xref: /linux/mm/migrate.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/gfp.h>
36 
37 #include "internal.h"
38 
39 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 
41 /*
42  * migrate_prep() needs to be called before we start compiling a list of pages
43  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
44  * undesirable, use migrate_prep_local()
45  */
46 int migrate_prep(void)
47 {
48 	/*
49 	 * Clear the LRU lists so pages can be isolated.
50 	 * Note that pages may be moved off the LRU after we have
51 	 * drained them. Those pages will fail to migrate like other
52 	 * pages that may be busy.
53 	 */
54 	lru_add_drain_all();
55 
56 	return 0;
57 }
58 
59 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
60 int migrate_prep_local(void)
61 {
62 	lru_add_drain();
63 
64 	return 0;
65 }
66 
67 /*
68  * Add isolated pages on the list back to the LRU under page lock
69  * to avoid leaking evictable pages back onto unevictable list.
70  */
71 void putback_lru_pages(struct list_head *l)
72 {
73 	struct page *page;
74 	struct page *page2;
75 
76 	list_for_each_entry_safe(page, page2, l, lru) {
77 		list_del(&page->lru);
78 		dec_zone_page_state(page, NR_ISOLATED_ANON +
79 				page_is_file_cache(page));
80 		putback_lru_page(page);
81 	}
82 }
83 
84 /*
85  * Restore a potential migration pte to a working pte entry
86  */
87 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
88 				 unsigned long addr, void *old)
89 {
90 	struct mm_struct *mm = vma->vm_mm;
91 	swp_entry_t entry;
92  	pgd_t *pgd;
93  	pud_t *pud;
94  	pmd_t *pmd;
95 	pte_t *ptep, pte;
96  	spinlock_t *ptl;
97 
98  	pgd = pgd_offset(mm, addr);
99 	if (!pgd_present(*pgd))
100 		goto out;
101 
102 	pud = pud_offset(pgd, addr);
103 	if (!pud_present(*pud))
104 		goto out;
105 
106 	pmd = pmd_offset(pud, addr);
107 	if (!pmd_present(*pmd))
108 		goto out;
109 
110 	ptep = pte_offset_map(pmd, addr);
111 
112 	if (!is_swap_pte(*ptep)) {
113 		pte_unmap(ptep);
114 		goto out;
115  	}
116 
117  	ptl = pte_lockptr(mm, pmd);
118  	spin_lock(ptl);
119 	pte = *ptep;
120 	if (!is_swap_pte(pte))
121 		goto unlock;
122 
123 	entry = pte_to_swp_entry(pte);
124 
125 	if (!is_migration_entry(entry) ||
126 	    migration_entry_to_page(entry) != old)
127 		goto unlock;
128 
129 	get_page(new);
130 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
131 	if (is_write_migration_entry(entry))
132 		pte = pte_mkwrite(pte);
133 	flush_cache_page(vma, addr, pte_pfn(pte));
134 	set_pte_at(mm, addr, ptep, pte);
135 
136 	if (PageAnon(new))
137 		page_add_anon_rmap(new, vma, addr);
138 	else
139 		page_add_file_rmap(new);
140 
141 	/* No need to invalidate - it was non-present before */
142 	update_mmu_cache(vma, addr, ptep);
143 unlock:
144 	pte_unmap_unlock(ptep, ptl);
145 out:
146 	return SWAP_AGAIN;
147 }
148 
149 /*
150  * Get rid of all migration entries and replace them by
151  * references to the indicated page.
152  */
153 static void remove_migration_ptes(struct page *old, struct page *new)
154 {
155 	rmap_walk(new, remove_migration_pte, old);
156 }
157 
158 /*
159  * Something used the pte of a page under migration. We need to
160  * get to the page and wait until migration is finished.
161  * When we return from this function the fault will be retried.
162  *
163  * This function is called from do_swap_page().
164  */
165 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
166 				unsigned long address)
167 {
168 	pte_t *ptep, pte;
169 	spinlock_t *ptl;
170 	swp_entry_t entry;
171 	struct page *page;
172 
173 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
174 	pte = *ptep;
175 	if (!is_swap_pte(pte))
176 		goto out;
177 
178 	entry = pte_to_swp_entry(pte);
179 	if (!is_migration_entry(entry))
180 		goto out;
181 
182 	page = migration_entry_to_page(entry);
183 
184 	/*
185 	 * Once radix-tree replacement of page migration started, page_count
186 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
187 	 * against a page without get_page().
