xref: /linux/mm/migrate.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 
52 #include <asm/tlbflush.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56 
57 #include "internal.h"
58 
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66 	/*
67 	 * Clear the LRU lists so pages can be isolated.
68 	 * Note that pages may be moved off the LRU after we have
69 	 * drained them. Those pages will fail to migrate like other
70 	 * pages that may be busy.
71 	 */
72 	lru_add_drain_all();
73 
74 	return 0;
75 }
76 
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80 	lru_add_drain();
81 
82 	return 0;
83 }
84 
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87 	struct address_space *mapping;
88 
89 	/*
90 	 * Avoid burning cycles with pages that are yet under __free_pages(),
91 	 * or just got freed under us.
92 	 *
93 	 * In case we 'win' a race for a movable page being freed under us and
94 	 * raise its refcount preventing __free_pages() from doing its job
95 	 * the put_page() at the end of this block will take care of
96 	 * release this page, thus avoiding a nasty leakage.
97 	 */
98 	if (unlikely(!get_page_unless_zero(page)))
99 		goto out;
100 
101 	/*
102 	 * Check PageMovable before holding a PG_lock because page's owner
103 	 * assumes anybody doesn't touch PG_lock of newly allocated page
104 	 * so unconditionally grabbing the lock ruins page's owner side.
105 	 */
106 	if (unlikely(!__PageMovable(page)))
107 		goto out_putpage;
108 	/*
109 	 * As movable pages are not isolated from LRU lists, concurrent
110 	 * compaction threads can race against page migration functions
111 	 * as well as race against the releasing a page.
112 	 *
113 	 * In order to avoid having an already isolated movable page
114 	 * being (wrongly) re-isolated while it is under migration,
115 	 * or to avoid attempting to isolate pages being released,
116 	 * lets be sure we have the page lock
117 	 * before proceeding with the movable page isolation steps.
118 	 */
119 	if (unlikely(!trylock_page(page)))
120 		goto out_putpage;
121 
122 	if (!PageMovable(page) || PageIsolated(page))
123 		goto out_no_isolated;
124 
125 	mapping = page_mapping(page);
126 	VM_BUG_ON_PAGE(!mapping, page);
127 
128 	if (!mapping->a_ops->isolate_page(page, mode))
129 		goto out_no_isolated;
130 
131 	/* Driver shouldn't use PG_isolated bit of page->flags */
132 	WARN_ON_ONCE(PageIsolated(page));
133 	__SetPageIsolated(page);
134 	unlock_page(page);
135 
136 	return 0;
137 
138 out_no_isolated:
139 	unlock_page(page);
140 out_putpage:
141 	put_page(page);
142 out:
143 	return -EBUSY;
144 }
145 
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149 	struct address_space *mapping;
150 
151 	VM_BUG_ON_PAGE(!PageLocked(page), page);
152 	VM_BUG_ON_PAGE(!PageMovable(page), page);
153 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 
155 	mapping = page_mapping(page);
156 	mapping->a_ops->putback_page(page);
157 	__ClearPageIsolated(page);
158 }
159 
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170 	struct page *page;
171 	struct page *page2;
172 
173 	list_for_each_entry_safe(page, page2, l, lru) {
174 		if (unlikely(PageHuge(page))) {
175 			putback_active_hugepage(page);
176 			continue;
177 		}
178 		list_del(&page->lru);
179 		/*
180 		 * We isolated non-lru movable page so here we can use
181 		 * __PageMovable because LRU page's mapping cannot have
182 		 * PAGE_MAPPING_MOVABLE.
183 		 */
184 		if (unlikely(__PageMovable(page))) {
185 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 			lock_page(page);
187 			if (PageMovable(page))
188 				putback_movable_page(page);
189 			else
190 				__ClearPageIsolated(page);
191 			unlock_page(page);
192 			put_page(page);
193 		} else {
194 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195 					page_is_file_cache(page), -hpage_nr_pages(page));
196 			putback_lru_page(page);
197 		}
198 	}
199 }
200 
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205 				 unsigned long addr, void *old)
206 {
207 	struct page_vma_mapped_walk pvmw = {
208 		.page = old,
209 		.vma = vma,
210 		.address = addr,
211 		.flags = PVMW_SYNC | PVMW_MIGRATION,
212 	};
213 	struct page *new;
214 	pte_t pte;
215 	swp_entry_t entry;
216 
217 	VM_BUG_ON_PAGE(PageTail(page), page);
218 	while (page_vma_mapped_walk(&pvmw)) {
219 		if (PageKsm(page))
220 			new = page;
221 		else
222 			new = page - pvmw.page->index +
223 				linear_page_index(vma, pvmw.address);
224 
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226 		/* PMD-mapped THP migration entry */
227 		if (!pvmw.pte) {
228 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229 			remove_migration_pmd(&pvmw, new);
230 			continue;
231 		}
232 #endif
233 
234 		get_page(new);
235 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236 		if (pte_swp_soft_dirty(*pvmw.pte))
237 			pte = pte_mksoft_dirty(pte);
238 
239 		/*
240 		 * Recheck VMA as permissions can change since migration started
241 		 */
242 		entry = pte_to_swp_entry(*pvmw.pte);
243 		if (is_write_migration_entry(entry))
244 			pte = maybe_mkwrite(pte, vma);
245 
246 		if (unlikely(is_zone_device_page(new))) {
247 			if (is_device_private_page(new)) {
248 				entry = make_device_private_entry(new, pte_write(pte));
249 				pte = swp_entry_to_pte(entry);
250 			}
251 		}
252 
253 #ifdef CONFIG_HUGETLB_PAGE
254 		if (PageHuge(new)) {
255 			pte = pte_mkhuge(pte);
256 			pte = arch_make_huge_pte(pte, vma, new, 0);
257 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 			if (PageAnon(new))
259 				hugepage_add_anon_rmap(new, vma, pvmw.address);
260 			else
261 				page_dup_rmap(new, true);
262 		} else
263 #endif
264 		{
265 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266 
267 			if (PageAnon(new))
268 				page_add_anon_rmap(new, vma, pvmw.address, false);
269 			else
270 				page_add_file_rmap(new, false);
271 		}
272 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 			mlock_vma_page(new);
274 
275 		if (PageTransHuge(page) && PageMlocked(page))
276 			clear_page_mlock(page);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once page cache replacement of page migration started, page_count
327 	 * is zero; but we must not call put_and_wait_on_page_locked() without
328 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
329 	 */
330 	if (!get_page_unless_zero(page))
331 		goto out;
332 	pte_unmap_unlock(ptep, ptl);
333 	put_and_wait_on_page_locked(page);
334 	return;
335 out:
336 	pte_unmap_unlock(ptep, ptl);
337 }
338 
339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
340 				unsigned long address)
341 {
342 	spinlock_t *ptl = pte_lockptr(mm, pmd);
343 	pte_t *ptep = pte_offset_map(pmd, address);
344 	__migration_entry_wait(mm, ptep, ptl);
345 }
346 
347 void migration_entry_wait_huge(struct vm_area_struct *vma,
348 		struct mm_struct *mm, pte_t *pte)
349 {
350 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351 	__migration_entry_wait(mm, pte, ptl);
352 }
353 
354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
356 {
357 	spinlock_t *ptl;
358 	struct page *page;
359 
360 	ptl = pmd_lock(mm, pmd);
361 	if (!is_pmd_migration_entry(*pmd))
362 		goto unlock;
363 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
364 	if (!get_page_unless_zero(page))
365 		goto unlock;
366 	spin_unlock(ptl);
367 	put_and_wait_on_page_locked(page);
368 	return;
369 unlock:
370 	spin_unlock(ptl);
371 }
372 #endif
373 
374 static int expected_page_refs(struct address_space *mapping, struct page *page)
375 {
376 	int expected_count = 1;
377 
378 	/*
379 	 * Device public or private pages have an extra refcount as they are
380 	 * ZONE_DEVICE pages.
381 	 */
382 	expected_count += is_device_private_page(page);
383 	if (mapping)
384 		expected_count += hpage_nr_pages(page) + page_has_private(page);
385 
386 	return expected_count;
387 }
388 
389 /*
390  * Replace the page in the mapping.
391  *
392  * The number of remaining references must be:
393  * 1 for anonymous pages without a mapping
394  * 2 for pages with a mapping
395  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396  */
397 int migrate_page_move_mapping(struct address_space *mapping,
398 		struct page *newpage, struct page *page, int extra_count)
399 {
400 	XA_STATE(xas, &mapping->i_pages, page_index(page));
401 	struct zone *oldzone, *newzone;
402 	int dirty;
403 	int expected_count = expected_page_refs(mapping, page) + extra_count;
404 
405 	if (!mapping) {
406 		/* Anonymous page without mapping */
407 		if (page_count(page) != expected_count)
408 			return -EAGAIN;
409 
410 		/* No turning back from here */
411 		newpage->index = page->index;
412 		newpage->mapping = page->mapping;
413 		if (PageSwapBacked(page))
414 			__SetPageSwapBacked(newpage);
415 
416 		return MIGRATEPAGE_SUCCESS;
417 	}
418 
419 	oldzone = page_zone(page);
420 	newzone = page_zone(newpage);
421 
422 	xas_lock_irq(&xas);
423 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
424 		xas_unlock_irq(&xas);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_ref_freeze(page, expected_count)) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	/*
434 	 * Now we know that no one else is looking at the page:
435 	 * no turning back from here.
436 	 */
437 	newpage->index = page->index;
438 	newpage->mapping = page->mapping;
439 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440 	if (PageSwapBacked(page)) {
441 		__SetPageSwapBacked(newpage);
442 		if (PageSwapCache(page)) {
443 			SetPageSwapCache(newpage);
444 			set_page_private(newpage, page_private(page));
445 		}
446 	} else {
447 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
448 	}
449 
450 	/* Move dirty while page refs frozen and newpage not yet exposed */
451 	dirty = PageDirty(page);
452 	if (dirty) {
453 		ClearPageDirty(page);
454 		SetPageDirty(newpage);
455 	}
456 
457 	xas_store(&xas, newpage);
458 	if (PageTransHuge(page)) {
459 		int i;
460 
461 		for (i = 1; i < HPAGE_PMD_NR; i++) {
462 			xas_next(&xas);
463 			xas_store(&xas, newpage);
464 		}
465 	}
466 
467 	/*
468 	 * Drop cache reference from old page by unfreezing
469 	 * to one less reference.
470 	 * We know this isn't the last reference.
471 	 */
472 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473 
474 	xas_unlock(&xas);
475 	/* Leave irq disabled to prevent preemption while updating stats */
476 
477 	/*
478 	 * If moved to a different zone then also account
479 	 * the page for that zone. Other VM counters will be
480 	 * taken care of when we establish references to the
481 	 * new page and drop references to the old page.
482 	 *
483 	 * Note that anonymous pages are accounted for
484 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485 	 * are mapped to swap space.
