(pgdat, page); 2056 if (!isolated) { 2057 put_page(new_page); 2058 goto out_fail; 2059 } 2060 2061 /* Prepare a page as a migration target */ 2062 __SetPageLocked(new_page); 2063 if (PageSwapBacked(page)) 2064 __SetPageSwapBacked(new_page); 2065 2066 /* anon mapping, we can simply copy page->mapping to the new page: */ 2067 new_page->mapping = page->mapping; 2068 new_page->index = page->index; 2069 /* flush the cache before copying using the kernel virtual address */ 2070 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2071 migrate_page_copy(new_page, page); 2072 WARN_ON(PageLRU(new_page)); 2073 2074 /* Recheck the target PMD */ 2075 ptl = pmd_lock(mm, pmd); 2076 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2077 spin_unlock(ptl); 2078 2079 /* Reverse changes made by migrate_page_copy() */ 2080 if (TestClearPageActive(new_page)) 2081 SetPageActive(page); 2082 if (TestClearPageUnevictable(new_page)) 2083 SetPageUnevictable(page); 2084 2085 unlock_page(new_page); 2086 put_page(new_page); /* Free it */ 2087 2088 /* Retake the callers reference and putback on LRU */ 2089 get_page(page); 2090 putback_lru_page(page); 2091 mod_node_page_state(page_pgdat(page), 2092 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2093 2094 goto out_unlock; 2095 } 2096 2097 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2099 2100 /* 2101 * Overwrite the old entry under pagetable lock and establish 2102 * the new PTE. Any parallel GUP will either observe the old 2103 * page blocking on the page lock, block on the page table 2104 * lock or observe the new page. The SetPageUptodate on the 2105 * new page and page_add_new_anon_rmap guarantee the copy is 2106 * visible before the pagetable update. 2107 */ 2108 page_add_anon_rmap(new_page, vma, start, true); 2109 /* 2110 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2111 * has already been flushed globally. So no TLB can be currently 2112 * caching this non present pmd mapping. There's no need to clear the 2113 * pmd before doing set_pmd_at(), nor to flush the TLB after 2114 * set_pmd_at(). Clearing the pmd here would introduce a race 2115 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2116 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2117 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2118 * pmd. 2119 */ 2120 set_pmd_at(mm, start, pmd, entry); 2121 update_mmu_cache_pmd(vma, address, &entry); 2122 2123 page_ref_unfreeze(page, 2); 2124 mlock_migrate_page(new_page, page); 2125 page_remove_rmap(page, true); 2126 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2127 2128 spin_unlock(ptl); 2129 2130 /* Take an "isolate" reference and put new page on the LRU. */ 2131 get_page(new_page); 2132 putback_lru_page(new_page); 2133 2134 unlock_page(new_page); 2135 unlock_page(page); 2136 put_page(page); /* Drop the rmap reference */ 2137 put_page(page); /* Drop the LRU isolation reference */ 2138 2139 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2140 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2141 2142 mod_node_page_state(page_pgdat(page), 2143 NR_ISOLATED_ANON + page_lru, 2144 -HPAGE_PMD_NR); 2145 return isolated; 2146 2147 out_fail: 2148 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2149 ptl = pmd_lock(mm, pmd); 2150 if (pmd_same(*pmd, entry)) { 2151 entry = pmd_modify(entry, vma->vm_page_prot); 2152 set_pmd_at(mm, start, pmd, entry); 2153 update_mmu_cache_pmd(vma, address, &entry); 2154 } 2155 spin_unlock(ptl); 2156 2157 out_unlock: 2158 unlock_page(page); 2159 put_page(page); 2160 return 0; 2161 } 2162 #endif /* CONFIG_NUMA_BALANCING */ 2163 2164 #endif /* CONFIG_NUMA */ 2165 2166 #ifdef CONFIG_DEVICE_PRIVATE 2167 static int migrate_vma_collect_hole(unsigned long start, 2168 unsigned long end, 2169 __always_unused int depth, 2170 struct mm_walk *walk) 2171 { 2172 struct migrate_vma *migrate = walk->private; 2173 unsigned long addr; 2174 2175 for (addr = start; addr < end; addr += PAGE_SIZE) { 2176 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2177 migrate->dst[migrate->npages] = 0; 2178 migrate->npages++; 2179 migrate->cpages++; 2180 } 2181 2182 return 0; 2183 } 2184 2185 static int