1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 struct folio *folio = folio_get_nontail_page(page); 64 const struct movable_operations *mops; 65 66 /* 67 * Avoid burning cycles with pages that are yet under __free_pages(), 68 * or just got freed under us. 69 * 70 * In case we 'win' a race for a movable page being freed under us and 71 * raise its refcount preventing __free_pages() from doing its job 72 * the put_page() at the end of this block will take care of 73 * release this page, thus avoiding a nasty leakage. 74 */ 75 if (!folio) 76 goto out; 77 78 if (unlikely(folio_test_slab(folio))) 79 goto out_putfolio; 80 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 81 smp_rmb(); 82 /* 83 * Check movable flag before taking the page lock because 84 * we use non-atomic bitops on newly allocated page flags so 85 * unconditionally grabbing the lock ruins page's owner side. 86 */ 87 if (unlikely(!__folio_test_movable(folio))) 88 goto out_putfolio; 89 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 90 smp_rmb(); 91 if (unlikely(folio_test_slab(folio))) 92 goto out_putfolio; 93 94 /* 95 * As movable pages are not isolated from LRU lists, concurrent 96 * compaction threads can race against page migration functions 97 * as well as race against the releasing a page. 98 * 99 * In order to avoid having an already isolated movable page 100 * being (wrongly) re-isolated while it is under migration, 101 * or to avoid attempting to isolate pages being released, 102 * lets be sure we have the page lock 103 * before proceeding with the movable page isolation steps. 104 */ 105 if (unlikely(!folio_trylock(folio))) 106 goto out_putfolio; 107 108 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 109 goto out_no_isolated; 110 111 mops = folio_movable_ops(folio); 112 VM_BUG_ON_FOLIO(!mops, folio); 113 114 if (!mops->isolate_page(&folio->page, mode)) 115 goto out_no_isolated; 116 117 /* Driver shouldn't use PG_isolated bit of page->flags */ 118 WARN_ON_ONCE(folio_test_isolated(folio)); 119 folio_set_isolated(folio); 120 folio_unlock(folio); 121 122 return true; 123 124 out_no_isolated: 125 folio_unlock(folio); 126 out_putfolio: 127 folio_put(folio); 128 out: 129 return false; 130 } 131 132 static void putback_movable_folio(struct folio *folio) 133 { 134 const struct movable_operations *mops = folio_movable_ops(folio); 135 136 mops->putback_page(&folio->page); 137 folio_clear_isolated(folio); 138 } 139 140 /* 141 * Put previously isolated pages back onto the appropriate lists 142 * from where they were once taken off for compaction/migration. 143 * 144 * This function shall be used whenever the isolated pageset has been 145 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 146 * and isolate_hugetlb(). 147 */ 148 void putback_movable_pages(struct list_head *l) 149 { 150 struct folio *folio; 151 struct folio *folio2; 152 153 list_for_each_entry_safe(folio, folio2, l, lru) { 154 if (unlikely(folio_test_hugetlb(folio))) { 155 folio_putback_active_hugetlb(folio); 156 continue; 157 } 158 list_del(&folio->lru); 159 /* 160 * We isolated non-lru movable folio so here we can use 161 * __PageMovable because LRU folio's mapping cannot have 162 * PAGE_MAPPING_MOVABLE. 163 */ 164 if (unlikely(__folio_test_movable(folio))) { 165 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 166 folio_lock(folio); 167 if (folio_test_movable(folio)) 168 putback_movable_folio(folio); 169 else 170 folio_clear_isolated(folio); 171 folio_unlock(folio); 172 folio_put(folio); 173 } else { 174 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 175 folio_is_file_lru(folio), -folio_nr_pages(folio)); 176 folio_putback_lru(folio); 177 } 178 } 179 } 180 181 /* 182 * Restore a potential migration pte to a working pte entry 183 */ 184 static bool remove_migration_pte(struct folio *folio, 185 struct vm_area_struct *vma, unsigned long addr, void *old) 186 { 187 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 188 189 while (page_vma_mapped_walk(&pvmw)) { 190 rmap_t rmap_flags = RMAP_NONE; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 if (pte_swp_soft_dirty(*pvmw.pte)) 214 pte = pte_mksoft_dirty(pte); 215 216 /* 217 * Recheck VMA as permissions can change since migration started 218 */ 219 entry = pte_to_swp_entry(*pvmw.pte); 220 if (!is_migration_entry_young(entry)) 221 pte = pte_mkold(pte); 222 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 223 pte = pte_mkdirty(pte); 224 if (is_writable_migration_entry(entry)) 225 pte = maybe_mkwrite(pte, vma); 226 else if (pte_swp_uffd_wp(*pvmw.pte)) 227 pte = pte_mkuffd_wp(pte); 228 else 229 pte = pte_wrprotect(pte); 230 231 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 232 rmap_flags |= RMAP_EXCLUSIVE; 233 234 if (unlikely(is_device_private_page(new))) { 235 if (pte_write(pte)) 236 entry = make_writable_device_private_entry( 237 page_to_pfn(new)); 238 else 239 entry = make_readable_device_private_entry( 240 page_to_pfn(new)); 241 pte = swp_entry_to_pte(entry); 242 if (pte_swp_soft_dirty(*pvmw.pte)) 243 pte = pte_swp_mksoft_dirty(pte); 244 if (pte_swp_uffd_wp(*pvmw.pte)) 245 pte = pte_swp_mkuffd_wp(pte); 246 } 247 248 #ifdef CONFIG_HUGETLB_PAGE 249 if (folio_test_hugetlb(folio)) { 250 unsigned int shift = huge_page_shift(hstate_vma(vma)); 251 252 pte = pte_mkhuge(pte); 253 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 254 if (folio_test_anon(folio)) 255 hugepage_add_anon_rmap(new, vma, pvmw.address, 256 rmap_flags); 257 else 258 page_dup_file_rmap(new, true); 259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 260 } else 261 #endif 262 { 263 if (folio_test_anon(folio)) 264 page_add_anon_rmap(new, vma, pvmw.address, 265 rmap_flags); 266 else 267 page_add_file_rmap(new, vma, false); 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 } 270 if (vma->vm_flags & VM_LOCKED) 271 mlock_drain_local(); 272 273 trace_remove_migration_pte(pvmw.address, pte_val(pte), 274 compound_order(new)); 275 276 /* No need to invalidate - it was non-present before */ 277 update_mmu_cache(vma, pvmw.address, pvmw.pte); 278 } 279 280 return true; 281 } 282 283 /* 284 * Get rid of all migration entries and replace them by 285 * references to the indicated page. 286 */ 287 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 288 { 289 struct rmap_walk_control rwc = { 290 .rmap_one = remove_migration_pte, 291 .arg = src, 292 }; 293 294 if (locked) 295 rmap_walk_locked(dst, &rwc); 296 else 297 rmap_walk(dst, &rwc); 298 } 299 300 /* 301 * Something used the pte of a page under migration. We need to 302 * get to the page and wait until migration is finished. 