xref: /linux/mm/migrate.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -hpage_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_zone_device_page(new))) {
250 			if (is_device_private_page(new)) {
251 				entry = make_device_private_entry(new, pte_write(pte));
252 				pte = swp_entry_to_pte(entry);
253 				if (pte_swp_uffd_wp(*pvmw.pte))
254 					pte = pte_mkuffd_wp(pte);
255 			}
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device public or private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += hpage_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	/*
655 	 * PG_readahead shares the same bit with PG_reclaim.  The above
656 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
657 	 * bit after that.
658 	 */
659 	if (PageReadahead(page))
660 		SetPageReadahead(newpage);
661 
662 	copy_page_owner(page, newpage);
663 
664 	mem_cgroup_migrate(page, newpage);
665 }
666 EXPORT_SYMBOL(migrate_page_states);
667 
668 void migrate_page_copy(struct page *newpage, struct page *page)
669 {
670 	if (PageHuge(page) || PageTransHuge(page))
671 		copy_huge_page(newpage, page);
672 	else
673 		copy_highpage(newpage, page);
674 
675 	migrate_page_states(newpage, page);
676 }
677 EXPORT_SYMBOL(migrate_page_copy);
678 
679 /************************************************************
680  *                    Migration functions
681  ***********************************************************/
682 
683 /*
684  * Common logic to directly migrate a single LRU page suitable for
685  * pages that do not use PagePrivate/PagePrivate2.
686  *
687  * Pages are locked upon entry and exit.
688  */
689 int migrate_page(struct address_space *mapping,
690 		struct page *newpage, struct page *page,
691 		enum migrate_mode mode)
692 {
693 	int rc;
694 
695 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
696 
697 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
698 
699 	if (rc != MIGRATEPAGE_SUCCESS)
700 		return rc;
701 
702 	if (mode != MIGRATE_SYNC_NO_COPY)
703 		migrate_page_copy(newpage, page);
704 	else
705 		migrate_page_states(newpage, page);
706 	return MIGRATEPAGE_SUCCESS;
707 }
708 EXPORT_SYMBOL(migrate_page);
709 
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713 							enum migrate_mode mode)
714 {
715 	struct buffer_head *bh = head;
716 
717 	/* Simple case, sync compaction */
718 	if (mode != MIGRATE_ASYNC) {
719 		do {
720 			lock_buffer(bh);
721 			bh = bh->b_this_page;
722 
723 		} while (bh != head);
724 
725 		return true;
726 	}
727 
728 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
729 	do {
730 		if (!trylock_buffer(bh)) {
731 			/*
732 			 * We failed to lock the buffer and cannot stall in
733 			 * async migration. Release the taken locks
734 			 */
735 			struct buffer_head *failed_bh = bh;
736 			bh = head;
737 			while (bh != failed_bh) {
738 				unlock_buffer(bh);
739 				bh = bh->b_this_page;
740 			}
741 			return false;
742 		}
743 
744 		bh = bh->b_this_page;
745 	} while (bh != head);
746 	return true;
747 }
748 
749 static int __buffer_migrate_page(struct address_space *mapping,
750 		struct page *newpage, struct page *page, enum migrate_mode mode,
751 		bool check_refs)
752 {
753 	struct buffer_head *bh, *head;
754 	int rc;
755 	int expected_count;
756 
757 	if (!page_has_buffers(page))
758 		return migrate_page(mapping, newpage, page, mode);
759 
760 	/* Check whether page does not have extra refs before we do more work */
761 	expected_count = expected_page_refs(mapping, page);
762 	if (page_count(page) != expected_count)
763 		return -EAGAIN;
764 
765 	head = page_buffers(page);
766 	if (!buffer_migrate_lock_buffers(head, mode))
767 		return -EAGAIN;
768 
769 	if (check_refs) {
770 		bool busy;
771 		bool invalidated = false;
772 
773 recheck_buffers:
774 		busy = false;
775 		spin_lock(&mapping->private_lock);
776 		bh = head;
777 		do {
778 			if (atomic_read(&bh->b_count)) {
779 				busy = true;
780 				break;
781 			}
782 			bh = bh->b_this_page;
783 		} while (bh != head);
784 		if (busy) {
785 			if (invalidated) {
786 				rc = -EAGAIN;
787 				goto unlock_buffers;
788 			}
789 			spin_unlock(&mapping->private_lock);
790 			invalidate_bh_lrus();
791 			invalidated = true;
792 			goto recheck_buffers;
793 		}
794 	}
795 
796 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797 	if (rc != MIGRATEPAGE_SUCCESS)
798 		goto unlock_buffers;
799 
800 	attach_page_private(newpage, detach_page_private(page));
801 
802 	bh = head;
803 	do {
804 		set_bh_page(bh, newpage, bh_offset(bh));
805 		bh = bh->b_this_page;
806 
807 	} while (bh != head);
808 
809 	if (mode != MIGRATE_SYNC_NO_COPY)
810 		migrate_page_copy(newpage, page);
811 	else
812 		migrate_page_states(newpage, page);
813 
814 	rc = MIGRATEPAGE_SUCCESS;
815 unlock_buffers:
816 	if (check_refs)
817 		spin_unlock(&mapping->private_lock);
818 	bh = head;
819 	do {
820 		unlock_buffer(bh);
821 		bh = bh->b_this_page;
822 
823 	} while (bh != head);
824 
825 	return rc;
826 }
827 
828 /*
829  * Migration function for pages with buffers. This function can only be used
830  * if the underlying filesystem guarantees that no other references to "page"
831  * exist. For example attached buffer heads are accessed only under page lock.
832  */
833 int buffer_migrate_page(struct address_space *mapping,
834 		struct page *newpage, struct page *page, enum migrate_mode mode)
835 {
836 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
837 }
838 EXPORT_SYMBOL(buffer_migrate_page);
839 
840 /*
841  * Same as above except that this variant is more careful and checks that there
842  * are also no buffer head references. This function is the right one for
843  * mappings where buffer heads are directly looked up and referenced (such as
844  * block device mappings).
845  */
846 int buffer_migrate_page_norefs(struct address_space *mapping,
847 		struct page *newpage, struct page *page, enum migrate_mode mode)
848 {
849 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
850 }
851 #endif
852 
853 /*
854  * Writeback a page to clean the dirty state
855  */
856 static int writeout(struct address_space *mapping, struct page *page)
857 {
858 	struct writeback_control wbc = {
859 		.sync_mode = WB_SYNC_NONE,
860 		.nr_to_write = 1,
861 		.range_start = 0,
862 		.range_end = LLONG_MAX,
863 		.for_reclaim = 1
864 	};
865 	int rc;
866 
867 	if (!mapping->a_ops->writepage)
868 		/* No write method for the address space */
869 		return -EINVAL;
870 
871 	if (!clear_page_dirty_for_io(page))
872 		/* Someone else already triggered a write */
873 		return -EAGAIN;
874 
875 	/*
876 	 * A dirty page may imply that the underlying filesystem has
877 	 * the page on some queue. So the page must be clean for
878 	 * migration. Writeout may mean we loose the lock and the
879 	 * page state is no longer what we checked for earlier.
880 	 * At this point we know that the migration attempt cannot
881 	 * be successful.
882 	 */
883 	remove_migration_ptes(page, page, false);
884 
885 	rc = mapping->a_ops->writepage(page, &wbc);
886 
887 	if (rc != AOP_WRITEPAGE_ACTIVATE)
888 		/* unlocked. Relock */
889 		lock_page(page);
890 
891 	return (rc < 0) ? -EIO : -EAGAIN;
892 }
893 
894 /*
895  * Default handling if a filesystem does not provide a migration function.
896  */
897 static int fallback_migrate_page(struct address_space *mapping,
898 	struct page *newpage, struct page *page, enum migrate_mode mode)
899 {
900 	if (PageDirty(page)) {
901 		/* Only writeback pages in full synchronous migration */
902 		switch (mode) {
903 		case MIGRATE_SYNC:
904 		case MIGRATE_SYNC_NO_COPY:
905 			break;
906 		default:
907 			return -EBUSY;
908 		}
909 		return writeout(mapping, page);
910 	}
911 
912 	/*
913 	 * Buffers may be managed in a filesystem specific way.
914 	 * We must have no buffers or drop them.
915 	 */
916 	if (page_has_private(page) &&
917 	    !try_to_release_page(page, GFP_KERNEL))
918 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
919 
920 	return migrate_page(mapping, newpage, page, mode);
921 }
922 
923 /*
924  * Move a page to a newly allocated page
925  * The page is locked and all ptes have been successfully removed.
926  *
927  * The new page will have replaced the old page if this function
928  * is successful.
929  *
930  * Return value:
931  *   < 0 - error code
932  *  MIGRATEPAGE_SUCCESS - success
933  */
934 static int move_to_new_page(struct page *newpage, struct page *page,
935 				enum migrate_mode mode)
936 {
937 	struct address_space *mapping;
938 	int rc = -EAGAIN;
939 	bool is_lru = !__PageMovable(page);
940 
941 	VM_BUG_ON_PAGE(!PageLocked(page), page);
942 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
943 
944 	mapping = page_mapping(page);
945 
946 	if (likely(is_lru)) {
947 		if (!mapping)
948 			rc = migrate_page(mapping, newpage, page, mode);
949 		else if (mapping->a_ops->migratepage)
950 			/*
951 			 * Most pages have a mapping and most filesystems
952 			 * provide a migratepage callback. Anonymous pages
953 			 * are part of swap space which also has its own
954 			 * migratepage callback. This is the most common path
955 			 * for page migration.