188 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
189 	 * will occur again.
190 	 */
191 	if (!get_page_unless_zero(page))
192 		goto out;
193 	pte_unmap_unlock(ptep, ptl);
194 	wait_on_page_locked(page);
195 	put_page(page);
196 	return;
197 out:
198 	pte_unmap_unlock(ptep, ptl);
199 }
200 
201 /*
202  * Replace the page in the mapping.
203  *
204  * The number of remaining references must be:
205  * 1 for anonymous pages without a mapping
206  * 2 for pages with a mapping
207  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
208  */
209 static int migrate_page_move_mapping(struct address_space *mapping,
210 		struct page *newpage, struct page *page)
211 {
212 	int expected_count;
213 	void **pslot;
214 
215 	if (!mapping) {
216 		/* Anonymous page without mapping */
217 		if (page_count(page) != 1)
218 			return -EAGAIN;
219 		return 0;
220 	}
221 
222 	spin_lock_irq(&mapping->tree_lock);
223 
224 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
225  					page_index(page));
226 
227 	expected_count = 2 + page_has_private(page);
228 	if (page_count(page) != expected_count ||
229 			(struct page *)radix_tree_deref_slot(pslot) != page) {
230 		spin_unlock_irq(&mapping->tree_lock);
231 		return -EAGAIN;
232 	}
233 
234 	if (!page_freeze_refs(page, expected_count)) {
235 		spin_unlock_irq(&mapping->tree_lock);
236 		return -EAGAIN;
237 	}
238 
239 	/*
240 	 * Now we know that no one else is looking at the page.
241 	 */
242 	get_page(newpage);	/* add cache reference */
243 	if (PageSwapCache(page)) {
244 		SetPageSwapCache(newpage);
245 		set_page_private(newpage, page_private(page));
246 	}
247 
248 	radix_tree_replace_slot(pslot, newpage);
249 
250 	page_unfreeze_refs(page, expected_count);
251 	/*
252 	 * Drop cache reference from old page.
253 	 * We know this isn't the last reference.
254 	 */
255 	__put_page(page);
256 
257 	/*
258 	 * If moved to a different zone then also account
259 	 * the page for that zone. Other VM counters will be
260 	 * taken care of when we establish references to the
261 	 * new page and drop references to the old page.
262 	 *
263 	 * Note that anonymous pages are accounted for
264 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
265 	 * are mapped to swap space.
266 	 */
267 	__dec_zone_page_state(page, NR_FILE_PAGES);
268 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
269 	if (PageSwapBacked(page)) {
270 		__dec_zone_page_state(page, NR_SHMEM);
271 		__inc_zone_page_state(newpage, NR_SHMEM);
272 	}
273 	spin_unlock_irq(&mapping->tree_lock);
274 
275 	return 0;
276 }
277 
278 /*
279  * Copy the page to its new location
280  */
281 static void migrate_page_copy(struct page *newpage, struct page *page)
282 {
283 	copy_highpage(newpage, page);
284 
285 	if (PageError(page))
286 		SetPageError(newpage);
287 	if (PageReferenced(page))
288 		SetPageReferenced(newpage);
289 	if (PageUptodate(page))
290 		SetPageUptodate(newpage);
291 	if (TestClearPageActive(page)) {
292 		VM_BUG_ON(PageUnevictable(page));
293 		SetPageActive(newpage);
294 	} else if (TestClearPageUnevictable(page))
295 		SetPageUnevictable(newpage);
296 	if (PageChecked(page))
297 		SetPageChecked(newpage);
298 	if (PageMappedToDisk(page))
299 		SetPageMappedToDisk(newpage);
300 
301 	if (PageDirty(page)) {
302 		clear_page_dirty_for_io(page);
303 		/*
304 		 * Want to mark the page and the radix tree as dirty, and
305 		 * redo the accounting that clear_page_dirty_for_io undid,
306 		 * but we can't use set_page_dirty because that function
307 		 * is actually a signal that all of the page has become dirty.
308 		 * Wheras only part of our page may be dirty.