303 * When we return from this function the fault will be retried. 304 */ 305 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 306 spinlock_t *ptl) 307 { 308 pte_t pte; 309 swp_entry_t entry; 310 311 spin_lock(ptl); 312 pte = *ptep; 313 if (!is_swap_pte(pte)) 314 goto out; 315 316 entry = pte_to_swp_entry(pte); 317 if (!is_migration_entry(entry)) 318 goto out; 319 320 migration_entry_wait_on_locked(entry, ptep, ptl); 321 return; 322 out: 323 pte_unmap_unlock(ptep, ptl); 324 } 325 326 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 327 unsigned long address) 328 { 329 spinlock_t *ptl = pte_lockptr(mm, pmd); 330 pte_t *ptep = pte_offset_map(pmd, address); 331 __migration_entry_wait(mm, ptep, ptl); 332 } 333 334 #ifdef CONFIG_HUGETLB_PAGE 335 /* 336 * The vma read lock must be held upon entry. Holding that lock prevents either 337 * the pte or the ptl from being freed. 338 * 339 * This function will release the vma lock before returning. 340 */ 341 void __migration_entry_wait_huge(struct vm_area_struct *vma, 342 pte_t *ptep, spinlock_t *ptl) 343 { 344 pte_t pte; 345 346 hugetlb_vma_assert_locked(vma); 347 spin_lock(ptl); 348 pte = huge_ptep_get(ptep); 349 350 if (unlikely(!is_hugetlb_entry_migration(pte))) { 351 spin_unlock(ptl); 352 hugetlb_vma_unlock_read(vma); 353 } else { 354 /* 355 * If migration entry existed, safe to release vma lock 356 * here because the pgtable page won't be freed without the 357 * pgtable lock released. See comment right above pgtable 358 * lock release in migration_entry_wait_on_locked(). 359 */ 360 hugetlb_vma_unlock_read(vma); 361 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 362 } 363 } 364 365 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 366 { 367 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 368 369 __migration_entry_wait_huge(vma, pte, ptl); 370 } 371 #endif 372 373 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 374 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 375 { 376 spinlock_t *ptl; 377 378 ptl = pmd_lock(mm, pmd); 379 if (!is_pmd_migration_entry(*pmd)) 380 goto unlock; 381 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 382 return; 383 unlock: 384 spin_unlock(ptl); 385 } 386 #endif 387 388 static int folio_expected_refs(struct address_space *mapping, 389 struct folio *folio) 390 { 391 int refs = 1; 392 if (!mapping) 393 return refs; 394 395 refs += folio_nr_pages(folio); 396 if (folio_test_private(folio)) 397 refs++; 398 399 return refs; 400 } 401 402 /* 403 * Replace the page in the mapping. 404 * 405 * The number of remaining references must be: 406 * 1 for anonymous pages without a mapping 407 * 2 for pages with a mapping 408 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 409 */ 410 int folio_migrate_mapping(struct address_space *mapping, 411 struct folio *newfolio, struct folio *folio, int extra_count) 412 { 413 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 414 struct zone *oldzone, *newzone; 415 int dirty; 416 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 417 long nr = folio_nr_pages(folio); 418 419 if (!mapping) { 420 /* Anonymous page without mapping */ 421 if (folio_ref_count(folio) != expected_count) 422 return -EAGAIN; 423 424 /* No turning back from here */ 425 newfolio->index = folio->index; 426 newfolio->mapping = folio->mapping; 427 if (folio_test_swapbacked(folio)) 428 __folio_set_swapbacked(newfolio); 429 430 return MIGRATEPAGE_SUCCESS; 431 } 432 433 oldzone = folio_zone(folio); 434 newzone = folio_zone(newfolio); 435 436 xas_lock_irq(&xas); 437 if (!folio_ref_freeze(folio, expected_count)) { 438 xas_unlock_irq(&xas); 439 return -EAGAIN; 440 } 441 442 /* 443 * Now we know that no one else is looking at the folio: 444 * no turning back from here. 445 */ 446 newfolio->index = folio->index; 447 newfolio->mapping = folio->mapping; 448 folio_ref_add(newfolio, nr); /* add cache reference */ 449 if (folio_test_swapbacked(folio)) { 450 __folio_set_swapbacked(newfolio); 451 if (folio_test_swapcache(folio)) { 452 folio_set_swapcache(newfolio); 453 newfolio->private = folio_get_private(folio); 454 } 455 } else { 456 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 457 } 458 459 /* Move dirty while page refs frozen and newpage not yet exposed */ 460 dirty = folio_test_dirty(folio); 461 if (dirty) { 462 folio_clear_dirty(folio); 463 folio_set_dirty(newfolio); 464 } 465 466 xas_store(&xas, newfolio); 467 468 /* 469 * Drop cache reference from old page by unfreezing 470 * to one less reference. 471 * We know this isn't the last reference. 472 */ 473 folio_ref_unfreeze(folio, expected_count - nr); 474 475 xas_unlock(&xas); 476 /* Leave irq disabled to prevent preemption while updating stats */ 477 478 /* 479 * If moved to a different zone then also account 480 * the page for that zone. Other VM counters will be 481 * taken care of when we establish references to the 482 * new page and drop references to the old page. 483 * 484 * Note that anonymous pages are accounted for 485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 486 * are mapped to swap space. 487 */ 488 if (newzone != oldzone) { 489 struct lruvec *old_lruvec, *new_lruvec; 490 struct mem_cgroup *memcg; 491 492 memcg = folio_memcg(folio); 493 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 494 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 495 496 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 497 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 498 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 499 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 500 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 501 } 502 #ifdef CONFIG_SWAP 503 if (folio_test_swapcache(folio)) { 504 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 505 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 506 } 507 #endif 508 if (dirty && mapping_can_writeback(mapping)) { 509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 513 } 514 } 515 local_irq_enable(); 516 517 return MIGRATEPAGE_SUCCESS; 518 } 519 EXPORT_SYMBOL(folio_migrate_mapping); 520 521 /* 522 * The expected number of remaining references is the same as that 523 * of folio_migrate_mapping(). 