xref: /linux/mm/migrate.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_cache(page), -hpage_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 
247 		if (unlikely(is_zone_device_page(new))) {
248 			if (is_device_private_page(new)) {
249 				entry = make_device_private_entry(new, pte_write(pte));
250 				pte = swp_entry_to_pte(entry);
251 			}
252 		}
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		if (PageTransHuge(page) && PageMlocked(page))
277 			clear_page_mlock(page);
278 
279 		/* No need to invalidate - it was non-present before */
280 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 	}
282 
283 	return true;
284 }
285 
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 	struct rmap_walk_control rwc = {
293 		.rmap_one = remove_migration_pte,
294 		.arg = old,
295 	};
296 
297 	if (locked)
298 		rmap_walk_locked(new, &rwc);
299 	else
300 		rmap_walk(new, &rwc);
301 }
302 
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 				spinlock_t *ptl)
310 {
311 	pte_t pte;
312 	swp_entry_t entry;
313 	struct page *page;
314 
315 	spin_lock(ptl);
316 	pte = *ptep;
317 	if (!is_swap_pte(pte))
318 		goto out;
319 
320 	entry = pte_to_swp_entry(pte);
321 	if (!is_migration_entry(entry))
322 		goto out;
323 
324 	page = migration_entry_to_page(entry);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device public or private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	if (mapping)
385 		expected_count += hpage_nr_pages(page) + page_has_private(page);
386 
387 	return expected_count;
388 }
389 
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 		struct page *newpage, struct page *page, int extra_count)
400 {
401 	XA_STATE(xas, &mapping->i_pages, page_index(page));
402 	struct zone *oldzone, *newzone;
403 	int dirty;
404 	int expected_count = expected_page_refs(mapping, page) + extra_count;
405 
406 	if (!mapping) {
407 		/* Anonymous page without mapping */
408 		if (page_count(page) != expected_count)
409 			return -EAGAIN;
410 
411 		/* No turning back from here */
412 		newpage->index = page->index;
413 		newpage->mapping = page->mapping;
414 		if (PageSwapBacked(page))
415 			__SetPageSwapBacked(newpage);
416 
417 		return MIGRATEPAGE_SUCCESS;
418 	}
419 
420 	oldzone = page_zone(page);
421 	newzone = page_zone(newpage);
422 
423 	xas_lock_irq(&xas);
424 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 		xas_unlock_irq(&xas);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_ref_freeze(page, expected_count)) {
430 		xas_unlock_irq(&xas);
431 		return -EAGAIN;
432 	}
433 
434 	/*
435 	 * Now we know that no one else is looking at the page:
436 	 * no turning back from here.
437 	 */
438 	newpage->index = page->index;
439 	newpage->mapping = page->mapping;
440 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441 	if (PageSwapBacked(page)) {
442 		__SetPageSwapBacked(newpage);
443 		if (PageSwapCache(page)) {
444 			SetPageSwapCache(newpage);
445 			set_page_private(newpage, page_private(page));
446 		}
447 	} else {
448 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
449 	}
450 
451 	/* Move dirty while page refs frozen and newpage not yet exposed */
452 	dirty = PageDirty(page);
453 	if (dirty) {
454 		ClearPageDirty(page);
455 		SetPageDirty(newpage);
456 	}
457 
458 	xas_store(&xas, newpage);
459 	if (PageTransHuge(page)) {
460 		int i;
461 
462 		for (i = 1; i < HPAGE_PMD_NR; i++) {
463 			xas_next(&xas);
464 			xas_store(&xas, newpage);
465 		}
466 	}
467 
468 	/*
469 	 * Drop cache reference from old page by unfreezing
470 	 * to one less reference.
471 	 * We know this isn't the last reference.
472 	 */
473 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474 
475 	xas_unlock(&xas);
476 	/* Leave irq disabled to prevent preemption while updating stats */
477 
478 	/*
479 	 * If moved to a different zone then also account
480 	 * the page for that zone. Other VM counters will be
481 	 * taken care of when we establish references to the
482 	 * new page and drop references to the old page.
483 	 *
484 	 * Note that anonymous pages are accounted for
485 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 	 * are mapped to swap space.
487 	 */
488 	if (newzone != oldzone) {
489 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
492 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494 		}
495 		if (dirty && mapping_cap_account_dirty(mapping)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500 		}
501 	}
502 	local_irq_enable();
503 
504 	return MIGRATEPAGE_SUCCESS;
505 }
506 EXPORT_SYMBOL(migrate_page_move_mapping);
507 
508 /*
509  * The expected number of remaining references is the same as that
510  * of migrate_page_move_mapping().
511  */
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513 				   struct page *newpage, struct page *page)
514 {
515 	XA_STATE(xas, &mapping->i_pages, page_index(page));
516 	int expected_count;
517 
518 	xas_lock_irq(&xas);
519 	expected_count = 2 + page_has_private(page);
520 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
521 		xas_unlock_irq(&xas);
522 		return -EAGAIN;
523 	}
524 
525 	if (!page_ref_freeze(page, expected_count)) {
526 		xas_unlock_irq(&xas);
527 		return -EAGAIN;
528 	}
529 
530 	newpage->index = page->index;
531 	newpage->mapping = page->mapping;
532 
533 	get_page(newpage);
534 
535 	xas_store(&xas, newpage);
536 
537 	page_ref_unfreeze(page, expected_count - 1);
538 
539 	xas_unlock_irq(&xas);
540 
541 	return MIGRATEPAGE_SUCCESS;
542 }
543 
544 /*
545  * Gigantic pages are so large that we do not guarantee that page++ pointer
546  * arithmetic will work across the entire page.  We need something more
547  * specialized.
548  */
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550 				int nr_pages)
551 {
552 	int i;
553 	struct page *dst_base = dst;
554 	struct page *src_base = src;
555 
556 	for (i = 0; i < nr_pages; ) {
557 		cond_resched();
558 		copy_highpage(dst, src);
559 
560 		i++;
561 		dst = mem_map_next(dst, dst_base, i);
562 		src = mem_map_next(src, src_base, i);
563 	}
564 }
565 
566 static void copy_huge_page(struct page *dst, struct page *src)
567 {
568 	int i;
569 	int nr_pages;
570 
571 	if (PageHuge(src)) {
572 		/* hugetlbfs page */
573 		struct hstate *h = page_hstate(src);
574 		nr_pages = pages_per_huge_page(h);
575 
576 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577 			__copy_gigantic_page(dst, src, nr_pages);
578 			return;
579 		}
580 	} else {
581 		/* thp page */
582 		BUG_ON(!PageTransHuge(src));
583 		nr_pages = hpage_nr_pages(src);
584 	}
585 
586 	for (i = 0; i < nr_pages; i++) {
587 		cond_resched();
588 		copy_highpage(dst + i, src + i);
589 	}
590 }
591 
592 /*
593  * Copy the page to its new location
594  */
595 void migrate_page_states(struct page *newpage, struct page *page)
596 {
597 	int cpupid;
598 
599 	if (PageError(page))
600 		SetPageError(newpage);
601 	if (PageReferenced(page))
602 		SetPageReferenced(newpage);
603 	if (PageUptodate(page))
604 		SetPageUptodate(newpage);
605 	if (TestClearPageActive(page)) {
606 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
607 		SetPageActive(newpage);
608 	} else if (TestClearPageUnevictable(page))
609 		SetPageUnevictable(newpage);
610 	if (PageWorkingset(page))
611 		SetPageWorkingset(newpage);
612 	if (PageChecked(page))
613 		SetPageChecked(newpage);
614 	if (PageMappedToDisk(page))
615 		SetPageMappedToDisk(newpage);
616 
617 	/* Move dirty on pages not done by migrate_page_move_mapping() */
618 	if (PageDirty(page))
619 		SetPageDirty(newpage);
620 
621 	if (page_is_young(page))
622 		set_page_young(newpage);
623 	if (page_is_idle(page))
624 		set_page_idle(newpage);
625 
626 	/*
627 	 * Copy NUMA information to the new page, to prevent over-eager
628 	 * future migrations of this same page.
629 	 */
630 	cpupid = page_cpupid_xchg_last(page, -1);
631 	page_cpupid_xchg_last(newpage, cpupid);
632 
633 	ksm_migrate_page(newpage, page);
634 	/*
635 	 * Please do not reorder this without considering how mm/ksm.c's
636 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637 	 */
638 	if (PageSwapCache(page))
639 		ClearPageSwapCache(page);
640 	ClearPagePrivate(page);
641 	set_page_private(page, 0);
642 
643 	/*
644 	 * If any waiters have accumulated on the new page then
645 	 * wake them up.