486 	 */
487 	if (newzone != oldzone) {
488 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
491 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493 		}
494 		if (dirty && mapping_cap_account_dirty(mapping)) {
495 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499 		}
500 	}
501 	local_irq_enable();
502 
503 	return MIGRATEPAGE_SUCCESS;
504 }
505 EXPORT_SYMBOL(migrate_page_move_mapping);
506 
507 /*
508  * The expected number of remaining references is the same as that
509  * of migrate_page_move_mapping().
510  */
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512 				   struct page *newpage, struct page *page)
513 {
514 	XA_STATE(xas, &mapping->i_pages, page_index(page));
515 	int expected_count;
516 
517 	xas_lock_irq(&xas);
518 	expected_count = 2 + page_has_private(page);
519 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
520 		xas_unlock_irq(&xas);
521 		return -EAGAIN;
522 	}
523 
524 	if (!page_ref_freeze(page, expected_count)) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	newpage->index = page->index;
530 	newpage->mapping = page->mapping;
531 
532 	get_page(newpage);
533 
534 	xas_store(&xas, newpage);
535 
536 	page_ref_unfreeze(page, expected_count - 1);
537 
538 	xas_unlock_irq(&xas);
539 
540 	return MIGRATEPAGE_SUCCESS;
541 }
542 
543 /*
544  * Gigantic pages are so large that we do not guarantee that page++ pointer
545  * arithmetic will work across the entire page.  We need something more
546  * specialized.
547  */
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
549 				int nr_pages)
550 {
551 	int i;
552 	struct page *dst_base = dst;
553 	struct page *src_base = src;
554 
555 	for (i = 0; i < nr_pages; ) {
556 		cond_resched();
557 		copy_highpage(dst, src);
558 
559 		i++;
560 		dst = mem_map_next(dst, dst_base, i);
561 		src = mem_map_next(src, src_base, i);
562 	}
563 }
564 
565 static void copy_huge_page(struct page *dst, struct page *src)
566 {
567 	int i;
568 	int nr_pages;
569 
570 	if (PageHuge(src)) {
571 		/* hugetlbfs page */
572 		struct hstate *h = page_hstate(src);
573 		nr_pages = pages_per_huge_page(h);
574 
575 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576 			__copy_gigantic_page(dst, src, nr_pages);
577 			return;
578 		}
579 	} else {
580 		/* thp page */
581 		BUG_ON(!PageTransHuge(src));
582 		nr_pages = hpage_nr_pages(src);
583 	}
584 
585 	for (i = 0; i < nr_pages; i++) {
586 		cond_resched();
587 		copy_highpage(dst + i, src + i);
588 	}
589 }
590 
591 /*
592  * Copy the page to its new location
593  */
594 void migrate_page_states(struct page *newpage, struct page *page)
595 {
596 	int cpupid;
597 
598 	if (PageError(page))
599 		SetPageError(newpage);
600 	if (PageReferenced(page))
601 		SetPageReferenced(newpage);
602 	if (PageUptodate(page))
603 		SetPageUptodate(newpage);
604 	if (TestClearPageActive(page)) {
605 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
606 		SetPageActive(newpage);
607 	} else if (TestClearPageUnevictable(page))
608 		SetPageUnevictable(newpage);
609 	if (PageWorkingset(page))
610 		SetPageWorkingset(newpage);
611 	if (PageChecked(page))
612 		SetPageChecked(newpage);
613 	if (PageMappedToDisk(page))
614 		SetPageMappedToDisk(newpage);
615 
616 	/* Move dirty on pages not done by migrate_page_move_mapping() */
617 	if (PageDirty(page))
618 		SetPageDirty(newpage);
619 
620 	if (page_is_young(page))
621 		set_page_young(newpage);
622 	if (page_is_idle(page))
623 		set_page_idle(newpage);
624 
625 	/*
626 	 * Copy NUMA information to the new page, to prevent over-eager
627 	 * future migrations of this same page.
628 	 */
629 	cpupid = page_cpupid_xchg_last(page, -1);
630 	page_cpupid_xchg_last(newpage, cpupid);
631 
632 	ksm_migrate_page(newpage, page);
633 	/*
634 	 * Please do not reorder this without considering how mm/ksm.c's
635 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636 	 */
637 	if (PageSwapCache(page))
638 		ClearPageSwapCache(page);
639 	ClearPagePrivate(page);
640 	set_page_private(page, 0);
641 
642 	/*
643 	 * If any waiters have accumulated on the new page then
644 	 * wake them up.
645 	 */
646 	if (PageWriteback(newpage))
647 		end_page_writeback(newpage);
648 
649 	copy_page_owner(page, newpage);
650 
651 	mem_cgroup_migrate(page, newpage);
652 }
653 EXPORT_SYMBOL(migrate_page_states);
654 
655 void migrate_page_copy(struct page *newpage, struct page *page)
656 {
657 	if (PageHuge(page) || PageTransHuge(page))
658 		copy_huge_page(newpage, page);
659 	else
660 		copy_highpage(newpage, page);
661 
662 	migrate_page_states(newpage, page);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665 
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669 
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677 		struct page *newpage, struct page *page,
678 		enum migrate_mode mode)
679 {
680 	int rc;
681 
682 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
683 
684 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
685 
686 	if (rc != MIGRATEPAGE_SUCCESS)
687 		return rc;
688 
689 	if (mode != MIGRATE_SYNC_NO_COPY)
690 		migrate_page_copy(newpage, page);
691 	else
692 		migrate_page_states(newpage, page);
693 	return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696 
697 #ifdef CONFIG_BLOCK
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 							enum migrate_mode mode)
701 {
702 	struct buffer_head *bh = head;
703 
704 	/* Simple case, sync compaction */
705 	if (mode != MIGRATE_ASYNC) {
706 		do {
707 			lock_buffer(bh);
708 			bh = bh->b_this_page;
709 
710 		} while (bh != head);
711 
712 		return true;
713 	}
714 
715 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
716 	do {
717 		if (!trylock_buffer(bh)) {
718 			/*
719 			 * We failed to lock the buffer and cannot stall in
720 			 * async migration. Release the taken locks
721 			 */
722 			struct buffer_head *failed_bh = bh;
723 			bh = head;
724 			while (bh != failed_bh) {
725 				unlock_buffer(bh);
726 				bh = bh->b_this_page;
727 			}
728 			return false;
729 		}
730 
731 		bh = bh->b_this_page;
732 	} while (bh != head);
733 	return true;
734 }
735 
736 static int __buffer_migrate_page(struct address_space *mapping,
737 		struct page *newpage, struct page *page, enum migrate_mode mode,
738 		bool check_refs)
739 {
740 	struct buffer_head *bh, *head;
741 	int rc;
742 	int expected_count;
743 
744 	if (!page_has_buffers(page))
745 		return migrate_page(mapping, newpage, page, mode);
746 
747 	/* Check whether page does not have extra refs before we do more work */
748 	expected_count = expected_page_refs(mapping, page);
749 	if (page_count(page) != expected_count)
750 		return -EAGAIN;
751 
752 	head = page_buffers(page);
753 	if (!buffer_migrate_lock_buffers(head, mode))
754 		return -EAGAIN;
755 
756 	if (check_refs) {
757 		bool busy;
758 		bool invalidated = false;
759 
760 recheck_buffers:
761 		busy = false;
762 		spin_lock(&mapping->private_lock);
763 		bh = head;
764 		do {
765 			if (atomic_read(&bh->b_count)) {
766 				busy = true;
767 				break;
768 			}
769 			bh = bh->b_this_page;
770 		} while (bh != head);
771 		if (busy) {
772 			if (invalidated) {
773 				rc = -EAGAIN;
774 				goto unlock_buffers;
775 			}
776 			spin_unlock(&mapping->private_lock);
777 			invalidate_bh_lrus();
778 			invalidated = true;
779 			goto recheck_buffers;
780 		}
781 	}
782 
783 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784 	if (rc != MIGRATEPAGE_SUCCESS)
785 		goto unlock_buffers;
786 
787 	ClearPagePrivate(page);
788 	set_page_private(newpage, page_private(page));
789 	set_page_private(page, 0);
790 	put_page(page);
791 	get_page(newpage);
792 
793 	bh = head;
794 	do {
795 		set_bh_page(bh, newpage, bh_offset(bh));
796 		bh = bh->b_this_page;
797 
798 	} while (bh != head);
799 
800 	SetPagePrivate(newpage);
801 
802 	if (mode != MIGRATE_SYNC_NO_COPY)
803 		migrate_page_copy(newpage, page);
804 	else
805 		migrate_page_states(newpage, page);
806 
807 	rc = MIGRATEPAGE_SUCCESS;
808 unlock_buffers:
809 	if (check_refs)
810 		spin_unlock(&mapping->private_lock);
811 	bh = head;
812 	do {
813 		unlock_buffer(bh);
814 		bh = bh->b_this_page;
815 
816 	} while (bh != head);
817 
818 	return rc;
819 }
820 
821 /*
822  * Migration function for pages with buffers. This function can only be used
823  * if the underlying filesystem guarantees that no other references to "page"
824  * exist. For example attached buffer heads are accessed only under page lock.
825  */
826 int buffer_migrate_page(struct address_space *mapping,
827 		struct page *newpage, struct page *page, enum migrate_mode mode)
828 {
829 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832 
833 /*
834  * Same as above except that this variant is more careful and checks that there
835  * are also no buffer head references. This function is the right one for
836  * mappings where buffer heads are directly looked up and referenced (such as
837  * block device mappings).
838  */
839 int buffer_migrate_page_norefs(struct address_space *mapping,
840 		struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
843 }
844 #endif
845 
846 /*
847  * Writeback a page to clean the dirty state
848  */
849 static int writeout(struct address_space *mapping, struct page *page)
850 {
851 	struct writeback_control wbc = {
852 		.sync_mode = WB_SYNC_NONE,
853 		.nr_to_write = 1,
854 		.range_start = 0,
855 		.range_end = LLONG_MAX,
856 		.for_reclaim = 1
857 	};
858 	int rc;
859 
860 	if (!mapping->a_ops->writepage)
861 		/* No write method for the address space */
862 		return -EINVAL;
863 
864 	if (!clear_page_dirty_for_io(page))
865 		/* Someone else already triggered a write */
866 		return -EAGAIN;
867 
868 	/*
869 	 * A dirty page may imply that the underlying filesystem has
870 	 * the page on some queue. So the page must be clean for
871 	 * migration. Writeout may mean we loose the lock and the
872 	 * page state is no longer what we checked for earlier.
873 	 * At this point we know that the migration attempt cannot
874 	 * be successful.