migrate_vma_collect_skip(unsigned long start, 2186 unsigned long end, 2187 struct mm_walk *walk) 2188 { 2189 struct migrate_vma *migrate = walk->private; 2190 unsigned long addr; 2191 2192 for (addr = start; addr < end; addr += PAGE_SIZE) { 2193 migrate->dst[migrate->npages] = 0; 2194 migrate->src[migrate->npages++] = 0; 2195 } 2196 2197 return 0; 2198 } 2199 2200 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2201 unsigned long start, 2202 unsigned long end, 2203 struct mm_walk *walk) 2204 { 2205 struct migrate_vma *migrate = walk->private; 2206 struct vm_area_struct *vma = walk->vma; 2207 struct mm_struct *mm = vma->vm_mm; 2208 unsigned long addr = start, unmapped = 0; 2209 spinlock_t *ptl; 2210 pte_t *ptep; 2211 2212 again: 2213 if (pmd_none(*pmdp)) 2214 return migrate_vma_collect_hole(start, end, -1, walk); 2215 2216 if (pmd_trans_huge(*pmdp)) { 2217 struct page *page; 2218 2219 ptl = pmd_lock(mm, pmdp); 2220 if (unlikely(!pmd_trans_huge(*pmdp))) { 2221 spin_unlock(ptl); 2222 goto again; 2223 } 2224 2225 page = pmd_page(*pmdp); 2226 if (is_huge_zero_page(page)) { 2227 spin_unlock(ptl); 2228 split_huge_pmd(vma, pmdp, addr); 2229 if (pmd_trans_unstable(pmdp)) 2230 return migrate_vma_collect_skip(start, end, 2231 walk); 2232 } else { 2233 int ret; 2234 2235 get_page(page); 2236 spin_unlock(ptl); 2237 if (unlikely(!trylock_page(page))) 2238 return migrate_vma_collect_skip(start, end, 2239 walk); 2240 ret = split_huge_page(page); 2241 unlock_page(page); 2242 put_page(page); 2243 if (ret) 2244 return migrate_vma_collect_skip(start, end, 2245 walk); 2246 if (pmd_none(*pmdp)) 2247 return migrate_vma_collect_hole(start, end, -1, 2248 walk); 2249 } 2250 } 2251 2252 if (unlikely(pmd_bad(*pmdp))) 2253 return migrate_vma_collect_skip(start, end, walk); 2254 2255 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2256 arch_enter_lazy_mmu_mode(); 2257 2258 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2259 unsigned long mpfn = 0, pfn; 2260 struct page *page; 2261 swp_entry_t entry; 2262 pte_t pte; 2263 2264 pte = *ptep; 2265 2266 if (pte_none(pte)) { 2267 mpfn = MIGRATE_PFN_MIGRATE; 2268 migrate->cpages++; 2269 goto next; 2270 } 2271 2272 if (!pte_present(pte)) { 2273 /* 2274 * Only care about unaddressable device page special 2275 * page table entry. Other special swap entries are not 2276 * migratable, and we ignore regular swapped page. 2277 */ 2278 entry = pte_to_swp_entry(pte); 2279 if (!is_device_private_entry(entry)) 2280 goto next; 2281 2282 page = device_private_entry_to_page(entry); 2283 if (page->pgmap->owner != migrate->src_owner) 2284 goto next; 2285 2286 mpfn = migrate_pfn(page_to_pfn(page)) | 2287 MIGRATE_PFN_MIGRATE; 2288 if (is_write_device_private_entry(entry)) 2289 mpfn |= MIGRATE_PFN_WRITE; 2290 } else { 2291 if (migrate->src_owner) 2292 goto next; 2293 pfn = pte_pfn(pte); 2294 if (is_zero_pfn(pfn)) { 2295 mpfn = MIGRATE_PFN_MIGRATE; 2296 migrate->cpages++; 2297 goto next; 2298 } 2299 page = vm_normal_page(migrate->vma, addr, pte); 2300 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2301 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2302 } 2303 2304 /* FIXME support THP */ 2305 if (!page || !page->mapping || PageTransCompound(page)) { 2306 mpfn = 0; 2307 goto next; 2308 } 2309 2310 /* 2311 * By getting a reference on the page we pin it and that blocks 2312 * any kind of migration. Side effect is that it "freezes" the 2313 * pte. 2314 * 2315 * We drop this reference after isolating the page from the lru 2316 * for non device page (device page are not on the lru and thus 2317 * can't be dropped from it). 2318 */ 2319 get_page(page); 2320 migrate->cpages++; 2321 2322 /* 2323 * Optimize for the common case where page is only mapped once 2324 * in one process. If we can lock the page, then we can safely 2325 * set up a special migration page table entry now. 2326 */ 2327 if (trylock_page(page)) { 2328 pte_t swp_pte; 2329 2330 mpfn |= MIGRATE_PFN_LOCKED; 2331 ptep_get_and_clear(mm, addr, ptep); 2332 2333 /* Setup special migration page table entry */ 2334 entry = make_migration_entry(page, mpfn & 2335 MIGRATE_PFN_WRITE); 2336 swp_pte = swp_entry_to_pte(entry); 2337 if (pte_soft_dirty(pte)) 2338 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2339 if (pte_uffd_wp(pte)) 2340 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2341 set_pte_at(mm, addr, ptep, swp_pte); 2342 2343 /* 2344 * This is like regular unmap: we remove the rmap and 2345 * drop page refcount. Page won't be freed, as we took 2346 * a reference just above. 