309 		 */
310 		__set_page_dirty_nobuffers(newpage);
311  	}
312 
313 	mlock_migrate_page(newpage, page);
314 	ksm_migrate_page(newpage, page);
315 
316 	ClearPageSwapCache(page);
317 	ClearPagePrivate(page);
318 	set_page_private(page, 0);
319 	page->mapping = NULL;
320 
321 	/*
322 	 * If any waiters have accumulated on the new page then
323 	 * wake them up.
324 	 */
325 	if (PageWriteback(newpage))
326 		end_page_writeback(newpage);
327 }
328 
329 /************************************************************
330  *                    Migration functions
331  ***********************************************************/
332 
333 /* Always fail migration. Used for mappings that are not movable */
334 int fail_migrate_page(struct address_space *mapping,
335 			struct page *newpage, struct page *page)
336 {
337 	return -EIO;
338 }
339 EXPORT_SYMBOL(fail_migrate_page);
340 
341 /*
342  * Common logic to directly migrate a single page suitable for
343  * pages that do not use PagePrivate/PagePrivate2.
344  *
345  * Pages are locked upon entry and exit.
346  */
347 int migrate_page(struct address_space *mapping,
348 		struct page *newpage, struct page *page)
349 {
350 	int rc;
351 
352 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
353 
354 	rc = migrate_page_move_mapping(mapping, newpage, page);
355 
356 	if (rc)
357 		return rc;
358 
359 	migrate_page_copy(newpage, page);
360 	return 0;
361 }
362 EXPORT_SYMBOL(migrate_page);
363 
364 #ifdef CONFIG_BLOCK
365 /*
366  * Migration function for pages with buffers. This function can only be used
367  * if the underlying filesystem guarantees that no other references to "page"
368  * exist.
369  */
370 int buffer_migrate_page(struct address_space *mapping,
371 		struct page *newpage, struct page *page)
372 {
373 	struct buffer_head *bh, *head;
374 	int rc;
375 
376 	if (!page_has_buffers(page))
377 		return migrate_page(mapping, newpage, page);
378 
379 	head = page_buffers(page);
380 
381 	rc = migrate_page_move_mapping(mapping, newpage, page);
382 
383 	if (rc)
384 		return rc;
385 
386 	bh = head;
387 	do {
388 		get_bh(bh);
389 		lock_buffer(bh);
390 		bh = bh->b_this_page;
391 
392 	} while (bh != head);
393 
394 	ClearPagePrivate(page);
395 	set_page_private(newpage, page_private(page));
396 	set_page_private(page, 0);
397 	put_page(page);
398 	get_page(newpage);
399 
400 	bh = head;
401 	do {
402 		set_bh_page(bh, newpage, bh_offset(bh));
403 		bh = bh->b_this_page;
404 
405 	} while (bh != head);
406 
407 	SetPagePrivate(newpage);
408 
409 	migrate_page_copy(newpage, page);
410 
411 	bh = head;
412 	do {
413 		unlock_buffer(bh);
414  		put_bh(bh);
415 		bh = bh->b_this_page;
416 
417 	} while (bh != head);
418 
419 	return 0;
420 }
421 EXPORT_SYMBOL(buffer_migrate_page);
422 #endif
423 
424 /*
425  * Writeback a page to clean the dirty state
426  */
427 static int writeout(struct address_space *mapping, struct page *page)
428 {
429 	struct writeback_control wbc = {
430 		.sync_mode = WB_SYNC_NONE,
431 		.nr_to_write = 1,
432 		.range_start = 0,
433 		.range_end = LLONG_MAX,
434 		.nonblocking = 1,
435 		.for_reclaim = 1
436 	};
437 	int rc;
438 
439 	if (!mapping->a_ops->writepage)
440 		/* No write method for the address space */
441 		return -EINVAL;
442 
443 	if (!clear_page_dirty_for_io(page))
444 		/* Someone else already triggered a write */
445 		return -EAGAIN;
446 
447 	/*
448 	 * A dirty page may imply that the underlying filesystem has
449 	 * the page on some queue. So the page must be clean for
450 	 * migration. Writeout may mean we loose the lock and the
451 	 * page state is no longer what we checked for earlier.
452 	 * At this point we know that the migration attempt cannot
453 	 * be successful.