956 			 */
957 			rc = mapping->a_ops->migratepage(mapping, newpage,
958 							page, mode);
959 		else
960 			rc = fallback_migrate_page(mapping, newpage,
961 							page, mode);
962 	} else {
963 		/*
964 		 * In case of non-lru page, it could be released after
965 		 * isolation step. In that case, we shouldn't try migration.
966 		 */
967 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
968 		if (!PageMovable(page)) {
969 			rc = MIGRATEPAGE_SUCCESS;
970 			__ClearPageIsolated(page);
971 			goto out;
972 		}
973 
974 		rc = mapping->a_ops->migratepage(mapping, newpage,
975 						page, mode);
976 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
977 			!PageIsolated(page));
978 	}
979 
980 	/*
981 	 * When successful, old pagecache page->mapping must be cleared before
982 	 * page is freed; but stats require that PageAnon be left as PageAnon.
983 	 */
984 	if (rc == MIGRATEPAGE_SUCCESS) {
985 		if (__PageMovable(page)) {
986 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
987 
988 			/*
989 			 * We clear PG_movable under page_lock so any compactor
990 			 * cannot try to migrate this page.
991 			 */
992 			__ClearPageIsolated(page);
993 		}
994 
995 		/*
996 		 * Anonymous and movable page->mapping will be cleared by
997 		 * free_pages_prepare so don't reset it here for keeping
998 		 * the type to work PageAnon, for example.
999 		 */
1000 		if (!PageMappingFlags(page))
1001 			page->mapping = NULL;
1002 
1003 		if (likely(!is_zone_device_page(newpage)))
1004 			flush_dcache_page(newpage);
1005 
1006 	}
1007 out:
1008 	return rc;
1009 }
1010 
1011 static int __unmap_and_move(struct page *page, struct page *newpage,
1012 				int force, enum migrate_mode mode)
1013 {
1014 	int rc = -EAGAIN;
1015 	int page_was_mapped = 0;
1016 	struct anon_vma *anon_vma = NULL;
1017 	bool is_lru = !__PageMovable(page);
1018 
1019 	if (!trylock_page(page)) {
1020 		if (!force || mode == MIGRATE_ASYNC)
1021 			goto out;
1022 
1023 		/*
1024 		 * It's not safe for direct compaction to call lock_page.
1025 		 * For example, during page readahead pages are added locked
1026 		 * to the LRU. Later, when the IO completes the pages are
1027 		 * marked uptodate and unlocked. However, the queueing
1028 		 * could be merging multiple pages for one bio (e.g.
1029 		 * mpage_readahead). If an allocation happens for the
1030 		 * second or third page, the process can end up locking
1031 		 * the same page twice and deadlocking. Rather than
1032 		 * trying to be clever about what pages can be locked,
1033 		 * avoid the use of lock_page for direct compaction
1034 		 * altogether.
1035 		 */
1036 		if (current->flags & PF_MEMALLOC)
1037 			goto out;
1038 
1039 		lock_page(page);
1040 	}
1041 
1042 	if (PageWriteback(page)) {
1043 		/*
1044 		 * Only in the case of a full synchronous migration is it
1045 		 * necessary to wait for PageWriteback. In the async case,
1046 		 * the retry loop is too short and in the sync-light case,
1047 		 * the overhead of stalling is too much
1048 		 */
1049 		switch (mode) {
1050 		case MIGRATE_SYNC:
1051 		case MIGRATE_SYNC_NO_COPY:
1052 			break;
1053 		default:
1054 			rc = -EBUSY;
1055 			goto out_unlock;
1056 		}
1057 		if (!force)
1058 			goto out_unlock;
1059 		wait_on_page_writeback(page);
1060 	}
1061 
1062 	/*
1063 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1064 	 * we cannot notice that anon_vma is freed while we migrates a page.
1065 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1066 	 * of migration. File cache pages are no problem because of page_lock()
1067 	 * File Caches may use write_page() or lock_page() in migration, then,
1068 	 * just care Anon page here.
1069 	 *
1070 	 * Only page_get_anon_vma() understands the subtleties of
1071 	 * getting a hold on an anon_vma from outside one of its mms.
1072 	 * But if we cannot get anon_vma, then we won't need it anyway,
1073 	 * because that implies that the anon page is no longer mapped
1074 	 * (and cannot be remapped so long as we hold the page lock).
1075 	 */
1076 	if (PageAnon(page) && !PageKsm(page))
1077 		anon_vma = page_get_anon_vma(page);
1078 
1079 	/*
1080 	 * Block others from accessing the new page when we get around to
1081 	 * establishing additional references. We are usually the only one
1082 	 * holding a reference to newpage at this point. We used to have a BUG
1083 	 * here if trylock_page(newpage) fails, but would like to allow for
1084 	 * cases where there might be a race with the previous use of newpage.
1085 	 * This is much like races on refcount of oldpage: just don't BUG().
1086 	 */
1087 	if (unlikely(!trylock_page(newpage)))
1088 		goto out_unlock;
1089 
1090 	if (unlikely(!is_lru)) {
1091 		rc = move_to_new_page(newpage, page, mode);
1092 		goto out_unlock_both;
1093 	}
1094 
1095 	/*
1096 	 * Corner case handling:
1097 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1098 	 * and treated as swapcache but it has no rmap yet.
1099 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1100 	 * trigger a BUG.  So handle it here.
1101 	 * 2. An orphaned page (see truncate_complete_page) might have
1102 	 * fs-private metadata. The page can be picked up due to memory
1103 	 * offlining.  Everywhere else except page reclaim, the page is
1104 	 * invisible to the vm, so the page can not be migrated.  So try to
1105 	 * free the metadata, so the page can be freed.
1106 	 */
1107 	if (!page->mapping) {
1108 		VM_BUG_ON_PAGE(PageAnon(page), page);
1109 		if (page_has_private(page)) {
1110 			try_to_free_buffers(page);
1111 			goto out_unlock_both;
1112 		}
1113 	} else if (page_mapped(page)) {
1114 		/* Establish migration ptes */
1115 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1116 				page);
1117 		try_to_unmap(page,
1118 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1119 		page_was_mapped = 1;
1120 	}
1121 
1122 	if (!page_mapped(page))
1123 		rc = move_to_new_page(newpage, page, mode);
1124 
1125 	if (page_was_mapped)
1126 		remove_migration_ptes(page,
1127 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1128 
1129 out_unlock_both:
1130 	unlock_page(newpage);
1131 out_unlock:
1132 	/* Drop an anon_vma reference if we took one */
1133 	if (anon_vma)
1134 		put_anon_vma(anon_vma);
1135 	unlock_page(page);
1136 out:
1137 	/*
1138 	 * If migration is successful, decrease refcount of the newpage
1139 	 * which will not free the page because new page owner increased
1140 	 * refcounter. As well, if it is LRU page, add the page to LRU
1141 	 * list in here. Use the old state of the isolated source page to
1142 	 * determine if we migrated a LRU page. newpage was already unlocked
1143 	 * and possibly modified by its owner - don't rely on the page
1144 	 * state.
1145 	 */
1146 	if (rc == MIGRATEPAGE_SUCCESS) {
1147 		if (unlikely(!is_lru))
1148 			put_page(newpage);
1149 		else
1150 			putback_lru_page(newpage);
1151 	}
1152 
1153 	return rc;
1154 }
1155 
1156 /*
1157  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1158  * around it.
1159  */
1160 #if defined(CONFIG_ARM) && \
1161 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1162 #define ICE_noinline noinline
1163 #else
1164 #define ICE_noinline
1165 #endif
1166 
1167 /*
1168  * Obtain the lock on page, remove all ptes and migrate the page
1169  * to the newly allocated page in newpage.
1170  */
1171 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1172 				   free_page_t put_new_page,
1173 				   unsigned long private, struct page *page,
1174 				   int force, enum migrate_mode mode,
1175 				   enum migrate_reason reason)
1176 {
1177 	int rc = MIGRATEPAGE_SUCCESS;
1178 	struct page *newpage = NULL;
1179 
1180 	if (!thp_migration_supported() && PageTransHuge(page))
1181 		return -ENOMEM;
1182 
1183 	if (page_count(page) == 1) {
1184 		/* page was freed from under us. So we are done. */
1185 		ClearPageActive(page);
1186 		ClearPageUnevictable(page);
1187 		if (unlikely(__PageMovable(page))) {
1188 			lock_page(page);
1189 			if (!PageMovable(page))
1190 				__ClearPageIsolated(page);
1191 			unlock_page(page);
1192 		}
1193 		goto out;
1194 	}
1195 
1196 	newpage = get_new_page(page, private);
1197 	if (!newpage)
1198 		return -ENOMEM;
1199 
1200 	rc = __unmap_and_move(page, newpage, force, mode);
1201 	if (rc == MIGRATEPAGE_SUCCESS)
1202 		set_page_owner_migrate_reason(newpage, reason);
1203 
1204 out:
1205 	if (rc != -EAGAIN) {
1206 		/*
1207 		 * A page that has been migrated has all references
1208 		 * removed and will be freed. A page that has not been
1209 		 * migrated will have kept its references and be restored.