875 	 */
876 	remove_migration_ptes(page, page, false);
877 
878 	rc = mapping->a_ops->writepage(page, &wbc);
879 
880 	if (rc != AOP_WRITEPAGE_ACTIVATE)
881 		/* unlocked. Relock */
882 		lock_page(page);
883 
884 	return (rc < 0) ? -EIO : -EAGAIN;
885 }
886 
887 /*
888  * Default handling if a filesystem does not provide a migration function.
889  */
890 static int fallback_migrate_page(struct address_space *mapping,
891 	struct page *newpage, struct page *page, enum migrate_mode mode)
892 {
893 	if (PageDirty(page)) {
894 		/* Only writeback pages in full synchronous migration */
895 		switch (mode) {
896 		case MIGRATE_SYNC:
897 		case MIGRATE_SYNC_NO_COPY:
898 			break;
899 		default:
900 			return -EBUSY;
901 		}
902 		return writeout(mapping, page);
903 	}
904 
905 	/*
906 	 * Buffers may be managed in a filesystem specific way.
907 	 * We must have no buffers or drop them.
908 	 */
909 	if (page_has_private(page) &&
910 	    !try_to_release_page(page, GFP_KERNEL))
911 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
912 
913 	return migrate_page(mapping, newpage, page, mode);
914 }
915 
916 /*
917  * Move a page to a newly allocated page
918  * The page is locked and all ptes have been successfully removed.
919  *
920  * The new page will have replaced the old page if this function
921  * is successful.
922  *
923  * Return value:
924  *   < 0 - error code
925  *  MIGRATEPAGE_SUCCESS - success
926  */
927 static int move_to_new_page(struct page *newpage, struct page *page,
928 				enum migrate_mode mode)
929 {
930 	struct address_space *mapping;
931 	int rc = -EAGAIN;
932 	bool is_lru = !__PageMovable(page);
933 
934 	VM_BUG_ON_PAGE(!PageLocked(page), page);
935 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
936 
937 	mapping = page_mapping(page);
938 
939 	if (likely(is_lru)) {
940 		if (!mapping)
941 			rc = migrate_page(mapping, newpage, page, mode);
942 		else if (mapping->a_ops->migratepage)
943 			/*
944 			 * Most pages have a mapping and most filesystems
945 			 * provide a migratepage callback. Anonymous pages
946 			 * are part of swap space which also has its own
947 			 * migratepage callback. This is the most common path
948 			 * for page migration.
949 			 */
950 			rc = mapping->a_ops->migratepage(mapping, newpage,
951 							page, mode);
952 		else
953 			rc = fallback_migrate_page(mapping, newpage,
954 							page, mode);
955 	} else {
956 		/*
957 		 * In case of non-lru page, it could be released after
958 		 * isolation step. In that case, we shouldn't try migration.
959 		 */
960 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
961 		if (!PageMovable(page)) {
962 			rc = MIGRATEPAGE_SUCCESS;
963 			__ClearPageIsolated(page);
964 			goto out;
965 		}
966 
967 		rc = mapping->a_ops->migratepage(mapping, newpage,
968 						page, mode);
969 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
970 			!PageIsolated(page));
971 	}
972 
973 	/*
974 	 * When successful, old pagecache page->mapping must be cleared before
975 	 * page is freed; but stats require that PageAnon be left as PageAnon.
976 	 */
977 	if (rc == MIGRATEPAGE_SUCCESS) {
978 		if (__PageMovable(page)) {
979 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
980 
981 			/*
982 			 * We clear PG_movable under page_lock so any compactor
983 			 * cannot try to migrate this page.
984 			 */
985 			__ClearPageIsolated(page);
986 		}
987 
988 		/*
989 		 * Anonymous and movable page->mapping will be cleard by
990 		 * free_pages_prepare so don't reset it here for keeping
991 		 * the type to work PageAnon, for example.
992 		 */
993 		if (!PageMappingFlags(page))
994 			page->mapping = NULL;
995 
996 		if (likely(!is_zone_device_page(newpage)))
997 			flush_dcache_page(newpage);
998 
999 	}
1000 out:
1001 	return rc;
1002 }
1003 
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005 				int force, enum migrate_mode mode)
1006 {
1007 	int rc = -EAGAIN;
1008 	int page_was_mapped = 0;
1009 	struct anon_vma *anon_vma = NULL;
1010 	bool is_lru = !__PageMovable(page);
1011 
1012 	if (!trylock_page(page)) {
1013 		if (!force || mode == MIGRATE_ASYNC)
1014 			goto out;
1015 
1016 		/*
1017 		 * It's not safe for direct compaction to call lock_page.
1018 		 * For example, during page readahead pages are added locked
1019 		 * to the LRU. Later, when the IO completes the pages are
1020 		 * marked uptodate and unlocked. However, the queueing
1021 		 * could be merging multiple pages for one bio (e.g.
1022 		 * mpage_readpages). If an allocation happens for the
1023 		 * second or third page, the process can end up locking
1024 		 * the same page twice and deadlocking. Rather than
1025 		 * trying to be clever about what pages can be locked,
1026 		 * avoid the use of lock_page for direct compaction
1027 		 * altogether.
1028 		 */
1029 		if (current->flags & PF_MEMALLOC)
1030 			goto out;
1031 
1032 		lock_page(page);
1033 	}
1034 
1035 	if (PageWriteback(page)) {
1036 		/*
1037 		 * Only in the case of a full synchronous migration is it
1038 		 * necessary to wait for PageWriteback. In the async case,
1039 		 * the retry loop is too short and in the sync-light case,
1040 		 * the overhead of stalling is too much
1041 		 */
1042 		switch (mode) {
1043 		case MIGRATE_SYNC:
1044 		case MIGRATE_SYNC_NO_COPY:
1045 			break;
1046 		default:
1047 			rc = -EBUSY;
1048 			goto out_unlock;
1049 		}
1050 		if (!force)
1051 			goto out_unlock;
1052 		wait_on_page_writeback(page);
1053 	}
1054 
1055 	/*
1056 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057 	 * we cannot notice that anon_vma is freed while we migrates a page.
1058 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1059 	 * of migration. File cache pages are no problem because of page_lock()
1060 	 * File Caches may use write_page() or lock_page() in migration, then,
1061 	 * just care Anon page here.
1062 	 *
1063 	 * Only page_get_anon_vma() understands the subtleties of
1064 	 * getting a hold on an anon_vma from outside one of its mms.
1065 	 * But if we cannot get anon_vma, then we won't need it anyway,
1066 	 * because that implies that the anon page is no longer mapped
1067 	 * (and cannot be remapped so long as we hold the page lock).
1068 	 */
1069 	if (PageAnon(page) && !PageKsm(page))
1070 		anon_vma = page_get_anon_vma(page);
1071 
1072 	/*
1073 	 * Block others from accessing the new page when we get around to
1074 	 * establishing additional references. We are usually the only one
1075 	 * holding a reference to newpage at this point. We used to have a BUG
1076 	 * here if trylock_page(newpage) fails, but would like to allow for
1077 	 * cases where there might be a race with the previous use of newpage.
1078 	 * This is much like races on refcount of oldpage: just don't BUG().
1079 	 */
1080 	if (unlikely(!trylock_page(newpage)))
1081 		goto out_unlock;
1082 
1083 	if (unlikely(!is_lru)) {
1084 		rc = move_to_new_page(newpage, page, mode);
1085 		goto out_unlock_both;
1086 	}
1087 
1088 	/*
1089 	 * Corner case handling:
1090 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1091 	 * and treated as swapcache but it has no rmap yet.
1092 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1093 	 * trigger a BUG.  So handle it here.
1094 	 * 2. An orphaned page (see truncate_complete_page) might have
1095 	 * fs-private metadata. The page can be picked up due to memory
1096 	 * offlining.  Everywhere else except page reclaim, the page is
1097 	 * invisible to the vm, so the page can not be migrated.  So try to
1098 	 * free the metadata, so the page can be freed.
1099 	 */
1100 	if (!page->mapping) {
1101 		VM_BUG_ON_PAGE(PageAnon(page), page);
1102 		if (page_has_private(page)) {
1103 			try_to_free_buffers(page);
1104 			goto out_unlock_both;
1105 		}
1106 	} else if (page_mapped(page)) {
1107 		/* Establish migration ptes */
1108 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109 				page);
1110 		try_to_unmap(page,
1111 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112 		page_was_mapped = 1;
1113 	}
1114 
1115 	if (!page_mapped(page))
1116 		rc = move_to_new_page(newpage, page, mode);
1117 
1118 	if (page_was_mapped)
1119 		remove_migration_ptes(page,
1120 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121 
1122 out_unlock_both:
1123 	unlock_page(newpage);
1124 out_unlock:
1125 	/* Drop an anon_vma reference if we took one */
1126 	if (anon_vma)
1127 		put_anon_vma(anon_vma);
1128 	unlock_page(page);
1129 out:
1130 	/*
1131 	 * If migration is successful, decrease refcount of the newpage
1132 	 * which will not free the page because new page owner increased
1133 	 * refcounter. As well, if it is LRU page, add the page to LRU
1134 	 * list in here. Use the old state of the isolated source page to
1135 	 * determine if we migrated a LRU page. newpage was already unlocked
1136 	 * and possibly modified by its owner - don't rely on the page
1137 	 * state.
1138 	 */
1139 	if (rc == MIGRATEPAGE_SUCCESS) {
1140 		if (unlikely(!is_lru))
1141 			put_page(newpage);
1142 		else
1143 			putback_lru_page(newpage);
1144 	}
1145 
1146 	return rc;
1147 }
1148 
1149 /*
1150  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151  * around it.
1152  */
1153 #if defined(CONFIG_ARM) && \
1154 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1156 #else
1157 #define ICE_noinline
1158 #endif
1159 
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165 				   free_page_t put_new_page,
1166 				   unsigned long private, struct page *page,
1167 				   int force, enum migrate_mode mode,
1168 				   enum migrate_reason reason)
1169 {
1170 	int rc = MIGRATEPAGE_SUCCESS;
1171 	struct page *newpage = NULL;
1172 
1173 	if (!thp_migration_supported() && PageTransHuge(page))
1174 		return -ENOMEM;
1175 
1176 	if (page_count(page) == 1) {
1177 		/* page was freed from under us. So we are done. */
1178 		ClearPageActive(page);
1179 		ClearPageUnevictable(page);
1180 		if (unlikely(__PageMovable(page))) {
1181 			lock_page(page);
1182 			if (!PageMovable(page))
1183 				__ClearPageIsolated(page);
1184 			unlock_page(page);
1185 		}
1186 		goto out;
1187 	}
1188 
1189 	newpage = get_new_page(page, private);
1190 	if (!newpage)
1191 		return -ENOMEM;
1192 
1193 	rc = __unmap_and_move(page, newpage, force, mode);
1194 	if (rc == MIGRATEPAGE_SUCCESS)
1195 		set_page_owner_migrate_reason(newpage, reason);
1196 
1197 out:
1198 	if (rc != -EAGAIN) {
1199 		/*
1200 		 * A page that has been migrated has all references
1201 		 * removed and will be freed. A page that has not been
1202 		 * migrated will have kepts its references and be
1203 		 * restored.