454 	 */
455 	remove_migration_ptes(page, page);
456 
457 	rc = mapping->a_ops->writepage(page, &wbc);
458 
459 	if (rc != AOP_WRITEPAGE_ACTIVATE)
460 		/* unlocked. Relock */
461 		lock_page(page);
462 
463 	return (rc < 0) ? -EIO : -EAGAIN;
464 }
465 
466 /*
467  * Default handling if a filesystem does not provide a migration function.
468  */
469 static int fallback_migrate_page(struct address_space *mapping,
470 	struct page *newpage, struct page *page)
471 {
472 	if (PageDirty(page))
473 		return writeout(mapping, page);
474 
475 	/*
476 	 * Buffers may be managed in a filesystem specific way.
477 	 * We must have no buffers or drop them.
478 	 */
479 	if (page_has_private(page) &&
480 	    !try_to_release_page(page, GFP_KERNEL))
481 		return -EAGAIN;
482 
483 	return migrate_page(mapping, newpage, page);
484 }
485 
486 /*
487  * Move a page to a newly allocated page
488  * The page is locked and all ptes have been successfully removed.
489  *
490  * The new page will have replaced the old page if this function
491  * is successful.
492  *
493  * Return value:
494  *   < 0 - error code
495  *  == 0 - success
496  */
497 static int move_to_new_page(struct page *newpage, struct page *page,
498 						int remap_swapcache)
499 {
500 	struct address_space *mapping;
501 	int rc;
502 
503 	/*
504 	 * Block others from accessing the page when we get around to
505 	 * establishing additional references. We are the only one
506 	 * holding a reference to the new page at this point.
507 	 */
508 	if (!trylock_page(newpage))
509 		BUG();
510 
511 	/* Prepare mapping for the new page.*/
512 	newpage->index = page->index;
513 	newpage->mapping = page->mapping;
514 	if (PageSwapBacked(page))
515 		SetPageSwapBacked(newpage);
516 
517 	mapping = page_mapping(page);
518 	if (!mapping)
519 		rc = migrate_page(mapping, newpage, page);
520 	else if (mapping->a_ops->migratepage)
521 		/*
522 		 * Most pages have a mapping and most filesystems
523 		 * should provide a migration function. Anonymous
524 		 * pages are part of swap space which also has its
525 		 * own migration function. This is the most common
526 		 * path for page migration.
527 		 */
528 		rc = mapping->a_ops->migratepage(mapping,
529 						newpage, page);
530 	else
531 		rc = fallback_migrate_page(mapping, newpage, page);
532 
533 	if (rc) {
534 		newpage->mapping = NULL;
535 	} else {
536 		if (remap_swapcache)
537 			remove_migration_ptes(page, newpage);
538 	}
539 
540 	unlock_page(newpage);
541 
542 	return rc;
543 }
544 
545 /*
546  * Obtain the lock on page, remove all ptes and migrate the page
547  * to the newly allocated page in newpage.
548  */
549 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
550 			struct page *page, int force, int offlining)
551 {
552 	int rc = 0;
553 	int *result = NULL;
554 	struct page *newpage = get_new_page(page, private, &result);
555 	int remap_swapcache = 1;
556 	int rcu_locked = 0;
557 	int charge = 0;
558 	struct mem_cgroup *mem = NULL;
559 	struct anon_vma *anon_vma = NULL;
560 
561 	if (!newpage)
562 		return -ENOMEM;
563 
564 	if (page_count(page) == 1) {
565 		/* page was freed from under us. So we are done. */
566 		goto move_newpage;
567 	}
568 
569 	/* prepare cgroup just returns 0 or -ENOMEM */
570 	rc = -EAGAIN;
571 
572 	if (!trylock_page(page)) {
573 		if (!force)
574 			goto move_newpage;
575 		lock_page(page);
576 	}
577 
578 	/*
579 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
580 	 * and can safely migrate a KSM page.  The other cases have skipped
581 	 * PageKsm along with PageReserved - but it is only now when we have
582 	 * the page lock that we can be certain it will not go KSM beneath us
583 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
584 	 * its pagecount raised, but only here do we take the page lock which
585 	 * serializes that).