1210 		 */
1211 		list_del(&page->lru);
1212 
1213 		/*
1214 		 * Compaction can migrate also non-LRU pages which are
1215 		 * not accounted to NR_ISOLATED_*. They can be recognized
1216 		 * as __PageMovable
1217 		 */
1218 		if (likely(!__PageMovable(page)))
1219 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220 					page_is_file_lru(page), -hpage_nr_pages(page));
1221 	}
1222 
1223 	/*
1224 	 * If migration is successful, releases reference grabbed during
1225 	 * isolation. Otherwise, restore the page to right list unless
1226 	 * we want to retry.
1227 	 */
1228 	if (rc == MIGRATEPAGE_SUCCESS) {
1229 		put_page(page);
1230 		if (reason == MR_MEMORY_FAILURE) {
1231 			/*
1232 			 * Set PG_HWPoison on just freed page
1233 			 * intentionally. Although it's rather weird,
1234 			 * it's how HWPoison flag works at the moment.
1235 			 */
1236 			if (set_hwpoison_free_buddy_page(page))
1237 				num_poisoned_pages_inc();
1238 		}
1239 	} else {
1240 		if (rc != -EAGAIN) {
1241 			if (likely(!__PageMovable(page))) {
1242 				putback_lru_page(page);
1243 				goto put_new;
1244 			}
1245 
1246 			lock_page(page);
1247 			if (PageMovable(page))
1248 				putback_movable_page(page);
1249 			else
1250 				__ClearPageIsolated(page);
1251 			unlock_page(page);
1252 			put_page(page);
1253 		}
1254 put_new:
1255 		if (put_new_page)
1256 			put_new_page(newpage, private);
1257 		else
1258 			put_page(newpage);
1259 	}
1260 
1261 	return rc;
1262 }
1263 
1264 /*
1265  * Counterpart of unmap_and_move_page() for hugepage migration.
1266  *
1267  * This function doesn't wait the completion of hugepage I/O
1268  * because there is no race between I/O and migration for hugepage.
1269  * Note that currently hugepage I/O occurs only in direct I/O
1270  * where no lock is held and PG_writeback is irrelevant,
1271  * and writeback status of all subpages are counted in the reference
1272  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273  * under direct I/O, the reference of the head page is 512 and a bit more.)
1274  * This means that when we try to migrate hugepage whose subpages are
1275  * doing direct I/O, some references remain after try_to_unmap() and
1276  * hugepage migration fails without data corruption.
1277  *
1278  * There is also no race when direct I/O is issued on the page under migration,
1279  * because then pte is replaced with migration swap entry and direct I/O code
1280  * will wait in the page fault for migration to complete.
1281  */
1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283 				free_page_t put_new_page, unsigned long private,
1284 				struct page *hpage, int force,
1285 				enum migrate_mode mode, int reason)
1286 {
1287 	int rc = -EAGAIN;
1288 	int page_was_mapped = 0;
1289 	struct page *new_hpage;
1290 	struct anon_vma *anon_vma = NULL;
1291 	struct address_space *mapping = NULL;
1292 
1293 	/*
1294 	 * Migratability of hugepages depends on architectures and their size.
1295 	 * This check is necessary because some callers of hugepage migration
1296 	 * like soft offline and memory hotremove don't walk through page
1297 	 * tables or check whether the hugepage is pmd-based or not before
1298 	 * kicking migration.
1299 	 */
1300 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1301 		putback_active_hugepage(hpage);
1302 		return -ENOSYS;
1303 	}
1304 
1305 	new_hpage = get_new_page(hpage, private);
1306 	if (!new_hpage)
1307 		return -ENOMEM;
1308 
1309 	if (!trylock_page(hpage)) {
1310 		if (!force)
1311 			goto out;
1312 		switch (mode) {
1313 		case MIGRATE_SYNC:
1314 		case MIGRATE_SYNC_NO_COPY:
1315 			break;
1316 		default:
1317 			goto out;
1318 		}
1319 		lock_page(hpage);
1320 	}
1321 
1322 	/*
1323 	 * Check for pages which are in the process of being freed.  Without
1324 	 * page_mapping() set, hugetlbfs specific move page routine will not
1325 	 * be called and we could leak usage counts for subpools.
1326 	 */
1327 	if (page_private(hpage) && !page_mapping(hpage)) {
1328 		rc = -EBUSY;
1329 		goto out_unlock;
1330 	}
1331 
1332 	if (PageAnon(hpage))
1333 		anon_vma = page_get_anon_vma(hpage);
1334 
1335 	if (unlikely(!trylock_page(new_hpage)))
1336 		goto put_anon;
1337 
1338 	if (page_mapped(hpage)) {
1339 		/*
1340 		 * try_to_unmap could potentially call huge_pmd_unshare.
1341 		 * Because of this, take semaphore in write mode here and
1342 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1343 		 * taken the lock.
1344 		 */
1345 		mapping = hugetlb_page_mapping_lock_write(hpage);
1346 		if (unlikely(!mapping))
1347 			goto unlock_put_anon;
1348 
1349 		try_to_unmap(hpage,
1350 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1351 			TTU_RMAP_LOCKED);
1352 		page_was_mapped = 1;
1353 		/*
1354 		 * Leave mapping locked until after subsequent call to
1355 		 * remove_migration_ptes()
1356 		 */
1357 	}
1358 
1359 	if (!page_mapped(hpage))
1360 		rc = move_to_new_page(new_hpage, hpage, mode);
1361 
1362 	if (page_was_mapped) {
1363 		remove_migration_ptes(hpage,
1364 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1365 		i_mmap_unlock_write(mapping);
1366 	}
1367 
1368 unlock_put_anon:
1369 	unlock_page(new_hpage);
1370 
1371 put_anon:
1372 	if (anon_vma)
1373 		put_anon_vma(anon_vma);
1374 
1375 	if (rc == MIGRATEPAGE_SUCCESS) {
1376 		move_hugetlb_state(hpage, new_hpage, reason);
1377 		put_new_page = NULL;
1378 	}
1379 
1380 out_unlock:
1381 	unlock_page(hpage);
1382 out:
1383 	if (rc != -EAGAIN)
1384 		putback_active_hugepage(hpage);
1385 
1386 	/*
1387 	 * If migration was not successful and there's a freeing callback, use
1388 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1389 	 * isolation.
1390 	 */
1391 	if (put_new_page)
1392 		put_new_page(new_hpage, private);
1393 	else
1394 		putback_active_hugepage(new_hpage);
1395 
1396 	return rc;
1397 }
1398 
1399 /*
1400  * migrate_pages - migrate the pages specified in a list, to the free pages
1401  *		   supplied as the target for the page migration
1402  *
1403  * @from:		The list of pages to be migrated.
1404  * @get_new_page:	The function used to allocate free pages to be used
1405  *			as the target of the page migration.
1406  * @put_new_page:	The function used to free target pages if migration
1407  *			fails, or NULL if no special handling is necessary.
1408  * @private:		Private data to be passed on to get_new_page()
1409  * @mode:		The migration mode that specifies the constraints for
1410  *			page migration, if any.
1411  * @reason:		The reason for page migration.
1412  *
1413  * The function returns after 10 attempts or if no pages are movable any more
1414  * because the list has become empty or no retryable pages exist any more.
1415  * The caller should call putback_movable_pages() to return pages to the LRU
1416  * or free list only if ret != 0.
1417  *
1418  * Returns the number of pages that were not migrated, or an error code.
1419  */
1420 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1421 		free_page_t put_new_page, unsigned long private,
1422 		enum migrate_mode mode, int reason)
1423 {
1424 	int retry = 1;
1425 	int nr_failed = 0;
1426 	int nr_succeeded = 0;
1427 	int pass = 0;
1428 	struct page *page;
1429 	struct page *page2;
1430 	int swapwrite = current->flags & PF_SWAPWRITE;
1431 	int rc;
1432 
1433 	if (!swapwrite)
1434 		current->flags |= PF_SWAPWRITE;
1435 
1436 	for(pass = 0; pass < 10 && retry; pass++) {
1437 		retry = 0;
1438 
1439 		list_for_each_entry_safe(page, page2, from, lru) {
1440 retry:
1441 			cond_resched();
1442 
1443 			if (PageHuge(page))
1444 				rc = unmap_and_move_huge_page(get_new_page,
1445 						put_new_page, private, page,
1446 						pass > 2, mode, reason);
1447 			else
1448 				rc = unmap_and_move(get_new_page, put_new_page,
1449 						private, page, pass > 2, mode,
1450 						reason);
1451 
1452 			switch(rc) {
1453 			case -ENOMEM:
1454 				/*
1455 				 * THP migration might be unsupported or the
1456 				 * allocation could've failed so we should
1457 				 * retry on the same page with the THP split
1458 				 * to base pages.
1459 				 *
1460 				 * Head page is retried immediately and tail
1461 				 * pages are added to the tail of the list so
1462 				 * we encounter them after the rest of the list
1463 				 * is processed.
1464 				 */
1465 				if (PageTransHuge(page) && !PageHuge(page)) {
1466 					lock_page(page);
1467 					rc = split_huge_page_to_list(page, from);
1468 					unlock_page(page);
1469 					if (!rc) {
1470 						list_safe_reset_next(page, page2, lru);
1471 						goto retry;
1472 					}
1473 				}
1474 				nr_failed++;
1475 				goto out;
1476 			case -EAGAIN:
1477 				retry++;
1478 				break;
1479 			case MIGRATEPAGE_SUCCESS:
1480 				nr_succeeded++;
1481 				break;
1482 			default:
1483 				/*
1484 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1485 				 * unlike -EAGAIN case, the failed page is
1486 				 * removed from migration page list and not
1487 				 * retried in the next outer loop.