1204 		 */
1205 		list_del(&page->lru);
1206 
1207 		/*
1208 		 * Compaction can migrate also non-LRU pages which are
1209 		 * not accounted to NR_ISOLATED_*. They can be recognized
1210 		 * as __PageMovable
1211 		 */
1212 		if (likely(!__PageMovable(page)))
1213 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 					page_is_file_cache(page), -hpage_nr_pages(page));
1215 	}
1216 
1217 	/*
1218 	 * If migration is successful, releases reference grabbed during
1219 	 * isolation. Otherwise, restore the page to right list unless
1220 	 * we want to retry.
1221 	 */
1222 	if (rc == MIGRATEPAGE_SUCCESS) {
1223 		put_page(page);
1224 		if (reason == MR_MEMORY_FAILURE) {
1225 			/*
1226 			 * Set PG_HWPoison on just freed page
1227 			 * intentionally. Although it's rather weird,
1228 			 * it's how HWPoison flag works at the moment.
1229 			 */
1230 			if (set_hwpoison_free_buddy_page(page))
1231 				num_poisoned_pages_inc();
1232 		}
1233 	} else {
1234 		if (rc != -EAGAIN) {
1235 			if (likely(!__PageMovable(page))) {
1236 				putback_lru_page(page);
1237 				goto put_new;
1238 			}
1239 
1240 			lock_page(page);
1241 			if (PageMovable(page))
1242 				putback_movable_page(page);
1243 			else
1244 				__ClearPageIsolated(page);
1245 			unlock_page(page);
1246 			put_page(page);
1247 		}
1248 put_new:
1249 		if (put_new_page)
1250 			put_new_page(newpage, private);
1251 		else
1252 			put_page(newpage);
1253 	}
1254 
1255 	return rc;
1256 }
1257 
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 				free_page_t put_new_page, unsigned long private,
1278 				struct page *hpage, int force,
1279 				enum migrate_mode mode, int reason)
1280 {
1281 	int rc = -EAGAIN;
1282 	int page_was_mapped = 0;
1283 	struct page *new_hpage;
1284 	struct anon_vma *anon_vma = NULL;
1285 
1286 	/*
1287 	 * Migratability of hugepages depends on architectures and their size.
1288 	 * This check is necessary because some callers of hugepage migration
1289 	 * like soft offline and memory hotremove don't walk through page
1290 	 * tables or check whether the hugepage is pmd-based or not before
1291 	 * kicking migration.
1292 	 */
1293 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1294 		putback_active_hugepage(hpage);
1295 		return -ENOSYS;
1296 	}
1297 
1298 	new_hpage = get_new_page(hpage, private);
1299 	if (!new_hpage)
1300 		return -ENOMEM;
1301 
1302 	if (!trylock_page(hpage)) {
1303 		if (!force)
1304 			goto out;
1305 		switch (mode) {
1306 		case MIGRATE_SYNC:
1307 		case MIGRATE_SYNC_NO_COPY:
1308 			break;
1309 		default:
1310 			goto out;
1311 		}
1312 		lock_page(hpage);
1313 	}
1314 
1315 	/*
1316 	 * Check for pages which are in the process of being freed.  Without
1317 	 * page_mapping() set, hugetlbfs specific move page routine will not
1318 	 * be called and we could leak usage counts for subpools.
1319 	 */
1320 	if (page_private(hpage) && !page_mapping(hpage)) {
1321 		rc = -EBUSY;
1322 		goto out_unlock;
1323 	}
1324 
1325 	if (PageAnon(hpage))
1326 		anon_vma = page_get_anon_vma(hpage);
1327 
1328 	if (unlikely(!trylock_page(new_hpage)))
1329 		goto put_anon;
1330 
1331 	if (page_mapped(hpage)) {
1332 		try_to_unmap(hpage,
1333 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334 		page_was_mapped = 1;
1335 	}
1336 
1337 	if (!page_mapped(hpage))
1338 		rc = move_to_new_page(new_hpage, hpage, mode);
1339 
1340 	if (page_was_mapped)
1341 		remove_migration_ptes(hpage,
1342 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1343 
1344 	unlock_page(new_hpage);
1345 
1346 put_anon:
1347 	if (anon_vma)
1348 		put_anon_vma(anon_vma);
1349 
1350 	if (rc == MIGRATEPAGE_SUCCESS) {
1351 		move_hugetlb_state(hpage, new_hpage, reason);
1352 		put_new_page = NULL;
1353 	}
1354 
1355 out_unlock:
1356 	unlock_page(hpage);
1357 out:
1358 	if (rc != -EAGAIN)
1359 		putback_active_hugepage(hpage);
1360 
1361 	/*
1362 	 * If migration was not successful and there's a freeing callback, use
1363 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1364 	 * isolation.
1365 	 */
1366 	if (put_new_page)
1367 		put_new_page(new_hpage, private);
1368 	else
1369 		putback_active_hugepage(new_hpage);
1370 
1371 	return rc;
1372 }
1373 
1374 /*
1375  * migrate_pages - migrate the pages specified in a list, to the free pages
1376  *		   supplied as the target for the page migration
1377  *
1378  * @from:		The list of pages to be migrated.
1379  * @get_new_page:	The function used to allocate free pages to be used
1380  *			as the target of the page migration.
1381  * @put_new_page:	The function used to free target pages if migration
1382  *			fails, or NULL if no special handling is necessary.
1383  * @private:		Private data to be passed on to get_new_page()
1384  * @mode:		The migration mode that specifies the constraints for
1385  *			page migration, if any.
1386  * @reason:		The reason for page migration.
1387  *
1388  * The function returns after 10 attempts or if no pages are movable any more
1389  * because the list has become empty or no retryable pages exist any more.
1390  * The caller should call putback_movable_pages() to return pages to the LRU
1391  * or free list only if ret != 0.
1392  *
1393  * Returns the number of pages that were not migrated, or an error code.
1394  */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396 		free_page_t put_new_page, unsigned long private,
1397 		enum migrate_mode mode, int reason)
1398 {
1399 	int retry = 1;
1400 	int nr_failed = 0;
1401 	int nr_succeeded = 0;
1402 	int pass = 0;
1403 	struct page *page;
1404 	struct page *page2;
1405 	int swapwrite = current->flags & PF_SWAPWRITE;
1406 	int rc;
1407 
1408 	if (!swapwrite)
1409 		current->flags |= PF_SWAPWRITE;
1410 
1411 	for(pass = 0; pass < 10 && retry; pass++) {
1412 		retry = 0;
1413 
1414 		list_for_each_entry_safe(page, page2, from, lru) {
1415 retry:
1416 			cond_resched();
1417 
1418 			if (PageHuge(page))
1419 				rc = unmap_and_move_huge_page(get_new_page,
1420 						put_new_page, private, page,
1421 						pass > 2, mode, reason);
1422 			else
1423 				rc = unmap_and_move(get_new_page, put_new_page,
1424 						private, page, pass > 2, mode,
1425 						reason);
1426 
1427 			switch(rc) {
1428 			case -ENOMEM:
1429 				/*
1430 				 * THP migration might be unsupported or the
1431 				 * allocation could've failed so we should
1432 				 * retry on the same page with the THP split
1433 				 * to base pages.
1434 				 *
1435 				 * Head page is retried immediately and tail
1436 				 * pages are added to the tail of the list so
1437 				 * we encounter them after the rest of the list
1438 				 * is processed.
1439 				 */
1440 				if (PageTransHuge(page) && !PageHuge(page)) {
1441 					lock_page(page);
1442 					rc = split_huge_page_to_list(page, from);
1443 					unlock_page(page);
1444 					if (!rc) {
1445 						list_safe_reset_next(page, page2, lru);
1446 						goto retry;
1447 					}
1448 				}
1449 				nr_failed++;
1450 				goto out;
1451 			case -EAGAIN:
1452 				retry++;
1453 				break;
1454 			case MIGRATEPAGE_SUCCESS:
1455 				nr_succeeded++;
1456 				break;
1457 			default:
1458 				/*
1459 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460 				 * unlike -EAGAIN case, the failed page is
1461 				 * removed from migration page list and not
1462 				 * retried in the next outer loop.
1463 				 */
1464 				nr_failed++;
1465 				break;
1466 			}
1467 		}
1468 	}
1469 	nr_failed += retry;
1470 	rc = nr_failed;
1471 out:
1472 	if (nr_succeeded)
1473 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474 	if (nr_failed)
1475 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477 
1478 	if (!swapwrite)
1479 		current->flags &= ~PF_SWAPWRITE;
1480 
1481 	return rc;
1482 }
1483 
1484 #ifdef CONFIG_NUMA
1485 
1486 static int store_status(int __user *status, int start, int value, int nr)
1487 {
1488 	while (nr-- > 0) {
1489 		if (put_user(value, status + start))
1490 			return -EFAULT;
1491 		start++;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static int do_move_pages_to_node(struct mm_struct *mm,
1498 		struct list_head *pagelist, int node)
1499 {
1500 	int err;
1501 
1502 	if (list_empty(pagelist))
1503 		return 0;
1504 
1505 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506 			MIGRATE_SYNC, MR_SYSCALL);
1507 	if (err)
1508 		putback_movable_pages(pagelist);
1509 	return err;
1510 }
1511 
1512 /*
1513  * Resolves the given address to a struct page, isolates it from the LRU and
1514  * puts it to the given pagelist.
1515  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1516  * queued or the page doesn't need to be migrated because it is already on
1517  * the target node
1518  */
1519 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1520 		int node, struct list_head *pagelist, bool migrate_all)
1521 {
1522 	struct vm_area_struct *vma;
1523 	struct page *page;
1524 	unsigned int follflags;
1525 	int err;
1526 
1527 	down_read(&mm->mmap_sem);
1528 	err = -EFAULT;
1529 	vma = find_vma(mm, addr);
1530 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1531 		goto out;
1532 
1533 	/* FOLL_DUMP to ignore special (like zero) pages */
1534 	follflags = FOLL_GET | FOLL_DUMP;
1535 	page = follow_page(vma, addr, follflags);
1536 
1537 	err = PTR_ERR(page);
1538 	if (IS_ERR(page))
1539 		goto out;
1540 
1541 	err = -ENOENT;
1542 	if (!page)
1543 		goto out;
1544 
1545 	err = 0;
1546 	if (page_to_nid(page) == node)
1547 		goto out_putpage;
1548 
1549 	err = -EACCES;
1550 	if (page_mapcount(page) > 1 && !migrate_all)
1551 		goto out_putpage;
1552 
1553 	if (PageHuge(page)) {
1554 		if (PageHead(page)) {
1555 			isolate_huge_page(page, pagelist);
1556 			err = 0;
1557 		}
1558 	} else {
1559 		struct page *head;
1560 
1561 		head = compound_head(page);
1562 		err = isolate_lru_page(head);
1563 		if (err)
1564 			goto out_putpage;
1565 
1566 		err = 0;
1567 		list_add_tail(&head->lru, pagelist);
1568 		mod_node_page_state(page_pgdat(head),
1569 			NR_ISOLATED_ANON + page_is_file_cache(head),
1570 			hpage_nr_pages(head));
1571 	}
1572 out_putpage:
1573 	/*
1574 	 * Either remove the duplicate refcount from
1575 	 * isolate_lru_page() or drop the page ref if it was
1576 	 * not isolated.