524 */ 525 int migrate_huge_page_move_mapping(struct address_space *mapping, 526 struct folio *dst, struct folio *src) 527 { 528 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 529 int expected_count; 530 531 xas_lock_irq(&xas); 532 expected_count = 2 + folio_has_private(src); 533 if (!folio_ref_freeze(src, expected_count)) { 534 xas_unlock_irq(&xas); 535 return -EAGAIN; 536 } 537 538 dst->index = src->index; 539 dst->mapping = src->mapping; 540 541 folio_get(dst); 542 543 xas_store(&xas, dst); 544 545 folio_ref_unfreeze(src, expected_count - 1); 546 547 xas_unlock_irq(&xas); 548 549 return MIGRATEPAGE_SUCCESS; 550 } 551 552 /* 553 * Copy the flags and some other ancillary information 554 */ 555 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 556 { 557 int cpupid; 558 559 if (folio_test_error(folio)) 560 folio_set_error(newfolio); 561 if (folio_test_referenced(folio)) 562 folio_set_referenced(newfolio); 563 if (folio_test_uptodate(folio)) 564 folio_mark_uptodate(newfolio); 565 if (folio_test_clear_active(folio)) { 566 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 567 folio_set_active(newfolio); 568 } else if (folio_test_clear_unevictable(folio)) 569 folio_set_unevictable(newfolio); 570 if (folio_test_workingset(folio)) 571 folio_set_workingset(newfolio); 572 if (folio_test_checked(folio)) 573 folio_set_checked(newfolio); 574 /* 575 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 576 * migration entries. We can still have PG_anon_exclusive set on an 577 * effectively unmapped and unreferenced first sub-pages of an 578 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 579 */ 580 if (folio_test_mappedtodisk(folio)) 581 folio_set_mappedtodisk(newfolio); 582 583 /* Move dirty on pages not done by folio_migrate_mapping() */ 584 if (folio_test_dirty(folio)) 585 folio_set_dirty(newfolio); 586 587 if (folio_test_young(folio)) 588 folio_set_young(newfolio); 589 if (folio_test_idle(folio)) 590 folio_set_idle(newfolio); 591 592 /* 593 * Copy NUMA information to the new page, to prevent over-eager 594 * future migrations of this same page. 595 */ 596 cpupid = page_cpupid_xchg_last(&folio->page, -1); 597 /* 598 * For memory tiering mode, when migrate between slow and fast 599 * memory node, reset cpupid, because that is used to record 600 * page access time in slow memory node. 601 */ 602 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 603 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 604 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 605 606 if (f_toptier != t_toptier) 607 cpupid = -1; 608 } 609 page_cpupid_xchg_last(&newfolio->page, cpupid); 610 611 folio_migrate_ksm(newfolio, folio); 612 /* 613 * Please do not reorder this without considering how mm/ksm.c's 614 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 615 */ 616 if (folio_test_swapcache(folio)) 617 folio_clear_swapcache(folio); 618 folio_clear_private(folio); 619 620 /* page->private contains hugetlb specific flags */ 621 if (!folio_test_hugetlb(folio)) 622 folio->private = NULL; 623 624 /* 625 * If any waiters have accumulated on the new page then 626 * wake them up. 627 */ 628 if (folio_test_writeback(newfolio)) 629 folio_end_writeback(newfolio); 630 631 /* 632 * PG_readahead shares the same bit with PG_reclaim. The above 633 * end_page_writeback() may clear PG_readahead mistakenly, so set the 634 * bit after that. 635 */ 636 if (folio_test_readahead(folio)) 637 folio_set_readahead(newfolio); 638 639 folio_copy_owner(newfolio, folio); 640 641 if (!folio_test_hugetlb(folio)) 642 mem_cgroup_migrate(folio, newfolio); 643 } 644 EXPORT_SYMBOL(folio_migrate_flags); 645 646 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 647 { 648 folio_copy(newfolio, folio); 649 folio_migrate_flags(newfolio, folio); 650 } 651 EXPORT_SYMBOL(folio_migrate_copy); 652 653 /************************************************************ 654 * Migration functions 655 ***********************************************************/ 656 657 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 658 struct folio *src, enum migrate_mode mode, int extra_count) 659 { 660 int rc; 661 662 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 663 664 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 665 666 if (rc != MIGRATEPAGE_SUCCESS) 667 return rc; 668 669 if (mode != MIGRATE_SYNC_NO_COPY) 670 folio_migrate_copy(dst, src); 671 else 672 folio_migrate_flags(dst, src); 673 return MIGRATEPAGE_SUCCESS; 674 } 675 676 /** 677 * migrate_folio() - Simple folio migration. 678 * @mapping: The address_space containing the folio. 679 * @dst: The folio to migrate the data to. 680 * @src: The folio containing the current data. 681 * @mode: How to migrate the page. 682 * 683 * Common logic to directly migrate a single LRU folio suitable for 684 * folios that do not use PagePrivate/PagePrivate2. 685 * 686 * Folios are locked upon entry and exit. 687 */ 688 int migrate_folio(struct address_space *mapping, struct folio *dst, 689 struct folio *src, enum migrate_mode mode) 690 { 691 return migrate_folio_extra(mapping, dst, src, mode, 0); 692 } 693 EXPORT_SYMBOL(migrate_folio); 694 695 #ifdef CONFIG_BLOCK 696 /* Returns true if all buffers are successfully locked */ 697 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 698 enum migrate_mode mode) 699 { 700 struct buffer_head *bh = head; 701 702 /* Simple case, sync compaction */ 703 if (mode != MIGRATE_ASYNC) { 704 do { 705 lock_buffer(bh); 706 bh = bh->b_this_page; 707 708 } while (bh != head); 709 710 return true; 711 } 712 713 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 714 do { 715 if (!trylock_buffer(bh)) { 716 /* 717 * We failed to lock the buffer and cannot stall in 718 * async migration. Release the taken locks 719 */ 720 struct buffer_head *failed_bh = bh; 721 bh = head; 722 while (bh != failed_bh) { 723 unlock_buffer(bh); 724 bh = bh->b_this_page; 725 } 726 return false; 727 } 728 729 bh = bh->b_this_page; 730 } while (bh != head); 731 return true; 732 } 733 734 static int __buffer_migrate_folio(struct address_space *mapping, 735 struct folio *dst, struct folio *src, enum migrate_mode mode, 736 bool check_refs) 737 { 738 struct buffer_head *bh, *head; 739 int rc; 740 int expected_count; 741 742 head = folio_buffers(src); 743 if (!head) 744 return migrate_folio(mapping, dst, src, mode); 745 746 /* Check whether page does not have extra refs before we do more work */ 747 expected_count = folio_expected_refs(mapping, src); 748 if (folio_ref_count(src) != expected_count) 749 return -EAGAIN; 750 751 if (!buffer_migrate_lock_buffers(head, mode)) 752 return -EAGAIN; 753 754 if (check_refs) { 755 bool busy; 756 bool invalidated = false; 757 758 recheck_buffers: 759 busy = false; 760 spin_lock(&mapping->private_lock); 761 bh = head; 762 do { 763 if (atomic_read(&bh->b_count)) { 764 busy = true; 765 break; 766 } 767 bh = bh->b_this_page; 768 } while (bh != head); 769 if (busy) { 770 if (invalidated) { 771 rc = -EAGAIN; 772 goto unlock_buffers; 773 } 774 spin_unlock(&mapping->private_lock); 775 invalidate_bh_lrus(); 776 invalidated = true; 777 goto recheck_buffers; 778 } 779 } 780 781 rc = folio_migrate_mapping(mapping, dst, src, 0); 782 if (rc != MIGRATEPAGE_SUCCESS) 783 goto unlock_buffers; 784 785 folio_attach_private(dst, folio_detach_private(src)); 786 787 bh = head; 788 do { 789 set_bh_page(bh, &dst->page, bh_offset(bh)); 790 bh = bh->b_this_page; 791 } while (bh != head); 792 793 if (mode != MIGRATE_SYNC_NO_COPY) 794 folio_migrate_copy(dst, src); 795 else 796 folio_migrate_flags(dst, src); 797 798 rc = MIGRATEPAGE_SUCCESS; 799 unlock_buffers: 800 if (check_refs) 801 spin_unlock(&mapping->private_lock); 802 bh = head; 803 do { 804 unlock_buffer(bh); 805 bh = bh->b_this_page; 806 } while (bh != head); 807 808 return rc; 809 } 810 811 /** 812 * buffer_migrate_folio() - Migration function for folios with buffers. 