1488 				 */
1489 				nr_failed++;
1490 				break;
1491 			}
1492 		}
1493 	}
1494 	nr_failed += retry;
1495 	rc = nr_failed;
1496 out:
1497 	if (nr_succeeded)
1498 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1499 	if (nr_failed)
1500 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1501 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1502 
1503 	if (!swapwrite)
1504 		current->flags &= ~PF_SWAPWRITE;
1505 
1506 	return rc;
1507 }
1508 
1509 #ifdef CONFIG_NUMA
1510 
1511 static int store_status(int __user *status, int start, int value, int nr)
1512 {
1513 	while (nr-- > 0) {
1514 		if (put_user(value, status + start))
1515 			return -EFAULT;
1516 		start++;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int do_move_pages_to_node(struct mm_struct *mm,
1523 		struct list_head *pagelist, int node)
1524 {
1525 	int err;
1526 
1527 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1528 			MIGRATE_SYNC, MR_SYSCALL);
1529 	if (err)
1530 		putback_movable_pages(pagelist);
1531 	return err;
1532 }
1533 
1534 /*
1535  * Resolves the given address to a struct page, isolates it from the LRU and
1536  * puts it to the given pagelist.
1537  * Returns:
1538  *     errno - if the page cannot be found/isolated
1539  *     0 - when it doesn't have to be migrated because it is already on the
1540  *         target node
1541  *     1 - when it has been queued
1542  */
1543 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1544 		int node, struct list_head *pagelist, bool migrate_all)
1545 {
1546 	struct vm_area_struct *vma;
1547 	struct page *page;
1548 	unsigned int follflags;
1549 	int err;
1550 
1551 	down_read(&mm->mmap_sem);
1552 	err = -EFAULT;
1553 	vma = find_vma(mm, addr);
1554 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1555 		goto out;
1556 
1557 	/* FOLL_DUMP to ignore special (like zero) pages */
1558 	follflags = FOLL_GET | FOLL_DUMP;
1559 	page = follow_page(vma, addr, follflags);
1560 
1561 	err = PTR_ERR(page);
1562 	if (IS_ERR(page))
1563 		goto out;
1564 
1565 	err = -ENOENT;
1566 	if (!page)
1567 		goto out;
1568 
1569 	err = 0;
1570 	if (page_to_nid(page) == node)
1571 		goto out_putpage;
1572 
1573 	err = -EACCES;
1574 	if (page_mapcount(page) > 1 && !migrate_all)
1575 		goto out_putpage;
1576 
1577 	if (PageHuge(page)) {
1578 		if (PageHead(page)) {
1579 			isolate_huge_page(page, pagelist);
1580 			err = 1;
1581 		}
1582 	} else {
1583 		struct page *head;
1584 
1585 		head = compound_head(page);
1586 		err = isolate_lru_page(head);
1587 		if (err)
1588 			goto out_putpage;
1589 
1590 		err = 1;
1591 		list_add_tail(&head->lru, pagelist);
1592 		mod_node_page_state(page_pgdat(head),
1593 			NR_ISOLATED_ANON + page_is_file_lru(head),
1594 			hpage_nr_pages(head));
1595 	}
1596 out_putpage:
1597 	/*
1598 	 * Either remove the duplicate refcount from
1599 	 * isolate_lru_page() or drop the page ref if it was
1600 	 * not isolated.
1601 	 */
1602 	put_page(page);
1603 out:
1604 	up_read(&mm->mmap_sem);
1605 	return err;
1606 }
1607 
1608 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1609 		struct list_head *pagelist, int __user *status,
1610 		int start, int i, unsigned long nr_pages)
1611 {
1612 	int err;
1613 
1614 	if (list_empty(pagelist))
1615 		return 0;
1616 
1617 	err = do_move_pages_to_node(mm, pagelist, node);
1618 	if (err) {
1619 		/*
1620 		 * Positive err means the number of failed
1621 		 * pages to migrate.  Since we are going to
1622 		 * abort and return the number of non-migrated
1623 		 * pages, so need to incude the rest of the
1624 		 * nr_pages that have not been attempted as
1625 		 * well.
1626 		 */
1627 		if (err > 0)
1628 			err += nr_pages - i - 1;
1629 		return err;
1630 	}
1631 	return store_status(status, start, node, i - start);
1632 }
1633 
1634 /*
1635  * Migrate an array of page address onto an array of nodes and fill
1636  * the corresponding array of status.
1637  */
1638 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1639 			 unsigned long nr_pages,
1640 			 const void __user * __user *pages,
1641 			 const int __user *nodes,
1642 			 int __user *status, int flags)
1643 {
1644 	int current_node = NUMA_NO_NODE;
1645 	LIST_HEAD(pagelist);
1646 	int start, i;
1647 	int err = 0, err1;
1648 
1649 	migrate_prep();
1650 
1651 	for (i = start = 0; i < nr_pages; i++) {
1652 		const void __user *p;
1653 		unsigned long addr;
1654 		int node;
1655 
1656 		err = -EFAULT;
1657 		if (get_user(p, pages + i))
1658 			goto out_flush;
1659 		if (get_user(node, nodes + i))
1660 			goto out_flush;
1661 		addr = (unsigned long)untagged_addr(p);
1662 
1663 		err = -ENODEV;
1664 		if (node < 0 || node >= MAX_NUMNODES)
1665 			goto out_flush;
1666 		if (!node_state(node, N_MEMORY))
1667 			goto out_flush;
1668 
1669 		err = -EACCES;
1670 		if (!node_isset(node, task_nodes))
1671 			goto out_flush;
1672 
1673 		if (current_node == NUMA_NO_NODE) {
1674 			current_node = node;
1675 			start = i;
1676 		} else if (node != current_node) {
1677 			err = move_pages_and_store_status(mm, current_node,
1678 					&pagelist, status, start, i, nr_pages);
1679 			if (err)
1680 				goto out;
1681 			start = i;
1682 			current_node = node;
1683 		}
1684 
1685 		/*
1686 		 * Errors in the page lookup or isolation are not fatal and we simply
1687 		 * report them via status
1688 		 */
1689 		err = add_page_for_migration(mm, addr, current_node,
1690 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1691 
1692 		if (err > 0) {
1693 			/* The page is successfully queued for migration */
1694 			continue;
1695 		}
1696 
1697 		/*
1698 		 * If the page is already on the target node (!err), store the
1699 		 * node, otherwise, store the err.
1700 		 */
1701 		err = store_status(status, i, err ? : current_node, 1);
1702 		if (err)
1703 			goto out_flush;
1704 
1705 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1706 				status, start, i, nr_pages);
1707 		if (err)
1708 			goto out;
1709 		current_node = NUMA_NO_NODE;
1710 	}
1711 out_flush:
1712 	/* Make sure we do not overwrite the existing error */
1713 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1714 				status, start, i, nr_pages);
1715 	if (err >= 0)
1716 		err = err1;
1717 out:
1718 	return err;
1719 }
1720 
1721 /*
1722  * Determine the nodes of an array of pages and store it in an array of status.
1723  */
1724 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1725 				const void __user **pages, int *status)
1726 {
1727 	unsigned long i;
1728 
1729 	down_read(&mm->mmap_sem);
1730 
1731 	for (i = 0; i < nr_pages; i++) {
1732 		unsigned long addr = (unsigned long)(*pages);
1733 		struct vm_area_struct *vma;
1734 		struct page *page;
1735 		int err = -EFAULT;
1736 
1737 		vma = find_vma(mm, addr);
1738 		if (!vma || addr < vma->vm_start)
1739 			goto set_status;
1740 
1741 		/* FOLL_DUMP to ignore special (like zero) pages */
1742 		page = follow_page(vma, addr, FOLL_DUMP);
1743 
1744 		err = PTR_ERR(page);
1745 		if (IS_ERR(page))
1746 			goto set_status;
1747 
1748 		err = page ? page_to_nid(page) : -ENOENT;
1749 set_status:
1750 		*status = err;
1751 
1752 		pages++;
1753 		status++;
1754 	}
1755 
1756 	up_read(&mm->mmap_sem);
1757 }
1758 
1759 /*
1760  * Determine the nodes of a user array of pages and store it in
1761  * a user array of status.
1762  */
1763 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1764 			 const void __user * __user *pages,
1765 			 int __user *status)
1766 {
1767 #define DO_PAGES_STAT_CHUNK_NR 16
1768 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1769 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1770 
1771 	while (nr_pages) {
1772 		unsigned long chunk_nr;
1773 
1774 		chunk_nr = nr_pages;
1775 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1776 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1777 
1778 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1779 			break;
1780 
1781 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1782 
1783 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1784 			break;
1785 
1786 		pages += chunk_nr;
1787 		status += chunk_nr;
1788 		nr_pages -= chunk_nr;
1789 	}
1790 	return nr_pages ? -EFAULT : 0;
1791 }
1792 
1793 /*
1794  * Move a list of pages in the address space of the currently executing
1795  * process.
1796  */
1797 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1798 			     const void __user * __user *pages,
1799 			     const int __user *nodes,
1800 			     int __user *status, int flags)
1801 {
1802 	struct task_struct *task;
1803 	struct mm_struct *mm;
1804 	int err;
1805 	nodemask_t task_nodes;
1806 
1807 	/* Check flags */
1808 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1809 		return -EINVAL;
1810 
1811 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1812 		return -EPERM;
1813 
1814 	/* Find the mm_struct */
1815 	rcu_read_lock();
1816 	task = pid ? find_task_by_vpid(pid) : current;
1817 	if (!task) {
1818 		rcu_read_unlock();
1819 		return -ESRCH;
1820 	}
1821 	get_task_struct(task);
1822 
1823 	/*
1824 	 * Check if this process has the right to modify the specified
1825 	 * process. Use the regular "ptrace_may_access()" checks.