2347 */ 2348 page_remove_rmap(page, false); 2349 put_page(page); 2350 2351 if (pte_present(pte)) 2352 unmapped++; 2353 } 2354 2355 next: 2356 migrate->dst[migrate->npages] = 0; 2357 migrate->src[migrate->npages++] = mpfn; 2358 } 2359 arch_leave_lazy_mmu_mode(); 2360 pte_unmap_unlock(ptep - 1, ptl); 2361 2362 /* Only flush the TLB if we actually modified any entries */ 2363 if (unmapped) 2364 flush_tlb_range(walk->vma, start, end); 2365 2366 return 0; 2367 } 2368 2369 static const struct mm_walk_ops migrate_vma_walk_ops = { 2370 .pmd_entry = migrate_vma_collect_pmd, 2371 .pte_hole = migrate_vma_collect_hole, 2372 }; 2373 2374 /* 2375 * migrate_vma_collect() - collect pages over a range of virtual addresses 2376 * @migrate: migrate struct containing all migration information 2377 * 2378 * This will walk the CPU page table. For each virtual address backed by a 2379 * valid page, it updates the src array and takes a reference on the page, in 2380 * order to pin the page until we lock it and unmap it. 2381 */ 2382 static void migrate_vma_collect(struct migrate_vma *migrate) 2383 { 2384 struct mmu_notifier_range range; 2385 2386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, 2387 migrate->vma->vm_mm, migrate->start, migrate->end); 2388 mmu_notifier_invalidate_range_start(&range); 2389 2390 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2391 &migrate_vma_walk_ops, migrate); 2392 2393 mmu_notifier_invalidate_range_end(&range); 2394 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2395 } 2396 2397 /* 2398 * migrate_vma_check_page() - check if page is pinned or not 2399 * @page: struct page to check 2400 * 2401 * Pinned pages cannot be migrated. This is the same test as in 2402 * migrate_page_move_mapping(), except that here we allow migration of a 2403 * ZONE_DEVICE page. 2404 */ 2405 static bool migrate_vma_check_page(struct page *page) 2406 { 2407 /* 2408 * One extra ref because caller holds an extra reference, either from 2409 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2410 * a device page. 2411 */ 2412 int extra = 1; 2413 2414 /* 2415 * FIXME support THP (transparent huge page), it is bit more complex to 2416 * check them than regular pages, because they can be mapped with a pmd 2417 * or with a pte (split pte mapping). 2418 */ 2419 if (PageCompound(page)) 2420 return false; 2421 2422 /* Page from ZONE_DEVICE have one extra reference */ 2423 if (is_zone_device_page(page)) { 2424 /* 2425 * Private page can never be pin as they have no valid pte and 2426 * GUP will fail for those. Yet if there is a pending migration 2427 * a thread might try to wait on the pte migration entry and 2428 * will bump the page reference count. Sadly there is no way to 2429 * differentiate a regular pin from migration wait. Hence to 2430 * avoid 2 racing thread trying to migrate back to CPU to enter 2431 * infinite loop (one stoping migration because the other is 2432 * waiting on pte migration entry). We always return true here. 2433 * 2434 * FIXME proper solution is to rework migration_entry_wait() so 2435 * it does not need to take a reference on page. 2436 */ 2437 return is_device_private_page(page); 2438 } 2439 2440 /* For file back page */ 2441 if (page_mapping(page)) 2442 extra += 1 + page_has_private(page); 2443 2444 if ((page_count(page) - extra) > page_mapcount(page)) 2445 return false; 2446 2447 return true; 2448 } 2449 2450 /* 2451 * migrate_vma_prepare() - lock pages and isolate them from the lru 2452 * @migrate: migrate struct containing all migration information 2453 * 2454 * This locks pages that have been collected by migrate_vma_collect(). Once each 2455 * page is locked it is isolated from the lru (for non-device pages). Finally, 2456 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2457 * migrated by concurrent kernel threads. 