646 	 */
647 	if (PageWriteback(newpage))
648 		end_page_writeback(newpage);
649 
650 	copy_page_owner(page, newpage);
651 
652 	mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655 
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658 	if (PageHuge(page) || PageTransHuge(page))
659 		copy_huge_page(newpage, page);
660 	else
661 		copy_highpage(newpage, page);
662 
663 	migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666 
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670 
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678 		struct page *newpage, struct page *page,
679 		enum migrate_mode mode)
680 {
681 	int rc;
682 
683 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
684 
685 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686 
687 	if (rc != MIGRATEPAGE_SUCCESS)
688 		return rc;
689 
690 	if (mode != MIGRATE_SYNC_NO_COPY)
691 		migrate_page_copy(newpage, page);
692 	else
693 		migrate_page_states(newpage, page);
694 	return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697 
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 							enum migrate_mode mode)
702 {
703 	struct buffer_head *bh = head;
704 
705 	/* Simple case, sync compaction */
706 	if (mode != MIGRATE_ASYNC) {
707 		do {
708 			lock_buffer(bh);
709 			bh = bh->b_this_page;
710 
711 		} while (bh != head);
712 
713 		return true;
714 	}
715 
716 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
717 	do {
718 		if (!trylock_buffer(bh)) {
719 			/*
720 			 * We failed to lock the buffer and cannot stall in
721 			 * async migration. Release the taken locks
722 			 */
723 			struct buffer_head *failed_bh = bh;
724 			bh = head;
725 			while (bh != failed_bh) {
726 				unlock_buffer(bh);
727 				bh = bh->b_this_page;
728 			}
729 			return false;
730 		}
731 
732 		bh = bh->b_this_page;
733 	} while (bh != head);
734 	return true;
735 }
736 
737 static int __buffer_migrate_page(struct address_space *mapping,
738 		struct page *newpage, struct page *page, enum migrate_mode mode,
739 		bool check_refs)
740 {
741 	struct buffer_head *bh, *head;
742 	int rc;
743 	int expected_count;
744 
745 	if (!page_has_buffers(page))
746 		return migrate_page(mapping, newpage, page, mode);
747 
748 	/* Check whether page does not have extra refs before we do more work */
749 	expected_count = expected_page_refs(mapping, page);
750 	if (page_count(page) != expected_count)
751 		return -EAGAIN;
752 
753 	head = page_buffers(page);
754 	if (!buffer_migrate_lock_buffers(head, mode))
755 		return -EAGAIN;
756 
757 	if (check_refs) {
758 		bool busy;
759 		bool invalidated = false;
760 
761 recheck_buffers:
762 		busy = false;
763 		spin_lock(&mapping->private_lock);
764 		bh = head;
765 		do {
766 			if (atomic_read(&bh->b_count)) {
767 				busy = true;
768 				break;
769 			}
770 			bh = bh->b_this_page;
771 		} while (bh != head);
772 		if (busy) {
773 			if (invalidated) {
774 				rc = -EAGAIN;
775 				goto unlock_buffers;
776 			}
777 			spin_unlock(&mapping->private_lock);
778 			invalidate_bh_lrus();
779 			invalidated = true;
780 			goto recheck_buffers;
781 		}
782 	}
783 
784 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785 	if (rc != MIGRATEPAGE_SUCCESS)
786 		goto unlock_buffers;
787 
788 	ClearPagePrivate(page);
789 	set_page_private(newpage, page_private(page));
790 	set_page_private(page, 0);
791 	put_page(page);
792 	get_page(newpage);
793 
794 	bh = head;
795 	do {
796 		set_bh_page(bh, newpage, bh_offset(bh));
797 		bh = bh->b_this_page;
798 
799 	} while (bh != head);
800 
801 	SetPagePrivate(newpage);
802 
803 	if (mode != MIGRATE_SYNC_NO_COPY)
804 		migrate_page_copy(newpage, page);
805 	else
806 		migrate_page_states(newpage, page);
807 
808 	rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810 	if (check_refs)
811 		spin_unlock(&mapping->private_lock);
812 	bh = head;
813 	do {
814 		unlock_buffer(bh);
815 		bh = bh->b_this_page;
816 
817 	} while (bh != head);
818 
819 	return rc;
820 }
821 
822 /*
823  * Migration function for pages with buffers. This function can only be used
824  * if the underlying filesystem guarantees that no other references to "page"
825  * exist. For example attached buffer heads are accessed only under page lock.
826  */
827 int buffer_migrate_page(struct address_space *mapping,
828 		struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833 
834 /*
835  * Same as above except that this variant is more careful and checks that there
836  * are also no buffer head references. This function is the right one for
837  * mappings where buffer heads are directly looked up and referenced (such as
838  * block device mappings).
839  */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841 		struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846 
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852 	struct writeback_control wbc = {
853 		.sync_mode = WB_SYNC_NONE,
854 		.nr_to_write = 1,
855 		.range_start = 0,
856 		.range_end = LLONG_MAX,
857 		.for_reclaim = 1
858 	};
859 	int rc;
860 
861 	if (!mapping->a_ops->writepage)
862 		/* No write method for the address space */
863 		return -EINVAL;
864 
865 	if (!clear_page_dirty_for_io(page))
866 		/* Someone else already triggered a write */
867 		return -EAGAIN;
868 
869 	/*
870 	 * A dirty page may imply that the underlying filesystem has
871 	 * the page on some queue. So the page must be clean for
872 	 * migration. Writeout may mean we loose the lock and the
873 	 * page state is no longer what we checked for earlier.
874 	 * At this point we know that the migration attempt cannot
875 	 * be successful.
876 	 */
877 	remove_migration_ptes(page, page, false);
878 
879 	rc = mapping->a_ops->writepage(page, &wbc);
880 
881 	if (rc != AOP_WRITEPAGE_ACTIVATE)
882 		/* unlocked. Relock */
883 		lock_page(page);
884 
885 	return (rc < 0) ? -EIO : -EAGAIN;
886 }
887 
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892 	struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894 	if (PageDirty(page)) {
895 		/* Only writeback pages in full synchronous migration */
896 		switch (mode) {
897 		case MIGRATE_SYNC:
898 		case MIGRATE_SYNC_NO_COPY:
899 			break;
900 		default:
901 			return -EBUSY;
902 		}
903 		return writeout(mapping, page);
904 	}
905 
906 	/*
907 	 * Buffers may be managed in a filesystem specific way.
908 	 * We must have no buffers or drop them.
909 	 */
910 	if (page_has_private(page) &&
911 	    !try_to_release_page(page, GFP_KERNEL))
912 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913 
914 	return migrate_page(mapping, newpage, page, mode);
915 }
916 
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929 				enum migrate_mode mode)
930 {
931 	struct address_space *mapping;
932 	int rc = -EAGAIN;
933 	bool is_lru = !__PageMovable(page);
934 
935 	VM_BUG_ON_PAGE(!PageLocked(page), page);
936 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937 
938 	mapping = page_mapping(page);
939 
940 	if (likely(is_lru)) {
941 		if (!mapping)
942 			rc = migrate_page(mapping, newpage, page, mode);
943 		else if (mapping->a_ops->migratepage)
944 			/*
945 			 * Most pages have a mapping and most filesystems
946 			 * provide a migratepage callback. Anonymous pages
947 			 * are part of swap space which also has its own
948 			 * migratepage callback. This is the most common path
949 			 * for page migration.
950 			 */
951 			rc = mapping->a_ops->migratepage(mapping, newpage,
952 							page, mode);
953 		else
954 			rc = fallback_migrate_page(mapping, newpage,
955 							page, mode);
956 	} else {
957 		/*
958 		 * In case of non-lru page, it could be released after
959 		 * isolation step. In that case, we shouldn't try migration.
960 		 */
961 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 		if (!PageMovable(page)) {
963 			rc = MIGRATEPAGE_SUCCESS;
964 			__ClearPageIsolated(page);
965 			goto out;
966 		}
967 
968 		rc = mapping->a_ops->migratepage(mapping, newpage,
969 						page, mode);
970 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 			!PageIsolated(page));
972 	}
973 
974 	/*
975 	 * When successful, old pagecache page->mapping must be cleared before
976 	 * page is freed; but stats require that PageAnon be left as PageAnon.
977 	 */
978 	if (rc == MIGRATEPAGE_SUCCESS) {
979 		if (__PageMovable(page)) {
980 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
981 
982 			/*
983 			 * We clear PG_movable under page_lock so any compactor
984 			 * cannot try to migrate this page.
985 			 */
986 			__ClearPageIsolated(page);
987 		}
988 
989 		/*
990 		 * Anonymous and movable page->mapping will be cleared by
991 		 * free_pages_prepare so don't reset it here for keeping
992 		 * the type to work PageAnon, for example.
993 		 */
994 		if (!PageMappingFlags(page))
995 			page->mapping = NULL;
996 
997 		if (likely(!is_zone_device_page(newpage)))
998 			flush_dcache_page(newpage);
999 
1000 	}
1001 out:
1002 	return rc;
1003 }
1004 
1005 static int __unmap_and_move(struct page *page, struct page *newpage,
1006 				int force, enum migrate_mode mode)
1007 {
1008 	int rc = -EAGAIN;
1009 	int page_was_mapped = 0;
1010 	struct anon_vma *anon_vma = NULL;
1011 	bool is_lru = !__PageMovable(page);
1012 
1013 	if (!trylock_page(page)) {
1014 		if (!force || mode == MIGRATE_ASYNC)
1015 			goto out;
1016 
1017 		/*
1018 		 * It's not safe for direct compaction to call lock_page.
1019 		 * For example, during page readahead pages are added locked
1020 		 * to the LRU. Later, when the IO completes the pages are
1021 		 * marked uptodate and unlocked. However, the queueing
1022 		 * could be merging multiple pages for one bio (e.g.
1023 		 * mpage_readpages). If an allocation happens for the
1024 		 * second or third page, the process can end up locking
1025 		 * the same page twice and deadlocking. Rather than
1026 		 * trying to be clever about what pages can be locked,
1027 		 * avoid the use of lock_page for direct compaction
1028 		 * altogether.
1029 		 */
1030 		if (current->flags & PF_MEMALLOC)
1031 			goto out;
1032 
1033 		lock_page(page);
1034 	}
1035 
1036 	if (PageWriteback(page)) {
1037 		/*
1038 		 * Only in the case of a full synchronous migration is it
1039 		 * necessary to wait for PageWriteback. In the async case,
1040 		 * the retry loop is too short and in the sync-light case,
1041 		 * the overhead of stalling is too much
1042 		 */
1043 		switch (mode) {
1044 		case MIGRATE_SYNC:
1045 		case MIGRATE_SYNC_NO_COPY:
1046 			break;
1047 		default:
1048 			rc = -EBUSY;
1049 			goto out_unlock;
1050 		}
1051 		if (!force)
1052 			goto out_unlock;
1053 		wait_on_page_writeback(page);
1054 	}
1055 
1056 	/*
1057 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 	 * we cannot notice that anon_vma is freed while we migrates a page.
1059 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1060 	 * of migration. File cache pages are no problem because of page_lock()
1061 	 * File Caches may use write_page() or lock_page() in migration, then,
1062 	 * just care Anon page here.
1063 	 *
1064 	 * Only page_get_anon_vma() understands the subtleties of
1065 	 * getting a hold on an anon_vma from outside one of its mms.
1066 	 * But if we cannot get anon_vma, then we won't need it anyway,
1067 	 * because that implies that the anon page is no longer mapped
1068 	 * (and cannot be remapped so long as we hold the page lock).
