1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 if (unlikely(PageSlab(page))) 78 goto out_putpage; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__PageMovable(page))) 87 goto out_putpage; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(PageSlab(page))) 91 goto out_putpage; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!trylock_page(page))) 105 goto out_putpage; 106 107 if (!PageMovable(page) || PageIsolated(page)) 108 goto out_no_isolated; 109 110 mops = page_movable_ops(page); 111 VM_BUG_ON_PAGE(!mops, page); 112 113 if (!mops->isolate_page(page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(PageIsolated(page)); 118 SetPageIsolated(page); 119 unlock_page(page); 120 121 return 0; 122 123 out_no_isolated: 124 unlock_page(page); 125 out_putpage: 126 put_page(page); 127 out: 128 return -EBUSY; 129 } 130 131 static void putback_movable_page(struct page *page) 132 { 133 const struct movable_operations *mops = page_movable_ops(page); 134 135 mops->putback_page(page); 136 ClearPageIsolated(page); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct page *page; 150 struct page *page2; 151 152 list_for_each_entry_safe(page, page2, l, lru) { 153 if (unlikely(PageHuge(page))) { 154 putback_active_hugepage(page); 155 continue; 156 } 157 list_del(&page->lru); 158 /* 159 * We isolated non-lru movable page so here we can use 160 * __PageMovable because LRU page's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__PageMovable(page))) { 164 VM_BUG_ON_PAGE(!PageIsolated(page), page); 165 lock_page(page); 166 if (PageMovable(page)) 167 putback_movable_page(page); 168 else 169 ClearPageIsolated(page); 170 unlock_page(page); 171 put_page(page); 172 } else { 173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 174 page_is_file_lru(page), -thp_nr_pages(page)); 175 putback_lru_page(page); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t pte; 191 swp_entry_t entry; 192 struct page *new; 193 unsigned long idx = 0; 194 195 /* pgoff is invalid for ksm pages, but they are never large */ 196 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 198 new = folio_page(folio, idx); 199 200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 201 /* PMD-mapped THP migration entry */ 202 if (!pvmw.pte) { 203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 204 !folio_test_pmd_mappable(folio), folio); 205 remove_migration_pmd(&pvmw, new); 206 continue; 207 } 208 #endif 209 210 folio_get(folio); 211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 212 if (pte_swp_soft_dirty(*pvmw.pte)) 213 pte = pte_mksoft_dirty(pte); 214 215 /* 216 * Recheck VMA as permissions can change since migration started 217 */ 218 entry = pte_to_swp_entry(*pvmw.pte); 219 if (!is_migration_entry_young(entry)) 220 pte = pte_mkold(pte); 221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 222 pte = pte_mkdirty(pte); 223 if (is_writable_migration_entry(entry)) 224 pte = maybe_mkwrite(pte, vma); 225 else if (pte_swp_uffd_wp(*pvmw.pte)) 226 pte = pte_mkuffd_wp(pte); 227 228 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 229 rmap_flags |= RMAP_EXCLUSIVE; 230 231 if (unlikely(is_device_private_page(new))) { 232 if (pte_write(pte)) 233 entry = make_writable_device_private_entry( 234 page_to_pfn(new)); 235 else 236 entry = make_readable_device_private_entry( 237 page_to_pfn(new)); 238 pte = swp_entry_to_pte(entry); 239 if (pte_swp_soft_dirty(*pvmw.pte)) 240 pte = pte_swp_mksoft_dirty(pte); 241 if (pte_swp_uffd_wp(*pvmw.pte)) 242 pte = pte_swp_mkuffd_wp(pte); 243 } 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (folio_test_hugetlb(folio)) { 247 unsigned int shift = huge_page_shift(hstate_vma(vma)); 248 249 pte = pte_mkhuge(pte); 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 } else 258 #endif 259 { 260 if (folio_test_anon(folio)) 261 page_add_anon_rmap(new, vma, pvmw.address, 262 rmap_flags); 263 else 264 page_add_file_rmap(new, vma, false); 265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 266 } 267 if (vma->vm_flags & VM_LOCKED) 268 mlock_page_drain_local(); 269 270 trace_remove_migration_pte(pvmw.address, pte_val(pte), 271 compound_order(new)); 272 273 /* No need to invalidate - it was non-present before */ 274 update_mmu_cache(vma, pvmw.address, pvmw.pte); 275 } 276 277 return true; 278 } 279 280 /* 281 * Get rid of all migration entries and replace them by 282 * references to the indicated page. 283 */ 284 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 285 { 286 struct rmap_walk_control rwc = { 287 .rmap_one = remove_migration_pte, 288 .arg = src, 289 }; 290 291 if (locked) 292 rmap_walk_locked(dst, &rwc); 293 else 294 rmap_walk(dst, &rwc); 295 } 296 297 /* 298 * Something used the pte of a page under migration. We need to 299 * get to the page and wait until migration is finished. 300 * When we return from this function the fault will be retried. 301 */ 302 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 303 spinlock_t *ptl) 304 { 305 pte_t pte; 306 swp_entry_t entry; 307 308 spin_lock(ptl); 309 pte = *ptep; 310 if (!is_swap_pte(pte)) 311 goto out; 312 313 entry = pte_to_swp_entry(pte); 314 if (!is_migration_entry(entry)) 315 goto out; 316 317 migration_entry_wait_on_locked(entry, ptep, ptl); 318 return; 319 out: 320 pte_unmap_unlock(ptep, ptl); 321 } 322 323 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 324 unsigned long address) 325 { 326 spinlock_t *ptl = pte_lockptr(mm, pmd); 327 pte_t *ptep = pte_offset_map(pmd, address); 328 __migration_entry_wait(mm, ptep, ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) 333 { 334 pte_t pte; 335 336 spin_lock(ptl); 337 pte = huge_ptep_get(ptep); 338 339 if (unlikely(!is_hugetlb_entry_migration(pte))) 340 spin_unlock(ptl); 341 else 342 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 343 } 344 345 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 346 { 347 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 348 349 __migration_entry_wait_huge(pte, ptl); 350 } 351 #endif 352 353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 355 { 356 spinlock_t *ptl; 357 358 ptl = pmd_lock(mm, pmd); 359 if (!is_pmd_migration_entry(*pmd)) 360 goto unlock; 361 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 362 return; 363 unlock: 364 spin_unlock(ptl); 365 } 366 #endif 367 368 static int folio_expected_refs(struct address_space *mapping, 369 struct folio *folio) 370 { 371 int refs = 1; 372 if (!mapping) 373 return refs; 374 375 refs += folio_nr_pages(folio); 376 if (folio_test_private(folio)) 377 refs++; 378 379 return refs; 380 } 381 382 /* 383 * Replace the page in the mapping. 