2458 */ 2459 static void migrate_vma_prepare(struct migrate_vma *migrate) 2460 { 2461 const unsigned long npages = migrate->npages; 2462 const unsigned long start = migrate->start; 2463 unsigned long addr, i, restore = 0; 2464 bool allow_drain = true; 2465 2466 lru_add_drain(); 2467 2468 for (i = 0; (i < npages) && migrate->cpages; i++) { 2469 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2470 bool remap = true; 2471 2472 if (!page) 2473 continue; 2474 2475 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2476 /* 2477 * Because we are migrating several pages there can be 2478 * a deadlock between 2 concurrent migration where each 2479 * are waiting on each other page lock. 2480 * 2481 * Make migrate_vma() a best effort thing and backoff 2482 * for any page we can not lock right away. 2483 */ 2484 if (!trylock_page(page)) { 2485 migrate->src[i] = 0; 2486 migrate->cpages--; 2487 put_page(page); 2488 continue; 2489 } 2490 remap = false; 2491 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2492 } 2493 2494 /* ZONE_DEVICE pages are not on LRU */ 2495 if (!is_zone_device_page(page)) { 2496 if (!PageLRU(page) && allow_drain) { 2497 /* Drain CPU's pagevec */ 2498 lru_add_drain_all(); 2499 allow_drain = false; 2500 } 2501 2502 if (isolate_lru_page(page)) { 2503 if (remap) { 2504 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2505 migrate->cpages--; 2506 restore++; 2507 } else { 2508 migrate->src[i] = 0; 2509 unlock_page(page); 2510 migrate->cpages--; 2511 put_page(page); 2512 } 2513 continue; 2514 } 2515 2516 /* Drop the reference we took in collect */ 2517 put_page(page); 2518 } 2519 2520 if (!migrate_vma_check_page(page)) { 2521 if (remap) { 2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2523 migrate->cpages--; 2524 restore++; 2525 2526 if (!is_zone_device_page(page)) { 2527 get_page(page); 2528 putback_lru_page(page); 2529 } 2530 } else { 2531 migrate->src[i] = 0; 2532 unlock_page(page); 2533 migrate->cpages--; 2534 2535 if (!is_zone_device_page(page)) 2536 putback_lru_page(page); 2537 else 2538 put_page(page); 2539 } 2540 } 2541 } 2542 2543 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2544 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2545 2546 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2547 continue; 2548 2549 remove_migration_pte(page, migrate->vma, addr, page); 2550 2551 migrate->src[i] = 0; 2552 unlock_page(page); 2553 put_page(page); 2554 restore--; 2555 } 2556 } 2557 2558 /* 2559 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2560 * @migrate: migrate struct containing all migration information 2561 * 2562 * Replace page mapping (CPU page table pte) with a special migration pte entry 2563 * and check again if it has been pinned. Pinned pages are restored because we 2564 * cannot migrate them. 2565 * 2566 * This is the last step before we call the device driver callback to allocate 2567 * destination memory and copy contents of original page over to new page. 2568 */ 2569 static void migrate_vma_unmap(struct migrate_vma *migrate) 2570 { 2571 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2572 const unsigned long npages = migrate->npages; 2573 const unsigned long start = migrate->start; 2574 unsigned long addr, i, restore = 0; 2575 2576 for (i = 0; i < npages; i++) { 2577 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2578 2579 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2580 continue; 2581 2582 if (page_mapped(page)) { 2583 try_to_unmap(page, flags); 2584 if (page_mapped(page)) 2585 goto restore; 2586 } 2587 2588 if (migrate_vma_check_page(page)) 2589 continue; 2590 2591 restore: 2592 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2593 migrate->cpages--; 2594 restore++; 2595 } 2596 2597 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2598 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2599 2600 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2601 continue; 2602 2603 remove_migration_ptes(page, page, false); 2604 2605 migrate->src[i] = 0; 2606 unlock_page(page); 2607 restore--; 2608 2609 if (is_zone_device_page(page)) 2610 put_page(page); 2611 else 2612 putback_lru_page(page); 2613 } 2614 } 2615 2616 /** 2617 * migrate_vma_setup() - prepare to migrate a range of memory 2618 * @args: contains the vma, start, and and pfns arrays for the migration 2619 * 2620 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2621 * without an error. 