1826 	 */
1827 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1828 		rcu_read_unlock();
1829 		err = -EPERM;
1830 		goto out;
1831 	}
1832 	rcu_read_unlock();
1833 
1834  	err = security_task_movememory(task);
1835  	if (err)
1836 		goto out;
1837 
1838 	task_nodes = cpuset_mems_allowed(task);
1839 	mm = get_task_mm(task);
1840 	put_task_struct(task);
1841 
1842 	if (!mm)
1843 		return -EINVAL;
1844 
1845 	if (nodes)
1846 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1847 				    nodes, status, flags);
1848 	else
1849 		err = do_pages_stat(mm, nr_pages, pages, status);
1850 
1851 	mmput(mm);
1852 	return err;
1853 
1854 out:
1855 	put_task_struct(task);
1856 	return err;
1857 }
1858 
1859 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1860 		const void __user * __user *, pages,
1861 		const int __user *, nodes,
1862 		int __user *, status, int, flags)
1863 {
1864 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1865 }
1866 
1867 #ifdef CONFIG_COMPAT
1868 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1869 		       compat_uptr_t __user *, pages32,
1870 		       const int __user *, nodes,
1871 		       int __user *, status,
1872 		       int, flags)
1873 {
1874 	const void __user * __user *pages;
1875 	int i;
1876 
1877 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1878 	for (i = 0; i < nr_pages; i++) {
1879 		compat_uptr_t p;
1880 
1881 		if (get_user(p, pages32 + i) ||
1882 			put_user(compat_ptr(p), pages + i))
1883 			return -EFAULT;
1884 	}
1885 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1886 }
1887 #endif /* CONFIG_COMPAT */
1888 
1889 #ifdef CONFIG_NUMA_BALANCING
1890 /*
1891  * Returns true if this is a safe migration target node for misplaced NUMA
1892  * pages. Currently it only checks the watermarks which crude
1893  */
1894 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1895 				   unsigned long nr_migrate_pages)
1896 {
1897 	int z;
1898 
1899 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1900 		struct zone *zone = pgdat->node_zones + z;
1901 
1902 		if (!populated_zone(zone))
1903 			continue;
1904 
1905 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1906 		if (!zone_watermark_ok(zone, 0,
1907 				       high_wmark_pages(zone) +
1908 				       nr_migrate_pages,
1909 				       ZONE_MOVABLE, 0))
1910 			continue;
1911 		return true;
1912 	}
1913 	return false;
1914 }
1915 
1916 static struct page *alloc_misplaced_dst_page(struct page *page,
1917 					   unsigned long data)
1918 {
1919 	int nid = (int) data;
1920 	struct page *newpage;
1921 
1922 	newpage = __alloc_pages_node(nid,
1923 					 (GFP_HIGHUSER_MOVABLE |
1924 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1925 					  __GFP_NORETRY | __GFP_NOWARN) &
1926 					 ~__GFP_RECLAIM, 0);
1927 
1928 	return newpage;
1929 }
1930 
1931 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1932 {
1933 	int page_lru;
1934 
1935 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1936 
1937 	/* Avoid migrating to a node that is nearly full */
1938 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1939 		return 0;
1940 
1941 	if (isolate_lru_page(page))
1942 		return 0;
1943 
1944 	/*
1945 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1946 	 * check on page_count(), so we must do it here, now that the page
1947 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1948 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1949 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1950 	 */
1951 	if (PageTransHuge(page) && page_count(page) != 3) {
1952 		putback_lru_page(page);
1953 		return 0;
1954 	}
1955 
1956 	page_lru = page_is_file_lru(page);
1957 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1958 				hpage_nr_pages(page));
1959 
1960 	/*
1961 	 * Isolating the page has taken another reference, so the
1962 	 * caller's reference can be safely dropped without the page
1963 	 * disappearing underneath us during migration.
1964 	 */
1965 	put_page(page);
1966 	return 1;
1967 }
1968 
1969 bool pmd_trans_migrating(pmd_t pmd)
1970 {
1971 	struct page *page = pmd_page(pmd);
1972 	return PageLocked(page);
1973 }
1974 
1975 /*
1976  * Attempt to migrate a misplaced page to the specified destination
1977  * node. Caller is expected to have an elevated reference count on
1978  * the page that will be dropped by this function before returning.
1979  */
1980 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1981 			   int node)
1982 {
1983 	pg_data_t *pgdat = NODE_DATA(node);
1984 	int isolated;
1985 	int nr_remaining;
1986 	LIST_HEAD(migratepages);
1987 
1988 	/*
1989 	 * Don't migrate file pages that are mapped in multiple processes
1990 	 * with execute permissions as they are probably shared libraries.
1991 	 */
1992 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1993 	    (vma->vm_flags & VM_EXEC))
1994 		goto out;
1995 
1996 	/*
1997 	 * Also do not migrate dirty pages as not all filesystems can move
1998 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1999 	 */
2000 	if (page_is_file_lru(page) && PageDirty(page))
2001 		goto out;
2002 
2003 	isolated = numamigrate_isolate_page(pgdat, page);
2004 	if (!isolated)
2005 		goto out;
2006 
2007 	list_add(&page->lru, &migratepages);
2008 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2009 				     NULL, node, MIGRATE_ASYNC,
2010 				     MR_NUMA_MISPLACED);
2011 	if (nr_remaining) {
2012 		if (!list_empty(&migratepages)) {
2013 			list_del(&page->lru);
2014 			dec_node_page_state(page, NR_ISOLATED_ANON +
2015 					page_is_file_lru(page));
2016 			putback_lru_page(page);
2017 		}
2018 		isolated = 0;
2019 	} else
2020 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2021 	BUG_ON(!list_empty(&migratepages));
2022 	return isolated;
2023 
2024 out:
2025 	put_page(page);
2026 	return 0;
2027 }
2028 #endif /* CONFIG_NUMA_BALANCING */
2029 
2030 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2031 /*
2032  * Migrates a THP to a given target node. page must be locked and is unlocked
2033  * before returning.
2034  */
2035 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2036 				struct vm_area_struct *vma,
2037 				pmd_t *pmd, pmd_t entry,
2038 				unsigned long address,
2039 				struct page *page, int node)
2040 {
2041 	spinlock_t *ptl;
2042 	pg_data_t *pgdat = NODE_DATA(node);
2043 	int isolated = 0;
2044 	struct page *new_page = NULL;
2045 	int page_lru = page_is_file_lru(page);
2046 	unsigned long start = address & HPAGE_PMD_MASK;
2047 
2048 	new_page = alloc_pages_node(node,
2049 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2050 		HPAGE_PMD_ORDER);
2051 	if (!new_page)
2052 		goto out_fail;
2053 	prep_transhuge_page(new_page);
2054 
2055 	isolated = numamigrate_isolate_page(pgdat, page);
2056 	if (!isolated) {
2057 		put_page(new_page);
2058 		goto out_fail;
2059 	}
2060 
2061 	/* Prepare a page as a migration target */
2062 	__SetPageLocked(new_page);
2063 	if (PageSwapBacked(page))
2064 		__SetPageSwapBacked(new_page);
2065 
2066 	/* anon mapping, we can simply copy page->mapping to the new page: */
2067 	new_page->mapping = page->mapping;
2068 	new_page->index = page->index;
2069 	/* flush the cache before copying using the kernel virtual address */
2070 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2071 	migrate_page_copy(new_page, page);
2072 	WARN_ON(PageLRU(new_page));
2073 
2074 	/* Recheck the target PMD */
2075 	ptl = pmd_lock(mm, pmd);
2076 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2077 		spin_unlock(ptl);
2078 
2079 		/* Reverse changes made by migrate_page_copy() */
2080 		if (TestClearPageActive(new_page))
2081 			SetPageActive(page);
2082 		if (TestClearPageUnevictable(new_page))
2083 			SetPageUnevictable(page);
2084 
2085 		unlock_page(new_page);
2086 		put_page(new_page);		/* Free it */
2087 
2088 		/* Retake the callers reference and putback on LRU */
2089 		get_page(page);
2090 		putback_lru_page(page);
2091 		mod_node_page_state(page_pgdat(page),
2092 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2093 
2094 		goto out_unlock;
2095 	}
2096 
2097 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2098 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2099 
2100 	/*
2101 	 * Overwrite the old entry under pagetable lock and establish
2102 	 * the new PTE. Any parallel GUP will either observe the old
2103 	 * page blocking on the page lock, block on the page table
2104 	 * lock or observe the new page. The SetPageUptodate on the
2105 	 * new page and page_add_new_anon_rmap guarantee the copy is
2106 	 * visible before the pagetable update.
2107 	 */
2108 	page_add_anon_rmap(new_page, vma, start, true);
2109 	/*
2110 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2111 	 * has already been flushed globally.  So no TLB can be currently
2112 	 * caching this non present pmd mapping.  There's no need to clear the
2113 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2114 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2115 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2116 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2117 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2118 	 * pmd.