1069 	 */
1070 	if (PageAnon(page) && !PageKsm(page))
1071 		anon_vma = page_get_anon_vma(page);
1072 
1073 	/*
1074 	 * Block others from accessing the new page when we get around to
1075 	 * establishing additional references. We are usually the only one
1076 	 * holding a reference to newpage at this point. We used to have a BUG
1077 	 * here if trylock_page(newpage) fails, but would like to allow for
1078 	 * cases where there might be a race with the previous use of newpage.
1079 	 * This is much like races on refcount of oldpage: just don't BUG().
1080 	 */
1081 	if (unlikely(!trylock_page(newpage)))
1082 		goto out_unlock;
1083 
1084 	if (unlikely(!is_lru)) {
1085 		rc = move_to_new_page(newpage, page, mode);
1086 		goto out_unlock_both;
1087 	}
1088 
1089 	/*
1090 	 * Corner case handling:
1091 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 	 * and treated as swapcache but it has no rmap yet.
1093 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 	 * trigger a BUG.  So handle it here.
1095 	 * 2. An orphaned page (see truncate_complete_page) might have
1096 	 * fs-private metadata. The page can be picked up due to memory
1097 	 * offlining.  Everywhere else except page reclaim, the page is
1098 	 * invisible to the vm, so the page can not be migrated.  So try to
1099 	 * free the metadata, so the page can be freed.
1100 	 */
1101 	if (!page->mapping) {
1102 		VM_BUG_ON_PAGE(PageAnon(page), page);
1103 		if (page_has_private(page)) {
1104 			try_to_free_buffers(page);
1105 			goto out_unlock_both;
1106 		}
1107 	} else if (page_mapped(page)) {
1108 		/* Establish migration ptes */
1109 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 				page);
1111 		try_to_unmap(page,
1112 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113 		page_was_mapped = 1;
1114 	}
1115 
1116 	if (!page_mapped(page))
1117 		rc = move_to_new_page(newpage, page, mode);
1118 
1119 	if (page_was_mapped)
1120 		remove_migration_ptes(page,
1121 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122 
1123 out_unlock_both:
1124 	unlock_page(newpage);
1125 out_unlock:
1126 	/* Drop an anon_vma reference if we took one */
1127 	if (anon_vma)
1128 		put_anon_vma(anon_vma);
1129 	unlock_page(page);
1130 out:
1131 	/*
1132 	 * If migration is successful, decrease refcount of the newpage
1133 	 * which will not free the page because new page owner increased
1134 	 * refcounter. As well, if it is LRU page, add the page to LRU
1135 	 * list in here. Use the old state of the isolated source page to
1136 	 * determine if we migrated a LRU page. newpage was already unlocked
1137 	 * and possibly modified by its owner - don't rely on the page
1138 	 * state.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		if (unlikely(!is_lru))
1142 			put_page(newpage);
1143 		else
1144 			putback_lru_page(newpage);
1145 	}
1146 
1147 	return rc;
1148 }
1149 
1150 /*
1151  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152  * around it.
1153  */
1154 #if defined(CONFIG_ARM) && \
1155 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160 
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 				   free_page_t put_new_page,
1167 				   unsigned long private, struct page *page,
1168 				   int force, enum migrate_mode mode,
1169 				   enum migrate_reason reason)
1170 {
1171 	int rc = MIGRATEPAGE_SUCCESS;
1172 	struct page *newpage = NULL;
1173 
1174 	if (!thp_migration_supported() && PageTransHuge(page))
1175 		return -ENOMEM;
1176 
1177 	if (page_count(page) == 1) {
1178 		/* page was freed from under us. So we are done. */
1179 		ClearPageActive(page);
1180 		ClearPageUnevictable(page);
1181 		if (unlikely(__PageMovable(page))) {
1182 			lock_page(page);
1183 			if (!PageMovable(page))
1184 				__ClearPageIsolated(page);
1185 			unlock_page(page);
1186 		}
1187 		goto out;
1188 	}
1189 
1190 	newpage = get_new_page(page, private);
1191 	if (!newpage)
1192 		return -ENOMEM;
1193 
1194 	rc = __unmap_and_move(page, newpage, force, mode);
1195 	if (rc == MIGRATEPAGE_SUCCESS)
1196 		set_page_owner_migrate_reason(newpage, reason);
1197 
1198 out:
1199 	if (rc != -EAGAIN) {
1200 		/*
1201 		 * A page that has been migrated has all references
1202 		 * removed and will be freed. A page that has not been
1203 		 * migrated will have kept its references and be restored.
1204 		 */
1205 		list_del(&page->lru);
1206 
1207 		/*
1208 		 * Compaction can migrate also non-LRU pages which are
1209 		 * not accounted to NR_ISOLATED_*. They can be recognized
1210 		 * as __PageMovable
1211 		 */
1212 		if (likely(!__PageMovable(page)))
1213 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 					page_is_file_cache(page), -hpage_nr_pages(page));
1215 	}
1216 
1217 	/*
1218 	 * If migration is successful, releases reference grabbed during
1219 	 * isolation. Otherwise, restore the page to right list unless
1220 	 * we want to retry.
1221 	 */
1222 	if (rc == MIGRATEPAGE_SUCCESS) {
1223 		put_page(page);
1224 		if (reason == MR_MEMORY_FAILURE) {
1225 			/*
1226 			 * Set PG_HWPoison on just freed page
1227 			 * intentionally. Although it's rather weird,
1228 			 * it's how HWPoison flag works at the moment.
1229 			 */
1230 			if (set_hwpoison_free_buddy_page(page))
1231 				num_poisoned_pages_inc();
1232 		}
1233 	} else {
1234 		if (rc != -EAGAIN) {
1235 			if (likely(!__PageMovable(page))) {
1236 				putback_lru_page(page);
1237 				goto put_new;
1238 			}
1239 
1240 			lock_page(page);
1241 			if (PageMovable(page))
1242 				putback_movable_page(page);
1243 			else
1244 				__ClearPageIsolated(page);
1245 			unlock_page(page);
1246 			put_page(page);
1247 		}
1248 put_new:
1249 		if (put_new_page)
1250 			put_new_page(newpage, private);
1251 		else
1252 			put_page(newpage);
1253 	}
1254 
1255 	return rc;
1256 }
1257 
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 				free_page_t put_new_page, unsigned long private,
1278 				struct page *hpage, int force,
1279 				enum migrate_mode mode, int reason)
1280 {
1281 	int rc = -EAGAIN;
1282 	int page_was_mapped = 0;
1283 	struct page *new_hpage;
1284 	struct anon_vma *anon_vma = NULL;
1285 	struct address_space *mapping = NULL;
1286 
1287 	/*
1288 	 * Migratability of hugepages depends on architectures and their size.
1289 	 * This check is necessary because some callers of hugepage migration
1290 	 * like soft offline and memory hotremove don't walk through page
1291 	 * tables or check whether the hugepage is pmd-based or not before
1292 	 * kicking migration.
1293 	 */
1294 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1295 		putback_active_hugepage(hpage);
1296 		return -ENOSYS;
1297 	}
1298 
1299 	new_hpage = get_new_page(hpage, private);
1300 	if (!new_hpage)
1301 		return -ENOMEM;
1302 
1303 	if (!trylock_page(hpage)) {
1304 		if (!force)
1305 			goto out;
1306 		switch (mode) {
1307 		case MIGRATE_SYNC:
1308 		case MIGRATE_SYNC_NO_COPY:
1309 			break;
1310 		default:
1311 			goto out;
1312 		}
1313 		lock_page(hpage);
1314 	}
1315 
1316 	/*
1317 	 * Check for pages which are in the process of being freed.  Without
1318 	 * page_mapping() set, hugetlbfs specific move page routine will not
1319 	 * be called and we could leak usage counts for subpools.
1320 	 */
1321 	if (page_private(hpage) && !page_mapping(hpage)) {
1322 		rc = -EBUSY;
1323 		goto out_unlock;
1324 	}
1325 
1326 	if (PageAnon(hpage))
1327 		anon_vma = page_get_anon_vma(hpage);
1328 
1329 	if (unlikely(!trylock_page(new_hpage)))
1330 		goto put_anon;
1331 
1332 	if (page_mapped(hpage)) {
1333 		/*
1334 		 * try_to_unmap could potentially call huge_pmd_unshare.
1335 		 * Because of this, take semaphore in write mode here and
1336 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1337 		 * taken the lock.
1338 		 */
1339 		mapping = hugetlb_page_mapping_lock_write(hpage);
1340 		if (unlikely(!mapping))
1341 			goto unlock_put_anon;
1342 
1343 		try_to_unmap(hpage,
1344 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1345 			TTU_RMAP_LOCKED);
1346 		page_was_mapped = 1;
1347 		/*
1348 		 * Leave mapping locked until after subsequent call to
1349 		 * remove_migration_ptes()
1350 		 */
1351 	}
1352 
1353 	if (!page_mapped(hpage))
1354 		rc = move_to_new_page(new_hpage, hpage, mode);
1355 
1356 	if (page_was_mapped) {
1357 		remove_migration_ptes(hpage,
1358 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1359 		i_mmap_unlock_write(mapping);
1360 	}
1361 
1362 unlock_put_anon:
1363 	unlock_page(new_hpage);
1364 
1365 put_anon:
1366 	if (anon_vma)
1367 		put_anon_vma(anon_vma);
1368 
1369 	if (rc == MIGRATEPAGE_SUCCESS) {
1370 		move_hugetlb_state(hpage, new_hpage, reason);
1371 		put_new_page = NULL;
1372 	}
1373 
1374 out_unlock:
1375 	unlock_page(hpage);
1376 out:
1377 	if (rc != -EAGAIN)
1378 		putback_active_hugepage(hpage);
1379 
1380 	/*
1381 	 * If migration was not successful and there's a freeing callback, use
1382 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1383 	 * isolation.
1384 	 */
1385 	if (put_new_page)
1386 		put_new_page(new_hpage, private);
1387 	else
1388 		putback_active_hugepage(new_hpage);
1389 
1390 	return rc;
1391 }
1392 
1393 /*
1394  * migrate_pages - migrate the pages specified in a list, to the free pages
1395  *		   supplied as the target for the page migration
1396  *
1397  * @from:		The list of pages to be migrated.