384 * 385 * The number of remaining references must be: 386 * 1 for anonymous pages without a mapping 387 * 2 for pages with a mapping 388 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 389 */ 390 int folio_migrate_mapping(struct address_space *mapping, 391 struct folio *newfolio, struct folio *folio, int extra_count) 392 { 393 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 394 struct zone *oldzone, *newzone; 395 int dirty; 396 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 397 long nr = folio_nr_pages(folio); 398 399 if (!mapping) { 400 /* Anonymous page without mapping */ 401 if (folio_ref_count(folio) != expected_count) 402 return -EAGAIN; 403 404 /* No turning back from here */ 405 newfolio->index = folio->index; 406 newfolio->mapping = folio->mapping; 407 if (folio_test_swapbacked(folio)) 408 __folio_set_swapbacked(newfolio); 409 410 return MIGRATEPAGE_SUCCESS; 411 } 412 413 oldzone = folio_zone(folio); 414 newzone = folio_zone(newfolio); 415 416 xas_lock_irq(&xas); 417 if (!folio_ref_freeze(folio, expected_count)) { 418 xas_unlock_irq(&xas); 419 return -EAGAIN; 420 } 421 422 /* 423 * Now we know that no one else is looking at the folio: 424 * no turning back from here. 425 */ 426 newfolio->index = folio->index; 427 newfolio->mapping = folio->mapping; 428 folio_ref_add(newfolio, nr); /* add cache reference */ 429 if (folio_test_swapbacked(folio)) { 430 __folio_set_swapbacked(newfolio); 431 if (folio_test_swapcache(folio)) { 432 folio_set_swapcache(newfolio); 433 newfolio->private = folio_get_private(folio); 434 } 435 } else { 436 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 437 } 438 439 /* Move dirty while page refs frozen and newpage not yet exposed */ 440 dirty = folio_test_dirty(folio); 441 if (dirty) { 442 folio_clear_dirty(folio); 443 folio_set_dirty(newfolio); 444 } 445 446 xas_store(&xas, newfolio); 447 448 /* 449 * Drop cache reference from old page by unfreezing 450 * to one less reference. 451 * We know this isn't the last reference. 452 */ 453 folio_ref_unfreeze(folio, expected_count - nr); 454 455 xas_unlock(&xas); 456 /* Leave irq disabled to prevent preemption while updating stats */ 457 458 /* 459 * If moved to a different zone then also account 460 * the page for that zone. Other VM counters will be 461 * taken care of when we establish references to the 462 * new page and drop references to the old page. 463 * 464 * Note that anonymous pages are accounted for 465 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 466 * are mapped to swap space. 467 */ 468 if (newzone != oldzone) { 469 struct lruvec *old_lruvec, *new_lruvec; 470 struct mem_cgroup *memcg; 471 472 memcg = folio_memcg(folio); 473 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 474 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 475 476 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 477 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 478 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 479 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 480 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 481 } 482 #ifdef CONFIG_SWAP 483 if (folio_test_swapcache(folio)) { 484 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 485 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 486 } 487 #endif 488 if (dirty && mapping_can_writeback(mapping)) { 489 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 490 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 491 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 492 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 493 } 494 } 495 local_irq_enable(); 496 497 return MIGRATEPAGE_SUCCESS; 498 } 499 EXPORT_SYMBOL(folio_migrate_mapping); 500 501 /* 502 * The expected number of remaining references is the same as that 503 * of folio_migrate_mapping(). 504 */ 505 int migrate_huge_page_move_mapping(struct address_space *mapping, 506 struct folio *dst, struct folio *src) 507 { 508 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 509 int expected_count; 510 511 xas_lock_irq(&xas); 512 expected_count = 2 + folio_has_private(src); 513 if (!folio_ref_freeze(src, expected_count)) { 514 xas_unlock_irq(&xas); 515 return -EAGAIN; 516 } 517 518 dst->index = src->index; 519 dst->mapping = src->mapping; 520 521 folio_get(dst); 522 523 xas_store(&xas, dst); 524 525 folio_ref_unfreeze(src, expected_count - 1); 526 527 xas_unlock_irq(&xas); 528 529 return MIGRATEPAGE_SUCCESS; 530 } 531 532 /* 533 * Copy the flags and some other ancillary information 534 */ 535 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 536 { 537 int cpupid; 538 539 if (folio_test_error(folio)) 540 folio_set_error(newfolio); 541 if (folio_test_referenced(folio)) 542 folio_set_referenced(newfolio); 543 if (folio_test_uptodate(folio)) 544 folio_mark_uptodate(newfolio); 545 if (folio_test_clear_active(folio)) { 546 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 547 folio_set_active(newfolio); 548 } else if (folio_test_clear_unevictable(folio)) 549 folio_set_unevictable(newfolio); 550 if (folio_test_workingset(folio)) 551 folio_set_workingset(newfolio); 552 if (folio_test_checked(folio)) 553 folio_set_checked(newfolio); 554 /* 555 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 556 * migration entries. We can still have PG_anon_exclusive set on an 557 * effectively unmapped and unreferenced first sub-pages of an 558 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 559 */ 560 if (folio_test_mappedtodisk(folio)) 561 folio_set_mappedtodisk(newfolio); 562 563 /* Move dirty on pages not done by folio_migrate_mapping() */ 564 if (folio_test_dirty(folio)) 565 folio_set_dirty(newfolio); 566 567 if (folio_test_young(folio)) 568 folio_set_young(newfolio); 569 if (folio_test_idle(folio)) 570 folio_set_idle(newfolio); 571 572 /* 573 * Copy NUMA information to the new page, to prevent over-eager 574 * future migrations of this same page. 575 */ 576 cpupid = page_cpupid_xchg_last(&folio->page, -1); 577 /* 578 * For memory tiering mode, when migrate between slow and fast 579 * memory node, reset cpupid, because that is used to record 580 * page access time in slow memory node. 581 */ 582 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 583 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 584 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 585 586 if (f_toptier != t_toptier) 587 cpupid = -1; 588 } 589 page_cpupid_xchg_last(&newfolio->page, cpupid); 590 591 folio_migrate_ksm(newfolio, folio); 592 /* 593 * Please do not reorder this without considering how mm/ksm.c's 594 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 595 */ 596 if (folio_test_swapcache(folio)) 597 folio_clear_swapcache(folio); 598 folio_clear_private(folio); 599 600 /* page->private contains hugetlb specific flags */ 601 if (!folio_test_hugetlb(folio)) 602 folio->private = NULL; 603 604 /* 605 * If any waiters have accumulated on the new page then 606 * wake them up. 607 */ 608 if (folio_test_writeback(newfolio)) 609 folio_end_writeback(newfolio); 610 611 /* 612 * PG_readahead shares the same bit with PG_reclaim. The above 613 * end_page_writeback() may clear PG_readahead mistakenly, so set the 614 * bit after that. 615 */ 616 if (folio_test_readahead(folio)) 617 folio_set_readahead(newfolio); 618 619 folio_copy_owner(newfolio, folio); 620 621 if (!folio_test_hugetlb(folio)) 622 mem_cgroup_migrate(folio, newfolio); 623 } 624 EXPORT_SYMBOL(folio_migrate_flags); 625 626 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 627 { 628 folio_copy(newfolio, folio); 629 folio_migrate_flags(newfolio, folio); 630 } 631 EXPORT_SYMBOL(folio_migrate_copy); 632 633 /************************************************************ 634 * Migration functions 635 ***********************************************************/ 636 637 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 638 struct folio *src, enum migrate_mode mode, int extra_count) 639 { 640 int rc; 641 642 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 643 644 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 645 646 if (rc != MIGRATEPAGE_SUCCESS) 647 return rc; 648 649 if (mode != MIGRATE_SYNC_NO_COPY) 650 folio_migrate_copy(dst, src); 651 else 652 folio_migrate_flags(dst, src); 653 return MIGRATEPAGE_SUCCESS; 654 } 655 656 /** 657 * migrate_folio() - Simple folio migration. 658 * @mapping: The address_space containing the folio. 