1577 	 */
1578 	put_page(page);
1579 out:
1580 	up_read(&mm->mmap_sem);
1581 	return err;
1582 }
1583 
1584 /*
1585  * Migrate an array of page address onto an array of nodes and fill
1586  * the corresponding array of status.
1587  */
1588 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1589 			 unsigned long nr_pages,
1590 			 const void __user * __user *pages,
1591 			 const int __user *nodes,
1592 			 int __user *status, int flags)
1593 {
1594 	int current_node = NUMA_NO_NODE;
1595 	LIST_HEAD(pagelist);
1596 	int start, i;
1597 	int err = 0, err1;
1598 
1599 	migrate_prep();
1600 
1601 	for (i = start = 0; i < nr_pages; i++) {
1602 		const void __user *p;
1603 		unsigned long addr;
1604 		int node;
1605 
1606 		err = -EFAULT;
1607 		if (get_user(p, pages + i))
1608 			goto out_flush;
1609 		if (get_user(node, nodes + i))
1610 			goto out_flush;
1611 		addr = (unsigned long)untagged_addr(p);
1612 
1613 		err = -ENODEV;
1614 		if (node < 0 || node >= MAX_NUMNODES)
1615 			goto out_flush;
1616 		if (!node_state(node, N_MEMORY))
1617 			goto out_flush;
1618 
1619 		err = -EACCES;
1620 		if (!node_isset(node, task_nodes))
1621 			goto out_flush;
1622 
1623 		if (current_node == NUMA_NO_NODE) {
1624 			current_node = node;
1625 			start = i;
1626 		} else if (node != current_node) {
1627 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1628 			if (err)
1629 				goto out;
1630 			err = store_status(status, start, current_node, i - start);
1631 			if (err)
1632 				goto out;
1633 			start = i;
1634 			current_node = node;
1635 		}
1636 
1637 		/*
1638 		 * Errors in the page lookup or isolation are not fatal and we simply
1639 		 * report them via status
1640 		 */
1641 		err = add_page_for_migration(mm, addr, current_node,
1642 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1643 		if (!err)
1644 			continue;
1645 
1646 		err = store_status(status, i, err, 1);
1647 		if (err)
1648 			goto out_flush;
1649 
1650 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1651 		if (err)
1652 			goto out;
1653 		if (i > start) {
1654 			err = store_status(status, start, current_node, i - start);
1655 			if (err)
1656 				goto out;
1657 		}
1658 		current_node = NUMA_NO_NODE;
1659 	}
1660 out_flush:
1661 	if (list_empty(&pagelist))
1662 		return err;
1663 
1664 	/* Make sure we do not overwrite the existing error */
1665 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1666 	if (!err1)
1667 		err1 = store_status(status, start, current_node, i - start);
1668 	if (!err)
1669 		err = err1;
1670 out:
1671 	return err;
1672 }
1673 
1674 /*
1675  * Determine the nodes of an array of pages and store it in an array of status.
1676  */
1677 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1678 				const void __user **pages, int *status)
1679 {
1680 	unsigned long i;
1681 
1682 	down_read(&mm->mmap_sem);
1683 
1684 	for (i = 0; i < nr_pages; i++) {
1685 		unsigned long addr = (unsigned long)(*pages);
1686 		struct vm_area_struct *vma;
1687 		struct page *page;
1688 		int err = -EFAULT;
1689 
1690 		vma = find_vma(mm, addr);
1691 		if (!vma || addr < vma->vm_start)
1692 			goto set_status;
1693 
1694 		/* FOLL_DUMP to ignore special (like zero) pages */
1695 		page = follow_page(vma, addr, FOLL_DUMP);
1696 
1697 		err = PTR_ERR(page);
1698 		if (IS_ERR(page))
1699 			goto set_status;
1700 
1701 		err = page ? page_to_nid(page) : -ENOENT;
1702 set_status:
1703 		*status = err;
1704 
1705 		pages++;
1706 		status++;
1707 	}
1708 
1709 	up_read(&mm->mmap_sem);
1710 }
1711 
1712 /*
1713  * Determine the nodes of a user array of pages and store it in
1714  * a user array of status.
1715  */
1716 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1717 			 const void __user * __user *pages,
1718 			 int __user *status)
1719 {
1720 #define DO_PAGES_STAT_CHUNK_NR 16
1721 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1722 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1723 
1724 	while (nr_pages) {
1725 		unsigned long chunk_nr;
1726 
1727 		chunk_nr = nr_pages;
1728 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1729 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1730 
1731 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1732 			break;
1733 
1734 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1735 
1736 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1737 			break;
1738 
1739 		pages += chunk_nr;
1740 		status += chunk_nr;
1741 		nr_pages -= chunk_nr;
1742 	}
1743 	return nr_pages ? -EFAULT : 0;
1744 }
1745 
1746 /*
1747  * Move a list of pages in the address space of the currently executing
1748  * process.
1749  */
1750 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1751 			     const void __user * __user *pages,
1752 			     const int __user *nodes,
1753 			     int __user *status, int flags)
1754 {
1755 	struct task_struct *task;
1756 	struct mm_struct *mm;
1757 	int err;
1758 	nodemask_t task_nodes;
1759 
1760 	/* Check flags */
1761 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1762 		return -EINVAL;
1763 
1764 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1765 		return -EPERM;
1766 
1767 	/* Find the mm_struct */
1768 	rcu_read_lock();
1769 	task = pid ? find_task_by_vpid(pid) : current;
1770 	if (!task) {
1771 		rcu_read_unlock();
1772 		return -ESRCH;
1773 	}
1774 	get_task_struct(task);
1775 
1776 	/*
1777 	 * Check if this process has the right to modify the specified
1778 	 * process. Use the regular "ptrace_may_access()" checks.
1779 	 */
1780 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1781 		rcu_read_unlock();
1782 		err = -EPERM;
1783 		goto out;
1784 	}
1785 	rcu_read_unlock();
1786 
1787  	err = security_task_movememory(task);
1788  	if (err)
1789 		goto out;
1790 
1791 	task_nodes = cpuset_mems_allowed(task);
1792 	mm = get_task_mm(task);
1793 	put_task_struct(task);
1794 
1795 	if (!mm)
1796 		return -EINVAL;
1797 
1798 	if (nodes)
1799 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1800 				    nodes, status, flags);
1801 	else
1802 		err = do_pages_stat(mm, nr_pages, pages, status);
1803 
1804 	mmput(mm);
1805 	return err;
1806 
1807 out:
1808 	put_task_struct(task);
1809 	return err;
1810 }
1811 
1812 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1813 		const void __user * __user *, pages,
1814 		const int __user *, nodes,
1815 		int __user *, status, int, flags)
1816 {
1817 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1818 }
1819 
1820 #ifdef CONFIG_COMPAT
1821 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1822 		       compat_uptr_t __user *, pages32,
1823 		       const int __user *, nodes,
1824 		       int __user *, status,
1825 		       int, flags)
1826 {
1827 	const void __user * __user *pages;
1828 	int i;
1829 
1830 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1831 	for (i = 0; i < nr_pages; i++) {
1832 		compat_uptr_t p;
1833 
1834 		if (get_user(p, pages32 + i) ||
1835 			put_user(compat_ptr(p), pages + i))
1836 			return -EFAULT;
1837 	}
1838 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1839 }
1840 #endif /* CONFIG_COMPAT */
1841 
1842 #ifdef CONFIG_NUMA_BALANCING
1843 /*
1844  * Returns true if this is a safe migration target node for misplaced NUMA
1845  * pages. Currently it only checks the watermarks which crude
1846  */
1847 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1848 				   unsigned long nr_migrate_pages)
1849 {
1850 	int z;
1851 
1852 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1853 		struct zone *zone = pgdat->node_zones + z;
1854 
1855 		if (!populated_zone(zone))
1856 			continue;
1857 
1858 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1859 		if (!zone_watermark_ok(zone, 0,
1860 				       high_wmark_pages(zone) +
1861 				       nr_migrate_pages,
1862 				       ZONE_MOVABLE, 0))
1863 			continue;
1864 		return true;
1865 	}
1866 	return false;
1867 }
1868 
1869 static struct page *alloc_misplaced_dst_page(struct page *page,
1870 					   unsigned long data)
1871 {
1872 	int nid = (int) data;
1873 	struct page *newpage;
1874 
1875 	newpage = __alloc_pages_node(nid,
1876 					 (GFP_HIGHUSER_MOVABLE |
1877 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1878 					  __GFP_NORETRY | __GFP_NOWARN) &
1879 					 ~__GFP_RECLAIM, 0);
1880 
1881 	return newpage;
1882 }
1883 
1884 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1885 {
1886 	int page_lru;
1887 
1888 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1889 
1890 	/* Avoid migrating to a node that is nearly full */
1891 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1892 		return 0;
1893 
1894 	if (isolate_lru_page(page))
1895 		return 0;
1896 
1897 	/*
1898 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1899 	 * check on page_count(), so we must do it here, now that the page
1900 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1901 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1902 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1903 	 */
1904 	if (PageTransHuge(page) && page_count(page) != 3) {
1905 		putback_lru_page(page);
1906 		return 0;
1907 	}
1908 
1909 	page_lru = page_is_file_cache(page);
1910 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1911 				hpage_nr_pages(page));
1912 
1913 	/*
1914 	 * Isolating the page has taken another reference, so the
1915 	 * caller's reference can be safely dropped without the page
1916 	 * disappearing underneath us during migration.
1917 	 */
1918 	put_page(page);
1919 	return 1;
1920 }
1921 
1922 bool pmd_trans_migrating(pmd_t pmd)
1923 {
1924 	struct page *page = pmd_page(pmd);
1925 	return PageLocked(page);
1926 }
1927 
1928 /*
1929  * Attempt to migrate a misplaced page to the specified destination
1930  * node. Caller is expected to have an elevated reference count on
1931  * the page that will be dropped by this function before returning.
1932  */
1933 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1934 			   int node)
1935 {
1936 	pg_data_t *pgdat = NODE_DATA(node);
1937 	int isolated;
1938 	int nr_remaining;
1939 	LIST_HEAD(migratepages);
1940 
1941 	/*
1942 	 * Don't migrate file pages that are mapped in multiple processes
1943 	 * with execute permissions as they are probably shared libraries.