1398  * @get_new_page:	The function used to allocate free pages to be used
1399  *			as the target of the page migration.
1400  * @put_new_page:	The function used to free target pages if migration
1401  *			fails, or NULL if no special handling is necessary.
1402  * @private:		Private data to be passed on to get_new_page()
1403  * @mode:		The migration mode that specifies the constraints for
1404  *			page migration, if any.
1405  * @reason:		The reason for page migration.
1406  *
1407  * The function returns after 10 attempts or if no pages are movable any more
1408  * because the list has become empty or no retryable pages exist any more.
1409  * The caller should call putback_movable_pages() to return pages to the LRU
1410  * or free list only if ret != 0.
1411  *
1412  * Returns the number of pages that were not migrated, or an error code.
1413  */
1414 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1415 		free_page_t put_new_page, unsigned long private,
1416 		enum migrate_mode mode, int reason)
1417 {
1418 	int retry = 1;
1419 	int nr_failed = 0;
1420 	int nr_succeeded = 0;
1421 	int pass = 0;
1422 	struct page *page;
1423 	struct page *page2;
1424 	int swapwrite = current->flags & PF_SWAPWRITE;
1425 	int rc;
1426 
1427 	if (!swapwrite)
1428 		current->flags |= PF_SWAPWRITE;
1429 
1430 	for(pass = 0; pass < 10 && retry; pass++) {
1431 		retry = 0;
1432 
1433 		list_for_each_entry_safe(page, page2, from, lru) {
1434 retry:
1435 			cond_resched();
1436 
1437 			if (PageHuge(page))
1438 				rc = unmap_and_move_huge_page(get_new_page,
1439 						put_new_page, private, page,
1440 						pass > 2, mode, reason);
1441 			else
1442 				rc = unmap_and_move(get_new_page, put_new_page,
1443 						private, page, pass > 2, mode,
1444 						reason);
1445 
1446 			switch(rc) {
1447 			case -ENOMEM:
1448 				/*
1449 				 * THP migration might be unsupported or the
1450 				 * allocation could've failed so we should
1451 				 * retry on the same page with the THP split
1452 				 * to base pages.
1453 				 *
1454 				 * Head page is retried immediately and tail
1455 				 * pages are added to the tail of the list so
1456 				 * we encounter them after the rest of the list
1457 				 * is processed.
1458 				 */
1459 				if (PageTransHuge(page) && !PageHuge(page)) {
1460 					lock_page(page);
1461 					rc = split_huge_page_to_list(page, from);
1462 					unlock_page(page);
1463 					if (!rc) {
1464 						list_safe_reset_next(page, page2, lru);
1465 						goto retry;
1466 					}
1467 				}
1468 				nr_failed++;
1469 				goto out;
1470 			case -EAGAIN:
1471 				retry++;
1472 				break;
1473 			case MIGRATEPAGE_SUCCESS:
1474 				nr_succeeded++;
1475 				break;
1476 			default:
1477 				/*
1478 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1479 				 * unlike -EAGAIN case, the failed page is
1480 				 * removed from migration page list and not
1481 				 * retried in the next outer loop.
1482 				 */
1483 				nr_failed++;
1484 				break;
1485 			}
1486 		}
1487 	}
1488 	nr_failed += retry;
1489 	rc = nr_failed;
1490 out:
1491 	if (nr_succeeded)
1492 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1493 	if (nr_failed)
1494 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1495 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1496 
1497 	if (!swapwrite)
1498 		current->flags &= ~PF_SWAPWRITE;
1499 
1500 	return rc;
1501 }
1502 
1503 #ifdef CONFIG_NUMA
1504 
1505 static int store_status(int __user *status, int start, int value, int nr)
1506 {
1507 	while (nr-- > 0) {
1508 		if (put_user(value, status + start))
1509 			return -EFAULT;
1510 		start++;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 static int do_move_pages_to_node(struct mm_struct *mm,
1517 		struct list_head *pagelist, int node)
1518 {
1519 	int err;
1520 
1521 	if (list_empty(pagelist))
1522 		return 0;
1523 
1524 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1525 			MIGRATE_SYNC, MR_SYSCALL);
1526 	if (err)
1527 		putback_movable_pages(pagelist);
1528 	return err;
1529 }
1530 
1531 /*
1532  * Resolves the given address to a struct page, isolates it from the LRU and
1533  * puts it to the given pagelist.
1534  * Returns:
1535  *     errno - if the page cannot be found/isolated
1536  *     0 - when it doesn't have to be migrated because it is already on the
1537  *         target node
1538  *     1 - when it has been queued
1539  */
1540 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1541 		int node, struct list_head *pagelist, bool migrate_all)
1542 {
1543 	struct vm_area_struct *vma;
1544 	struct page *page;
1545 	unsigned int follflags;
1546 	int err;
1547 
1548 	down_read(&mm->mmap_sem);
1549 	err = -EFAULT;
1550 	vma = find_vma(mm, addr);
1551 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1552 		goto out;
1553 
1554 	/* FOLL_DUMP to ignore special (like zero) pages */
1555 	follflags = FOLL_GET | FOLL_DUMP;
1556 	page = follow_page(vma, addr, follflags);
1557 
1558 	err = PTR_ERR(page);
1559 	if (IS_ERR(page))
1560 		goto out;
1561 
1562 	err = -ENOENT;
1563 	if (!page)
1564 		goto out;
1565 
1566 	err = 0;
1567 	if (page_to_nid(page) == node)
1568 		goto out_putpage;
1569 
1570 	err = -EACCES;
1571 	if (page_mapcount(page) > 1 && !migrate_all)
1572 		goto out_putpage;
1573 
1574 	if (PageHuge(page)) {
1575 		if (PageHead(page)) {
1576 			isolate_huge_page(page, pagelist);
1577 			err = 1;
1578 		}
1579 	} else {
1580 		struct page *head;
1581 
1582 		head = compound_head(page);
1583 		err = isolate_lru_page(head);
1584 		if (err)
1585 			goto out_putpage;
1586 
1587 		err = 1;
1588 		list_add_tail(&head->lru, pagelist);
1589 		mod_node_page_state(page_pgdat(head),
1590 			NR_ISOLATED_ANON + page_is_file_cache(head),
1591 			hpage_nr_pages(head));
1592 	}
1593 out_putpage:
1594 	/*
1595 	 * Either remove the duplicate refcount from
1596 	 * isolate_lru_page() or drop the page ref if it was
1597 	 * not isolated.
1598 	 */
1599 	put_page(page);
1600 out:
1601 	up_read(&mm->mmap_sem);
1602 	return err;
1603 }
1604 
1605 /*
1606  * Migrate an array of page address onto an array of nodes and fill
1607  * the corresponding array of status.
1608  */
1609 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1610 			 unsigned long nr_pages,
1611 			 const void __user * __user *pages,
1612 			 const int __user *nodes,
1613 			 int __user *status, int flags)
1614 {
1615 	int current_node = NUMA_NO_NODE;
1616 	LIST_HEAD(pagelist);
1617 	int start, i;
1618 	int err = 0, err1;
1619 
1620 	migrate_prep();
1621 
1622 	for (i = start = 0; i < nr_pages; i++) {
1623 		const void __user *p;
1624 		unsigned long addr;
1625 		int node;
1626 
1627 		err = -EFAULT;
1628 		if (get_user(p, pages + i))
1629 			goto out_flush;
1630 		if (get_user(node, nodes + i))
1631 			goto out_flush;
1632 		addr = (unsigned long)untagged_addr(p);
1633 
1634 		err = -ENODEV;
1635 		if (node < 0 || node >= MAX_NUMNODES)
1636 			goto out_flush;
1637 		if (!node_state(node, N_MEMORY))
1638 			goto out_flush;
1639 
1640 		err = -EACCES;
1641 		if (!node_isset(node, task_nodes))
1642 			goto out_flush;
1643 
1644 		if (current_node == NUMA_NO_NODE) {
1645 			current_node = node;
1646 			start = i;
1647 		} else if (node != current_node) {
1648 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1649 			if (err) {
1650 				/*
1651 				 * Positive err means the number of failed
1652 				 * pages to migrate.  Since we are going to
1653 				 * abort and return the number of non-migrated
1654 				 * pages, so need to incude the rest of the
1655 				 * nr_pages that have not been attempted as
1656 				 * well.
1657 				 */
1658 				if (err > 0)
1659 					err += nr_pages - i - 1;
1660 				goto out;
1661 			}
1662 			err = store_status(status, start, current_node, i - start);
1663 			if (err)
1664 				goto out;
1665 			start = i;
1666 			current_node = node;
1667 		}
1668 
1669 		/*
1670 		 * Errors in the page lookup or isolation are not fatal and we simply
1671 		 * report them via status
1672 		 */
1673 		err = add_page_for_migration(mm, addr, current_node,
1674 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1675 
1676 		if (!err) {
1677 			/* The page is already on the target node */
1678 			err = store_status(status, i, current_node, 1);
1679 			if (err)
1680 				goto out_flush;
1681 			continue;
1682 		} else if (err > 0) {
1683 			/* The page is successfully queued for migration */
1684 			continue;
1685 		}
1686 
1687 		err = store_status(status, i, err, 1);
1688 		if (err)
1689 			goto out_flush;
1690 
1691 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1692 		if (err) {
1693 			if (err > 0)
1694 				err += nr_pages - i - 1;
1695 			goto out;
1696 		}
1697 		if (i > start) {
1698 			err = store_status(status, start, current_node, i - start);
1699 			if (err)
1700 				goto out;
1701 		}
1702 		current_node = NUMA_NO_NODE;
1703 	}
1704 out_flush:
1705 	if (list_empty(&pagelist))
1706 		return err;
1707 
1708 	/* Make sure we do not overwrite the existing error */
1709 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1710 	/*
1711 	 * Don't have to report non-attempted pages here since:
1712 	 *     - If the above loop is done gracefully all pages have been
1713 	 *       attempted.
1714 	 *     - If the above loop is aborted it means a fatal error
1715 	 *       happened, should return ret.