2622 * 2623 * Prepare to migrate a range of memory virtual address range by collecting all 2624 * the pages backing each virtual address in the range, saving them inside the 2625 * src array. Then lock those pages and unmap them. Once the pages are locked 2626 * and unmapped, check whether each page is pinned or not. Pages that aren't 2627 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2628 * corresponding src array entry. Then restores any pages that are pinned, by 2629 * remapping and unlocking those pages. 2630 * 2631 * The caller should then allocate destination memory and copy source memory to 2632 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2633 * flag set). Once these are allocated and copied, the caller must update each 2634 * corresponding entry in the dst array with the pfn value of the destination 2635 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2636 * (destination pages must have their struct pages locked, via lock_page()). 2637 * 2638 * Note that the caller does not have to migrate all the pages that are marked 2639 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2640 * device memory to system memory. If the caller cannot migrate a device page 2641 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2642 * consequences for the userspace process, so it must be avoided if at all 2643 * possible. 2644 * 2645 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2646 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2647 * allowing the caller to allocate device memory for those unback virtual 2648 * address. For this the caller simply has to allocate device memory and 2649 * properly set the destination entry like for regular migration. Note that 2650 * this can still fails and thus inside the device driver must check if the 2651 * migration was successful for those entries after calling migrate_vma_pages() 2652 * just like for regular migration. 2653 * 2654 * After that, the callers must call migrate_vma_pages() to go over each entry 2655 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2656 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2657 * then migrate_vma_pages() to migrate struct page information from the source 2658 * struct page to the destination struct page. If it fails to migrate the 2659 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2660 * src array. 2661 * 2662 * At this point all successfully migrated pages have an entry in the src 2663 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2664 * array entry with MIGRATE_PFN_VALID flag set. 2665 * 2666 * Once migrate_vma_pages() returns the caller may inspect which pages were 2667 * successfully migrated, and which were not. Successfully migrated pages will 2668 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2669 * 2670 * It is safe to update device page table after migrate_vma_pages() because 2671 * both destination and source page are still locked, and the mmap_sem is held 2672 * in read mode (hence no one can unmap the range being migrated). 2673 * 2674 * Once the caller is done cleaning up things and updating its page table (if it 2675 * chose to do so, this is not an obligation) it finally calls 2676 * migrate_vma_finalize() to update the CPU page table to point to new pages 2677 * for successfully migrated pages or otherwise restore the CPU page table to 2678 * point to the original source pages. 