813 * @mapping: The address space containing @src. 814 * @dst: The folio to migrate to. 815 * @src: The folio to migrate from. 816 * @mode: How to migrate the folio. 817 * 818 * This function can only be used if the underlying filesystem guarantees 819 * that no other references to @src exist. For example attached buffer 820 * heads are accessed only under the folio lock. If your filesystem cannot 821 * provide this guarantee, buffer_migrate_folio_norefs() may be more 822 * appropriate. 823 * 824 * Return: 0 on success or a negative errno on failure. 825 */ 826 int buffer_migrate_folio(struct address_space *mapping, 827 struct folio *dst, struct folio *src, enum migrate_mode mode) 828 { 829 return __buffer_migrate_folio(mapping, dst, src, mode, false); 830 } 831 EXPORT_SYMBOL(buffer_migrate_folio); 832 833 /** 834 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 835 * @mapping: The address space containing @src. 836 * @dst: The folio to migrate to. 837 * @src: The folio to migrate from. 838 * @mode: How to migrate the folio. 839 * 840 * Like buffer_migrate_folio() except that this variant is more careful 841 * and checks that there are also no buffer head references. This function 842 * is the right one for mappings where buffer heads are directly looked 843 * up and referenced (such as block device mappings). 844 * 845 * Return: 0 on success or a negative errno on failure. 846 */ 847 int buffer_migrate_folio_norefs(struct address_space *mapping, 848 struct folio *dst, struct folio *src, enum migrate_mode mode) 849 { 850 return __buffer_migrate_folio(mapping, dst, src, mode, true); 851 } 852 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 853 #endif 854 855 int filemap_migrate_folio(struct address_space *mapping, 856 struct folio *dst, struct folio *src, enum migrate_mode mode) 857 { 858 int ret; 859 860 ret = folio_migrate_mapping(mapping, dst, src, 0); 861 if (ret != MIGRATEPAGE_SUCCESS) 862 return ret; 863 864 if (folio_get_private(src)) 865 folio_attach_private(dst, folio_detach_private(src)); 866 867 if (mode != MIGRATE_SYNC_NO_COPY) 868 folio_migrate_copy(dst, src); 869 else 870 folio_migrate_flags(dst, src); 871 return MIGRATEPAGE_SUCCESS; 872 } 873 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 874 875 /* 876 * Writeback a folio to clean the dirty state 877 */ 878 static int writeout(struct address_space *mapping, struct folio *folio) 879 { 880 struct writeback_control wbc = { 881 .sync_mode = WB_SYNC_NONE, 882 .nr_to_write = 1, 883 .range_start = 0, 884 .range_end = LLONG_MAX, 885 .for_reclaim = 1 886 }; 887 int rc; 888 889 if (!mapping->a_ops->writepage) 890 /* No write method for the address space */ 891 return -EINVAL; 892 893 if (!folio_clear_dirty_for_io(folio)) 894 /* Someone else already triggered a write */ 895 return -EAGAIN; 896 897 /* 898 * A dirty folio may imply that the underlying filesystem has 899 * the folio on some queue. So the folio must be clean for 900 * migration. Writeout may mean we lose the lock and the 901 * folio state is no longer what we checked for earlier. 902 * At this point we know that the migration attempt cannot 903 * be successful. 904 */ 905 remove_migration_ptes(folio, folio, false); 906 907 rc = mapping->a_ops->writepage(&folio->page, &wbc); 908 909 if (rc != AOP_WRITEPAGE_ACTIVATE) 910 /* unlocked. Relock */ 911 folio_lock(folio); 912 913 return (rc < 0) ? -EIO : -EAGAIN; 914 } 915 916 /* 917 * Default handling if a filesystem does not provide a migration function. 918 */ 919 static int fallback_migrate_folio(struct address_space *mapping, 920 struct folio *dst, struct folio *src, enum migrate_mode mode) 921 { 922 if (folio_test_dirty(src)) { 923 /* Only writeback folios in full synchronous migration */ 924 switch (mode) { 925 case MIGRATE_SYNC: 926 case MIGRATE_SYNC_NO_COPY: 927 break; 928 default: 929 return -EBUSY; 930 } 931 return writeout(mapping, src); 932 } 933 934 /* 935 * Buffers may be managed in a filesystem specific way. 936 * We must have no buffers or drop them. 937 */ 938 if (folio_test_private(src) && 939 !filemap_release_folio(src, GFP_KERNEL)) 940 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 941 942 return migrate_folio(mapping, dst, src, mode); 943 } 944 945 /* 946 * Move a page to a newly allocated page 947 * The page is locked and all ptes have been successfully removed. 948 * 949 * The new page will have replaced the old page if this function 950 * is successful. 951 * 952 * Return value: 953 * < 0 - error code 954 * MIGRATEPAGE_SUCCESS - success 955 */ 956 static int move_to_new_folio(struct folio *dst, struct folio *src, 957 enum migrate_mode mode) 958 { 959 int rc = -EAGAIN; 960 bool is_lru = !__PageMovable(&src->page); 961 962 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 963 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 964 965 if (likely(is_lru)) { 966 struct address_space *mapping = folio_mapping(src); 967 968 if (!mapping) 969 rc = migrate_folio(mapping, dst, src, mode); 970 else if (mapping->a_ops->migrate_folio) 971 /* 972 * Most folios have a mapping and most filesystems 973 * provide a migrate_folio callback. Anonymous folios 974 * are part of swap space which also has its own 975 * migrate_folio callback. This is the most common path 976 * for page migration. 977 */ 978 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 979 mode); 980 else 981 rc = fallback_migrate_folio(mapping, dst, src, mode); 982 } else { 983 const struct movable_operations *mops; 984 985 /* 986 * In case of non-lru page, it could be released after 987 * isolation step. In that case, we shouldn't try migration. 