586 	 */
587 	if (PageKsm(page) && !offlining) {
588 		rc = -EBUSY;
589 		goto unlock;
590 	}
591 
592 	/* charge against new page */
593 	charge = mem_cgroup_prepare_migration(page, newpage, &mem);
594 	if (charge == -ENOMEM) {
595 		rc = -ENOMEM;
596 		goto unlock;
597 	}
598 	BUG_ON(charge);
599 
600 	if (PageWriteback(page)) {
601 		if (!force)
602 			goto uncharge;
603 		wait_on_page_writeback(page);
604 	}
605 	/*
606 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
607 	 * we cannot notice that anon_vma is freed while we migrates a page.
608 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
609 	 * of migration. File cache pages are no problem because of page_lock()
610 	 * File Caches may use write_page() or lock_page() in migration, then,
611 	 * just care Anon page here.
612 	 */
613 	if (PageAnon(page)) {
614 		rcu_read_lock();
615 		rcu_locked = 1;
616 
617 		/* Determine how to safely use anon_vma */
618 		if (!page_mapped(page)) {
619 			if (!PageSwapCache(page))
620 				goto rcu_unlock;
621 
622 			/*
623 			 * We cannot be sure that the anon_vma of an unmapped
624 			 * swapcache page is safe to use because we don't
625 			 * know in advance if the VMA that this page belonged
626 			 * to still exists. If the VMA and others sharing the
627 			 * data have been freed, then the anon_vma could
628 			 * already be invalid.
629 			 *
630 			 * To avoid this possibility, swapcache pages get
631 			 * migrated but are not remapped when migration
632 			 * completes
633 			 */
634 			remap_swapcache = 0;
635 		} else {
636 			/*
637 			 * Take a reference count on the anon_vma if the
638 			 * page is mapped so that it is guaranteed to
639 			 * exist when the page is remapped later
640 			 */
641 			anon_vma = page_anon_vma(page);
642 			get_anon_vma(anon_vma);
643 		}
644 	}
645 
646 	/*
647 	 * Corner case handling:
648 	 * 1. When a new swap-cache page is read into, it is added to the LRU
649 	 * and treated as swapcache but it has no rmap yet.
650 	 * Calling try_to_unmap() against a page->mapping==NULL page will
651 	 * trigger a BUG.  So handle it here.
652 	 * 2. An orphaned page (see truncate_complete_page) might have
653 	 * fs-private metadata. The page can be picked up due to memory
654 	 * offlining.  Everywhere else except page reclaim, the page is
655 	 * invisible to the vm, so the page can not be migrated.  So try to
656 	 * free the metadata, so the page can be freed.
657 	 */
658 	if (!page->mapping) {
659 		if (!PageAnon(page) && page_has_private(page)) {
660 			/*
661 			 * Go direct to try_to_free_buffers() here because
662 			 * a) that's what try_to_release_page() would do anyway
663 			 * b) we may be under rcu_read_lock() here, so we can't
664 			 *    use GFP_KERNEL which is what try_to_release_page()
665 			 *    needs to be effective.
666 			 */
667 			try_to_free_buffers(page);
668 			goto rcu_unlock;
669 		}
670 		goto skip_unmap;
671 	}
672 
673 	/* Establish migration ptes or remove ptes */
674 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
675 
676 skip_unmap:
677 	if (!page_mapped(page))
678 		rc = move_to_new_page(newpage, page, remap_swapcache);
679 
680 	if (rc && remap_swapcache)
681 		remove_migration_ptes(page, page);
682 rcu_unlock:
683 
684 	/* Drop an anon_vma reference if we took one */
685 	if (anon_vma)
686 		drop_anon_vma(anon_vma);
687 
688 	if (rcu_locked)
689 		rcu_read_unlock();
690 uncharge:
691 	if (!charge)
692 		mem_cgroup_end_migration(mem, page, newpage);
693 unlock:
694 	unlock_page(page);
695 
696 	if (rc != -EAGAIN) {
697  		/*
698  		 * A page that has been migrated has all references
699  		 * removed and will be freed. A page that has not been
700  		 * migrated will have kepts its references and be
701  		 * restored.