2679 */ 2680 int migrate_vma_setup(struct migrate_vma *args) 2681 { 2682 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2683 2684 args->start &= PAGE_MASK; 2685 args->end &= PAGE_MASK; 2686 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2687 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2688 return -EINVAL; 2689 if (nr_pages <= 0) 2690 return -EINVAL; 2691 if (args->start < args->vma->vm_start || 2692 args->start >= args->vma->vm_end) 2693 return -EINVAL; 2694 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2695 return -EINVAL; 2696 if (!args->src || !args->dst) 2697 return -EINVAL; 2698 2699 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2700 args->cpages = 0; 2701 args->npages = 0; 2702 2703 migrate_vma_collect(args); 2704 2705 if (args->cpages) 2706 migrate_vma_prepare(args); 2707 if (args->cpages) 2708 migrate_vma_unmap(args); 2709 2710 /* 2711 * At this point pages are locked and unmapped, and thus they have 2712 * stable content and can safely be copied to destination memory that 2713 * is allocated by the drivers. 2714 */ 2715 return 0; 2716 2717 } 2718 EXPORT_SYMBOL(migrate_vma_setup); 2719 2720 /* 2721 * This code closely matches the code in: 2722 * __handle_mm_fault() 2723 * handle_pte_fault() 2724 * do_anonymous_page() 2725 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2726 * private page. 2727 */ 2728 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2729 unsigned long addr, 2730 struct page *page, 2731 unsigned long *src, 2732 unsigned long *dst) 2733 { 2734 struct vm_area_struct *vma = migrate->vma; 2735 struct mm_struct *mm = vma->vm_mm; 2736 struct mem_cgroup *memcg; 2737 bool flush = false; 2738 spinlock_t *ptl; 2739 pte_t entry; 2740 pgd_t *pgdp; 2741 p4d_t *p4dp; 2742 pud_t *pudp; 2743 pmd_t *pmdp; 2744 pte_t *ptep; 2745 2746 /* Only allow populating anonymous memory */ 2747 if (!vma_is_anonymous(vma)) 2748 goto abort; 2749 2750 pgdp = pgd_offset(mm, addr); 2751 p4dp = p4d_alloc(mm, pgdp, addr); 2752 if (!p4dp) 2753 goto abort; 2754 pudp = pud_alloc(mm, p4dp, addr); 2755 if (!pudp) 2756 goto abort; 2757 pmdp = pmd_alloc(mm, pudp, addr); 2758 if (!pmdp) 2759 goto abort; 2760 2761 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2762 goto abort; 2763 2764 /* 2765 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2766 * pte_offset_map() on pmds where a huge pmd might be created 2767 * from a different thread. 2768 * 2769 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2770 * parallel threads are excluded by other means. 2771 * 2772 * Here we only have down_read(mmap_sem). 2773 */ 2774 if (pte_alloc(mm, pmdp)) 2775 goto abort; 2776 2777 /* See the comment in pte_alloc_one_map() */ 2778 if (unlikely(pmd_trans_unstable(pmdp))) 2779 goto abort; 2780 2781 if (unlikely(anon_vma_prepare(vma))) 2782 goto abort; 2783 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2784 goto abort; 2785 2786 /* 2787 * The memory barrier inside __SetPageUptodate makes sure that 2788 * preceding stores to the page contents become visible before 2789 * the set_pte_at() write. 2790 */ 2791 __SetPageUptodate(page); 2792 2793 if (is_zone_device_page(page)) { 2794 if (is_device_private_page(page)) { 2795 swp_entry_t swp_entry; 2796 2797 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2798 entry = swp_entry_to_pte(swp_entry); 2799 } 2800 } else { 2801 entry = mk_pte(page, vma->vm_page_prot); 2802 if (vma->vm_flags & VM_WRITE) 2803 entry = pte_mkwrite(pte_mkdirty(entry)); 2804 } 2805 2806 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2807 2808 if (check_stable_address_space(mm)) 2809 goto unlock_abort; 2810 2811 if (pte_present(*ptep)) { 2812 unsigned long pfn = pte_pfn(*ptep); 2813 2814 if (!is_zero_pfn(pfn)) 2815 goto unlock_abort; 2816 flush = true; 2817 } else if (!pte_none(*ptep)) 2818 goto unlock_abort; 2819 2820 /* 2821 * Check for userfaultfd but do not deliver the fault. Instead, 2822 * just back off. 2823 */ 2824 if (userfaultfd_missing(vma)) 2825 goto unlock_abort; 2826 2827 inc_mm_counter(mm, MM_ANONPAGES); 2828 page_add_new_anon_rmap(page, vma, addr, false); 2829 mem_cgroup_commit_charge(page, memcg, false, false); 2830 if (!is_zone_device_page(page)) 2831 lru_cache_add_active_or_unevictable(page, vma); 2832 get_page(page); 2833 2834 if (flush) { 2835 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2836 ptep_clear_flush_notify(vma, addr, ptep); 2837 set_pte_at_notify(mm, addr, ptep, entry); 2838 update_mmu_cache(vma, addr, ptep); 2839 } else { 2840 /* No need to invalidate - it was non-present before */ 2841 set_pte_at(mm, addr, ptep, entry); 2842 update_mmu_cache(vma, addr, ptep); 2843 } 2844 2845 