1944 	 */
1945 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1946 	    (vma->vm_flags & VM_EXEC))
1947 		goto out;
1948 
1949 	/*
1950 	 * Also do not migrate dirty pages as not all filesystems can move
1951 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1952 	 */
1953 	if (page_is_file_cache(page) && PageDirty(page))
1954 		goto out;
1955 
1956 	isolated = numamigrate_isolate_page(pgdat, page);
1957 	if (!isolated)
1958 		goto out;
1959 
1960 	list_add(&page->lru, &migratepages);
1961 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1962 				     NULL, node, MIGRATE_ASYNC,
1963 				     MR_NUMA_MISPLACED);
1964 	if (nr_remaining) {
1965 		if (!list_empty(&migratepages)) {
1966 			list_del(&page->lru);
1967 			dec_node_page_state(page, NR_ISOLATED_ANON +
1968 					page_is_file_cache(page));
1969 			putback_lru_page(page);
1970 		}
1971 		isolated = 0;
1972 	} else
1973 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1974 	BUG_ON(!list_empty(&migratepages));
1975 	return isolated;
1976 
1977 out:
1978 	put_page(page);
1979 	return 0;
1980 }
1981 #endif /* CONFIG_NUMA_BALANCING */
1982 
1983 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1984 /*
1985  * Migrates a THP to a given target node. page must be locked and is unlocked
1986  * before returning.
1987  */
1988 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1989 				struct vm_area_struct *vma,
1990 				pmd_t *pmd, pmd_t entry,
1991 				unsigned long address,
1992 				struct page *page, int node)
1993 {
1994 	spinlock_t *ptl;
1995 	pg_data_t *pgdat = NODE_DATA(node);
1996 	int isolated = 0;
1997 	struct page *new_page = NULL;
1998 	int page_lru = page_is_file_cache(page);
1999 	unsigned long start = address & HPAGE_PMD_MASK;
2000 
2001 	new_page = alloc_pages_node(node,
2002 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2003 		HPAGE_PMD_ORDER);
2004 	if (!new_page)
2005 		goto out_fail;
2006 	prep_transhuge_page(new_page);
2007 
2008 	isolated = numamigrate_isolate_page(pgdat, page);
2009 	if (!isolated) {
2010 		put_page(new_page);
2011 		goto out_fail;
2012 	}
2013 
2014 	/* Prepare a page as a migration target */
2015 	__SetPageLocked(new_page);
2016 	if (PageSwapBacked(page))
2017 		__SetPageSwapBacked(new_page);
2018 
2019 	/* anon mapping, we can simply copy page->mapping to the new page: */
2020 	new_page->mapping = page->mapping;
2021 	new_page->index = page->index;
2022 	/* flush the cache before copying using the kernel virtual address */
2023 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2024 	migrate_page_copy(new_page, page);
2025 	WARN_ON(PageLRU(new_page));
2026 
2027 	/* Recheck the target PMD */
2028 	ptl = pmd_lock(mm, pmd);
2029 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2030 		spin_unlock(ptl);
2031 
2032 		/* Reverse changes made by migrate_page_copy() */
2033 		if (TestClearPageActive(new_page))
2034 			SetPageActive(page);
2035 		if (TestClearPageUnevictable(new_page))
2036 			SetPageUnevictable(page);
2037 
2038 		unlock_page(new_page);
2039 		put_page(new_page);		/* Free it */
2040 
2041 		/* Retake the callers reference and putback on LRU */
2042 		get_page(page);
2043 		putback_lru_page(page);
2044 		mod_node_page_state(page_pgdat(page),
2045 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2046 
2047 		goto out_unlock;
2048 	}
2049 
2050 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2051 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2052 
2053 	/*
2054 	 * Overwrite the old entry under pagetable lock and establish
2055 	 * the new PTE. Any parallel GUP will either observe the old
2056 	 * page blocking on the page lock, block on the page table
2057 	 * lock or observe the new page. The SetPageUptodate on the
2058 	 * new page and page_add_new_anon_rmap guarantee the copy is
2059 	 * visible before the pagetable update.
2060 	 */
2061 	page_add_anon_rmap(new_page, vma, start, true);
2062 	/*
2063 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2064 	 * has already been flushed globally.  So no TLB can be currently
2065 	 * caching this non present pmd mapping.  There's no need to clear the
2066 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2067 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2068 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2069 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2070 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2071 	 * pmd.
2072 	 */
2073 	set_pmd_at(mm, start, pmd, entry);
2074 	update_mmu_cache_pmd(vma, address, &entry);
2075 
2076 	page_ref_unfreeze(page, 2);
2077 	mlock_migrate_page(new_page, page);
2078 	page_remove_rmap(page, true);
2079 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2080 
2081 	spin_unlock(ptl);
2082 
2083 	/* Take an "isolate" reference and put new page on the LRU. */
2084 	get_page(new_page);
2085 	putback_lru_page(new_page);
2086 
2087 	unlock_page(new_page);
2088 	unlock_page(page);
2089 	put_page(page);			/* Drop the rmap reference */
2090 	put_page(page);			/* Drop the LRU isolation reference */
2091 
2092 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2093 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2094 
2095 	mod_node_page_state(page_pgdat(page),
2096 			NR_ISOLATED_ANON + page_lru,
2097 			-HPAGE_PMD_NR);
2098 	return isolated;
2099 
2100 out_fail:
2101 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2102 	ptl = pmd_lock(mm, pmd);
2103 	if (pmd_same(*pmd, entry)) {
2104 		entry = pmd_modify(entry, vma->vm_page_prot);
2105 		set_pmd_at(mm, start, pmd, entry);
2106 		update_mmu_cache_pmd(vma, address, &entry);
2107 	}
2108 	spin_unlock(ptl);
2109 
2110 out_unlock:
2111 	unlock_page(page);
2112 	put_page(page);
2113 	return 0;
2114 }
2115 #endif /* CONFIG_NUMA_BALANCING */
2116 
2117 #endif /* CONFIG_NUMA */
2118 
2119 #ifdef CONFIG_DEVICE_PRIVATE
2120 static int migrate_vma_collect_hole(unsigned long start,
2121 				    unsigned long end,
2122 				    struct mm_walk *walk)
2123 {
2124 	struct migrate_vma *migrate = walk->private;
2125 	unsigned long addr;
2126 
2127 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2128 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2129 		migrate->dst[migrate->npages] = 0;
2130 		migrate->npages++;
2131 		migrate->cpages++;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static int migrate_vma_collect_skip(unsigned long start,
2138 				    unsigned long end,
2139 				    struct mm_walk *walk)
2140 {
2141 	struct migrate_vma *migrate = walk->private;
2142 	unsigned long addr;
2143 
2144 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2145 		migrate->dst[migrate->npages] = 0;
2146 		migrate->src[migrate->npages++] = 0;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2153 				   unsigned long start,
2154 				   unsigned long end,
2155 				   struct mm_walk *walk)
2156 {
2157 	struct migrate_vma *migrate = walk->private;
2158 	struct vm_area_struct *vma = walk->vma;
2159 	struct mm_struct *mm = vma->vm_mm;
2160 	unsigned long addr = start, unmapped = 0;
2161 	spinlock_t *ptl;
2162 	pte_t *ptep;
2163 
2164 again:
2165 	if (pmd_none(*pmdp))
2166 		return migrate_vma_collect_hole(start, end, walk);
2167 
2168 	if (pmd_trans_huge(*pmdp)) {
2169 		struct page *page;
2170 
2171 		ptl = pmd_lock(mm, pmdp);
2172 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2173 			spin_unlock(ptl);
2174 			goto again;
2175 		}
2176 
2177 		page = pmd_page(*pmdp);
2178 		if (is_huge_zero_page(page)) {
2179 			spin_unlock(ptl);
2180 			split_huge_pmd(vma, pmdp, addr);
2181 			if (pmd_trans_unstable(pmdp))
2182 				return migrate_vma_collect_skip(start, end,
2183 								walk);
2184 		} else {
2185 			int ret;
2186 
2187 			get_page(page);
2188 			spin_unlock(ptl);
2189 			if (unlikely(!trylock_page(page)))
2190 				return migrate_vma_collect_skip(start, end,
2191 								walk);
2192 			ret = split_huge_page(page);
2193 			unlock_page(page);
2194 			put_page(page);
2195 			if (ret)
2196 				return migrate_vma_collect_skip(start, end,
2197 								walk);
2198 			if (pmd_none(*pmdp))
2199 				return migrate_vma_collect_hole(start, end,
2200 								walk);
2201 		}
2202 	}
2203 
2204 	if (unlikely(pmd_bad(*pmdp)))
2205 		return migrate_vma_collect_skip(start, end, walk);
2206 
2207 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2208 	arch_enter_lazy_mmu_mode();
2209 
2210 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2211 		unsigned long mpfn, pfn;
2212 		struct page *page;
2213 		swp_entry_t entry;
2214 		pte_t pte;
2215 
2216 		pte = *ptep;
2217 
2218 		if (pte_none(pte)) {
2219 			mpfn = MIGRATE_PFN_MIGRATE;
2220 			migrate->cpages++;
2221 			goto next;
2222 		}
2223 
2224 		if (!pte_present(pte)) {
2225 			mpfn = 0;
2226 
2227 			/*
2228 			 * Only care about unaddressable device page special
2229 			 * page table entry. Other special swap entries are not
2230 			 * migratable, and we ignore regular swapped page.
2231 			 */
2232 			entry = pte_to_swp_entry(pte);
2233 			if (!is_device_private_entry(entry))
2234 				goto next;
2235 
2236 			page = device_private_entry_to_page(entry);
2237 			mpfn = migrate_pfn(page_to_pfn(page)) |
2238 					MIGRATE_PFN_MIGRATE;
2239 			if (is_write_device_private_entry(entry))
2240 				mpfn |= MIGRATE_PFN_WRITE;
2241 		} else {
2242 			pfn = pte_pfn(pte);
2243 			if (is_zero_pfn(pfn)) {
2244 				mpfn = MIGRATE_PFN_MIGRATE;
2245 				migrate->cpages++;
2246 				goto next;
2247 			}
2248 			page = vm_normal_page(migrate->vma, addr, pte);
2249 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2250 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2251 		}
2252 
2253 		/* FIXME support THP */
2254 		if (!page || !page->mapping || PageTransCompound(page)) {
2255 			mpfn = 0;
2256 			goto next;
2257 		}
2258 
2259 		/*
2260 		 * By getting a reference on the page we pin it and that blocks
2261 		 * any kind of migration. Side effect is that it "freezes" the
2262 		 * pte.
2263 		 *
2264 		 * We drop this reference after isolating the page from the lru
2265 		 * for non device page (device page are not on the lru and thus
2266 		 * can't be dropped from it).