659 * @dst: The folio to migrate the data to. 660 * @src: The folio containing the current data. 661 * @mode: How to migrate the page. 662 * 663 * Common logic to directly migrate a single LRU folio suitable for 664 * folios that do not use PagePrivate/PagePrivate2. 665 * 666 * Folios are locked upon entry and exit. 667 */ 668 int migrate_folio(struct address_space *mapping, struct folio *dst, 669 struct folio *src, enum migrate_mode mode) 670 { 671 return migrate_folio_extra(mapping, dst, src, mode, 0); 672 } 673 EXPORT_SYMBOL(migrate_folio); 674 675 #ifdef CONFIG_BLOCK 676 /* Returns true if all buffers are successfully locked */ 677 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 678 enum migrate_mode mode) 679 { 680 struct buffer_head *bh = head; 681 682 /* Simple case, sync compaction */ 683 if (mode != MIGRATE_ASYNC) { 684 do { 685 lock_buffer(bh); 686 bh = bh->b_this_page; 687 688 } while (bh != head); 689 690 return true; 691 } 692 693 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 694 do { 695 if (!trylock_buffer(bh)) { 696 /* 697 * We failed to lock the buffer and cannot stall in 698 * async migration. Release the taken locks 699 */ 700 struct buffer_head *failed_bh = bh; 701 bh = head; 702 while (bh != failed_bh) { 703 unlock_buffer(bh); 704 bh = bh->b_this_page; 705 } 706 return false; 707 } 708 709 bh = bh->b_this_page; 710 } while (bh != head); 711 return true; 712 } 713 714 static int __buffer_migrate_folio(struct address_space *mapping, 715 struct folio *dst, struct folio *src, enum migrate_mode mode, 716 bool check_refs) 717 { 718 struct buffer_head *bh, *head; 719 int rc; 720 int expected_count; 721 722 head = folio_buffers(src); 723 if (!head) 724 return migrate_folio(mapping, dst, src, mode); 725 726 /* Check whether page does not have extra refs before we do more work */ 727 expected_count = folio_expected_refs(mapping, src); 728 if (folio_ref_count(src) != expected_count) 729 return -EAGAIN; 730 731 if (!buffer_migrate_lock_buffers(head, mode)) 732 return -EAGAIN; 733 734 if (check_refs) { 735 bool busy; 736 bool invalidated = false; 737 738 recheck_buffers: 739 busy = false; 740 spin_lock(&mapping->private_lock); 741 bh = head; 742 do { 743 if (atomic_read(&bh->b_count)) { 744 busy = true; 745 break; 746 } 747 bh = bh->b_this_page; 748 } while (bh != head); 749 if (busy) { 750 if (invalidated) { 751 rc = -EAGAIN; 752 goto unlock_buffers; 753 } 754 spin_unlock(&mapping->private_lock); 755 invalidate_bh_lrus(); 756 invalidated = true; 757 goto recheck_buffers; 758 } 759 } 760 761 rc = folio_migrate_mapping(mapping, dst, src, 0); 762 if (rc != MIGRATEPAGE_SUCCESS) 763 goto unlock_buffers; 764 765 folio_attach_private(dst, folio_detach_private(src)); 766 767 bh = head; 768 do { 769 set_bh_page(bh, &dst->page, bh_offset(bh)); 770 bh = bh->b_this_page; 771 } while (bh != head); 772 773 if (mode != MIGRATE_SYNC_NO_COPY) 774 folio_migrate_copy(dst, src); 775 else 776 folio_migrate_flags(dst, src); 777 778 rc = MIGRATEPAGE_SUCCESS; 779 unlock_buffers: 780 if (check_refs) 781 spin_unlock(&mapping->private_lock); 782 bh = head; 783 do { 784 unlock_buffer(bh); 785 bh = bh->b_this_page; 786 } while (bh != head); 787 788 return rc; 789 } 790 791 /** 792 * buffer_migrate_folio() - Migration function for folios with buffers. 793 * @mapping: The address space containing @src. 794 * @dst: The folio to migrate to. 795 * @src: The folio to migrate from. 796 * @mode: How to migrate the folio. 797 * 798 * This function can only be used if the underlying filesystem guarantees 799 * that no other references to @src exist. For example attached buffer 800 * heads are accessed only under the folio lock. If your filesystem cannot 801 * provide this guarantee, buffer_migrate_folio_norefs() may be more 802 * appropriate. 803 * 804 * Return: 0 on success or a negative errno on failure. 805 */ 806 int buffer_migrate_folio(struct address_space *mapping, 807 struct folio *dst, struct folio *src, enum migrate_mode mode) 808 { 809 return __buffer_migrate_folio(mapping, dst, src, mode, false); 810 } 811 EXPORT_SYMBOL(buffer_migrate_folio); 812 813 /** 814 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 815 * @mapping: The address space containing @src. 816 * @dst: The folio to migrate to. 817 * @src: The folio to migrate from. 818 * @mode: How to migrate the folio. 819 * 820 * Like buffer_migrate_folio() except that this variant is more careful 821 * and checks that there are also no buffer head references. This function 822 * is the right one for mappings where buffer heads are directly looked 823 * up and referenced (such as block device mappings). 824 * 825 * Return: 0 on success or a negative errno on failure. 826 */ 827 int buffer_migrate_folio_norefs(struct address_space *mapping, 828 struct folio *dst, struct folio *src, enum migrate_mode mode) 829 { 830 return __buffer_migrate_folio(mapping, dst, src, mode, true); 831 } 832 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 833 #endif 834 835 int filemap_migrate_folio(struct address_space *mapping, 836 struct folio *dst, struct folio *src, enum migrate_mode mode) 837 { 838 int ret; 839 840 ret = folio_migrate_mapping(mapping, dst, src, 0); 841 if (ret != MIGRATEPAGE_SUCCESS) 842 return ret; 843 844 if (folio_get_private(src)) 845 folio_attach_private(dst, folio_detach_private(src)); 846 847 if (mode != MIGRATE_SYNC_NO_COPY) 848 folio_migrate_copy(dst, src); 849 else 850 folio_migrate_flags(dst, src); 851 return MIGRATEPAGE_SUCCESS; 852 } 853 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 854 855 /* 856 * Writeback a folio to clean the dirty state 857 */ 858 static int writeout(struct address_space *mapping, struct folio *folio) 859 { 860 struct writeback_control wbc = { 861 .sync_mode = WB_SYNC_NONE, 862 .nr_to_write = 1, 863 .range_start = 0, 864 .range_end = LLONG_MAX, 865 .for_reclaim = 1 866 }; 867 int rc; 868 869 if (!mapping->a_ops->writepage) 870 /* No write method for the address space */ 871 return -EINVAL; 872 873 if (!folio_clear_dirty_for_io(folio)) 874 /* Someone else already triggered a write */ 875 return -EAGAIN; 876 877 /* 878 * A dirty folio may imply that the underlying filesystem has 879 * the folio on some queue. So the folio must be clean for 880 * migration. Writeout may mean we lose the lock and the 881 * folio state is no longer what we checked for earlier. 882 * At this point we know that the migration attempt cannot 883 * be successful. 884 */ 885 remove_migration_ptes(folio, folio, false); 886 887 rc = mapping->a_ops->writepage(&folio->page, &wbc); 888 889 if (rc != AOP_WRITEPAGE_ACTIVATE) 890 /* unlocked. Relock */ 891 folio_lock(folio); 892 893 return (rc < 0) ? -EIO : -EAGAIN; 894 } 895 896 /* 897 * Default handling if a filesystem does not provide a migration function. 898 */ 899 static int fallback_migrate_folio(struct address_space *mapping, 900 struct folio *dst, struct folio *src, enum migrate_mode mode) 901 { 902 if (folio_test_dirty(src)) { 903 /* Only writeback folios in full synchronous migration */ 904 switch (mode) { 905 case MIGRATE_SYNC: 906 case MIGRATE_SYNC_NO_COPY: 907 break; 908 default: 909 return -EBUSY; 910 } 911 return writeout(mapping, src); 912 } 913 914 /* 915 * Buffers may be managed in a filesystem specific way. 916 * We must have no buffers or drop them. 917 */ 918 if (folio_test_private(src) && 919 !filemap_release_folio(src, GFP_KERNEL)) 920 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 921 922 return migrate_folio(mapping, dst, src, mode); 923 } 924 925 /* 926 * Move a page to a newly allocated page 927 * The page is locked and all ptes have been successfully removed. 