702  		 */
703  		list_del(&page->lru);
704 		dec_zone_page_state(page, NR_ISOLATED_ANON +
705 				page_is_file_cache(page));
706 		putback_lru_page(page);
707 	}
708 
709 move_newpage:
710 
711 	/*
712 	 * Move the new page to the LRU. If migration was not successful
713 	 * then this will free the page.
714 	 */
715 	putback_lru_page(newpage);
716 
717 	if (result) {
718 		if (rc)
719 			*result = rc;
720 		else
721 			*result = page_to_nid(newpage);
722 	}
723 	return rc;
724 }
725 
726 /*
727  * migrate_pages
728  *
729  * The function takes one list of pages to migrate and a function
730  * that determines from the page to be migrated and the private data
731  * the target of the move and allocates the page.
732  *
733  * The function returns after 10 attempts or if no pages
734  * are movable anymore because to has become empty
735  * or no retryable pages exist anymore. All pages will be
736  * returned to the LRU or freed.
737  *
738  * Return: Number of pages not migrated or error code.
739  */
740 int migrate_pages(struct list_head *from,
741 		new_page_t get_new_page, unsigned long private, int offlining)
742 {
743 	int retry = 1;
744 	int nr_failed = 0;
745 	int pass = 0;
746 	struct page *page;
747 	struct page *page2;
748 	int swapwrite = current->flags & PF_SWAPWRITE;
749 	int rc;
750 
751 	if (!swapwrite)
752 		current->flags |= PF_SWAPWRITE;
753 
754 	for(pass = 0; pass < 10 && retry; pass++) {
755 		retry = 0;
756 
757 		list_for_each_entry_safe(page, page2, from, lru) {
758 			cond_resched();
759 
760 			rc = unmap_and_move(get_new_page, private,
761 						page, pass > 2, offlining);
762 
763 			switch(rc) {
764 			case -ENOMEM:
765 				goto out;
766 			case -EAGAIN:
767 				retry++;
768 				break;
769 			case 0:
770 				break;
771 			default:
772 				/* Permanent failure */
773 				nr_failed++;
774 				break;
775 			}
776 		}
777 	}
778 	rc = 0;
779 out:
780 	if (!swapwrite)
781 		current->flags &= ~PF_SWAPWRITE;
782 
783 	putback_lru_pages(from);
784 
785 	if (rc)
786 		return rc;
787 
788 	return nr_failed + retry;
789 }
790 
791 #ifdef CONFIG_NUMA
792 /*
793  * Move a list of individual pages
794  */
795 struct page_to_node {
796 	unsigned long addr;
797 	struct page *page;
798 	int node;
799 	int status;
800 };
801 
802 static struct page *new_page_node(struct page *p, unsigned long private,
803 		int **result)
804 {
805 	struct page_to_node *pm = (struct page_to_node *)private;
806 
807 	while (pm->node != MAX_NUMNODES && pm->page != p)
808 		pm++;
809 
810 	if (pm->node == MAX_NUMNODES)
811 		return NULL;
812 
813 	*result = &pm->status;
814 
815 	return alloc_pages_exact_node(pm->node,
816 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
817 }
818 
819 /*
820  * Move a set of pages as indicated in the pm array. The addr
821  * field must be set to the virtual address of the page to be moved
822  * and the node number must contain a valid target node.
823  * The pm array ends with node = MAX_NUMNODES.
824  */
825 static int do_move_page_to_node_array(struct mm_struct *mm,
826 				      struct page_to_node *pm,
827 				      int migrate_all)
828 {
829 	int err;
830 	struct page_to_node *pp;
831 	LIST_HEAD(pagelist);
832 
833 	down_read(&mm->mmap_sem);
834 
835 	/*
836 	 * Build a list of pages to migrate
837 	 */
838 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
839 		struct vm_area_struct *vma;
840 		struct page *page;
841 
842 		err = -EFAULT;
843 		vma = find_vma(mm, pp->addr);
844 		if (!vma || !vma_migratable(vma))
845 			goto set_status;
846 
847 		page = follow_page(vma, pp->addr, FOLL_GET);
848 
849 		err = PTR_ERR(page);
850 		if (IS_ERR(page))
851 			goto set_status;
852 
853 		err = -ENOENT;
854 		if (!page)
855 			goto set_status;
856 
857 		/* Use PageReserved to check for zero page */
858 		if (PageReserved(page) || PageKsm(page))
859 			goto put_and_set;
860 
861 		pp->page = page;
862 		err = page_to_nid(page);
863 
864 		if (err == pp->node)
865 			/*
866 			 * Node already in the right place
867 			 */
868 			goto put_and_set;
869 
870 		err = -EACCES;
871 		if (page_mapcount(page) > 1 &&
872 				!migrate_all)
873 			goto put_and_set;
874 
875 		err = isolate_lru_page(page);
876 		if (!err) {
877 			list_add_tail(&page->lru, &pagelist);
878 			inc_zone_page_state(page, NR_ISOLATED_ANON +
879 					    page_is_file_cache(page));
880 		}
881 put_and_set:
882 		/*
883 		 * Either remove the duplicate refcount from
884 		 * isolate_lru_page() or drop the page ref if it was
885 		 * not isolated.