2119 	 */
2120 	set_pmd_at(mm, start, pmd, entry);
2121 	update_mmu_cache_pmd(vma, address, &entry);
2122 
2123 	page_ref_unfreeze(page, 2);
2124 	mlock_migrate_page(new_page, page);
2125 	page_remove_rmap(page, true);
2126 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2127 
2128 	spin_unlock(ptl);
2129 
2130 	/* Take an "isolate" reference and put new page on the LRU. */
2131 	get_page(new_page);
2132 	putback_lru_page(new_page);
2133 
2134 	unlock_page(new_page);
2135 	unlock_page(page);
2136 	put_page(page);			/* Drop the rmap reference */
2137 	put_page(page);			/* Drop the LRU isolation reference */
2138 
2139 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2140 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2141 
2142 	mod_node_page_state(page_pgdat(page),
2143 			NR_ISOLATED_ANON + page_lru,
2144 			-HPAGE_PMD_NR);
2145 	return isolated;
2146 
2147 out_fail:
2148 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2149 	ptl = pmd_lock(mm, pmd);
2150 	if (pmd_same(*pmd, entry)) {
2151 		entry = pmd_modify(entry, vma->vm_page_prot);
2152 		set_pmd_at(mm, start, pmd, entry);
2153 		update_mmu_cache_pmd(vma, address, &entry);
2154 	}
2155 	spin_unlock(ptl);
2156 
2157 out_unlock:
2158 	unlock_page(page);
2159 	put_page(page);
2160 	return 0;
2161 }
2162 #endif /* CONFIG_NUMA_BALANCING */
2163 
2164 #endif /* CONFIG_NUMA */
2165 
2166 #ifdef CONFIG_DEVICE_PRIVATE
2167 static int migrate_vma_collect_hole(unsigned long start,
2168 				    unsigned long end,
2169 				    __always_unused int depth,
2170 				    struct mm_walk *walk)
2171 {
2172 	struct migrate_vma *migrate = walk->private;
2173 	unsigned long addr;
2174 
2175 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2176 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2177 		migrate->dst[migrate->npages] = 0;
2178 		migrate->npages++;
2179 		migrate->cpages++;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static int migrate_vma_collect_skip(unsigned long start,
2186 				    unsigned long end,
2187 				    struct mm_walk *walk)
2188 {
2189 	struct migrate_vma *migrate = walk->private;
2190 	unsigned long addr;
2191 
2192 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2193 		migrate->dst[migrate->npages] = 0;
2194 		migrate->src[migrate->npages++] = 0;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2201 				   unsigned long start,
2202 				   unsigned long end,
2203 				   struct mm_walk *walk)
2204 {
2205 	struct migrate_vma *migrate = walk->private;
2206 	struct vm_area_struct *vma = walk->vma;
2207 	struct mm_struct *mm = vma->vm_mm;
2208 	unsigned long addr = start, unmapped = 0;
2209 	spinlock_t *ptl;
2210 	pte_t *ptep;
2211 
2212 again:
2213 	if (pmd_none(*pmdp))
2214 		return migrate_vma_collect_hole(start, end, -1, walk);
2215 
2216 	if (pmd_trans_huge(*pmdp)) {
2217 		struct page *page;
2218 
2219 		ptl = pmd_lock(mm, pmdp);
2220 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2221 			spin_unlock(ptl);
2222 			goto again;
2223 		}
2224 
2225 		page = pmd_page(*pmdp);
2226 		if (is_huge_zero_page(page)) {
2227 			spin_unlock(ptl);
2228 			split_huge_pmd(vma, pmdp, addr);
2229 			if (pmd_trans_unstable(pmdp))
2230 				return migrate_vma_collect_skip(start, end,
2231 								walk);
2232 		} else {
2233 			int ret;
2234 
2235 			get_page(page);
2236 			spin_unlock(ptl);
2237 			if (unlikely(!trylock_page(page)))
2238 				return migrate_vma_collect_skip(start, end,
2239 								walk);
2240 			ret = split_huge_page(page);
2241 			unlock_page(page);
2242 			put_page(page);
2243 			if (ret)
2244 				return migrate_vma_collect_skip(start, end,
2245 								walk);
2246 			if (pmd_none(*pmdp))
2247 				return migrate_vma_collect_hole(start, end, -1,
2248 								walk);
2249 		}
2250 	}
2251 
2252 	if (unlikely(pmd_bad(*pmdp)))
2253 		return migrate_vma_collect_skip(start, end, walk);
2254 
2255 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2256 	arch_enter_lazy_mmu_mode();
2257 
2258 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2259 		unsigned long mpfn = 0, pfn;
2260 		struct page *page;
2261 		swp_entry_t entry;
2262 		pte_t pte;
2263 
2264 		pte = *ptep;
2265 
2266 		if (pte_none(pte)) {
2267 			mpfn = MIGRATE_PFN_MIGRATE;
2268 			migrate->cpages++;
2269 			goto next;
2270 		}
2271 
2272 		if (!pte_present(pte)) {
2273 			/*
2274 			 * Only care about unaddressable device page special
2275 			 * page table entry. Other special swap entries are not
2276 			 * migratable, and we ignore regular swapped page.
2277 			 */
2278 			entry = pte_to_swp_entry(pte);
2279 			if (!is_device_private_entry(entry))
2280 				goto next;
2281 
2282 			page = device_private_entry_to_page(entry);
2283 			if (page->pgmap->owner != migrate->src_owner)
2284 				goto next;
2285 
2286 			mpfn = migrate_pfn(page_to_pfn(page)) |
2287 					MIGRATE_PFN_MIGRATE;
2288 			if (is_write_device_private_entry(entry))
2289 				mpfn |= MIGRATE_PFN_WRITE;
2290 		} else {
2291 			if (migrate->src_owner)
2292 				goto next;
2293 			pfn = pte_pfn(pte);
2294 			if (is_zero_pfn(pfn)) {
2295 				mpfn = MIGRATE_PFN_MIGRATE;
2296 				migrate->cpages++;
2297 				goto next;
2298 			}
2299 			page = vm_normal_page(migrate->vma, addr, pte);
2300 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2301 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2302 		}
2303 
2304 		/* FIXME support THP */
2305 		if (!page || !page->mapping || PageTransCompound(page)) {
2306 			mpfn = 0;
2307 			goto next;
2308 		}
2309 
2310 		/*
2311 		 * By getting a reference on the page we pin it and that blocks
2312 		 * any kind of migration. Side effect is that it "freezes" the
2313 		 * pte.
2314 		 *
2315 		 * We drop this reference after isolating the page from the lru
2316 		 * for non device page (device page are not on the lru and thus
2317 		 * can't be dropped from it).
2318 		 */
2319 		get_page(page);
2320 		migrate->cpages++;
2321 
2322 		/*
2323 		 * Optimize for the common case where page is only mapped once
2324 		 * in one process. If we can lock the page, then we can safely
2325 		 * set up a special migration page table entry now.
2326 		 */
2327 		if (trylock_page(page)) {
2328 			pte_t swp_pte;
2329 
2330 			mpfn |= MIGRATE_PFN_LOCKED;
2331 			ptep_get_and_clear(mm, addr, ptep);
2332 
2333 			/* Setup special migration page table entry */
2334 			entry = make_migration_entry(page, mpfn &
2335 						     MIGRATE_PFN_WRITE);
2336 			swp_pte = swp_entry_to_pte(entry);
2337 			if (pte_soft_dirty(pte))
2338 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2339 			if (pte_uffd_wp(pte))
2340 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2341 			set_pte_at(mm, addr, ptep, swp_pte);
2342 
2343 			/*
2344 			 * This is like regular unmap: we remove the rmap and
2345 			 * drop page refcount. Page won't be freed, as we took
2346 			 * a reference just above.
2347 			 */
2348 			page_remove_rmap(page, false);
2349 			put_page(page);
2350 
2351 			if (pte_present(pte))
2352 				unmapped++;
2353 		}
2354 
2355 next:
2356 		migrate->dst[migrate->npages] = 0;
2357 		migrate->src[migrate->npages++] = mpfn;
2358 	}
2359 	arch_leave_lazy_mmu_mode();
2360 	pte_unmap_unlock(ptep - 1, ptl);
2361 
2362 	/* Only flush the TLB if we actually modified any entries */
2363 	if (unmapped)
2364 		flush_tlb_range(walk->vma, start, end);
2365 
2366 	return 0;
2367 }
2368 
2369 static const struct mm_walk_ops migrate_vma_walk_ops = {
2370 	.pmd_entry		= migrate_vma_collect_pmd,
2371 	.pte_hole		= migrate_vma_collect_hole,
2372 };
2373 
2374 /*
2375  * migrate_vma_collect() - collect pages over a range of virtual addresses
2376  * @migrate: migrate struct containing all migration information
2377  *
2378  * This will walk the CPU page table. For each virtual address backed by a
2379  * valid page, it updates the src array and takes a reference on the page, in
2380  * order to pin the page until we lock it and unmap it.
2381  */
2382 static void migrate_vma_collect(struct migrate_vma *migrate)
2383 {
2384 	struct mmu_notifier_range range;
2385 
2386 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2387 			migrate->vma->vm_mm, migrate->start, migrate->end);
2388 	mmu_notifier_invalidate_range_start(&range);
2389 
2390 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2391 			&migrate_vma_walk_ops, migrate);
2392 
2393 	mmu_notifier_invalidate_range_end(&range);
2394 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2395 }
2396 
2397 /*
2398  * migrate_vma_check_page() - check if page is pinned or not
2399  * @page: struct page to check
2400  *
2401  * Pinned pages cannot be migrated. This is the same test as in
2402  * migrate_page_move_mapping(), except that here we allow migration of a
2403  * ZONE_DEVICE page.