928 * 929 * The new page will have replaced the old page if this function 930 * is successful. 931 * 932 * Return value: 933 * < 0 - error code 934 * MIGRATEPAGE_SUCCESS - success 935 */ 936 static int move_to_new_folio(struct folio *dst, struct folio *src, 937 enum migrate_mode mode) 938 { 939 int rc = -EAGAIN; 940 bool is_lru = !__PageMovable(&src->page); 941 942 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 943 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 944 945 if (likely(is_lru)) { 946 struct address_space *mapping = folio_mapping(src); 947 948 if (!mapping) 949 rc = migrate_folio(mapping, dst, src, mode); 950 else if (mapping->a_ops->migrate_folio) 951 /* 952 * Most folios have a mapping and most filesystems 953 * provide a migrate_folio callback. Anonymous folios 954 * are part of swap space which also has its own 955 * migrate_folio callback. This is the most common path 956 * for page migration. 957 */ 958 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 959 mode); 960 else 961 rc = fallback_migrate_folio(mapping, dst, src, mode); 962 } else { 963 const struct movable_operations *mops; 964 965 /* 966 * In case of non-lru page, it could be released after 967 * isolation step. In that case, we shouldn't try migration. 968 */ 969 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 970 if (!folio_test_movable(src)) { 971 rc = MIGRATEPAGE_SUCCESS; 972 folio_clear_isolated(src); 973 goto out; 974 } 975 976 mops = page_movable_ops(&src->page); 977 rc = mops->migrate_page(&dst->page, &src->page, mode); 978 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 979 !folio_test_isolated(src)); 980 } 981 982 /* 983 * When successful, old pagecache src->mapping must be cleared before 984 * src is freed; but stats require that PageAnon be left as PageAnon. 985 */ 986 if (rc == MIGRATEPAGE_SUCCESS) { 987 if (__PageMovable(&src->page)) { 988 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 989 990 /* 991 * We clear PG_movable under page_lock so any compactor 992 * cannot try to migrate this page. 993 */ 994 folio_clear_isolated(src); 995 } 996 997 /* 998 * Anonymous and movable src->mapping will be cleared by 999 * free_pages_prepare so don't reset it here for keeping 1000 * the type to work PageAnon, for example. 1001 */ 1002 if (!folio_mapping_flags(src)) 1003 src->mapping = NULL; 1004 1005 if (likely(!folio_is_zone_device(dst))) 1006 flush_dcache_folio(dst); 1007 } 1008 out: 1009 return rc; 1010 } 1011 1012 static int __unmap_and_move(struct folio *src, struct folio *dst, 1013 int force, enum migrate_mode mode) 1014 { 1015 int rc = -EAGAIN; 1016 bool page_was_mapped = false; 1017 struct anon_vma *anon_vma = NULL; 1018 bool is_lru = !__PageMovable(&src->page); 1019 1020 if (!folio_trylock(src)) { 1021 if (!force || mode == MIGRATE_ASYNC) 1022 goto out; 1023 1024 /* 1025 * It's not safe for direct compaction to call lock_page. 1026 * For example, during page readahead pages are added locked 1027 * to the LRU. Later, when the IO completes the pages are 1028 * marked uptodate and unlocked. However, the queueing 1029 * could be merging multiple pages for one bio (e.g. 1030 * mpage_readahead). If an allocation happens for the 1031 * second or third page, the process can end up locking 1032 * the same page twice and deadlocking. Rather than 1033 * trying to be clever about what pages can be locked, 1034 * avoid the use of lock_page for direct compaction 1035 * altogether. 1036 */ 1037 if (current->flags & PF_MEMALLOC) 1038 goto out; 1039 1040 folio_lock(src); 1041 } 1042 1043 if (folio_test_writeback(src)) { 1044 /* 1045 * Only in the case of a full synchronous migration is it 1046 * necessary to wait for PageWriteback. In the async case, 1047 * the retry loop is too short and in the sync-light case, 1048 * the overhead of stalling is too much 1049 */ 1050 switch (mode) { 1051 case MIGRATE_SYNC: 1052 case MIGRATE_SYNC_NO_COPY: 1053 break; 1054 default: 1055 rc = -EBUSY; 1056 goto out_unlock; 1057 } 1058 if (!force) 1059 goto out_unlock; 1060 folio_wait_writeback(src); 1061 } 1062 1063 /* 1064 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1065 * we cannot notice that anon_vma is freed while we migrate a page. 1066 * This get_anon_vma() delays freeing anon_vma pointer until the end 1067 * of migration. File cache pages are no problem because of page_lock() 1068 * File Caches may use write_page() or lock_page() in migration, then, 1069 * just care Anon page here. 1070 * 1071 * Only folio_get_anon_vma() understands the subtleties of 1072 * getting a hold on an anon_vma from outside one of its mms. 1073 * But if we cannot get anon_vma, then we won't need it anyway, 1074 * because that implies that the anon page is no longer mapped 1075 * (and cannot be remapped so long as we hold the page lock). 1076 */ 1077 if (folio_test_anon(src) && !folio_test_ksm(src)) 1078 anon_vma = folio_get_anon_vma(src); 1079 1080 /* 1081 * Block others from accessing the new page when we get around to 1082 * establishing additional references. We are usually the only one 1083 * holding a reference to dst at this point. We used to have a BUG 1084 * here if folio_trylock(dst) fails, but would like to allow for 1085 * cases where there might be a race with the previous use of dst. 1086 * This is much like races on refcount of oldpage: just don't BUG(). 1087 */ 1088 if (unlikely(!folio_trylock(dst))) 1089 goto out_unlock; 1090 1091 if (unlikely(!is_lru)) { 1092 rc = move_to_new_folio(dst, src, mode); 1093 goto out_unlock_both; 1094 } 1095 1096 /* 1097 * Corner case handling: 1098 * 1. When a new swap-cache page is read into, it is added to the LRU 1099 * and treated as swapcache but it has no rmap yet. 1100 * Calling try_to_unmap() against a src->mapping==NULL page will 1101 * trigger a BUG. So handle it here. 1102 * 2. An orphaned page (see truncate_cleanup_page) might have 1103 * fs-private metadata. The page can be picked up due to memory 1104 * offlining. Everywhere else except page reclaim, the page is 1105 * invisible to the vm, so the page can not be migrated. So try to 1106 * free the metadata, so the page can be freed. 1107 */ 1108 if (!src->mapping) { 1109 if (folio_test_private(src)) { 1110 try_to_free_buffers(src); 1111 goto out_unlock_both; 1112 } 1113 } else if (folio_mapped(src)) { 1114 /* Establish migration ptes */ 1115 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1116 !folio_test_ksm(src) && !anon_vma, src); 1117 try_to_migrate(src, 0); 1118 page_was_mapped = true; 1119 } 1120 1121 if (!folio_mapped(src)) 1122 rc = move_to_new_folio(dst, src, mode); 1123 1124 /* 1125 * When successful, push dst to LRU immediately: so that if it 1126 * turns out to be an mlocked page, remove_migration_ptes() will 1127 * automatically build up the correct dst->mlock_count for it. 1128 * 1129 * We would like to do something similar for the old page, when 1130 * unsuccessful, and other cases when a page has been temporarily 1131 * isolated from the unevictable LRU: but this case is the easiest. 1132 */ 1133 if (rc == MIGRATEPAGE_SUCCESS) { 1134 folio_add_lru(dst); 1135 if (page_was_mapped) 1136 lru_add_drain(); 1137 } 1138 1139 if (page_was_mapped) 1140 remove_migration_ptes(src, 1141 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1142 1143 out_unlock_both: 1144 folio_unlock(dst); 1145 out_unlock: 1146 /* Drop an anon_vma reference if we took one */ 1147 if (anon_vma) 1148 put_anon_vma(anon_vma); 1149 folio_unlock(src); 1150 out: 1151 /* 1152 * If migration is successful, decrease refcount of dst, 1153 * which will not free the page because new page owner increased 1154 * refcounter. 