886 		 */
887 		put_page(page);
888 set_status:
889 		pp->status = err;
890 	}
891 
892 	err = 0;
893 	if (!list_empty(&pagelist))
894 		err = migrate_pages(&pagelist, new_page_node,
895 				(unsigned long)pm, 0);
896 
897 	up_read(&mm->mmap_sem);
898 	return err;
899 }
900 
901 /*
902  * Migrate an array of page address onto an array of nodes and fill
903  * the corresponding array of status.
904  */
905 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
906 			 unsigned long nr_pages,
907 			 const void __user * __user *pages,
908 			 const int __user *nodes,
909 			 int __user *status, int flags)
910 {
911 	struct page_to_node *pm;
912 	nodemask_t task_nodes;
913 	unsigned long chunk_nr_pages;
914 	unsigned long chunk_start;
915 	int err;
916 
917 	task_nodes = cpuset_mems_allowed(task);
918 
919 	err = -ENOMEM;
920 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
921 	if (!pm)
922 		goto out;
923 
924 	migrate_prep();
925 
926 	/*
927 	 * Store a chunk of page_to_node array in a page,
928 	 * but keep the last one as a marker
929 	 */
930 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
931 
932 	for (chunk_start = 0;
933 	     chunk_start < nr_pages;
934 	     chunk_start += chunk_nr_pages) {
935 		int j;
936 
937 		if (chunk_start + chunk_nr_pages > nr_pages)
938 			chunk_nr_pages = nr_pages - chunk_start;
939 
940 		/* fill the chunk pm with addrs and nodes from user-space */
941 		for (j = 0; j < chunk_nr_pages; j++) {
942 			const void __user *p;
943 			int node;
944 
945 			err = -EFAULT;
946 			if (get_user(p, pages + j + chunk_start))
947 				goto out_pm;
948 			pm[j].addr = (unsigned long) p;
949 
950 			if (get_user(node, nodes + j + chunk_start))
951 				goto out_pm;
952 
953 			err = -ENODEV;
954 			if (node < 0 || node >= MAX_NUMNODES)
955 				goto out_pm;
956 
957 			if (!node_state(node, N_HIGH_MEMORY))
958 				goto out_pm;
959 
960 			err = -EACCES;
961 			if (!node_isset(node, task_nodes))
962 				goto out_pm;
963 
964 			pm[j].node = node;
965 		}
966 
967 		/* End marker for this chunk */
968 		pm[chunk_nr_pages].node = MAX_NUMNODES;
969 
970 		/* Migrate this chunk */
971 		err = do_move_page_to_node_array(mm, pm,
972 						 flags & MPOL_MF_MOVE_ALL);
973 		if (err < 0)
974 			goto out_pm;
975 
976 		/* Return status information */
977 		for (j = 0; j < chunk_nr_pages; j++)
978 			if (put_user(pm[j].status, status + j + chunk_start)) {
979 				err = -EFAULT;
980 				goto out_pm;
981 			}
982 	}
983 	err = 0;
984 
985 out_pm:
986 	free_page((unsigned long)pm);
987 out:
988 	return err;
989 }
990 
991 /*
992  * Determine the nodes of an array of pages and store it in an array of status.