988 */ 989 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 990 if (!folio_test_movable(src)) { 991 rc = MIGRATEPAGE_SUCCESS; 992 folio_clear_isolated(src); 993 goto out; 994 } 995 996 mops = folio_movable_ops(src); 997 rc = mops->migrate_page(&dst->page, &src->page, mode); 998 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 999 !folio_test_isolated(src)); 1000 } 1001 1002 /* 1003 * When successful, old pagecache src->mapping must be cleared before 1004 * src is freed; but stats require that PageAnon be left as PageAnon. 1005 */ 1006 if (rc == MIGRATEPAGE_SUCCESS) { 1007 if (__PageMovable(&src->page)) { 1008 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1009 1010 /* 1011 * We clear PG_movable under page_lock so any compactor 1012 * cannot try to migrate this page. 1013 */ 1014 folio_clear_isolated(src); 1015 } 1016 1017 /* 1018 * Anonymous and movable src->mapping will be cleared by 1019 * free_pages_prepare so don't reset it here for keeping 1020 * the type to work PageAnon, for example. 1021 */ 1022 if (!folio_mapping_flags(src)) 1023 src->mapping = NULL; 1024 1025 if (likely(!folio_is_zone_device(dst))) 1026 flush_dcache_folio(dst); 1027 } 1028 out: 1029 return rc; 1030 } 1031 1032 /* 1033 * To record some information during migration, we use some unused 1034 * fields (mapping and private) of struct folio of the newly allocated 1035 * destination folio. This is safe because nobody is using them 1036 * except us. 1037 */ 1038 union migration_ptr { 1039 struct anon_vma *anon_vma; 1040 struct address_space *mapping; 1041 }; 1042 static void __migrate_folio_record(struct folio *dst, 1043 unsigned long page_was_mapped, 1044 struct anon_vma *anon_vma) 1045 { 1046 union migration_ptr ptr = { .anon_vma = anon_vma }; 1047 dst->mapping = ptr.mapping; 1048 dst->private = (void *)page_was_mapped; 1049 } 1050 1051 static void __migrate_folio_extract(struct folio *dst, 1052 int *page_was_mappedp, 1053 struct anon_vma **anon_vmap) 1054 { 1055 union migration_ptr ptr = { .mapping = dst->mapping }; 1056 *anon_vmap = ptr.anon_vma; 1057 *page_was_mappedp = (unsigned long)dst->private; 1058 dst->mapping = NULL; 1059 dst->private = NULL; 1060 } 1061 1062 /* Restore the source folio to the original state upon failure */ 1063 static void migrate_folio_undo_src(struct folio *src, 1064 int page_was_mapped, 1065 struct anon_vma *anon_vma, 1066 bool locked, 1067 struct list_head *ret) 1068 { 1069 if (page_was_mapped) 1070 remove_migration_ptes(src, src, false); 1071 /* Drop an anon_vma reference if we took one */ 1072 if (anon_vma) 1073 put_anon_vma(anon_vma); 1074 if (locked) 1075 folio_unlock(src); 1076 if (ret) 1077 list_move_tail(&src->lru, ret); 1078 } 1079 1080 /* Restore the destination folio to the original state upon failure */ 1081 static void migrate_folio_undo_dst(struct folio *dst, 1082 bool locked, 1083 free_page_t put_new_page, 1084 unsigned long private) 1085 { 1086 if (locked) 1087 folio_unlock(dst); 1088 if (put_new_page) 1089 put_new_page(&dst->page, private); 1090 else 1091 folio_put(dst); 1092 } 1093 1094 /* Cleanup src folio upon migration success */ 1095 static void migrate_folio_done(struct folio *src, 1096 enum migrate_reason reason) 1097 { 1098 /* 1099 * Compaction can migrate also non-LRU pages which are 1100 * not accounted to NR_ISOLATED_*. They can be recognized 1101 * as __PageMovable 1102 */ 1103 if (likely(!__folio_test_movable(src))) 1104 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1105 folio_is_file_lru(src), -folio_nr_pages(src)); 1106 1107 if (reason != MR_MEMORY_FAILURE) 1108 /* We release the page in page_handle_poison. */ 1109 folio_put(src); 1110 } 1111 1112 /* Obtain the lock on page, remove all ptes. */ 1113 static int migrate_folio_unmap(new_page_t get_new_page, free_page_t put_new_page, 1114 unsigned long private, struct folio *src, 1115 struct folio **dstp, int force, bool avoid_force_lock, 1116 enum migrate_mode mode, enum migrate_reason reason, 1117 struct list_head *ret) 1118 { 1119 struct folio *dst; 1120 int rc = -EAGAIN; 1121 struct page *newpage = NULL; 1122 int page_was_mapped = 0; 1123 struct anon_vma *anon_vma = NULL; 1124 bool is_lru = !__PageMovable(&src->page); 1125 bool locked = false; 1126 bool dst_locked = false; 1127 1128 if (folio_ref_count(src) == 1) { 1129 /* Folio was freed from under us. So we are done. */ 1130 folio_clear_active(src); 1131 folio_clear_unevictable(src); 1132 /* free_pages_prepare() will clear PG_isolated. */ 1133 list_del(&src->lru); 1134 migrate_folio_done(src, reason); 1135 return MIGRATEPAGE_SUCCESS; 1136 } 1137 1138 newpage = get_new_page(&src->page, private); 1139 if (!newpage) 1140 return -ENOMEM; 1141 dst = page_folio(newpage); 1142 *dstp = dst; 1143 1144 dst->private = NULL; 1145 1146 if (!folio_trylock(src)) { 1147 if (!force || mode == MIGRATE_ASYNC) 1148 goto out; 1149 1150 /* 1151 * It's not safe for direct compaction to call lock_page. 1152 * For example, during page readahead pages are added locked 1153 * to the LRU. Later, when the IO completes the pages are 1154 * marked uptodate and unlocked. However, the queueing 1155 * could be merging multiple pages for one bio (e.g. 1156 * mpage_readahead). If an allocation happens for the 1157 * second or third page, the process can end up locking 1158 * the same page twice and deadlocking. Rather than 1159 * trying to be clever about what pages can be locked, 1160 * avoid the use of lock_page for direct compaction 1161 * altogether. 1162 */ 1163 if (current->flags & PF_MEMALLOC) 1164 goto out; 1165 1166 /* 1167 * We have locked some folios and are going to wait to lock 1168 * this folio. To avoid a potential deadlock, let's bail 1169 * out and not do that. The locked folios will be moved and 1170 * unlocked, then we can wait to lock this folio. 1171 */ 1172 if (avoid_force_lock) { 1173 rc = -EDEADLOCK; 1174 goto out; 1175 } 1176 1177 folio_lock(src); 1178 } 1179 locked = true; 1180 1181 if (folio_test_writeback(src)) { 1182 /* 1183 * Only in the case of a full synchronous migration is it 1184 * necessary to wait for PageWriteback. In the async case, 1185 * the retry loop is too short and in the sync-light case, 1186 * the overhead of stalling is too much 1187 */ 1188 switch (mode) { 1189 case MIGRATE_SYNC: 1190 case MIGRATE_SYNC_NO_COPY: 1191 break; 1192 default: 1193 rc = -EBUSY; 1194 goto out; 1195 } 1196 if (!force) 1197 goto out; 1198 folio_wait_writeback(src); 1199 } 1200 1201 /* 1202 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1203 * we cannot notice that anon_vma is freed while we migrate a page. 1204 * This get_anon_vma() delays freeing anon_vma pointer until the end 1205 * of migration. File cache pages are no problem because of page_lock() 1206 * File Caches may use write_page() or lock_page() in migration, then, 1207 * just care Anon page here. 1208 * 1209 * Only folio_get_anon_vma() understands the subtleties of 1210 * getting a hold on an anon_vma from outside one of its mms. 1211 * But if we cannot get anon_vma, then we won't need it anyway, 1212 * because that implies that the anon page is no longer mapped 1213 * (and cannot be remapped so long as we hold the page lock). 