1155 */ 1156 if (rc == MIGRATEPAGE_SUCCESS) 1157 folio_put(dst); 1158 1159 return rc; 1160 } 1161 1162 /* 1163 * Obtain the lock on page, remove all ptes and migrate the page 1164 * to the newly allocated page in newpage. 1165 */ 1166 static int unmap_and_move(new_page_t get_new_page, 1167 free_page_t put_new_page, 1168 unsigned long private, struct page *page, 1169 int force, enum migrate_mode mode, 1170 enum migrate_reason reason, 1171 struct list_head *ret) 1172 { 1173 struct folio *dst, *src = page_folio(page); 1174 int rc = MIGRATEPAGE_SUCCESS; 1175 struct page *newpage = NULL; 1176 1177 if (!thp_migration_supported() && PageTransHuge(page)) 1178 return -ENOSYS; 1179 1180 if (page_count(page) == 1) { 1181 /* Page was freed from under us. So we are done. */ 1182 ClearPageActive(page); 1183 ClearPageUnevictable(page); 1184 /* free_pages_prepare() will clear PG_isolated. */ 1185 goto out; 1186 } 1187 1188 newpage = get_new_page(page, private); 1189 if (!newpage) 1190 return -ENOMEM; 1191 dst = page_folio(newpage); 1192 1193 newpage->private = 0; 1194 rc = __unmap_and_move(src, dst, force, mode); 1195 if (rc == MIGRATEPAGE_SUCCESS) 1196 set_page_owner_migrate_reason(newpage, reason); 1197 1198 out: 1199 if (rc != -EAGAIN) { 1200 /* 1201 * A page that has been migrated has all references 1202 * removed and will be freed. A page that has not been 1203 * migrated will have kept its references and be restored. 1204 */ 1205 list_del(&page->lru); 1206 } 1207 1208 /* 1209 * If migration is successful, releases reference grabbed during 1210 * isolation. Otherwise, restore the page to right list unless 1211 * we want to retry. 1212 */ 1213 if (rc == MIGRATEPAGE_SUCCESS) { 1214 /* 1215 * Compaction can migrate also non-LRU pages which are 1216 * not accounted to NR_ISOLATED_*. They can be recognized 1217 * as __PageMovable 1218 */ 1219 if (likely(!__PageMovable(page))) 1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1221 page_is_file_lru(page), -thp_nr_pages(page)); 1222 1223 if (reason != MR_MEMORY_FAILURE) 1224 /* 1225 * We release the page in page_handle_poison. 1226 */ 1227 put_page(page); 1228 } else { 1229 if (rc != -EAGAIN) 1230 list_add_tail(&page->lru, ret); 1231 1232 if (put_new_page) 1233 put_new_page(newpage, private); 1234 else 1235 put_page(newpage); 1236 } 1237 1238 return rc; 1239 } 1240 1241 /* 1242 * Counterpart of unmap_and_move_page() for hugepage migration. 1243 * 1244 * This function doesn't wait the completion of hugepage I/O 1245 * because there is no race between I/O and migration for hugepage. 1246 * Note that currently hugepage I/O occurs only in direct I/O 1247 * where no lock is held and PG_writeback is irrelevant, 1248 * and writeback status of all subpages are counted in the reference 1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1250 * under direct I/O, the reference of the head page is 512 and a bit more.) 1251 * This means that when we try to migrate hugepage whose subpages are 1252 * doing direct I/O, some references remain after try_to_unmap() and 1253 * hugepage migration fails without data corruption. 1254 * 1255 * There is also no race when direct I/O is issued on the page under migration, 1256 * because then pte is replaced with migration swap entry and direct I/O code 1257 * will wait in the page fault for migration to complete. 1258 */ 1259 static int unmap_and_move_huge_page(new_page_t get_new_page, 1260 free_page_t put_new_page, unsigned long private, 1261 struct page *hpage, int force, 1262 enum migrate_mode mode, int reason, 1263 struct list_head *ret) 1264 { 1265 struct folio *dst, *src = page_folio(hpage); 1266 int rc = -EAGAIN; 1267 int page_was_mapped = 0; 1268 struct page *new_hpage; 1269 struct anon_vma *anon_vma = NULL; 1270 struct address_space *mapping = NULL; 1271 1272 /* 1273 * Migratability of hugepages depends on architectures and their size. 1274 * This check is necessary because some callers of hugepage migration 1275 * like soft offline and memory hotremove don't walk through page 1276 * tables or check whether the hugepage is pmd-based or not before 1277 * kicking migration. 1278 */ 1279 if (!hugepage_migration_supported(page_hstate(hpage))) 1280 return -ENOSYS; 1281 1282 if (folio_ref_count(src) == 1) { 1283 /* page was freed from under us. So we are done. */ 1284 putback_active_hugepage(hpage); 1285 return MIGRATEPAGE_SUCCESS; 1286 } 1287 1288 new_hpage = get_new_page(hpage, private); 1289 if (!new_hpage) 1290 return -ENOMEM; 1291 dst = page_folio(new_hpage); 1292 1293 if (!folio_trylock(src)) { 1294 if (!force) 1295 goto out; 1296 switch (mode) { 1297 case MIGRATE_SYNC: 1298 case MIGRATE_SYNC_NO_COPY: 1299 break; 1300 default: 1301 goto out; 1302 } 1303 folio_lock(src); 1304 } 1305 1306 /* 1307 * Check for pages which are in the process of being freed. Without 1308 * folio_mapping() set, hugetlbfs specific move page routine will not 1309 * be called and we could leak usage counts for subpools. 1310 */ 1311 if (hugetlb_page_subpool(hpage) && !folio_mapping(src)) { 1312 rc = -EBUSY; 1313 goto out_unlock; 1314 } 1315 1316 if (folio_test_anon(src)) 1317 anon_vma = folio_get_anon_vma(src); 1318 1319 if (unlikely(!folio_trylock(dst))) 1320 goto put_anon; 1321 1322 if (folio_mapped(src)) { 1323 enum ttu_flags ttu = 0; 1324 1325 if (!folio_test_anon(src)) { 1326 /* 1327 * In shared mappings, try_to_unmap could potentially 1328 * call huge_pmd_unshare. Because of this, take 1329 * semaphore in write mode here and set TTU_RMAP_LOCKED 1330 * to let lower levels know we have taken the lock. 1331 */ 1332 mapping = hugetlb_page_mapping_lock_write(hpage); 1333 if (unlikely(!mapping)) 1334 goto unlock_put_anon; 1335 1336 ttu = TTU_RMAP_LOCKED; 1337 } 1338 1339 try_to_migrate(src, ttu); 1340 page_was_mapped = 1; 1341 1342 if (ttu & TTU_RMAP_LOCKED) 1343 i_mmap_unlock_write(mapping); 1344 } 1345 1346 if (!folio_mapped(src)) 1347 rc = move_to_new_folio(dst, src, mode); 1348 1349 if (page_was_mapped) 1350 remove_migration_ptes(src, 1351 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1352 1353 unlock_put_anon: 1354 folio_unlock(dst); 1355 1356 put_anon: 1357 if (anon_vma) 1358 put_anon_vma(anon_vma); 1359 1360 if (rc == MIGRATEPAGE_SUCCESS) { 1361 move_hugetlb_state(hpage, new_hpage, reason); 1362 put_new_page = NULL; 1363 } 1364 1365 out_unlock: 1366 folio_unlock(src); 1367 out: 1368 if (rc == MIGRATEPAGE_SUCCESS) 1369 putback_active_hugepage(hpage); 1370 else if (rc != -EAGAIN) 1371 list_move_tail(&src->lru, ret); 1372 1373 /* 1374 * If migration was not successful and there's a freeing callback, use 1375 * it. Otherwise, put_page() will drop the reference grabbed during 1376 * isolation. 1377 */ 1378 if (put_new_page) 1379 put_new_page(new_hpage, private); 1380 else 1381 putback_active_hugepage(new_hpage); 1382 1383 return rc; 1384 } 1385 1386 static inline int try_split_thp(struct page *page, struct list_head *split_pages) 1387 { 1388 int rc; 1389 1390 lock_page(page); 1391 rc = split_huge_page_to_list(page, split_pages); 1392 unlock_page(page); 1393 if (!rc) 1394 list_move_tail(&page->lru, split_pages); 1395 1396 return rc; 1397 } 1398 1399 /* 1400 * migrate_pages - migrate the pages specified in a list, to the free pages 1401 * supplied as the target for the page migration 1402 * 1403 * @from: The list of pages to be migrated. 1404 * @get_new_page: The function used to allocate free pages to be used 1405 * as the target of the page migration. 