993  */
994 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
995 				const void __user **pages, int *status)
996 {
997 	unsigned long i;
998 
999 	down_read(&mm->mmap_sem);
1000 
1001 	for (i = 0; i < nr_pages; i++) {
1002 		unsigned long addr = (unsigned long)(*pages);
1003 		struct vm_area_struct *vma;
1004 		struct page *page;
1005 		int err = -EFAULT;
1006 
1007 		vma = find_vma(mm, addr);
1008 		if (!vma)
1009 			goto set_status;
1010 
1011 		page = follow_page(vma, addr, 0);
1012 
1013 		err = PTR_ERR(page);
1014 		if (IS_ERR(page))
1015 			goto set_status;
1016 
1017 		err = -ENOENT;
1018 		/* Use PageReserved to check for zero page */
1019 		if (!page || PageReserved(page) || PageKsm(page))
1020 			goto set_status;
1021 
1022 		err = page_to_nid(page);
1023 set_status:
1024 		*status = err;
1025 
1026 		pages++;
1027 		status++;
1028 	}
1029 
1030 	up_read(&mm->mmap_sem);
1031 }
1032 
1033 /*
1034  * Determine the nodes of a user array of pages and store it in
1035  * a user array of status.
1036  */
1037 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1038 			 const void __user * __user *pages,
1039 			 int __user *status)
1040 {
1041 #define DO_PAGES_STAT_CHUNK_NR 16
1042 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1043 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1044 
1045 	while (nr_pages) {
1046 		unsigned long chunk_nr;
1047 
1048 		chunk_nr = nr_pages;
1049 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1050 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1051 
1052 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1053 			break;
1054 
1055 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1056 
1057 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1058 			break;
1059 
1060 		pages += chunk_nr;
1061 		status += chunk_nr;
1062 		nr_pages -= chunk_nr;
1063 	}
1064 	return nr_pages ? -EFAULT : 0;
1065 }
1066 
1067 /*
1068  * Move a list of pages in the address space of the currently executing
1069  * process.
1070  */
1071 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1072 		const void __user * __user *, pages,
1073 		const int __user *, nodes,
1074 		int __user *, status, int, flags)
1075 {
1076 	const struct cred *cred = current_cred(), *tcred;
1077 	struct task_struct *task;
1078 	struct mm_struct *mm;
1079 	int err;
1080 
1081 	/* Check flags */
1082 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1083 		return -EINVAL;
1084 
1085 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1086 		return -EPERM;
1087 
1088 	/* Find the mm_struct */
1089 	read_lock(&tasklist_lock);
1090 	task = pid ? find_task_by_vpid(pid) : current;
1091 	if (!task) {
1092 		read_unlock(&tasklist_lock);
1093 		return -ESRCH;
1094 	}
1095 	mm = get_task_mm(task);
1096 	read_unlock(&tasklist_lock);
1097 
1098 	if (!mm)
1099 		return -EINVAL;
1100 
1101 	/*
1102 	 * Check if this process has the right to modify the specified
1103 	 * process. The right exists if the process has administrative
1104 	 * capabilities, superuser privileges or the same
1105 	 * userid as the target process.
1106 	 */
1107 	rcu_read_lock();
1108 	tcred = __task_cred(task);
1109 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1110 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1111 	    !capable(CAP_SYS_NICE)) {
1112 		rcu_read_unlock();
1113 		err = -EPERM;
1114 		goto out;
1115 	}
1116 	rcu_read_unlock();
1117 
1118  	err = security_task_movememory(task);
1119  	if (err)
1120 		goto out;
1121 
1122 	if (nodes) {
1123 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1124 				    flags);
1125 	} else {
1126 		err = do_pages_stat(mm, nr_pages, pages, status);
1127 	}
1128 
1129 out:
1130 	mmput(mm);
1131 	return err;
1132 }
1133 
1134 /*
1135  * Call migration functions in the vma_ops that may prepare
1136  * memory in a vm for migration. migration functions may perform
1137  * the migration for vmas that do not have an underlying page struct.
1138  */
1139 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1140 	const nodemask_t *from, unsigned long flags)
1141 {
1142  	struct vm_area_struct *vma;
1143  	int err = 0;
1144 
1145 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1146  		if (vma->vm_ops && vma->vm_ops->migrate) {
1147  			err = vma->vm_ops->migrate(vma, to, from, flags);
1148  			if (err)
1149  				break;
1150  		}
1151  	}
1152  	return err;
1153 }
1154 #endif
1155