2404  */
2405 static bool migrate_vma_check_page(struct page *page)
2406 {
2407 	/*
2408 	 * One extra ref because caller holds an extra reference, either from
2409 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2410 	 * a device page.
2411 	 */
2412 	int extra = 1;
2413 
2414 	/*
2415 	 * FIXME support THP (transparent huge page), it is bit more complex to
2416 	 * check them than regular pages, because they can be mapped with a pmd
2417 	 * or with a pte (split pte mapping).
2418 	 */
2419 	if (PageCompound(page))
2420 		return false;
2421 
2422 	/* Page from ZONE_DEVICE have one extra reference */
2423 	if (is_zone_device_page(page)) {
2424 		/*
2425 		 * Private page can never be pin as they have no valid pte and
2426 		 * GUP will fail for those. Yet if there is a pending migration
2427 		 * a thread might try to wait on the pte migration entry and
2428 		 * will bump the page reference count. Sadly there is no way to
2429 		 * differentiate a regular pin from migration wait. Hence to
2430 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2431 		 * infinite loop (one stoping migration because the other is
2432 		 * waiting on pte migration entry). We always return true here.
2433 		 *
2434 		 * FIXME proper solution is to rework migration_entry_wait() so
2435 		 * it does not need to take a reference on page.
2436 		 */
2437 		return is_device_private_page(page);
2438 	}
2439 
2440 	/* For file back page */
2441 	if (page_mapping(page))
2442 		extra += 1 + page_has_private(page);
2443 
2444 	if ((page_count(page) - extra) > page_mapcount(page))
2445 		return false;
2446 
2447 	return true;
2448 }
2449 
2450 /*
2451  * migrate_vma_prepare() - lock pages and isolate them from the lru
2452  * @migrate: migrate struct containing all migration information
2453  *
2454  * This locks pages that have been collected by migrate_vma_collect(). Once each
2455  * page is locked it is isolated from the lru (for non-device pages). Finally,
2456  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2457  * migrated by concurrent kernel threads.
2458  */
2459 static void migrate_vma_prepare(struct migrate_vma *migrate)
2460 {
2461 	const unsigned long npages = migrate->npages;
2462 	const unsigned long start = migrate->start;
2463 	unsigned long addr, i, restore = 0;
2464 	bool allow_drain = true;
2465 
2466 	lru_add_drain();
2467 
2468 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2469 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2470 		bool remap = true;
2471 
2472 		if (!page)
2473 			continue;
2474 
2475 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2476 			/*
2477 			 * Because we are migrating several pages there can be
2478 			 * a deadlock between 2 concurrent migration where each
2479 			 * are waiting on each other page lock.
2480 			 *
2481 			 * Make migrate_vma() a best effort thing and backoff
2482 			 * for any page we can not lock right away.
2483 			 */
2484 			if (!trylock_page(page)) {
2485 				migrate->src[i] = 0;
2486 				migrate->cpages--;
2487 				put_page(page);
2488 				continue;
2489 			}
2490 			remap = false;
2491 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2492 		}
2493 
2494 		/* ZONE_DEVICE pages are not on LRU */
2495 		if (!is_zone_device_page(page)) {
2496 			if (!PageLRU(page) && allow_drain) {
2497 				/* Drain CPU's pagevec */
2498 				lru_add_drain_all();
2499 				allow_drain = false;
2500 			}
2501 
2502 			if (isolate_lru_page(page)) {
2503 				if (remap) {
2504 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505 					migrate->cpages--;
2506 					restore++;
2507 				} else {
2508 					migrate->src[i] = 0;
2509 					unlock_page(page);
2510 					migrate->cpages--;
2511 					put_page(page);
2512 				}
2513 				continue;
2514 			}
2515 
2516 			/* Drop the reference we took in collect */
2517 			put_page(page);
2518 		}
2519 
2520 		if (!migrate_vma_check_page(page)) {
2521 			if (remap) {
2522 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 				migrate->cpages--;
2524 				restore++;
2525 
2526 				if (!is_zone_device_page(page)) {
2527 					get_page(page);
2528 					putback_lru_page(page);
2529 				}
2530 			} else {
2531 				migrate->src[i] = 0;
2532 				unlock_page(page);
2533 				migrate->cpages--;
2534 
2535 				if (!is_zone_device_page(page))
2536 					putback_lru_page(page);
2537 				else
2538 					put_page(page);
2539 			}
2540 		}
2541 	}
2542 
2543 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2544 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545 
2546 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 			continue;
2548 
2549 		remove_migration_pte(page, migrate->vma, addr, page);
2550 
2551 		migrate->src[i] = 0;
2552 		unlock_page(page);
2553 		put_page(page);
2554 		restore--;
2555 	}
2556 }
2557 
2558 /*
2559  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2560  * @migrate: migrate struct containing all migration information
2561  *
2562  * Replace page mapping (CPU page table pte) with a special migration pte entry
2563  * and check again if it has been pinned. Pinned pages are restored because we
2564  * cannot migrate them.
2565  *
2566  * This is the last step before we call the device driver callback to allocate
2567  * destination memory and copy contents of original page over to new page.
2568  */
2569 static void migrate_vma_unmap(struct migrate_vma *migrate)
2570 {
2571 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2572 	const unsigned long npages = migrate->npages;
2573 	const unsigned long start = migrate->start;
2574 	unsigned long addr, i, restore = 0;
2575 
2576 	for (i = 0; i < npages; i++) {
2577 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578 
2579 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 			continue;
2581 
2582 		if (page_mapped(page)) {
2583 			try_to_unmap(page, flags);
2584 			if (page_mapped(page))
2585 				goto restore;
2586 		}
2587 
2588 		if (migrate_vma_check_page(page))
2589 			continue;
2590 
2591 restore:
2592 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2593 		migrate->cpages--;
2594 		restore++;
2595 	}
2596 
2597 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2598 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2599 
2600 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2601 			continue;
2602 
2603 		remove_migration_ptes(page, page, false);
2604 
2605 		migrate->src[i] = 0;
2606 		unlock_page(page);
2607 		restore--;
2608 
2609 		if (is_zone_device_page(page))
2610 			put_page(page);
2611 		else
2612 			putback_lru_page(page);
2613 	}
2614 }
2615 
2616 /**
2617  * migrate_vma_setup() - prepare to migrate a range of memory
2618  * @args: contains the vma, start, and and pfns arrays for the migration
2619  *
2620  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2621  * without an error.
2622  *
2623  * Prepare to migrate a range of memory virtual address range by collecting all
2624  * the pages backing each virtual address in the range, saving them inside the
2625  * src array.  Then lock those pages and unmap them. Once the pages are locked
2626  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2627  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2628  * corresponding src array entry.  Then restores any pages that are pinned, by
2629  * remapping and unlocking those pages.
2630  *
2631  * The caller should then allocate destination memory and copy source memory to
2632  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2633  * flag set).  Once these are allocated and copied, the caller must update each
2634  * corresponding entry in the dst array with the pfn value of the destination
2635  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2636  * (destination pages must have their struct pages locked, via lock_page()).
2637  *
2638  * Note that the caller does not have to migrate all the pages that are marked
2639  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2640  * device memory to system memory.  If the caller cannot migrate a device page
2641  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2642  * consequences for the userspace process, so it must be avoided if at all
2643  * possible.
2644  *
2645  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2646  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2647  * allowing the caller to allocate device memory for those unback virtual
2648  * address.  For this the caller simply has to allocate device memory and
2649  * properly set the destination entry like for regular migration.  Note that
2650  * this can still fails and thus inside the device driver must check if the
2651  * migration was successful for those entries after calling migrate_vma_pages()
2652  * just like for regular migration.
2653  *
2654  * After that, the callers must call migrate_vma_pages() to go over each entry
2655  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2656  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2657  * then migrate_vma_pages() to migrate struct page information from the source
2658  * struct page to the destination struct page.  If it fails to migrate the
2659  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2660  * src array.
2661  *
2662  * At this point all successfully migrated pages have an entry in the src
2663  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2664  * array entry with MIGRATE_PFN_VALID flag set.
2665  *
2666  * Once migrate_vma_pages() returns the caller may inspect which pages were
2667  * successfully migrated, and which were not.  Successfully migrated pages will
2668  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2669  *
2670  * It is safe to update device page table after migrate_vma_pages() because
2671  * both destination and source page are still locked, and the mmap_sem is held
2672  * in read mode (hence no one can unmap the range being migrated).
2673  *
2674  * Once the caller is done cleaning up things and updating its page table (if it
2675  * chose to do so, this is not an obligation) it finally calls
2676  * migrate_vma_finalize() to update the CPU page table to point to new pages
2677  * for successfully migrated pages or otherwise restore the CPU page table to
2678  * point to the original source pages.
2679  */
2680 int migrate_vma_setup(struct migrate_vma *args)
2681 {
2682 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2683 
2684 	args->start &= PAGE_MASK;
2685 	args->end &= PAGE_MASK;
2686 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2687 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2688 		return -EINVAL;
2689 	if (nr_pages <= 0)
2690 		return -EINVAL;
2691 	if (args->start < args->vma->vm_start ||
2692 	    args->start >= args->vma->vm_end)
2693 		return -EINVAL;
2694 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2695 		return -EINVAL;
2696 	if (!args->src || !args->dst)
2697 		return -EINVAL;
2698 
2699 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2700 	args->cpages = 0;
2701 	args->npages = 0;
2702 
2703 	migrate_vma_collect(args);
2704 
2705 	if (args->cpages)
2706 		migrate_vma_prepare(args);
2707 	if (args->cpages)
2708 		migrate_vma_unmap(args);
2709 
2710 	/*
2711 	 * At this point pages are locked and unmapped, and thus they have
2712 	 * stable content and can safely be copied to destination memory that
2713 	 * is allocated by the drivers.