1406 * @put_new_page: The function used to free target pages if migration 1407 * fails, or NULL if no special handling is necessary. 1408 * @private: Private data to be passed on to get_new_page() 1409 * @mode: The migration mode that specifies the constraints for 1410 * page migration, if any. 1411 * @reason: The reason for page migration. 1412 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1413 * the caller passes a non-NULL pointer. 1414 * 1415 * The function returns after 10 attempts or if no pages are movable any more 1416 * because the list has become empty or no retryable pages exist any more. 1417 * It is caller's responsibility to call putback_movable_pages() to return pages 1418 * to the LRU or free list only if ret != 0. 1419 * 1420 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1421 * an error code. The number of THP splits will be considered as the number of 1422 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1423 */ 1424 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1425 free_page_t put_new_page, unsigned long private, 1426 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1427 { 1428 int retry = 1; 1429 int thp_retry = 1; 1430 int nr_failed = 0; 1431 int nr_failed_pages = 0; 1432 int nr_retry_pages = 0; 1433 int nr_succeeded = 0; 1434 int nr_thp_succeeded = 0; 1435 int nr_thp_failed = 0; 1436 int nr_thp_split = 0; 1437 int pass = 0; 1438 bool is_thp = false; 1439 struct page *page; 1440 struct page *page2; 1441 int rc, nr_subpages; 1442 LIST_HEAD(ret_pages); 1443 LIST_HEAD(thp_split_pages); 1444 bool nosplit = (reason == MR_NUMA_MISPLACED); 1445 bool no_subpage_counting = false; 1446 1447 trace_mm_migrate_pages_start(mode, reason); 1448 1449 thp_subpage_migration: 1450 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1451 retry = 0; 1452 thp_retry = 0; 1453 nr_retry_pages = 0; 1454 1455 list_for_each_entry_safe(page, page2, from, lru) { 1456 /* 1457 * THP statistics is based on the source huge page. 1458 * Capture required information that might get lost 1459 * during migration. 1460 */ 1461 is_thp = PageTransHuge(page) && !PageHuge(page); 1462 nr_subpages = compound_nr(page); 1463 cond_resched(); 1464 1465 if (PageHuge(page)) 1466 rc = unmap_and_move_huge_page(get_new_page, 1467 put_new_page, private, page, 1468 pass > 2, mode, reason, 1469 &ret_pages); 1470 else 1471 rc = unmap_and_move(get_new_page, put_new_page, 1472 private, page, pass > 2, mode, 1473 reason, &ret_pages); 1474 /* 1475 * The rules are: 1476 * Success: non hugetlb page will be freed, hugetlb 1477 * page will be put back 1478 * -EAGAIN: stay on the from list 1479 * -ENOMEM: stay on the from list 1480 * -ENOSYS: stay on the from list 1481 * Other errno: put on ret_pages list then splice to 1482 * from list 1483 */ 1484 switch(rc) { 1485 /* 1486 * THP migration might be unsupported or the 1487 * allocation could've failed so we should 1488 * retry on the same page with the THP split 1489 * to base pages. 1490 * 1491 * Sub-pages are put in thp_split_pages, and 1492 * we will migrate them after the rest of the 1493 * list is processed. 1494 */ 1495 case -ENOSYS: 1496 /* THP migration is unsupported */ 1497 if (is_thp) { 1498 nr_thp_failed++; 1499 if (!try_split_thp(page, &thp_split_pages)) { 1500 nr_thp_split++; 1501 break; 1502 } 1503 /* Hugetlb migration is unsupported */ 1504 } else if (!no_subpage_counting) { 1505 nr_failed++; 1506 } 1507 1508 nr_failed_pages += nr_subpages; 1509 list_move_tail(&page->lru, &ret_pages); 1510 break; 1511 case -ENOMEM: 1512 /* 1513 * When memory is low, don't bother to try to migrate 1514 * other pages, just exit. 1515 */ 1516 if (is_thp) { 1517 nr_thp_failed++; 1518 /* THP NUMA faulting doesn't split THP to retry. */ 1519 if (!nosplit && !try_split_thp(page, &thp_split_pages)) { 1520 nr_thp_split++; 1521 break; 1522 } 1523 } else if (!no_subpage_counting) { 1524 nr_failed++; 1525 } 1526 1527 nr_failed_pages += nr_subpages + nr_retry_pages; 1528 /* 1529 * There might be some subpages of fail-to-migrate THPs 1530 * left in thp_split_pages list. Move them back to migration 1531 * list so that they could be put back to the right list by 1532 * the caller otherwise the page refcnt will be leaked. 1533 */ 1534 list_splice_init(&thp_split_pages, from); 1535 /* nr_failed isn't updated for not used */ 1536 nr_thp_failed += thp_retry; 1537 goto out; 1538 case -EAGAIN: 1539 if (is_thp) 1540 thp_retry++; 1541 else if (!no_subpage_counting) 1542 retry++; 1543 nr_retry_pages += nr_subpages; 1544 break; 1545 case MIGRATEPAGE_SUCCESS: 1546 nr_succeeded += nr_subpages; 1547 if (is_thp) 1548 nr_thp_succeeded++; 1549 break; 1550 default: 1551 /* 1552 * Permanent failure (-EBUSY, etc.): 1553 * unlike -EAGAIN case, the failed page is 1554 * removed from migration page list and not 1555 * retried in the next outer loop. 1556 */ 1557 if (is_thp) 1558 nr_thp_failed++; 1559 else if (!no_subpage_counting) 1560 nr_failed++; 1561 1562 nr_failed_pages += nr_subpages; 1563 break; 1564 } 1565 } 1566 } 1567 nr_failed += retry; 1568 nr_thp_failed += thp_retry; 1569 nr_failed_pages += nr_retry_pages; 1570 /* 1571 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1572 * counting in this round, since all subpages of a THP is counted 1573 * as 1 failure in the first round. 1574 */ 1575 if (!list_empty(&thp_split_pages)) { 1576 /* 1577 * Move non-migrated pages (after 10 retries) to ret_pages 1578 * to avoid migrating them again. 1579 */ 1580 list_splice_init(from, &ret_pages); 1581 list_splice_init(&thp_split_pages, from); 1582 no_subpage_counting = true; 1583 retry = 1; 1584 goto thp_subpage_migration; 1585 } 1586 1587 rc = nr_failed + nr_thp_failed; 1588 out: 1589 /* 1590 * Put the permanent failure page back to migration list, they 1591 * will be put back to the right list by the caller. 1592 */ 1593 list_splice(&ret_pages, from); 1594 1595 /* 1596 * Return 0 in case all subpages of fail-to-migrate THPs are 1597 * migrated successfully. 1598 */ 1599 if (list_empty(from)) 1600 rc = 0; 1601 1602 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1603 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1604 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1605 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1606 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1607 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1608 nr_thp_failed, nr_thp_split, mode, reason); 1609 1610 if (ret_succeeded) 1611 *ret_succeeded = nr_succeeded; 1612 1613 return rc; 1614 } 1615 1616 struct page *alloc_migration_target(struct page *page, unsigned long private) 1617 { 1618 struct folio *folio = page_folio(page); 1619 struct migration_target_control *mtc; 1620 gfp_t gfp_mask; 1621 unsigned int order = 0; 1622 struct folio *new_folio = NULL; 1623 int nid; 1624 int zidx; 1625 1626 mtc = (struct migration_target_control *)private; 1627 gfp_mask = mtc->gfp_mask; 1628 nid = mtc->nid; 1629 if (nid == NUMA_NO_NODE) 1630 nid = folio_nid(folio); 1631 1632 if (folio_test_hugetlb(folio)) { 1633 struct hstate *h = page_hstate(&folio->page); 1634 1635 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1636 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1637 } 1638 1639 if (folio_test_large(folio)) { 1640 /* 1641 * clear __GFP_RECLAIM to make the migration callback 1642 * consistent with regular THP allocations. 