2267 		 */
2268 		get_page(page);
2269 		migrate->cpages++;
2270 
2271 		/*
2272 		 * Optimize for the common case where page is only mapped once
2273 		 * in one process. If we can lock the page, then we can safely
2274 		 * set up a special migration page table entry now.
2275 		 */
2276 		if (trylock_page(page)) {
2277 			pte_t swp_pte;
2278 
2279 			mpfn |= MIGRATE_PFN_LOCKED;
2280 			ptep_get_and_clear(mm, addr, ptep);
2281 
2282 			/* Setup special migration page table entry */
2283 			entry = make_migration_entry(page, mpfn &
2284 						     MIGRATE_PFN_WRITE);
2285 			swp_pte = swp_entry_to_pte(entry);
2286 			if (pte_soft_dirty(pte))
2287 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2288 			set_pte_at(mm, addr, ptep, swp_pte);
2289 
2290 			/*
2291 			 * This is like regular unmap: we remove the rmap and
2292 			 * drop page refcount. Page won't be freed, as we took
2293 			 * a reference just above.
2294 			 */
2295 			page_remove_rmap(page, false);
2296 			put_page(page);
2297 
2298 			if (pte_present(pte))
2299 				unmapped++;
2300 		}
2301 
2302 next:
2303 		migrate->dst[migrate->npages] = 0;
2304 		migrate->src[migrate->npages++] = mpfn;
2305 	}
2306 	arch_leave_lazy_mmu_mode();
2307 	pte_unmap_unlock(ptep - 1, ptl);
2308 
2309 	/* Only flush the TLB if we actually modified any entries */
2310 	if (unmapped)
2311 		flush_tlb_range(walk->vma, start, end);
2312 
2313 	return 0;
2314 }
2315 
2316 static const struct mm_walk_ops migrate_vma_walk_ops = {
2317 	.pmd_entry		= migrate_vma_collect_pmd,
2318 	.pte_hole		= migrate_vma_collect_hole,
2319 };
2320 
2321 /*
2322  * migrate_vma_collect() - collect pages over a range of virtual addresses
2323  * @migrate: migrate struct containing all migration information
2324  *
2325  * This will walk the CPU page table. For each virtual address backed by a
2326  * valid page, it updates the src array and takes a reference on the page, in
2327  * order to pin the page until we lock it and unmap it.
2328  */
2329 static void migrate_vma_collect(struct migrate_vma *migrate)
2330 {
2331 	struct mmu_notifier_range range;
2332 
2333 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2334 			migrate->vma->vm_mm, migrate->start, migrate->end);
2335 	mmu_notifier_invalidate_range_start(&range);
2336 
2337 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2338 			&migrate_vma_walk_ops, migrate);
2339 
2340 	mmu_notifier_invalidate_range_end(&range);
2341 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2342 }
2343 
2344 /*
2345  * migrate_vma_check_page() - check if page is pinned or not
2346  * @page: struct page to check
2347  *
2348  * Pinned pages cannot be migrated. This is the same test as in
2349  * migrate_page_move_mapping(), except that here we allow migration of a
2350  * ZONE_DEVICE page.
2351  */
2352 static bool migrate_vma_check_page(struct page *page)
2353 {
2354 	/*
2355 	 * One extra ref because caller holds an extra reference, either from
2356 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2357 	 * a device page.
2358 	 */
2359 	int extra = 1;
2360 
2361 	/*
2362 	 * FIXME support THP (transparent huge page), it is bit more complex to
2363 	 * check them than regular pages, because they can be mapped with a pmd
2364 	 * or with a pte (split pte mapping).
2365 	 */
2366 	if (PageCompound(page))
2367 		return false;
2368 
2369 	/* Page from ZONE_DEVICE have one extra reference */
2370 	if (is_zone_device_page(page)) {
2371 		/*
2372 		 * Private page can never be pin as they have no valid pte and
2373 		 * GUP will fail for those. Yet if there is a pending migration
2374 		 * a thread might try to wait on the pte migration entry and
2375 		 * will bump the page reference count. Sadly there is no way to
2376 		 * differentiate a regular pin from migration wait. Hence to
2377 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2378 		 * infinite loop (one stoping migration because the other is
2379 		 * waiting on pte migration entry). We always return true here.
2380 		 *
2381 		 * FIXME proper solution is to rework migration_entry_wait() so
2382 		 * it does not need to take a reference on page.
2383 		 */
2384 		return is_device_private_page(page);
2385 	}
2386 
2387 	/* For file back page */
2388 	if (page_mapping(page))
2389 		extra += 1 + page_has_private(page);
2390 
2391 	if ((page_count(page) - extra) > page_mapcount(page))
2392 		return false;
2393 
2394 	return true;
2395 }
2396 
2397 /*
2398  * migrate_vma_prepare() - lock pages and isolate them from the lru
2399  * @migrate: migrate struct containing all migration information
2400  *
2401  * This locks pages that have been collected by migrate_vma_collect(). Once each
2402  * page is locked it is isolated from the lru (for non-device pages). Finally,
2403  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2404  * migrated by concurrent kernel threads.
2405  */
2406 static void migrate_vma_prepare(struct migrate_vma *migrate)
2407 {
2408 	const unsigned long npages = migrate->npages;
2409 	const unsigned long start = migrate->start;
2410 	unsigned long addr, i, restore = 0;
2411 	bool allow_drain = true;
2412 
2413 	lru_add_drain();
2414 
2415 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2416 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2417 		bool remap = true;
2418 
2419 		if (!page)
2420 			continue;
2421 
2422 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2423 			/*
2424 			 * Because we are migrating several pages there can be
2425 			 * a deadlock between 2 concurrent migration where each
2426 			 * are waiting on each other page lock.
2427 			 *
2428 			 * Make migrate_vma() a best effort thing and backoff
2429 			 * for any page we can not lock right away.
2430 			 */
2431 			if (!trylock_page(page)) {
2432 				migrate->src[i] = 0;
2433 				migrate->cpages--;
2434 				put_page(page);
2435 				continue;
2436 			}
2437 			remap = false;
2438 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2439 		}
2440 
2441 		/* ZONE_DEVICE pages are not on LRU */
2442 		if (!is_zone_device_page(page)) {
2443 			if (!PageLRU(page) && allow_drain) {
2444 				/* Drain CPU's pagevec */
2445 				lru_add_drain_all();
2446 				allow_drain = false;
2447 			}
2448 
2449 			if (isolate_lru_page(page)) {
2450 				if (remap) {
2451 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2452 					migrate->cpages--;
2453 					restore++;
2454 				} else {
2455 					migrate->src[i] = 0;
2456 					unlock_page(page);
2457 					migrate->cpages--;
2458 					put_page(page);
2459 				}
2460 				continue;
2461 			}
2462 
2463 			/* Drop the reference we took in collect */
2464 			put_page(page);
2465 		}
2466 
2467 		if (!migrate_vma_check_page(page)) {
2468 			if (remap) {
2469 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2470 				migrate->cpages--;
2471 				restore++;
2472 
2473 				if (!is_zone_device_page(page)) {
2474 					get_page(page);
2475 					putback_lru_page(page);
2476 				}
2477 			} else {
2478 				migrate->src[i] = 0;
2479 				unlock_page(page);
2480 				migrate->cpages--;
2481 
2482 				if (!is_zone_device_page(page))
2483 					putback_lru_page(page);
2484 				else
2485 					put_page(page);
2486 			}
2487 		}
2488 	}
2489 
2490 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2491 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2492 
2493 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2494 			continue;
2495 
2496 		remove_migration_pte(page, migrate->vma, addr, page);
2497 
2498 		migrate->src[i] = 0;
2499 		unlock_page(page);
2500 		put_page(page);
2501 		restore--;
2502 	}
2503 }
2504 
2505 /*
2506  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2507  * @migrate: migrate struct containing all migration information
2508  *
2509  * Replace page mapping (CPU page table pte) with a special migration pte entry
2510  * and check again if it has been pinned. Pinned pages are restored because we
2511  * cannot migrate them.
2512  *
2513  * This is the last step before we call the device driver callback to allocate
2514  * destination memory and copy contents of original page over to new page.
2515  */
2516 static void migrate_vma_unmap(struct migrate_vma *migrate)
2517 {
2518 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2519 	const unsigned long npages = migrate->npages;
2520 	const unsigned long start = migrate->start;
2521 	unsigned long addr, i, restore = 0;
2522 
2523 	for (i = 0; i < npages; i++) {
2524 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2525 
2526 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2527 			continue;
2528 
2529 		if (page_mapped(page)) {
2530 			try_to_unmap(page, flags);
2531 			if (page_mapped(page))
2532 				goto restore;
2533 		}
2534 
2535 		if (migrate_vma_check_page(page))
2536 			continue;
2537 
2538 restore:
2539 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2540 		migrate->cpages--;
2541 		restore++;
2542 	}
2543 
2544 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2545 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546 
2547 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2548 			continue;
2549 
2550 		remove_migration_ptes(page, page, false);
2551 
2552 		migrate->src[i] = 0;
2553 		unlock_page(page);
2554 		restore--;
2555 
2556 		if (is_zone_device_page(page))
2557 			put_page(page);
2558 		else
2559 			putback_lru_page(page);
2560 	}
2561 }
2562 
2563 /**
2564  * migrate_vma_setup() - prepare to migrate a range of memory
2565  * @args: contains the vma, start, and and pfns arrays for the migration
2566  *
2567  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2568  * without an error.
2569  *
2570  * Prepare to migrate a range of memory virtual address range by collecting all
2571  * the pages backing each virtual address in the range, saving them inside the
2572  * src array.  Then lock those pages and unmap them. Once the pages are locked
2573  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2574  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2575  * corresponding src array entry.  Then restores any pages that are pinned, by
2576  * remapping and unlocking those pages.
2577  *
2578  * The caller should then allocate destination memory and copy source memory to
2579  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2580  * flag set).  Once these are allocated and copied, the caller must update each
2581  * corresponding entry in the dst array with the pfn value of the destination
2582  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2583  * (destination pages must have their struct pages locked, via lock_page()).
2584  *
2585  * Note that the caller does not have to migrate all the pages that are marked
2586  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2587  * device memory to system memory.  If the caller cannot migrate a device page
2588  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2589  * consequences for the userspace process, so it must be avoided if at all
2590  * possible.
2591  *
2592  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2593  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2594  * allowing the caller to allocate device memory for those unback virtual
2595  * address.  For this the caller simply has to allocate device memory and
2596  * properly set the destination entry like for regular migration.  Note that
2597  * this can still fails and thus inside the device driver must check if the
2598  * migration was successful for those entries after calling migrate_vma_pages()
2599  * just like for regular migration.
2600  *
2601  * After that, the callers must call migrate_vma_pages() to go over each entry
2602  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2603  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2604  * then migrate_vma_pages() to migrate struct page information from the source
2605  * struct page to the destination struct page.  If it fails to migrate the
2606  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2607  * src array.