2714 	 */
2715 	return 0;
2716 
2717 }
2718 EXPORT_SYMBOL(migrate_vma_setup);
2719 
2720 /*
2721  * This code closely matches the code in:
2722  *   __handle_mm_fault()
2723  *     handle_pte_fault()
2724  *       do_anonymous_page()
2725  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2726  * private page.
2727  */
2728 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2729 				    unsigned long addr,
2730 				    struct page *page,
2731 				    unsigned long *src,
2732 				    unsigned long *dst)
2733 {
2734 	struct vm_area_struct *vma = migrate->vma;
2735 	struct mm_struct *mm = vma->vm_mm;
2736 	struct mem_cgroup *memcg;
2737 	bool flush = false;
2738 	spinlock_t *ptl;
2739 	pte_t entry;
2740 	pgd_t *pgdp;
2741 	p4d_t *p4dp;
2742 	pud_t *pudp;
2743 	pmd_t *pmdp;
2744 	pte_t *ptep;
2745 
2746 	/* Only allow populating anonymous memory */
2747 	if (!vma_is_anonymous(vma))
2748 		goto abort;
2749 
2750 	pgdp = pgd_offset(mm, addr);
2751 	p4dp = p4d_alloc(mm, pgdp, addr);
2752 	if (!p4dp)
2753 		goto abort;
2754 	pudp = pud_alloc(mm, p4dp, addr);
2755 	if (!pudp)
2756 		goto abort;
2757 	pmdp = pmd_alloc(mm, pudp, addr);
2758 	if (!pmdp)
2759 		goto abort;
2760 
2761 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2762 		goto abort;
2763 
2764 	/*
2765 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2766 	 * pte_offset_map() on pmds where a huge pmd might be created
2767 	 * from a different thread.
2768 	 *
2769 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2770 	 * parallel threads are excluded by other means.
2771 	 *
2772 	 * Here we only have down_read(mmap_sem).
2773 	 */
2774 	if (pte_alloc(mm, pmdp))
2775 		goto abort;
2776 
2777 	/* See the comment in pte_alloc_one_map() */
2778 	if (unlikely(pmd_trans_unstable(pmdp)))
2779 		goto abort;
2780 
2781 	if (unlikely(anon_vma_prepare(vma)))
2782 		goto abort;
2783 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2784 		goto abort;
2785 
2786 	/*
2787 	 * The memory barrier inside __SetPageUptodate makes sure that
2788 	 * preceding stores to the page contents become visible before
2789 	 * the set_pte_at() write.
2790 	 */
2791 	__SetPageUptodate(page);
2792 
2793 	if (is_zone_device_page(page)) {
2794 		if (is_device_private_page(page)) {
2795 			swp_entry_t swp_entry;
2796 
2797 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2798 			entry = swp_entry_to_pte(swp_entry);
2799 		}
2800 	} else {
2801 		entry = mk_pte(page, vma->vm_page_prot);
2802 		if (vma->vm_flags & VM_WRITE)
2803 			entry = pte_mkwrite(pte_mkdirty(entry));
2804 	}
2805 
2806 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2807 
2808 	if (check_stable_address_space(mm))
2809 		goto unlock_abort;
2810 
2811 	if (pte_present(*ptep)) {
2812 		unsigned long pfn = pte_pfn(*ptep);
2813 
2814 		if (!is_zero_pfn(pfn))
2815 			goto unlock_abort;
2816 		flush = true;
2817 	} else if (!pte_none(*ptep))
2818 		goto unlock_abort;
2819 
2820 	/*
2821 	 * Check for userfaultfd but do not deliver the fault. Instead,
2822 	 * just back off.
2823 	 */
2824 	if (userfaultfd_missing(vma))
2825 		goto unlock_abort;
2826 
2827 	inc_mm_counter(mm, MM_ANONPAGES);
2828 	page_add_new_anon_rmap(page, vma, addr, false);
2829 	mem_cgroup_commit_charge(page, memcg, false, false);
2830 	if (!is_zone_device_page(page))
2831 		lru_cache_add_active_or_unevictable(page, vma);
2832 	get_page(page);
2833 
2834 	if (flush) {
2835 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2836 		ptep_clear_flush_notify(vma, addr, ptep);
2837 		set_pte_at_notify(mm, addr, ptep, entry);
2838 		update_mmu_cache(vma, addr, ptep);
2839 	} else {
2840 		/* No need to invalidate - it was non-present before */
2841 		set_pte_at(mm, addr, ptep, entry);
2842 		update_mmu_cache(vma, addr, ptep);
2843 	}
2844 
2845 	pte_unmap_unlock(ptep, ptl);
2846 	*src = MIGRATE_PFN_MIGRATE;
2847 	return;
2848 
2849 unlock_abort:
2850 	pte_unmap_unlock(ptep, ptl);
2851 	mem_cgroup_cancel_charge(page, memcg, false);
2852 abort:
2853 	*src &= ~MIGRATE_PFN_MIGRATE;
2854 }
2855 
2856 /**
2857  * migrate_vma_pages() - migrate meta-data from src page to dst page
2858  * @migrate: migrate struct containing all migration information
2859  *
2860  * This migrates struct page meta-data from source struct page to destination
2861  * struct page. This effectively finishes the migration from source page to the
2862  * destination page.
2863  */
2864 void migrate_vma_pages(struct migrate_vma *migrate)
2865 {
2866 	const unsigned long npages = migrate->npages;
2867 	const unsigned long start = migrate->start;
2868 	struct mmu_notifier_range range;
2869 	unsigned long addr, i;
2870 	bool notified = false;
2871 
2872 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2873 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2874 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2875 		struct address_space *mapping;
2876 		int r;
2877 
2878 		if (!newpage) {
2879 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2880 			continue;
2881 		}
2882 
2883 		if (!page) {
2884 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2885 				continue;
2886 			if (!notified) {
2887 				notified = true;
2888 
2889 				mmu_notifier_range_init(&range,
2890 							MMU_NOTIFY_CLEAR, 0,
2891 							NULL,
2892 							migrate->vma->vm_mm,
2893 							addr, migrate->end);
2894 				mmu_notifier_invalidate_range_start(&range);
2895 			}
2896 			migrate_vma_insert_page(migrate, addr, newpage,
2897 						&migrate->src[i],
2898 						&migrate->dst[i]);
2899 			continue;
2900 		}
2901 
2902 		mapping = page_mapping(page);
2903 
2904 		if (is_zone_device_page(newpage)) {
2905 			if (is_device_private_page(newpage)) {
2906 				/*
2907 				 * For now only support private anonymous when
2908 				 * migrating to un-addressable device memory.
2909 				 */
2910 				if (mapping) {
2911 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2912 					continue;
2913 				}
2914 			} else {
2915 				/*
2916 				 * Other types of ZONE_DEVICE page are not
2917 				 * supported.
2918 				 */
2919 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2920 				continue;
2921 			}
2922 		}
2923 
2924 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2925 		if (r != MIGRATEPAGE_SUCCESS)
2926 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2927 	}
2928 
2929 	/*
2930 	 * No need to double call mmu_notifier->invalidate_range() callback as
2931 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2932 	 * did already call it.
2933 	 */
2934 	if (notified)
2935 		mmu_notifier_invalidate_range_only_end(&range);
2936 }
2937 EXPORT_SYMBOL(migrate_vma_pages);
2938 
2939 /**
2940  * migrate_vma_finalize() - restore CPU page table entry
2941  * @migrate: migrate struct containing all migration information
2942  *
2943  * This replaces the special migration pte entry with either a mapping to the
2944  * new page if migration was successful for that page, or to the original page
2945  * otherwise.
2946  *
2947  * This also unlocks the pages and puts them back on the lru, or drops the extra
2948  * refcount, for device pages.
2949  */
2950 void migrate_vma_finalize(struct migrate_vma *migrate)
2951 {
2952 	const unsigned long npages = migrate->npages;
2953 	unsigned long i;
2954 
2955 	for (i = 0; i < npages; i++) {
2956 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2957 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2958 
2959 		if (!page) {
2960 			if (newpage) {
2961 				unlock_page(newpage);
2962 				put_page(newpage);
2963 			}
2964 			continue;
2965 		}
2966 
2967 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2968 			if (newpage) {
2969 				unlock_page(newpage);
2970 				put_page(newpage);
2971 			}
2972 			newpage = page;
2973 		}
2974 
2975 		remove_migration_ptes(page, newpage, false);
2976 		unlock_page(page);
2977 		migrate->cpages--;
2978 
2979 		if (is_zone_device_page(page))
2980 			put_page(page);
2981 		else
2982 			putback_lru_page(page);
2983 
2984 		if (newpage != page) {
2985 			unlock_page(newpage);
2986 			if (is_zone_device_page(newpage))
2987 				put_page(newpage);
2988 			else
2989 				putback_lru_page(newpage);
2990 		}
2991 	}
2992 }
2993 EXPORT_SYMBOL(migrate_vma_finalize);
2994 #endif /* CONFIG_DEVICE_PRIVATE */
2995