pte_unmap_unlock(ptep, ptl); 2846 *src = MIGRATE_PFN_MIGRATE; 2847 return; 2848 2849 unlock_abort: 2850 pte_unmap_unlock(ptep, ptl); 2851 mem_cgroup_cancel_charge(page, memcg, false); 2852 abort: 2853 *src &= ~MIGRATE_PFN_MIGRATE; 2854 } 2855 2856 /** 2857 * migrate_vma_pages() - migrate meta-data from src page to dst page 2858 * @migrate: migrate struct containing all migration information 2859 * 2860 * This migrates struct page meta-data from source struct page to destination 2861 * struct page. This effectively finishes the migration from source page to the 2862 * destination page. 2863 */ 2864 void migrate_vma_pages(struct migrate_vma *migrate) 2865 { 2866 const unsigned long npages = migrate->npages; 2867 const unsigned long start = migrate->start; 2868 struct mmu_notifier_range range; 2869 unsigned long addr, i; 2870 bool notified = false; 2871 2872 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2873 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2874 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2875 struct address_space *mapping; 2876 int r; 2877 2878 if (!newpage) { 2879 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2880 continue; 2881 } 2882 2883 if (!page) { 2884 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2885 continue; 2886 if (!notified) { 2887 notified = true; 2888 2889 mmu_notifier_range_init(&range, 2890 MMU_NOTIFY_CLEAR, 0, 2891 NULL, 2892 migrate->vma->vm_mm, 2893 addr, migrate->end); 2894 mmu_notifier_invalidate_range_start(&range); 2895 } 2896 migrate_vma_insert_page(migrate, addr, newpage, 2897 &migrate->src[i], 2898 &migrate->dst[i]); 2899 continue; 2900 } 2901 2902 mapping = page_mapping(page); 2903 2904 if (is_zone_device_page(newpage)) { 2905 if (is_device_private_page(newpage)) { 2906 /* 2907 * For now only support private anonymous when 2908 * migrating to un-addressable device memory. 2909 */ 2910 if (mapping) { 2911 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2912 continue; 2913 } 2914 } else { 2915 /* 2916 * Other types of ZONE_DEVICE page are not 2917 * supported. 2918 */ 2919 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2920 continue; 2921 } 2922 } 2923 2924 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2925 if (r != MIGRATEPAGE_SUCCESS) 2926 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2927 } 2928 2929 /* 2930 * No need to double call mmu_notifier->invalidate_range() callback as 2931 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2932 * did already call it. 2933 */ 2934 if (notified) 2935 mmu_notifier_invalidate_range_only_end(&range); 2936 } 2937 EXPORT_SYMBOL(migrate_vma_pages); 2938 2939 /** 2940 * migrate_vma_finalize() - restore CPU page table entry 2941 * @migrate: migrate struct containing all migration information 2942 * 2943 * This replaces the special migration pte entry with either a mapping to the 2944 * new page if migration was successful for that page, or to the original page 2945 * otherwise. 2946 * 2947 * This also unlocks the pages and puts them back on the lru, or drops the extra 2948 * refcount, for device pages. 2949 */ 2950 void migrate_vma_finalize(struct migrate_vma *migrate) 2951 { 2952 const unsigned long npages = migrate->npages; 2953 unsigned long i; 2954 2955 for (i = 0; i < npages; i++) { 2956 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2957 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2958 2959 if (!page) { 2960 if (newpage) { 2961 unlock_page(newpage); 2962 put_page(newpage); 2963 } 2964 continue; 2965 } 2966 2967 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2968 if (newpage) { 2969 unlock_page(newpage); 2970 put_page(newpage); 2971 } 2972 newpage = page; 2973 } 2974 2975 remove_migration_ptes(page, newpage, false); 2976 unlock_page(page); 2977 migrate->cpages--; 2978 2979 if (is_zone_device_page(page)) 2980 put_page(page); 2981 else 2982 putback_lru_page(page); 2983 2984 if (newpage != page) { 2985 unlock_page(newpage); 2986 if (is_zone_device_page(newpage)) 2987 put_page(newpage); 2988 else 2989 putback_lru_page(newpage); 2990 } 2991 } 2992 } 2993 EXPORT_SYMBOL(migrate_vma_finalize); 2994 #endif /* CONFIG_DEVICE_PRIVATE */ 2995