1214 */ 1215 if (folio_test_anon(src) && !folio_test_ksm(src)) 1216 anon_vma = folio_get_anon_vma(src); 1217 1218 /* 1219 * Block others from accessing the new page when we get around to 1220 * establishing additional references. We are usually the only one 1221 * holding a reference to dst at this point. We used to have a BUG 1222 * here if folio_trylock(dst) fails, but would like to allow for 1223 * cases where there might be a race with the previous use of dst. 1224 * This is much like races on refcount of oldpage: just don't BUG(). 1225 */ 1226 if (unlikely(!folio_trylock(dst))) 1227 goto out; 1228 dst_locked = true; 1229 1230 if (unlikely(!is_lru)) { 1231 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1232 return MIGRATEPAGE_UNMAP; 1233 } 1234 1235 /* 1236 * Corner case handling: 1237 * 1. When a new swap-cache page is read into, it is added to the LRU 1238 * and treated as swapcache but it has no rmap yet. 1239 * Calling try_to_unmap() against a src->mapping==NULL page will 1240 * trigger a BUG. So handle it here. 1241 * 2. An orphaned page (see truncate_cleanup_page) might have 1242 * fs-private metadata. The page can be picked up due to memory 1243 * offlining. Everywhere else except page reclaim, the page is 1244 * invisible to the vm, so the page can not be migrated. So try to 1245 * free the metadata, so the page can be freed. 1246 */ 1247 if (!src->mapping) { 1248 if (folio_test_private(src)) { 1249 try_to_free_buffers(src); 1250 goto out; 1251 } 1252 } else if (folio_mapped(src)) { 1253 /* Establish migration ptes */ 1254 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1255 !folio_test_ksm(src) && !anon_vma, src); 1256 try_to_migrate(src, TTU_BATCH_FLUSH); 1257 page_was_mapped = 1; 1258 } 1259 1260 if (!folio_mapped(src)) { 1261 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1262 return MIGRATEPAGE_UNMAP; 1263 } 1264 1265 out: 1266 /* 1267 * A folio that has not been unmapped will be restored to 1268 * right list unless we want to retry. 1269 */ 1270 if (rc == -EAGAIN || rc == -EDEADLOCK) 1271 ret = NULL; 1272 1273 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret); 1274 migrate_folio_undo_dst(dst, dst_locked, put_new_page, private); 1275 1276 return rc; 1277 } 1278 1279 /* Migrate the folio to the newly allocated folio in dst. */ 1280 static int migrate_folio_move(free_page_t put_new_page, unsigned long private, 1281 struct folio *src, struct folio *dst, 1282 enum migrate_mode mode, enum migrate_reason reason, 1283 struct list_head *ret) 1284 { 1285 int rc; 1286 int page_was_mapped = 0; 1287 struct anon_vma *anon_vma = NULL; 1288 bool is_lru = !__PageMovable(&src->page); 1289 struct list_head *prev; 1290 1291 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1292 prev = dst->lru.prev; 1293 list_del(&dst->lru); 1294 1295 rc = move_to_new_folio(dst, src, mode); 1296 if (rc) 1297 goto out; 1298 1299 if (unlikely(!is_lru)) 1300 goto out_unlock_both; 1301 1302 /* 1303 * When successful, push dst to LRU immediately: so that if it 1304 * turns out to be an mlocked page, remove_migration_ptes() will 1305 * automatically build up the correct dst->mlock_count for it. 1306 * 1307 * We would like to do something similar for the old page, when 1308 * unsuccessful, and other cases when a page has been temporarily 1309 * isolated from the unevictable LRU: but this case is the easiest. 1310 */ 1311 folio_add_lru(dst); 1312 if (page_was_mapped) 1313 lru_add_drain(); 1314 1315 if (page_was_mapped) 1316 remove_migration_ptes(src, dst, false); 1317 1318 out_unlock_both: 1319 folio_unlock(dst); 1320 set_page_owner_migrate_reason(&dst->page, reason); 1321 /* 1322 * If migration is successful, decrease refcount of dst, 1323 * which will not free the page because new page owner increased 1324 * refcounter. 1325 */ 1326 folio_put(dst); 1327 1328 /* 1329 * A folio that has been migrated has all references removed 1330 * and will be freed. 1331 */ 1332 list_del(&src->lru); 1333 /* Drop an anon_vma reference if we took one */ 1334 if (anon_vma) 1335 put_anon_vma(anon_vma); 1336 folio_unlock(src); 1337 migrate_folio_done(src, reason); 1338 1339 return rc; 1340 out: 1341 /* 1342 * A folio that has not been migrated will be restored to 1343 * right list unless we want to retry. 1344 */ 1345 if (rc == -EAGAIN) { 1346 list_add(&dst->lru, prev); 1347 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1348 return rc; 1349 } 1350 1351 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret); 1352 migrate_folio_undo_dst(dst, true, put_new_page, private); 1353 1354 return rc; 1355 } 1356 1357 /* 1358 * Counterpart of unmap_and_move_page() for hugepage migration. 1359 * 1360 * This function doesn't wait the completion of hugepage I/O 1361 * because there is no race between I/O and migration for hugepage. 1362 * Note that currently hugepage I/O occurs only in direct I/O 1363 * where no lock is held and PG_writeback is irrelevant, 1364 * and writeback status of all subpages are counted in the reference 1365 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1366 * under direct I/O, the reference of the head page is 512 and a bit more.) 1367 * This means that when we try to migrate hugepage whose subpages are 1368 * doing direct I/O, some references remain after try_to_unmap() and 1369 * hugepage migration fails without data corruption. 1370 * 1371 * There is also no race when direct I/O is issued on the page under migration, 1372 * because then pte is replaced with migration swap entry and direct I/O code 1373 * will wait in the page fault for migration to complete. 