1716 	 */
1717 	if (!err1)
1718 		err1 = store_status(status, start, current_node, i - start);
1719 	if (err >= 0)
1720 		err = err1;
1721 out:
1722 	return err;
1723 }
1724 
1725 /*
1726  * Determine the nodes of an array of pages and store it in an array of status.
1727  */
1728 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1729 				const void __user **pages, int *status)
1730 {
1731 	unsigned long i;
1732 
1733 	down_read(&mm->mmap_sem);
1734 
1735 	for (i = 0; i < nr_pages; i++) {
1736 		unsigned long addr = (unsigned long)(*pages);
1737 		struct vm_area_struct *vma;
1738 		struct page *page;
1739 		int err = -EFAULT;
1740 
1741 		vma = find_vma(mm, addr);
1742 		if (!vma || addr < vma->vm_start)
1743 			goto set_status;
1744 
1745 		/* FOLL_DUMP to ignore special (like zero) pages */
1746 		page = follow_page(vma, addr, FOLL_DUMP);
1747 
1748 		err = PTR_ERR(page);
1749 		if (IS_ERR(page))
1750 			goto set_status;
1751 
1752 		err = page ? page_to_nid(page) : -ENOENT;
1753 set_status:
1754 		*status = err;
1755 
1756 		pages++;
1757 		status++;
1758 	}
1759 
1760 	up_read(&mm->mmap_sem);
1761 }
1762 
1763 /*
1764  * Determine the nodes of a user array of pages and store it in
1765  * a user array of status.
1766  */
1767 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1768 			 const void __user * __user *pages,
1769 			 int __user *status)
1770 {
1771 #define DO_PAGES_STAT_CHUNK_NR 16
1772 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1773 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1774 
1775 	while (nr_pages) {
1776 		unsigned long chunk_nr;
1777 
1778 		chunk_nr = nr_pages;
1779 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1780 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1781 
1782 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1783 			break;
1784 
1785 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1786 
1787 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1788 			break;
1789 
1790 		pages += chunk_nr;
1791 		status += chunk_nr;
1792 		nr_pages -= chunk_nr;
1793 	}
1794 	return nr_pages ? -EFAULT : 0;
1795 }
1796 
1797 /*
1798  * Move a list of pages in the address space of the currently executing
1799  * process.
1800  */
1801 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1802 			     const void __user * __user *pages,
1803 			     const int __user *nodes,
1804 			     int __user *status, int flags)
1805 {
1806 	struct task_struct *task;
1807 	struct mm_struct *mm;
1808 	int err;
1809 	nodemask_t task_nodes;
1810 
1811 	/* Check flags */
1812 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1813 		return -EINVAL;
1814 
1815 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1816 		return -EPERM;
1817 
1818 	/* Find the mm_struct */
1819 	rcu_read_lock();
1820 	task = pid ? find_task_by_vpid(pid) : current;
1821 	if (!task) {
1822 		rcu_read_unlock();
1823 		return -ESRCH;
1824 	}
1825 	get_task_struct(task);
1826 
1827 	/*
1828 	 * Check if this process has the right to modify the specified
1829 	 * process. Use the regular "ptrace_may_access()" checks.
1830 	 */
1831 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1832 		rcu_read_unlock();
1833 		err = -EPERM;
1834 		goto out;
1835 	}
1836 	rcu_read_unlock();
1837 
1838  	err = security_task_movememory(task);
1839  	if (err)
1840 		goto out;
1841 
1842 	task_nodes = cpuset_mems_allowed(task);
1843 	mm = get_task_mm(task);
1844 	put_task_struct(task);
1845 
1846 	if (!mm)
1847 		return -EINVAL;
1848 
1849 	if (nodes)
1850 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1851 				    nodes, status, flags);
1852 	else
1853 		err = do_pages_stat(mm, nr_pages, pages, status);
1854 
1855 	mmput(mm);
1856 	return err;
1857 
1858 out:
1859 	put_task_struct(task);
1860 	return err;
1861 }
1862 
1863 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1864 		const void __user * __user *, pages,
1865 		const int __user *, nodes,
1866 		int __user *, status, int, flags)
1867 {
1868 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1869 }
1870 
1871 #ifdef CONFIG_COMPAT
1872 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1873 		       compat_uptr_t __user *, pages32,
1874 		       const int __user *, nodes,
1875 		       int __user *, status,
1876 		       int, flags)
1877 {
1878 	const void __user * __user *pages;
1879 	int i;
1880 
1881 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1882 	for (i = 0; i < nr_pages; i++) {
1883 		compat_uptr_t p;
1884 
1885 		if (get_user(p, pages32 + i) ||
1886 			put_user(compat_ptr(p), pages + i))
1887 			return -EFAULT;
1888 	}
1889 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1890 }
1891 #endif /* CONFIG_COMPAT */
1892 
1893 #ifdef CONFIG_NUMA_BALANCING
1894 /*
1895  * Returns true if this is a safe migration target node for misplaced NUMA
1896  * pages. Currently it only checks the watermarks which crude
1897  */
1898 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1899 				   unsigned long nr_migrate_pages)
1900 {
1901 	int z;
1902 
1903 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1904 		struct zone *zone = pgdat->node_zones + z;
1905 
1906 		if (!populated_zone(zone))
1907 			continue;
1908 
1909 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1910 		if (!zone_watermark_ok(zone, 0,
1911 				       high_wmark_pages(zone) +
1912 				       nr_migrate_pages,
1913 				       ZONE_MOVABLE, 0))
1914 			continue;
1915 		return true;
1916 	}
1917 	return false;
1918 }
1919 
1920 static struct page *alloc_misplaced_dst_page(struct page *page,
1921 					   unsigned long data)
1922 {
1923 	int nid = (int) data;
1924 	struct page *newpage;
1925 
1926 	newpage = __alloc_pages_node(nid,
1927 					 (GFP_HIGHUSER_MOVABLE |
1928 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1929 					  __GFP_NORETRY | __GFP_NOWARN) &
1930 					 ~__GFP_RECLAIM, 0);
1931 
1932 	return newpage;
1933 }
1934 
1935 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1936 {
1937 	int page_lru;
1938 
1939 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1940 
1941 	/* Avoid migrating to a node that is nearly full */
1942 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1943 		return 0;
1944 
1945 	if (isolate_lru_page(page))
1946 		return 0;
1947 
1948 	/*
1949 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1950 	 * check on page_count(), so we must do it here, now that the page
1951 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1952 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1953 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1954 	 */
1955 	if (PageTransHuge(page) && page_count(page) != 3) {
1956 		putback_lru_page(page);
1957 		return 0;
1958 	}
1959 
1960 	page_lru = page_is_file_cache(page);
1961 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1962 				hpage_nr_pages(page));
1963 
1964 	/*
1965 	 * Isolating the page has taken another reference, so the
1966 	 * caller's reference can be safely dropped without the page
1967 	 * disappearing underneath us during migration.
1968 	 */
1969 	put_page(page);
1970 	return 1;
1971 }
1972 
1973 bool pmd_trans_migrating(pmd_t pmd)
1974 {
1975 	struct page *page = pmd_page(pmd);
1976 	return PageLocked(page);
1977 }
1978 
1979 /*
1980  * Attempt to migrate a misplaced page to the specified destination
1981  * node. Caller is expected to have an elevated reference count on
1982  * the page that will be dropped by this function before returning.
1983  */
1984 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1985 			   int node)
1986 {
1987 	pg_data_t *pgdat = NODE_DATA(node);
1988 	int isolated;
1989 	int nr_remaining;
1990 	LIST_HEAD(migratepages);
1991 
1992 	/*
1993 	 * Don't migrate file pages that are mapped in multiple processes
1994 	 * with execute permissions as they are probably shared libraries.
1995 	 */
1996 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1997 	    (vma->vm_flags & VM_EXEC))
1998 		goto out;
1999 
2000 	/*
2001 	 * Also do not migrate dirty pages as not all filesystems can move
2002 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2003 	 */
2004 	if (page_is_file_cache(page) && PageDirty(page))
2005 		goto out;
2006 
2007 	isolated = numamigrate_isolate_page(pgdat, page);
2008 	if (!isolated)
2009 		goto out;
2010 
2011 	list_add(&page->lru, &migratepages);
2012 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2013 				     NULL, node, MIGRATE_ASYNC,
2014 				     MR_NUMA_MISPLACED);
2015 	if (nr_remaining) {
2016 		if (!list_empty(&migratepages)) {
2017 			list_del(&page->lru);
2018 			dec_node_page_state(page, NR_ISOLATED_ANON +
2019 					page_is_file_cache(page));
2020 			putback_lru_page(page);
2021 		}
2022 		isolated = 0;
2023 	} else
2024 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2025 	BUG_ON(!list_empty(&migratepages));
2026 	return isolated;
2027 
2028 out:
2029 	put_page(page);
2030 	return 0;
2031 }
2032 #endif /* CONFIG_NUMA_BALANCING */
2033 
2034 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2035 /*
2036  * Migrates a THP to a given target node. page must be locked and is unlocked
2037  * before returning.