2608  *
2609  * At this point all successfully migrated pages have an entry in the src
2610  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2611  * array entry with MIGRATE_PFN_VALID flag set.
2612  *
2613  * Once migrate_vma_pages() returns the caller may inspect which pages were
2614  * successfully migrated, and which were not.  Successfully migrated pages will
2615  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2616  *
2617  * It is safe to update device page table after migrate_vma_pages() because
2618  * both destination and source page are still locked, and the mmap_sem is held
2619  * in read mode (hence no one can unmap the range being migrated).
2620  *
2621  * Once the caller is done cleaning up things and updating its page table (if it
2622  * chose to do so, this is not an obligation) it finally calls
2623  * migrate_vma_finalize() to update the CPU page table to point to new pages
2624  * for successfully migrated pages or otherwise restore the CPU page table to
2625  * point to the original source pages.
2626  */
2627 int migrate_vma_setup(struct migrate_vma *args)
2628 {
2629 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2630 
2631 	args->start &= PAGE_MASK;
2632 	args->end &= PAGE_MASK;
2633 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2634 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2635 		return -EINVAL;
2636 	if (nr_pages <= 0)
2637 		return -EINVAL;
2638 	if (args->start < args->vma->vm_start ||
2639 	    args->start >= args->vma->vm_end)
2640 		return -EINVAL;
2641 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2642 		return -EINVAL;
2643 	if (!args->src || !args->dst)
2644 		return -EINVAL;
2645 
2646 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2647 	args->cpages = 0;
2648 	args->npages = 0;
2649 
2650 	migrate_vma_collect(args);
2651 
2652 	if (args->cpages)
2653 		migrate_vma_prepare(args);
2654 	if (args->cpages)
2655 		migrate_vma_unmap(args);
2656 
2657 	/*
2658 	 * At this point pages are locked and unmapped, and thus they have
2659 	 * stable content and can safely be copied to destination memory that
2660 	 * is allocated by the drivers.
2661 	 */
2662 	return 0;
2663 
2664 }
2665 EXPORT_SYMBOL(migrate_vma_setup);
2666 
2667 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2668 				    unsigned long addr,
2669 				    struct page *page,
2670 				    unsigned long *src,
2671 				    unsigned long *dst)
2672 {
2673 	struct vm_area_struct *vma = migrate->vma;
2674 	struct mm_struct *mm = vma->vm_mm;
2675 	struct mem_cgroup *memcg;
2676 	bool flush = false;
2677 	spinlock_t *ptl;
2678 	pte_t entry;
2679 	pgd_t *pgdp;
2680 	p4d_t *p4dp;
2681 	pud_t *pudp;
2682 	pmd_t *pmdp;
2683 	pte_t *ptep;
2684 
2685 	/* Only allow populating anonymous memory */
2686 	if (!vma_is_anonymous(vma))
2687 		goto abort;
2688 
2689 	pgdp = pgd_offset(mm, addr);
2690 	p4dp = p4d_alloc(mm, pgdp, addr);
2691 	if (!p4dp)
2692 		goto abort;
2693 	pudp = pud_alloc(mm, p4dp, addr);
2694 	if (!pudp)
2695 		goto abort;
2696 	pmdp = pmd_alloc(mm, pudp, addr);
2697 	if (!pmdp)
2698 		goto abort;
2699 
2700 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2701 		goto abort;
2702 
2703 	/*
2704 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2705 	 * pte_offset_map() on pmds where a huge pmd might be created
2706 	 * from a different thread.
2707 	 *
2708 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2709 	 * parallel threads are excluded by other means.
2710 	 *
2711 	 * Here we only have down_read(mmap_sem).
2712 	 */
2713 	if (pte_alloc(mm, pmdp))
2714 		goto abort;
2715 
2716 	/* See the comment in pte_alloc_one_map() */
2717 	if (unlikely(pmd_trans_unstable(pmdp)))
2718 		goto abort;
2719 
2720 	if (unlikely(anon_vma_prepare(vma)))
2721 		goto abort;
2722 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2723 		goto abort;
2724 
2725 	/*
2726 	 * The memory barrier inside __SetPageUptodate makes sure that
2727 	 * preceding stores to the page contents become visible before
2728 	 * the set_pte_at() write.
2729 	 */
2730 	__SetPageUptodate(page);
2731 
2732 	if (is_zone_device_page(page)) {
2733 		if (is_device_private_page(page)) {
2734 			swp_entry_t swp_entry;
2735 
2736 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2737 			entry = swp_entry_to_pte(swp_entry);
2738 		}
2739 	} else {
2740 		entry = mk_pte(page, vma->vm_page_prot);
2741 		if (vma->vm_flags & VM_WRITE)
2742 			entry = pte_mkwrite(pte_mkdirty(entry));
2743 	}
2744 
2745 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2746 
2747 	if (pte_present(*ptep)) {
2748 		unsigned long pfn = pte_pfn(*ptep);
2749 
2750 		if (!is_zero_pfn(pfn)) {
2751 			pte_unmap_unlock(ptep, ptl);
2752 			mem_cgroup_cancel_charge(page, memcg, false);
2753 			goto abort;
2754 		}
2755 		flush = true;
2756 	} else if (!pte_none(*ptep)) {
2757 		pte_unmap_unlock(ptep, ptl);
2758 		mem_cgroup_cancel_charge(page, memcg, false);
2759 		goto abort;
2760 	}
2761 
2762 	/*
2763 	 * Check for usefaultfd but do not deliver the fault. Instead,
2764 	 * just back off.
2765 	 */
2766 	if (userfaultfd_missing(vma)) {
2767 		pte_unmap_unlock(ptep, ptl);
2768 		mem_cgroup_cancel_charge(page, memcg, false);
2769 		goto abort;
2770 	}
2771 
2772 	inc_mm_counter(mm, MM_ANONPAGES);
2773 	page_add_new_anon_rmap(page, vma, addr, false);
2774 	mem_cgroup_commit_charge(page, memcg, false, false);
2775 	if (!is_zone_device_page(page))
2776 		lru_cache_add_active_or_unevictable(page, vma);
2777 	get_page(page);
2778 
2779 	if (flush) {
2780 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2781 		ptep_clear_flush_notify(vma, addr, ptep);
2782 		set_pte_at_notify(mm, addr, ptep, entry);
2783 		update_mmu_cache(vma, addr, ptep);
2784 	} else {
2785 		/* No need to invalidate - it was non-present before */
2786 		set_pte_at(mm, addr, ptep, entry);
2787 		update_mmu_cache(vma, addr, ptep);
2788 	}
2789 
2790 	pte_unmap_unlock(ptep, ptl);
2791 	*src = MIGRATE_PFN_MIGRATE;
2792 	return;
2793 
2794 abort:
2795 	*src &= ~MIGRATE_PFN_MIGRATE;
2796 }
2797 
2798 /**
2799  * migrate_vma_pages() - migrate meta-data from src page to dst page
2800  * @migrate: migrate struct containing all migration information
2801  *
2802  * This migrates struct page meta-data from source struct page to destination
2803  * struct page. This effectively finishes the migration from source page to the
2804  * destination page.
2805  */
2806 void migrate_vma_pages(struct migrate_vma *migrate)
2807 {
2808 	const unsigned long npages = migrate->npages;
2809 	const unsigned long start = migrate->start;
2810 	struct mmu_notifier_range range;
2811 	unsigned long addr, i;
2812 	bool notified = false;
2813 
2814 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2815 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2816 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2817 		struct address_space *mapping;
2818 		int r;
2819 
2820 		if (!newpage) {
2821 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2822 			continue;
2823 		}
2824 
2825 		if (!page) {
2826 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2827 				continue;
2828 			}
2829 			if (!notified) {
2830 				notified = true;
2831 
2832 				mmu_notifier_range_init(&range,
2833 							MMU_NOTIFY_CLEAR, 0,
2834 							NULL,
2835 							migrate->vma->vm_mm,
2836 							addr, migrate->end);
2837 				mmu_notifier_invalidate_range_start(&range);
2838 			}
2839 			migrate_vma_insert_page(migrate, addr, newpage,
2840 						&migrate->src[i],
2841 						&migrate->dst[i]);
2842 			continue;
2843 		}
2844 
2845 		mapping = page_mapping(page);
2846 
2847 		if (is_zone_device_page(newpage)) {
2848 			if (is_device_private_page(newpage)) {
2849 				/*
2850 				 * For now only support private anonymous when
2851 				 * migrating to un-addressable device memory.
2852 				 */
2853 				if (mapping) {
2854 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2855 					continue;
2856 				}
2857 			} else {
2858 				/*
2859 				 * Other types of ZONE_DEVICE page are not
2860 				 * supported.
2861 				 */
2862 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2863 				continue;
2864 			}
2865 		}
2866 
2867 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2868 		if (r != MIGRATEPAGE_SUCCESS)
2869 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2870 	}
2871 
2872 	/*
2873 	 * No need to double call mmu_notifier->invalidate_range() callback as
2874 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2875 	 * did already call it.
2876 	 */
2877 	if (notified)
2878 		mmu_notifier_invalidate_range_only_end(&range);
2879 }
2880 EXPORT_SYMBOL(migrate_vma_pages);
2881 
2882 /**
2883  * migrate_vma_finalize() - restore CPU page table entry
2884  * @migrate: migrate struct containing all migration information
2885  *
2886  * This replaces the special migration pte entry with either a mapping to the
2887  * new page if migration was successful for that page, or to the original page
2888  * otherwise.
2889  *
2890  * This also unlocks the pages and puts them back on the lru, or drops the extra
2891  * refcount, for device pages.
2892  */
2893 void migrate_vma_finalize(struct migrate_vma *migrate)
2894 {
2895 	const unsigned long npages = migrate->npages;
2896 	unsigned long i;
2897 
2898 	for (i = 0; i < npages; i++) {
2899 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2900 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2901 
2902 		if (!page) {
2903 			if (newpage) {
2904 				unlock_page(newpage);
2905 				put_page(newpage);
2906 			}
2907 			continue;
2908 		}
2909 
2910 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2911 			if (newpage) {
2912 				unlock_page(newpage);
2913 				put_page(newpage);
2914 			}
2915 			newpage = page;
2916 		}
2917 
2918 		remove_migration_ptes(page, newpage, false);
2919 		unlock_page(page);
2920 		migrate->cpages--;
2921 
2922 		if (is_zone_device_page(page))
2923 			put_page(page);
2924 		else
2925 			putback_lru_page(page);
2926 
2927 		if (newpage != page) {
2928 			unlock_page(newpage);
2929 			if (is_zone_device_page(newpage))
2930 				put_page(newpage);
2931 			else
2932 				putback_lru_page(newpage);
2933 		}
2934 	}
2935 }
2936 EXPORT_SYMBOL(migrate_vma_finalize);
2937 #endif /* CONFIG_DEVICE_PRIVATE */
2938