1374 */ 1375 static int unmap_and_move_huge_page(new_page_t get_new_page, 1376 free_page_t put_new_page, unsigned long private, 1377 struct page *hpage, int force, 1378 enum migrate_mode mode, int reason, 1379 struct list_head *ret) 1380 { 1381 struct folio *dst, *src = page_folio(hpage); 1382 int rc = -EAGAIN; 1383 int page_was_mapped = 0; 1384 struct page *new_hpage; 1385 struct anon_vma *anon_vma = NULL; 1386 struct address_space *mapping = NULL; 1387 1388 if (folio_ref_count(src) == 1) { 1389 /* page was freed from under us. So we are done. */ 1390 folio_putback_active_hugetlb(src); 1391 return MIGRATEPAGE_SUCCESS; 1392 } 1393 1394 new_hpage = get_new_page(hpage, private); 1395 if (!new_hpage) 1396 return -ENOMEM; 1397 dst = page_folio(new_hpage); 1398 1399 if (!folio_trylock(src)) { 1400 if (!force) 1401 goto out; 1402 switch (mode) { 1403 case MIGRATE_SYNC: 1404 case MIGRATE_SYNC_NO_COPY: 1405 break; 1406 default: 1407 goto out; 1408 } 1409 folio_lock(src); 1410 } 1411 1412 /* 1413 * Check for pages which are in the process of being freed. Without 1414 * folio_mapping() set, hugetlbfs specific move page routine will not 1415 * be called and we could leak usage counts for subpools. 1416 */ 1417 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1418 rc = -EBUSY; 1419 goto out_unlock; 1420 } 1421 1422 if (folio_test_anon(src)) 1423 anon_vma = folio_get_anon_vma(src); 1424 1425 if (unlikely(!folio_trylock(dst))) 1426 goto put_anon; 1427 1428 if (folio_mapped(src)) { 1429 enum ttu_flags ttu = 0; 1430 1431 if (!folio_test_anon(src)) { 1432 /* 1433 * In shared mappings, try_to_unmap could potentially 1434 * call huge_pmd_unshare. Because of this, take 1435 * semaphore in write mode here and set TTU_RMAP_LOCKED 1436 * to let lower levels know we have taken the lock. 1437 */ 1438 mapping = hugetlb_page_mapping_lock_write(hpage); 1439 if (unlikely(!mapping)) 1440 goto unlock_put_anon; 1441 1442 ttu = TTU_RMAP_LOCKED; 1443 } 1444 1445 try_to_migrate(src, ttu); 1446 page_was_mapped = 1; 1447 1448 if (ttu & TTU_RMAP_LOCKED) 1449 i_mmap_unlock_write(mapping); 1450 } 1451 1452 if (!folio_mapped(src)) 1453 rc = move_to_new_folio(dst, src, mode); 1454 1455 if (page_was_mapped) 1456 remove_migration_ptes(src, 1457 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1458 1459 unlock_put_anon: 1460 folio_unlock(dst); 1461 1462 put_anon: 1463 if (anon_vma) 1464 put_anon_vma(anon_vma); 1465 1466 if (rc == MIGRATEPAGE_SUCCESS) { 1467 move_hugetlb_state(src, dst, reason); 1468 put_new_page = NULL; 1469 } 1470 1471 out_unlock: 1472 folio_unlock(src); 1473 out: 1474 if (rc == MIGRATEPAGE_SUCCESS) 1475 folio_putback_active_hugetlb(src); 1476 else if (rc != -EAGAIN) 1477 list_move_tail(&src->lru, ret); 1478 1479 /* 1480 * If migration was not successful and there's a freeing callback, use 1481 * it. Otherwise, put_page() will drop the reference grabbed during 1482 * isolation. 1483 */ 1484 if (put_new_page) 1485 put_new_page(new_hpage, private); 1486 else 1487 folio_putback_active_hugetlb(dst); 1488 1489 return rc; 1490 } 1491 1492 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1493 { 1494 int rc; 1495 1496 folio_lock(folio); 1497 rc = split_folio_to_list(folio, split_folios); 1498 folio_unlock(folio); 1499 if (!rc) 1500 list_move_tail(&folio->lru, split_folios); 1501 1502 return rc; 1503 } 1504 1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1506 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1507 #else 1508 #define NR_MAX_BATCHED_MIGRATION 512 1509 #endif 1510 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1511 1512 struct migrate_pages_stats { 1513 int nr_succeeded; /* Normal and large folios migrated successfully, in 1514 units of base pages */ 1515 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1516 units of base pages. Untried folios aren't counted */ 1517 int nr_thp_succeeded; /* THP migrated successfully */ 1518 int nr_thp_failed; /* THP failed to be migrated */ 1519 int nr_thp_split; /* THP split before migrating */ 1520 }; 1521 1522 /* 1523 * Returns the number of hugetlb folios that were not migrated, or an error code 1524 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1525 * any more because the list has become empty or no retryable hugetlb folios 1526 * exist any more. It is caller's responsibility to call putback_movable_pages() 1527 * only if ret != 0. 1528 */ 1529 static int migrate_hugetlbs(struct list_head *from, new_page_t get_new_page, 1530 free_page_t put_new_page, unsigned long private, 1531 enum migrate_mode mode, int reason, 1532 struct migrate_pages_stats *stats, 1533 struct list_head *ret_folios) 1534 { 1535 int retry = 1; 1536 int nr_failed = 0; 1537 int nr_retry_pages = 0; 1538 int pass = 0; 1539 struct folio *folio, *folio2; 1540 int rc, nr_pages; 1541 1542 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1543 retry = 0; 1544 nr_retry_pages = 0; 1545 1546 list_for_each_entry_safe(folio, folio2, from, lru) { 1547 if (!folio_test_hugetlb(folio)) 1548 continue; 1549 1550 nr_pages = folio_nr_pages(folio); 1551 1552 cond_resched(); 1553 1554 /* 1555 * Migratability of hugepages depends on architectures and 1556 * their size. This check is necessary because some callers 1557 * of hugepage migration like soft offline and memory 1558 * hotremove don't walk through page tables or check whether 1559 * the hugepage is pmd-based or not before kicking migration. 1560 */ 1561 if (!hugepage_migration_supported(folio_hstate(folio))) { 1562 nr_failed++; 1563 stats->nr_failed_pages += nr_pages; 1564 list_move_tail(&folio->lru, ret_folios); 1565 continue; 1566 } 1567 1568 rc = unmap_and_move_huge_page(get_new_page, 1569 put_new_page, private, 1570 &folio->page, pass > 2, mode, 1571 reason, ret_folios); 1572 /* 1573 * The rules are: 1574 * Success: hugetlb folio will be put back 1575 * -EAGAIN: stay on the from list 1576 * -ENOMEM: stay on the from list 1577 * Other errno: put on ret_folios list 1578 */ 1579 switch(rc) { 1580 case -ENOMEM: 1581 /* 1582 * When memory is low, don't bother to try to migrate 1583 * other folios, just exit. 1584 */ 1585 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1586 return -ENOMEM; 1587 case -EAGAIN: 1588 retry++; 1589 nr_retry_pages += nr_pages; 1590 break; 1591 case MIGRATEPAGE_SUCCESS: 1592 stats->nr_succeeded += nr_pages; 1593 break; 1594 default: 1595 /* 1596 * Permanent failure (-EBUSY, etc.): 1597 * unlike -EAGAIN case, the failed folio is 1598 * removed from migration folio list and not 1599 * retried in the next outer loop. 1600 */ 1601 nr_failed++; 1602 stats->nr_failed_pages += nr_pages; 1603 break; 1604 } 1605 } 1606 } 1607 /* 1608 * nr_failed is number of hugetlb folios failed to be migrated. After 1609 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1610 * folios as failed. 1611 */ 1612 nr_failed += retry; 1613 stats->nr_failed_pages += nr_retry_pages; 1614 1615 return nr_failed; 1616 } 1617 1618 /* 1619 * migrate_pages_batch() first unmaps folios in the from list as many as 1620 * possible, then move the unmapped folios. 