2038  */
2039 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2040 				struct vm_area_struct *vma,
2041 				pmd_t *pmd, pmd_t entry,
2042 				unsigned long address,
2043 				struct page *page, int node)
2044 {
2045 	spinlock_t *ptl;
2046 	pg_data_t *pgdat = NODE_DATA(node);
2047 	int isolated = 0;
2048 	struct page *new_page = NULL;
2049 	int page_lru = page_is_file_cache(page);
2050 	unsigned long start = address & HPAGE_PMD_MASK;
2051 
2052 	new_page = alloc_pages_node(node,
2053 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2054 		HPAGE_PMD_ORDER);
2055 	if (!new_page)
2056 		goto out_fail;
2057 	prep_transhuge_page(new_page);
2058 
2059 	isolated = numamigrate_isolate_page(pgdat, page);
2060 	if (!isolated) {
2061 		put_page(new_page);
2062 		goto out_fail;
2063 	}
2064 
2065 	/* Prepare a page as a migration target */
2066 	__SetPageLocked(new_page);
2067 	if (PageSwapBacked(page))
2068 		__SetPageSwapBacked(new_page);
2069 
2070 	/* anon mapping, we can simply copy page->mapping to the new page: */
2071 	new_page->mapping = page->mapping;
2072 	new_page->index = page->index;
2073 	/* flush the cache before copying using the kernel virtual address */
2074 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2075 	migrate_page_copy(new_page, page);
2076 	WARN_ON(PageLRU(new_page));
2077 
2078 	/* Recheck the target PMD */
2079 	ptl = pmd_lock(mm, pmd);
2080 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2081 		spin_unlock(ptl);
2082 
2083 		/* Reverse changes made by migrate_page_copy() */
2084 		if (TestClearPageActive(new_page))
2085 			SetPageActive(page);
2086 		if (TestClearPageUnevictable(new_page))
2087 			SetPageUnevictable(page);
2088 
2089 		unlock_page(new_page);
2090 		put_page(new_page);		/* Free it */
2091 
2092 		/* Retake the callers reference and putback on LRU */
2093 		get_page(page);
2094 		putback_lru_page(page);
2095 		mod_node_page_state(page_pgdat(page),
2096 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2097 
2098 		goto out_unlock;
2099 	}
2100 
2101 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2102 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2103 
2104 	/*
2105 	 * Overwrite the old entry under pagetable lock and establish
2106 	 * the new PTE. Any parallel GUP will either observe the old
2107 	 * page blocking on the page lock, block on the page table
2108 	 * lock or observe the new page. The SetPageUptodate on the
2109 	 * new page and page_add_new_anon_rmap guarantee the copy is
2110 	 * visible before the pagetable update.
2111 	 */
2112 	page_add_anon_rmap(new_page, vma, start, true);
2113 	/*
2114 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2115 	 * has already been flushed globally.  So no TLB can be currently
2116 	 * caching this non present pmd mapping.  There's no need to clear the
2117 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2118 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2119 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2120 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2121 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2122 	 * pmd.
2123 	 */
2124 	set_pmd_at(mm, start, pmd, entry);
2125 	update_mmu_cache_pmd(vma, address, &entry);
2126 
2127 	page_ref_unfreeze(page, 2);
2128 	mlock_migrate_page(new_page, page);
2129 	page_remove_rmap(page, true);
2130 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2131 
2132 	spin_unlock(ptl);
2133 
2134 	/* Take an "isolate" reference and put new page on the LRU. */
2135 	get_page(new_page);
2136 	putback_lru_page(new_page);
2137 
2138 	unlock_page(new_page);
2139 	unlock_page(page);
2140 	put_page(page);			/* Drop the rmap reference */
2141 	put_page(page);			/* Drop the LRU isolation reference */
2142 
2143 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2144 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2145 
2146 	mod_node_page_state(page_pgdat(page),
2147 			NR_ISOLATED_ANON + page_lru,
2148 			-HPAGE_PMD_NR);
2149 	return isolated;
2150 
2151 out_fail:
2152 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2153 	ptl = pmd_lock(mm, pmd);
2154 	if (pmd_same(*pmd, entry)) {
2155 		entry = pmd_modify(entry, vma->vm_page_prot);
2156 		set_pmd_at(mm, start, pmd, entry);
2157 		update_mmu_cache_pmd(vma, address, &entry);
2158 	}
2159 	spin_unlock(ptl);
2160 
2161 out_unlock:
2162 	unlock_page(page);
2163 	put_page(page);
2164 	return 0;
2165 }
2166 #endif /* CONFIG_NUMA_BALANCING */
2167 
2168 #endif /* CONFIG_NUMA */
2169 
2170 #ifdef CONFIG_DEVICE_PRIVATE
2171 static int migrate_vma_collect_hole(unsigned long start,
2172 				    unsigned long end,
2173 				    __always_unused int depth,
2174 				    struct mm_walk *walk)
2175 {
2176 	struct migrate_vma *migrate = walk->private;
2177 	unsigned long addr;
2178 
2179 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2180 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2181 		migrate->dst[migrate->npages] = 0;
2182 		migrate->npages++;
2183 		migrate->cpages++;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static int migrate_vma_collect_skip(unsigned long start,
2190 				    unsigned long end,
2191 				    struct mm_walk *walk)
2192 {
2193 	struct migrate_vma *migrate = walk->private;
2194 	unsigned long addr;
2195 
2196 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2197 		migrate->dst[migrate->npages] = 0;
2198 		migrate->src[migrate->npages++] = 0;
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2205 				   unsigned long start,
2206 				   unsigned long end,
2207 				   struct mm_walk *walk)
2208 {
2209 	struct migrate_vma *migrate = walk->private;
2210 	struct vm_area_struct *vma = walk->vma;
2211 	struct mm_struct *mm = vma->vm_mm;
2212 	unsigned long addr = start, unmapped = 0;
2213 	spinlock_t *ptl;
2214 	pte_t *ptep;
2215 
2216 again:
2217 	if (pmd_none(*pmdp))
2218 		return migrate_vma_collect_hole(start, end, -1, walk);
2219 
2220 	if (pmd_trans_huge(*pmdp)) {
2221 		struct page *page;
2222 
2223 		ptl = pmd_lock(mm, pmdp);
2224 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2225 			spin_unlock(ptl);
2226 			goto again;
2227 		}
2228 
2229 		page = pmd_page(*pmdp);
2230 		if (is_huge_zero_page(page)) {
2231 			spin_unlock(ptl);
2232 			split_huge_pmd(vma, pmdp, addr);
2233 			if (pmd_trans_unstable(pmdp))
2234 				return migrate_vma_collect_skip(start, end,
2235 								walk);
2236 		} else {
2237 			int ret;
2238 
2239 			get_page(page);
2240 			spin_unlock(ptl);
2241 			if (unlikely(!trylock_page(page)))
2242 				return migrate_vma_collect_skip(start, end,
2243 								walk);
2244 			ret = split_huge_page(page);
2245 			unlock_page(page);
2246 			put_page(page);
2247 			if (ret)
2248 				return migrate_vma_collect_skip(start, end,
2249 								walk);
2250 			if (pmd_none(*pmdp))
2251 				return migrate_vma_collect_hole(start, end, -1,
2252 								walk);
2253 		}
2254 	}
2255 
2256 	if (unlikely(pmd_bad(*pmdp)))
2257 		return migrate_vma_collect_skip(start, end, walk);
2258 
2259 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2260 	arch_enter_lazy_mmu_mode();
2261 
2262 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2263 		unsigned long mpfn = 0, pfn;
2264 		struct page *page;
2265 		swp_entry_t entry;
2266 		pte_t pte;
2267 
2268 		pte = *ptep;
2269 
2270 		if (pte_none(pte)) {
2271 			mpfn = MIGRATE_PFN_MIGRATE;
2272 			migrate->cpages++;
2273 			goto next;
2274 		}
2275 
2276 		if (!pte_present(pte)) {
2277 			/*
2278 			 * Only care about unaddressable device page special
2279 			 * page table entry. Other special swap entries are not
2280 			 * migratable, and we ignore regular swapped page.
2281 			 */
2282 			entry = pte_to_swp_entry(pte);
2283 			if (!is_device_private_entry(entry))
2284 				goto next;
2285 
2286 			page = device_private_entry_to_page(entry);
2287 			if (page->pgmap->owner != migrate->src_owner)
2288 				goto next;
2289 
2290 			mpfn = migrate_pfn(page_to_pfn(page)) |
2291 					MIGRATE_PFN_MIGRATE;
2292 			if (is_write_device_private_entry(entry))
2293 				mpfn |= MIGRATE_PFN_WRITE;
2294 		} else {
2295 			if (migrate->src_owner)
2296 				goto next;
2297 			pfn = pte_pfn(pte);
2298 			if (is_zero_pfn(pfn)) {
2299 				mpfn = MIGRATE_PFN_MIGRATE;
2300 				migrate->cpages++;
2301 				goto next;
2302 			}
2303 			page = vm_normal_page(migrate->vma, addr, pte);
2304 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2305 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2306 		}
2307 
2308 		/* FIXME support THP */
2309 		if (!page || !page->mapping || PageTransCompound(page)) {
2310 			mpfn = 0;
2311 			goto next;
2312 		}
2313 
2314 		/*
2315 		 * By getting a reference on the page we pin it and that blocks
2316 		 * any kind of migration. Side effect is that it "freezes" the
2317 		 * pte.
2318 		 *
2319 		 * We drop this reference after isolating the page from the lru
2320 		 * for non device page (device page are not on the lru and thus
2321 		 * can't be dropped from it).
2322 		 */
2323 		get_page(page);
2324 		migrate->cpages++;
2325 
2326 		/*
2327 		 * Optimize for the common case where page is only mapped once
2328 		 * in one process. If we can lock the page, then we can safely
2329 		 * set up a special migration page table entry now.
2330 		 */
2331 		if (trylock_page(page)) {
2332 			pte_t swp_pte;
2333 
2334 			mpfn |= MIGRATE_PFN_LOCKED;
2335 			ptep_get_and_clear(mm, addr, ptep);
2336 
2337 			/* Setup special migration page table entry */
2338 			entry = make_migration_entry(page, mpfn &
2339 						     MIGRATE_PFN_WRITE);
2340 			swp_pte = swp_entry_to_pte(entry);
2341 			if (pte_soft_dirty(pte))
2342 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2343 			set_pte_at(mm, addr, ptep, swp_pte);
2344 
2345 			/*
2346 			 * This is like regular unmap: we remove the rmap and
2347 			 * drop page refcount. Page won't be freed, as we took
2348 			 * a reference just above.