1643 */ 1644 gfp_mask &= ~__GFP_RECLAIM; 1645 gfp_mask |= GFP_TRANSHUGE; 1646 order = folio_order(folio); 1647 } 1648 zidx = zone_idx(folio_zone(folio)); 1649 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1650 gfp_mask |= __GFP_HIGHMEM; 1651 1652 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1653 1654 return &new_folio->page; 1655 } 1656 1657 #ifdef CONFIG_NUMA 1658 1659 static int store_status(int __user *status, int start, int value, int nr) 1660 { 1661 while (nr-- > 0) { 1662 if (put_user(value, status + start)) 1663 return -EFAULT; 1664 start++; 1665 } 1666 1667 return 0; 1668 } 1669 1670 static int do_move_pages_to_node(struct mm_struct *mm, 1671 struct list_head *pagelist, int node) 1672 { 1673 int err; 1674 struct migration_target_control mtc = { 1675 .nid = node, 1676 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1677 }; 1678 1679 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1680 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1681 if (err) 1682 putback_movable_pages(pagelist); 1683 return err; 1684 } 1685 1686 /* 1687 * Resolves the given address to a struct page, isolates it from the LRU and 1688 * puts it to the given pagelist. 1689 * Returns: 1690 * errno - if the page cannot be found/isolated 1691 * 0 - when it doesn't have to be migrated because it is already on the 1692 * target node 1693 * 1 - when it has been queued 1694 */ 1695 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1696 int node, struct list_head *pagelist, bool migrate_all) 1697 { 1698 struct vm_area_struct *vma; 1699 struct page *page; 1700 int err; 1701 1702 mmap_read_lock(mm); 1703 err = -EFAULT; 1704 vma = vma_lookup(mm, addr); 1705 if (!vma || !vma_migratable(vma)) 1706 goto out; 1707 1708 /* FOLL_DUMP to ignore special (like zero) pages */ 1709 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1710 1711 err = PTR_ERR(page); 1712 if (IS_ERR(page)) 1713 goto out; 1714 1715 err = -ENOENT; 1716 if (!page) 1717 goto out; 1718 1719 if (is_zone_device_page(page)) 1720 goto out_putpage; 1721 1722 err = 0; 1723 if (page_to_nid(page) == node) 1724 goto out_putpage; 1725 1726 err = -EACCES; 1727 if (page_mapcount(page) > 1 && !migrate_all) 1728 goto out_putpage; 1729 1730 if (PageHuge(page)) { 1731 if (PageHead(page)) { 1732 err = isolate_hugetlb(page, pagelist); 1733 if (!err) 1734 err = 1; 1735 } 1736 } else { 1737 struct page *head; 1738 1739 head = compound_head(page); 1740 err = isolate_lru_page(head); 1741 if (err) 1742 goto out_putpage; 1743 1744 err = 1; 1745 list_add_tail(&head->lru, pagelist); 1746 mod_node_page_state(page_pgdat(head), 1747 NR_ISOLATED_ANON + page_is_file_lru(head), 1748 thp_nr_pages(head)); 1749 } 1750 out_putpage: 1751 /* 1752 * Either remove the duplicate refcount from 1753 * isolate_lru_page() or drop the page ref if it was 1754 * not isolated. 1755 */ 1756 put_page(page); 1757 out: 1758 mmap_read_unlock(mm); 1759 return err; 1760 } 1761 1762 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1763 struct list_head *pagelist, int __user *status, 1764 int start, int i, unsigned long nr_pages) 1765 { 1766 int err; 1767 1768 if (list_empty(pagelist)) 1769 return 0; 1770 1771 err = do_move_pages_to_node(mm, pagelist, node); 1772 if (err) { 1773 /* 1774 * Positive err means the number of failed 1775 * pages to migrate. Since we are going to 1776 * abort and return the number of non-migrated 1777 * pages, so need to include the rest of the 1778 * nr_pages that have not been attempted as 1779 * well. 1780 */ 1781 if (err > 0) 1782 err += nr_pages - i; 1783 return err; 1784 } 1785 return store_status(status, start, node, i - start); 1786 } 1787 1788 /* 1789 * Migrate an array of page address onto an array of nodes and fill 1790 * the corresponding array of status. 1791 */ 1792 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1793 unsigned long nr_pages, 1794 const void __user * __user *pages, 1795 const int __user *nodes, 1796 int __user *status, int flags) 1797 { 1798 int current_node = NUMA_NO_NODE; 1799 LIST_HEAD(pagelist); 1800 int start, i; 1801 int err = 0, err1; 1802 1803 lru_cache_disable(); 1804 1805 for (i = start = 0; i < nr_pages; i++) { 1806 const void __user *p; 1807 unsigned long addr; 1808 int node; 1809 1810 err = -EFAULT; 1811 if (get_user(p, pages + i)) 1812 goto out_flush; 1813 if (get_user(node, nodes + i)) 1814 goto out_flush; 1815 addr = (unsigned long)untagged_addr(p); 1816 1817 err = -ENODEV; 1818 if (node < 0 || node >= MAX_NUMNODES) 1819 goto out_flush; 1820 if (!node_state(node, N_MEMORY)) 1821 goto out_flush; 1822 1823 err = -EACCES; 1824 if (!node_isset(node, task_nodes)) 1825 goto out_flush; 1826 1827 if (current_node == NUMA_NO_NODE) { 1828 current_node = node; 1829 start = i; 1830 } else if (node != current_node) { 1831 err = move_pages_and_store_status(mm, current_node, 1832 &pagelist, status, start, i, nr_pages); 1833 if (err) 1834 goto out; 1835 start = i; 1836 current_node = node; 1837 } 1838 1839 /* 1840 * Errors in the page lookup or isolation are not fatal and we simply 1841 * report them via status 1842 */ 1843 err = add_page_for_migration(mm, addr, current_node, 1844 &pagelist, flags & MPOL_MF_MOVE_ALL); 1845 1846 if (err > 0) { 1847 /* The page is successfully queued for migration */ 1848 continue; 1849 } 1850 1851 /* 1852 * The move_pages() man page does not have an -EEXIST choice, so 1853 * use -EFAULT instead. 1854 */ 1855 if (err == -EEXIST) 1856 err = -EFAULT; 1857 1858 /* 1859 * If the page is already on the target node (!err), store the 1860 * node, otherwise, store the err. 1861 */ 1862 err = store_status(status, i, err ? : current_node, 1); 1863 if (err) 1864 goto out_flush; 1865 1866 err = move_pages_and_store_status(mm, current_node, &pagelist, 1867 status, start, i, nr_pages); 1868 if (err) { 1869 /* We have accounted for page i */ 1870 if (err > 0) 1871 err--; 1872 goto out; 1873 } 1874 current_node = NUMA_NO_NODE; 1875 } 1876 out_flush: 1877 /* Make sure we do not overwrite the existing error */ 1878 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1879 status, start, i, nr_pages); 1880 if (err >= 0) 1881 err = err1; 1882 out: 1883 lru_cache_enable(); 1884 return err; 1885 } 1886 1887 /* 1888 * Determine the nodes of an array of pages and store it in an array of status. 1889 */ 1890 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1891 const void __user **pages, int *status) 1892 { 1893 unsigned long i; 1894 1895 mmap_read_lock(mm); 1896 1897 for (i = 0; i < nr_pages; i++) { 1898 unsigned long addr = (unsigned long)(*pages); 1899 unsigned int foll_flags = FOLL_DUMP; 1900 struct vm_area_struct *vma; 1901 struct page *page; 1902 int err = -EFAULT; 1903 1904 vma = vma_lookup(mm, addr); 1905 if (!vma) 1906 goto set_status; 1907 1908 /* Not all huge page follow APIs support 'FOLL_GET' */ 1909 if (!is_vm_hugetlb_page(vma)) 1910 foll_flags |= FOLL_GET; 1911 1912 /* FOLL_DUMP to ignore special (like zero) pages */ 1913 page = follow_page(vma, addr, foll_flags); 1914 1915 err = PTR_ERR(page); 1916 if (IS_ERR(page)) 1917 goto set_status; 1918 1919 err = -ENOENT; 1920 if (!page) 1921 goto set_status; 1922 1923 if (!is_zone_device_page(page)) 1924 err = page_to_nid(page); 1925 1926 if (foll_flags & FOLL_GET) 1927 put_page(page); 1928 set_status: 1929 *status = err; 1930 1931 pages++; 1932 status++; 1933 } 1934 1935 mmap_read_unlock(mm); 1936 } 1937 1938 static int get_compat_pages_array(const void __user *chunk_pages[], 1939 const void __user * __user *pages, 1940 unsigned long chunk_nr) 1941 { 1942 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1943 compat_uptr_t p; 1944 int i; 1945 1946 for (i = 0; i < chunk_nr; i++) { 1947 if (get_user(p, pages32 + i)) 1948 return -EFAULT; 1949 chunk_pages[i] = compat_ptr(p); 1950 } 1951 1952 return 0; 1953 } 1954 1955 /* 1956 * Determine the nodes of a user array of pages and store it in 1957 * a user array of status. 