2349 			 */
2350 			page_remove_rmap(page, false);
2351 			put_page(page);
2352 
2353 			if (pte_present(pte))
2354 				unmapped++;
2355 		}
2356 
2357 next:
2358 		migrate->dst[migrate->npages] = 0;
2359 		migrate->src[migrate->npages++] = mpfn;
2360 	}
2361 	arch_leave_lazy_mmu_mode();
2362 	pte_unmap_unlock(ptep - 1, ptl);
2363 
2364 	/* Only flush the TLB if we actually modified any entries */
2365 	if (unmapped)
2366 		flush_tlb_range(walk->vma, start, end);
2367 
2368 	return 0;
2369 }
2370 
2371 static const struct mm_walk_ops migrate_vma_walk_ops = {
2372 	.pmd_entry		= migrate_vma_collect_pmd,
2373 	.pte_hole		= migrate_vma_collect_hole,
2374 };
2375 
2376 /*
2377  * migrate_vma_collect() - collect pages over a range of virtual addresses
2378  * @migrate: migrate struct containing all migration information
2379  *
2380  * This will walk the CPU page table. For each virtual address backed by a
2381  * valid page, it updates the src array and takes a reference on the page, in
2382  * order to pin the page until we lock it and unmap it.
2383  */
2384 static void migrate_vma_collect(struct migrate_vma *migrate)
2385 {
2386 	struct mmu_notifier_range range;
2387 
2388 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2389 			migrate->vma->vm_mm, migrate->start, migrate->end);
2390 	mmu_notifier_invalidate_range_start(&range);
2391 
2392 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2393 			&migrate_vma_walk_ops, migrate);
2394 
2395 	mmu_notifier_invalidate_range_end(&range);
2396 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2397 }
2398 
2399 /*
2400  * migrate_vma_check_page() - check if page is pinned or not
2401  * @page: struct page to check
2402  *
2403  * Pinned pages cannot be migrated. This is the same test as in
2404  * migrate_page_move_mapping(), except that here we allow migration of a
2405  * ZONE_DEVICE page.
2406  */
2407 static bool migrate_vma_check_page(struct page *page)
2408 {
2409 	/*
2410 	 * One extra ref because caller holds an extra reference, either from
2411 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2412 	 * a device page.
2413 	 */
2414 	int extra = 1;
2415 
2416 	/*
2417 	 * FIXME support THP (transparent huge page), it is bit more complex to
2418 	 * check them than regular pages, because they can be mapped with a pmd
2419 	 * or with a pte (split pte mapping).
2420 	 */
2421 	if (PageCompound(page))
2422 		return false;
2423 
2424 	/* Page from ZONE_DEVICE have one extra reference */
2425 	if (is_zone_device_page(page)) {
2426 		/*
2427 		 * Private page can never be pin as they have no valid pte and
2428 		 * GUP will fail for those. Yet if there is a pending migration
2429 		 * a thread might try to wait on the pte migration entry and
2430 		 * will bump the page reference count. Sadly there is no way to
2431 		 * differentiate a regular pin from migration wait. Hence to
2432 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2433 		 * infinite loop (one stoping migration because the other is
2434 		 * waiting on pte migration entry). We always return true here.
2435 		 *
2436 		 * FIXME proper solution is to rework migration_entry_wait() so
2437 		 * it does not need to take a reference on page.
2438 		 */
2439 		return is_device_private_page(page);
2440 	}
2441 
2442 	/* For file back page */
2443 	if (page_mapping(page))
2444 		extra += 1 + page_has_private(page);
2445 
2446 	if ((page_count(page) - extra) > page_mapcount(page))
2447 		return false;
2448 
2449 	return true;
2450 }
2451 
2452 /*
2453  * migrate_vma_prepare() - lock pages and isolate them from the lru
2454  * @migrate: migrate struct containing all migration information
2455  *
2456  * This locks pages that have been collected by migrate_vma_collect(). Once each
2457  * page is locked it is isolated from the lru (for non-device pages). Finally,
2458  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2459  * migrated by concurrent kernel threads.
2460  */
2461 static void migrate_vma_prepare(struct migrate_vma *migrate)
2462 {
2463 	const unsigned long npages = migrate->npages;
2464 	const unsigned long start = migrate->start;
2465 	unsigned long addr, i, restore = 0;
2466 	bool allow_drain = true;
2467 
2468 	lru_add_drain();
2469 
2470 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2471 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2472 		bool remap = true;
2473 
2474 		if (!page)
2475 			continue;
2476 
2477 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2478 			/*
2479 			 * Because we are migrating several pages there can be
2480 			 * a deadlock between 2 concurrent migration where each
2481 			 * are waiting on each other page lock.
2482 			 *
2483 			 * Make migrate_vma() a best effort thing and backoff
2484 			 * for any page we can not lock right away.
2485 			 */
2486 			if (!trylock_page(page)) {
2487 				migrate->src[i] = 0;
2488 				migrate->cpages--;
2489 				put_page(page);
2490 				continue;
2491 			}
2492 			remap = false;
2493 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2494 		}
2495 
2496 		/* ZONE_DEVICE pages are not on LRU */
2497 		if (!is_zone_device_page(page)) {
2498 			if (!PageLRU(page) && allow_drain) {
2499 				/* Drain CPU's pagevec */
2500 				lru_add_drain_all();
2501 				allow_drain = false;
2502 			}
2503 
2504 			if (isolate_lru_page(page)) {
2505 				if (remap) {
2506 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2507 					migrate->cpages--;
2508 					restore++;
2509 				} else {
2510 					migrate->src[i] = 0;
2511 					unlock_page(page);
2512 					migrate->cpages--;
2513 					put_page(page);
2514 				}
2515 				continue;
2516 			}
2517 
2518 			/* Drop the reference we took in collect */
2519 			put_page(page);
2520 		}
2521 
2522 		if (!migrate_vma_check_page(page)) {
2523 			if (remap) {
2524 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2525 				migrate->cpages--;
2526 				restore++;
2527 
2528 				if (!is_zone_device_page(page)) {
2529 					get_page(page);
2530 					putback_lru_page(page);
2531 				}
2532 			} else {
2533 				migrate->src[i] = 0;
2534 				unlock_page(page);
2535 				migrate->cpages--;
2536 
2537 				if (!is_zone_device_page(page))
2538 					putback_lru_page(page);
2539 				else
2540 					put_page(page);
2541 			}
2542 		}
2543 	}
2544 
2545 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2546 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2547 
2548 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2549 			continue;
2550 
2551 		remove_migration_pte(page, migrate->vma, addr, page);
2552 
2553 		migrate->src[i] = 0;
2554 		unlock_page(page);
2555 		put_page(page);
2556 		restore--;
2557 	}
2558 }
2559 
2560 /*
2561  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2562  * @migrate: migrate struct containing all migration information
2563  *
2564  * Replace page mapping (CPU page table pte) with a special migration pte entry
2565  * and check again if it has been pinned. Pinned pages are restored because we
2566  * cannot migrate them.
2567  *
2568  * This is the last step before we call the device driver callback to allocate
2569  * destination memory and copy contents of original page over to new page.
2570  */
2571 static void migrate_vma_unmap(struct migrate_vma *migrate)
2572 {
2573 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2574 	const unsigned long npages = migrate->npages;
2575 	const unsigned long start = migrate->start;
2576 	unsigned long addr, i, restore = 0;
2577 
2578 	for (i = 0; i < npages; i++) {
2579 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2580 
2581 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2582 			continue;
2583 
2584 		if (page_mapped(page)) {
2585 			try_to_unmap(page, flags);
2586 			if (page_mapped(page))
2587 				goto restore;
2588 		}
2589 
2590 		if (migrate_vma_check_page(page))
2591 			continue;
2592 
2593 restore:
2594 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2595 		migrate->cpages--;
2596 		restore++;
2597 	}
2598 
2599 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2600 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2601 
2602 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2603 			continue;
2604 
2605 		remove_migration_ptes(page, page, false);
2606 
2607 		migrate->src[i] = 0;
2608 		unlock_page(page);
2609 		restore--;
2610 
2611 		if (is_zone_device_page(page))
2612 			put_page(page);
2613 		else
2614 			putback_lru_page(page);
2615 	}
2616 }
2617 
2618 /**
2619  * migrate_vma_setup() - prepare to migrate a range of memory
2620  * @args: contains the vma, start, and and pfns arrays for the migration
2621  *
2622  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2623  * without an error.
2624  *
2625  * Prepare to migrate a range of memory virtual address range by collecting all
2626  * the pages backing each virtual address in the range, saving them inside the
2627  * src array.  Then lock those pages and unmap them. Once the pages are locked
2628  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2629  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2630  * corresponding src array entry.  Then restores any pages that are pinned, by
2631  * remapping and unlocking those pages.
2632  *
2633  * The caller should then allocate destination memory and copy source memory to
2634  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2635  * flag set).  Once these are allocated and copied, the caller must update each
2636  * corresponding entry in the dst array with the pfn value of the destination
2637  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2638  * (destination pages must have their struct pages locked, via lock_page()).
2639  *
2640  * Note that the caller does not have to migrate all the pages that are marked
2641  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2642  * device memory to system memory.  If the caller cannot migrate a device page
2643  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2644  * consequences for the userspace process, so it must be avoided if at all
2645  * possible.
2646  *
2647  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2648  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2649  * allowing the caller to allocate device memory for those unback virtual
2650  * address.  For this the caller simply has to allocate device memory and
2651  * properly set the destination entry like for regular migration.  Note that
2652  * this can still fails and thus inside the device driver must check if the
2653  * migration was successful for those entries after calling migrate_vma_pages()
2654  * just like for regular migration.
2655  *
2656  * After that, the callers must call migrate_vma_pages() to go over each entry
2657  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2658  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2659  * then migrate_vma_pages() to migrate struct page information from the source
2660  * struct page to the destination struct page.  If it fails to migrate the
2661  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2662  * src array.
2663  *
2664  * At this point all successfully migrated pages have an entry in the src
2665  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2666  * array entry with MIGRATE_PFN_VALID flag set.
2667  *
2668  * Once migrate_vma_pages() returns the caller may inspect which pages were
2669  * successfully migrated, and which were not.  Successfully migrated pages will
2670  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2671  *
2672  * It is safe to update device page table after migrate_vma_pages() because
2673  * both destination and source page are still locked, and the mmap_sem is held
2674  * in read mode (hence no one can unmap the range being migrated).
2675  *
2676  * Once the caller is done cleaning up things and updating its page table (if it
2677  * chose to do so, this is not an obligation) it finally calls
2678  * migrate_vma_finalize() to update the CPU page table to point to new pages
2679  * for successfully migrated pages or otherwise restore the CPU page table to
2680  * point to the original source pages.
2681  */
2682 int migrate_vma_setup(struct migrate_vma *args)
2683 {
2684 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2685 
2686 	args->start &= PAGE_MASK;
2687 	args->end &= PAGE_MASK;
2688 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2689 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2690 		return -EINVAL;
2691 	if (nr_pages <= 0)
2692 		return -EINVAL;
2693 	if (args->start < args->vma->vm_start ||
2694 	    args->start >= args->vma->vm_end)
2695 		return -EINVAL;
2696 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2697 		return -EINVAL;
2698 	if (!args->src || !args->dst)
2699 		return -EINVAL;
2700 
2701 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2702 	args->cpages = 0;
2703 	args->npages = 0;
2704 
2705 	migrate_vma_collect(args);
2706 
2707 	if (args->cpages)
2708 		migrate_vma_prepare(args);
2709 	if (args->cpages)
2710 		migrate_vma_unmap(args);
2711 
2712 	/*
2713 	 * At this point pages are locked and unmapped, and thus they have
2714 	 * stable content and can safely be copied to destination memory that
2715 	 * is allocated by the drivers.
2716 	 */
2717 	return 0;
2718 
2719 }
2720 EXPORT_SYMBOL(migrate_vma_setup);
2721 
2722 /*
2723  * This code closely matches the code in:
2724  *   __handle_mm_fault()
2725  *     handle_pte_fault()
2726  *       do_anonymous_page()
2727  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2728  * private page.
2729  */
2730 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2731 				    unsigned long addr,
2732 				    struct page *page,
2733 				    unsigned long *src,
2734 				    unsigned long *dst)
2735 {
2736 	struct vm_area_struct *vma = migrate->vma;
2737 	struct mm_struct *mm = vma->vm_mm;
2738 	struct mem_cgroup *memcg;
2739 	bool flush = false;
2740 	spinlock_t *ptl;
2741 	pte_t entry;
2742 	pgd_t *pgdp;
2743 	p4d_t *p4dp;
2744 	pud_t *pudp;
2745 	pmd_t *pmdp;
2746 	pte_t *ptep;
2747 
2748 	/* Only allow populating anonymous memory */
2749 	if (!vma_is_anonymous(vma))
2750 		goto abort;
2751 
2752 	pgdp = pgd_offset(mm, addr);
2753 	p4dp = p4d_alloc(mm, pgdp, addr);
2754 	if (!p4dp)
2755 		goto abort;
2756 	pudp = pud_alloc(mm, p4dp, addr);
2757 	if (!pudp)
2758 		goto abort;
2759 	pmdp = pmd_alloc(mm, pudp, addr);
2760 	if (!pmdp)
2761 		goto abort;
2762 
2763 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2764 		goto abort;
2765 
2766 	/*
2767 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2768 	 * pte_offset_map() on pmds where a huge pmd might be created
2769 	 * from a different thread.
2770 	 *
2771 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2772 	 * parallel threads are excluded by other means.
2773 	 *
2774 	 * Here we only have down_read(mmap_sem).
2775 	 */
2776 	if (pte_alloc(mm, pmdp))
2777 		goto abort;
2778 
2779 	/* See the comment in pte_alloc_one_map() */
2780 	if (unlikely(pmd_trans_unstable(pmdp)))
2781 		goto abort;
2782 
2783 	if (unlikely(anon_vma_prepare(vma)))
2784 		goto abort;
2785 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2786 		goto abort;
2787 
2788 	/*
2789 	 * The memory barrier inside __SetPageUptodate makes sure that
2790 	 * preceding stores to the page contents become visible before
2791 	 * the set_pte_at() write.
2792 	 */
2793 	__SetPageUptodate(page);
2794 
2795 	if (is_zone_device_page(page)) {
2796 		if (is_device_private_page(page)) {
2797 			swp_entry_t swp_entry;
2798 
2799 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2800 			entry = swp_entry_to_pte(swp_entry);
2801 		}
2802 	} else {
2803 		entry = mk_pte(page, vma->vm_page_prot);
2804 		if (vma->vm_flags & VM_WRITE)
2805 			entry = pte_mkwrite(pte_mkdirty(entry));
2806 	}
2807 
2808 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2809 
2810 	if (check_stable_address_space(mm))
2811 		goto unlock_abort;
2812 
2813 	if (pte_present(*ptep)) {
2814 		unsigned long pfn = pte_pfn(*ptep);
2815 
2816 		if (!is_zero_pfn(pfn))
2817 			goto unlock_abort;
2818 		flush = true;
2819 	} else if (!pte_none(*ptep))
2820 		goto unlock_abort;
2821 
2822 	/*
2823 	 * Check for userfaultfd but do not deliver the fault. Instead,
2824 	 * just back off.
2825 	 */
2826 	if (userfaultfd_missing(vma))
2827 		goto unlock_abort;
2828 
2829 	inc_mm_counter(mm, MM_ANONPAGES);
2830 	page_add_new_anon_rmap(page, vma, addr, false);
2831 	mem_cgroup_commit_charge(page, memcg, false, false);
2832 	if (!is_zone_device_page(page))
2833 		lru_cache_add_active_or_unevictable(page, vma);
2834 	get_page(page);
2835 
2836 	if (flush) {
2837 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2838 		ptep_clear_flush_notify(vma, addr, ptep);
2839 		set_pte_at_notify(mm, addr, ptep, entry);
2840 		update_mmu_cache(vma, addr, ptep);
2841 	} else {
2842 		/* No need to invalidate - it was non-present before */
2843 		set_pte_at(mm, addr, ptep, entry);
2844 		update_mmu_cache(vma, addr, ptep);
2845 	}
2846 
2847 	pte_unmap_unlock(ptep, ptl);
2848 	*src = MIGRATE_PFN_MIGRATE;
2849 	return;
2850 
2851 unlock_abort:
2852 	pte_unmap_unlock(ptep, ptl);
2853 	mem_cgroup_cancel_charge(page, memcg, false);
2854 abort:
2855 	*src &= ~MIGRATE_PFN_MIGRATE;
2856 }
2857 
2858 /**
2859  * migrate_vma_pages() - migrate meta-data from src page to dst page
2860  * @migrate: migrate struct containing all migration information
2861  *
2862  * This migrates struct page meta-data from source struct page to destination
2863  * struct page. This effectively finishes the migration from source page to the
2864  * destination page.
2865  */
2866 void migrate_vma_pages(struct migrate_vma *migrate)
2867 {
2868 	const unsigned long npages = migrate->npages;
2869 	const unsigned long start = migrate->start;
2870 	struct mmu_notifier_range range;
2871 	unsigned long addr, i;
2872 	bool notified = false;
2873 
2874 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2875 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2876 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2877 		struct address_space *mapping;
2878 		int r;
2879 
2880 		if (!newpage) {
2881 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2882 			continue;
2883 		}
2884 
2885 		if (!page) {
2886 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2887 				continue;
2888 			if (!notified) {
2889 				notified = true;
2890 
2891 				mmu_notifier_range_init(&range,
2892 							MMU_NOTIFY_CLEAR, 0,
2893 							NULL,
2894 							migrate->vma->vm_mm,
2895 							addr, migrate->end);
2896 				mmu_notifier_invalidate_range_start(&range);
2897 			}
2898 			migrate_vma_insert_page(migrate, addr, newpage,
2899 						&migrate->src[i],
2900 						&migrate->dst[i]);
2901 			continue;
2902 		}
2903 
2904 		mapping = page_mapping(page);
2905 
2906 		if (is_zone_device_page(newpage)) {
2907 			if (is_device_private_page(newpage)) {
2908 				/*
2909 				 * For now only support private anonymous when
2910 				 * migrating to un-addressable device memory.
2911 				 */
2912 				if (mapping) {
2913 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2914 					continue;
2915 				}
2916 			} else {
2917 				/*
2918 				 * Other types of ZONE_DEVICE page are not
2919 				 * supported.
2920 				 */
2921 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2922 				continue;
2923 			}
2924 		}
2925 
2926 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2927 		if (r != MIGRATEPAGE_SUCCESS)
2928 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2929 	}
2930 
2931 	/*
2932 	 * No need to double call mmu_notifier->invalidate_range() callback as
2933 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2934 	 * did already call it.
2935 	 */
2936 	if (notified)
2937 		mmu_notifier_invalidate_range_only_end(&range);
2938 }
2939 EXPORT_SYMBOL(migrate_vma_pages);
2940 
2941 /**
2942  * migrate_vma_finalize() - restore CPU page table entry
2943  * @migrate: migrate struct containing all migration information
2944  *
2945  * This replaces the special migration pte entry with either a mapping to the
2946  * new page if migration was successful for that page, or to the original page
2947  * otherwise.
2948  *
2949  * This also unlocks the pages and puts them back on the lru, or drops the extra
2950  * refcount, for device pages.
2951  */
2952 void migrate_vma_finalize(struct migrate_vma *migrate)
2953 {
2954 	const unsigned long npages = migrate->npages;
2955 	unsigned long i;
2956 
2957 	for (i = 0; i < npages; i++) {
2958 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2959 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2960 
2961 		if (!page) {
2962 			if (newpage) {
2963 				unlock_page(newpage);
2964 				put_page(newpage);
2965 			}
2966 			continue;
2967 		}
2968 
2969 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2970 			if (newpage) {
2971 				unlock_page(newpage);
2972 				put_page(newpage);
2973 			}
2974 			newpage = page;
2975 		}
2976 
2977 		remove_migration_ptes(page, newpage, false);
2978 		unlock_page(page);
2979 		migrate->cpages--;
2980 
2981 		if (is_zone_device_page(page))
2982 			put_page(page);
2983 		else
2984 			putback_lru_page(page);
2985 
2986 		if (newpage != page) {
2987 			unlock_page(newpage);
2988 			if (is_zone_device_page(newpage))
2989 				put_page(newpage);
2990 			else
2991 				putback_lru_page(newpage);
2992 		}
2993 	}
2994 }
2995 EXPORT_SYMBOL(migrate_vma_finalize);
2996 #endif /* CONFIG_DEVICE_PRIVATE */
2997