1958 */ 1959 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1960 const void __user * __user *pages, 1961 int __user *status) 1962 { 1963 #define DO_PAGES_STAT_CHUNK_NR 16UL 1964 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1965 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1966 1967 while (nr_pages) { 1968 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1969 1970 if (in_compat_syscall()) { 1971 if (get_compat_pages_array(chunk_pages, pages, 1972 chunk_nr)) 1973 break; 1974 } else { 1975 if (copy_from_user(chunk_pages, pages, 1976 chunk_nr * sizeof(*chunk_pages))) 1977 break; 1978 } 1979 1980 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1981 1982 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1983 break; 1984 1985 pages += chunk_nr; 1986 status += chunk_nr; 1987 nr_pages -= chunk_nr; 1988 } 1989 return nr_pages ? -EFAULT : 0; 1990 } 1991 1992 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1993 { 1994 struct task_struct *task; 1995 struct mm_struct *mm; 1996 1997 /* 1998 * There is no need to check if current process has the right to modify 1999 * the specified process when they are same. 2000 */ 2001 if (!pid) { 2002 mmget(current->mm); 2003 *mem_nodes = cpuset_mems_allowed(current); 2004 return current->mm; 2005 } 2006 2007 /* Find the mm_struct */ 2008 rcu_read_lock(); 2009 task = find_task_by_vpid(pid); 2010 if (!task) { 2011 rcu_read_unlock(); 2012 return ERR_PTR(-ESRCH); 2013 } 2014 get_task_struct(task); 2015 2016 /* 2017 * Check if this process has the right to modify the specified 2018 * process. Use the regular "ptrace_may_access()" checks. 2019 */ 2020 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2021 rcu_read_unlock(); 2022 mm = ERR_PTR(-EPERM); 2023 goto out; 2024 } 2025 rcu_read_unlock(); 2026 2027 mm = ERR_PTR(security_task_movememory(task)); 2028 if (IS_ERR(mm)) 2029 goto out; 2030 *mem_nodes = cpuset_mems_allowed(task); 2031 mm = get_task_mm(task); 2032 out: 2033 put_task_struct(task); 2034 if (!mm) 2035 mm = ERR_PTR(-EINVAL); 2036 return mm; 2037 } 2038 2039 /* 2040 * Move a list of pages in the address space of the currently executing 2041 * process. 2042 */ 2043 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2044 const void __user * __user *pages, 2045 const int __user *nodes, 2046 int __user *status, int flags) 2047 { 2048 struct mm_struct *mm; 2049 int err; 2050 nodemask_t task_nodes; 2051 2052 /* Check flags */ 2053 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2054 return -EINVAL; 2055 2056 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2057 return -EPERM; 2058 2059 mm = find_mm_struct(pid, &task_nodes); 2060 if (IS_ERR(mm)) 2061 return PTR_ERR(mm); 2062 2063 if (nodes) 2064 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2065 nodes, status, flags); 2066 else 2067 err = do_pages_stat(mm, nr_pages, pages, status); 2068 2069 mmput(mm); 2070 return err; 2071 } 2072 2073 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2074 const void __user * __user *, pages, 2075 const int __user *, nodes, 2076 int __user *, status, int, flags) 2077 { 2078 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2079 } 2080 2081 #ifdef CONFIG_NUMA_BALANCING 2082 /* 2083 * Returns true if this is a safe migration target node for misplaced NUMA 2084 * pages. Currently it only checks the watermarks which is crude. 2085 */ 2086 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2087 unsigned long nr_migrate_pages) 2088 { 2089 int z; 2090 2091 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2092 struct zone *zone = pgdat->node_zones + z; 2093 2094 if (!managed_zone(zone)) 2095 continue; 2096 2097 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2098 if (!zone_watermark_ok(zone, 0, 2099 high_wmark_pages(zone) + 2100 nr_migrate_pages, 2101 ZONE_MOVABLE, 0)) 2102 continue; 2103 return true; 2104 } 2105 return false; 2106 } 2107 2108 static struct page *alloc_misplaced_dst_page(struct page *page, 2109 unsigned long data) 2110 { 2111 int nid = (int) data; 2112 int order = compound_order(page); 2113 gfp_t gfp = __GFP_THISNODE; 2114 struct folio *new; 2115 2116 if (order > 0) 2117 gfp |= GFP_TRANSHUGE_LIGHT; 2118 else { 2119 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2120 __GFP_NOWARN; 2121 gfp &= ~__GFP_RECLAIM; 2122 } 2123 new = __folio_alloc_node(gfp, order, nid); 2124 2125 return &new->page; 2126 } 2127 2128 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2129 { 2130 int nr_pages = thp_nr_pages(page); 2131 int order = compound_order(page); 2132 2133 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2134 2135 /* Do not migrate THP mapped by multiple processes */ 2136 if (PageTransHuge(page) && total_mapcount(page) > 1) 2137 return 0; 2138 2139 /* Avoid migrating to a node that is nearly full */ 2140 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2141 int z; 2142 2143 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2144 return 0; 2145 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2146 if (managed_zone(pgdat->node_zones + z)) 2147 break; 2148 } 2149 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2150 return 0; 2151 } 2152 2153 if (isolate_lru_page(page)) 2154 return 0; 2155 2156 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2157 nr_pages); 2158 2159 /* 2160 * Isolating the page has taken another reference, so the 2161 * caller's reference can be safely dropped without the page 2162 * disappearing underneath us during migration. 2163 */ 2164 put_page(page); 2165 return 1; 2166 } 2167 2168 /* 2169 * Attempt to migrate a misplaced page to the specified destination 2170 * node. Caller is expected to have an elevated reference count on 2171 * the page that will be dropped by this function before returning. 2172 */ 2173 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2174 int node) 2175 { 2176 pg_data_t *pgdat = NODE_DATA(node); 2177 int isolated; 2178 int nr_remaining; 2179 unsigned int nr_succeeded; 2180 LIST_HEAD(migratepages); 2181 int nr_pages = thp_nr_pages(page); 2182 2183 /* 2184 * Don't migrate file pages that are mapped in multiple processes 2185 * with execute permissions as they are probably shared libraries. 2186 */ 2187 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2188 (vma->vm_flags & VM_EXEC)) 2189 goto out; 2190 2191 /* 2192 * Also do not migrate dirty pages as not all filesystems can move 2193 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2194 */ 2195 if (page_is_file_lru(page) && PageDirty(page)) 2196 goto out; 2197 2198 isolated = numamigrate_isolate_page(pgdat, page); 2199 if (!isolated) 2200 goto out; 2201 2202 list_add(&page->lru, &migratepages); 2203 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2204 NULL, node, MIGRATE_ASYNC, 2205 MR_NUMA_MISPLACED, &nr_succeeded); 2206 if (nr_remaining) { 2207 if (!list_empty(&migratepages)) { 2208 list_del(&page->lru); 2209 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2210 page_is_file_lru(page), -nr_pages); 2211 putback_lru_page(page); 2212 } 2213 isolated = 0; 2214 } 2215 if (nr_succeeded) { 2216 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2217 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2218 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2219 nr_succeeded); 2220 } 2221 BUG_ON(!list_empty(&migratepages)); 2222 return isolated; 2223 2224 out: 2225 put_page(page); 2226 return 0; 2227 } 2228 #endif /* CONFIG_NUMA_BALANCING */ 2229 #endif /* CONFIG_NUMA */ 2230