1621 */ 1622 static int migrate_pages_batch(struct list_head *from, new_page_t get_new_page, 1623 free_page_t put_new_page, unsigned long private, 1624 enum migrate_mode mode, int reason, struct list_head *ret_folios, 1625 struct migrate_pages_stats *stats) 1626 { 1627 int retry; 1628 int large_retry = 1; 1629 int thp_retry = 1; 1630 int nr_failed = 0; 1631 int nr_retry_pages = 0; 1632 int nr_large_failed = 0; 1633 int pass = 0; 1634 bool is_large = false; 1635 bool is_thp = false; 1636 struct folio *folio, *folio2, *dst = NULL, *dst2; 1637 int rc, rc_saved, nr_pages; 1638 LIST_HEAD(split_folios); 1639 LIST_HEAD(unmap_folios); 1640 LIST_HEAD(dst_folios); 1641 bool nosplit = (reason == MR_NUMA_MISPLACED); 1642 bool no_split_folio_counting = false; 1643 bool avoid_force_lock; 1644 1645 retry: 1646 rc_saved = 0; 1647 avoid_force_lock = false; 1648 retry = 1; 1649 for (pass = 0; 1650 pass < NR_MAX_MIGRATE_PAGES_RETRY && (retry || large_retry); 1651 pass++) { 1652 retry = 0; 1653 large_retry = 0; 1654 thp_retry = 0; 1655 nr_retry_pages = 0; 1656 1657 list_for_each_entry_safe(folio, folio2, from, lru) { 1658 /* 1659 * Large folio statistics is based on the source large 1660 * folio. Capture required information that might get 1661 * lost during migration. 1662 */ 1663 is_large = folio_test_large(folio); 1664 is_thp = is_large && folio_test_pmd_mappable(folio); 1665 nr_pages = folio_nr_pages(folio); 1666 1667 cond_resched(); 1668 1669 /* 1670 * Large folio migration might be unsupported or 1671 * the allocation might be failed so we should retry 1672 * on the same folio with the large folio split 1673 * to normal folios. 1674 * 1675 * Split folios are put in split_folios, and 1676 * we will migrate them after the rest of the 1677 * list is processed. 1678 */ 1679 if (!thp_migration_supported() && is_thp) { 1680 nr_large_failed++; 1681 stats->nr_thp_failed++; 1682 if (!try_split_folio(folio, &split_folios)) { 1683 stats->nr_thp_split++; 1684 continue; 1685 } 1686 stats->nr_failed_pages += nr_pages; 1687 list_move_tail(&folio->lru, ret_folios); 1688 continue; 1689 } 1690 1691 rc = migrate_folio_unmap(get_new_page, put_new_page, private, 1692 folio, &dst, pass > 2, avoid_force_lock, 1693 mode, reason, ret_folios); 1694 /* 1695 * The rules are: 1696 * Success: folio will be freed 1697 * Unmap: folio will be put on unmap_folios list, 1698 * dst folio put on dst_folios list 1699 * -EAGAIN: stay on the from list 1700 * -EDEADLOCK: stay on the from list 1701 * -ENOMEM: stay on the from list 1702 * Other errno: put on ret_folios list 1703 */ 1704 switch(rc) { 1705 case -ENOMEM: 1706 /* 1707 * When memory is low, don't bother to try to migrate 1708 * other folios, move unmapped folios, then exit. 1709 */ 1710 if (is_large) { 1711 nr_large_failed++; 1712 stats->nr_thp_failed += is_thp; 1713 /* Large folio NUMA faulting doesn't split to retry. */ 1714 if (!nosplit) { 1715 int ret = try_split_folio(folio, &split_folios); 1716 1717 if (!ret) { 1718 stats->nr_thp_split += is_thp; 1719 break; 1720 } else if (reason == MR_LONGTERM_PIN && 1721 ret == -EAGAIN) { 1722 /* 1723 * Try again to split large folio to 1724 * mitigate the failure of longterm pinning. 1725 */ 1726 large_retry++; 1727 thp_retry += is_thp; 1728 nr_retry_pages += nr_pages; 1729 break; 1730 } 1731 } 1732 } else if (!no_split_folio_counting) { 1733 nr_failed++; 1734 } 1735 1736 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1737 /* 1738 * There might be some split folios of fail-to-migrate large 1739 * folios left in split_folios list. Move them to ret_folios 1740 * list so that they could be put back to the right list by 1741 * the caller otherwise the folio refcnt will be leaked. 1742 */ 1743 list_splice_init(&split_folios, ret_folios); 1744 /* nr_failed isn't updated for not used */ 1745 nr_large_failed += large_retry; 1746 stats->nr_thp_failed += thp_retry; 1747 rc_saved = rc; 1748 if (list_empty(&unmap_folios)) 1749 goto out; 1750 else 1751 goto move; 1752 case -EDEADLOCK: 1753 /* 1754 * The folio cannot be locked for potential deadlock. 1755 * Go move (and unlock) all locked folios. Then we can 1756 * try again. 1757 */ 1758 rc_saved = rc; 1759 goto move; 1760 case -EAGAIN: 1761 if (is_large) { 1762 large_retry++; 1763 thp_retry += is_thp; 1764 } else if (!no_split_folio_counting) { 1765 retry++; 1766 } 1767 nr_retry_pages += nr_pages; 1768 break; 1769 case MIGRATEPAGE_SUCCESS: 1770 stats->nr_succeeded += nr_pages; 1771 stats->nr_thp_succeeded += is_thp; 1772 break; 1773 case MIGRATEPAGE_UNMAP: 1774 /* 1775 * We have locked some folios, don't force lock 1776 * to avoid deadlock. 1777 */ 1778 avoid_force_lock = true; 1779 list_move_tail(&folio->lru, &unmap_folios); 1780 list_add_tail(&dst->lru, &dst_folios); 1781 break; 1782 default: 1783 /* 1784 * Permanent failure (-EBUSY, etc.): 1785 * unlike -EAGAIN case, the failed folio is 1786 * removed from migration folio list and not 1787 * retried in the next outer loop. 1788 */ 1789 if (is_large) { 1790 nr_large_failed++; 1791 stats->nr_thp_failed += is_thp; 1792 } else if (!no_split_folio_counting) { 1793 nr_failed++; 1794 } 1795 1796 stats->nr_failed_pages += nr_pages; 1797 break; 1798 } 1799 } 1800 } 1801 nr_failed += retry; 1802 nr_large_failed += large_retry; 1803 stats->nr_thp_failed += thp_retry; 1804 stats->nr_failed_pages += nr_retry_pages; 1805 move: 1806 /* Flush TLBs for all unmapped folios */ 1807 try_to_unmap_flush(); 1808 1809 retry = 1; 1810 for (pass = 0; 1811 pass < NR_MAX_MIGRATE_PAGES_RETRY && (retry || large_retry); 1812 pass++) { 1813 retry = 0; 1814 large_retry = 0; 1815 thp_retry = 0; 1816 nr_retry_pages = 0; 1817 1818 dst = list_first_entry(&dst_folios, struct folio, lru); 1819 dst2 = list_next_entry(dst, lru); 1820 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1821 is_large = folio_test_large(folio); 1822 is_thp = is_large && folio_test_pmd_mappable(folio); 1823 nr_pages = folio_nr_pages(folio); 1824 1825 cond_resched(); 1826 1827 rc = migrate_folio_move(put_new_page, private, 1828 folio, dst, mode, 1829 reason, ret_folios); 1830 /* 1831 * The rules are: 1832 * Success: folio will be freed 1833 * -EAGAIN: stay on the unmap_folios list 1834 * Other errno: put on ret_folios list 1835 */ 1836 switch(rc) { 1837 case -EAGAIN: 1838 if (is_large) { 1839 large_retry++; 1840 thp_retry += is_thp; 1841 } else if (!no_split_folio_counting) { 1842 retry++; 1843 } 1844 nr_retry_pages += nr_pages; 1845 break; 1846 case MIGRATEPAGE_SUCCESS: 1847 stats->nr_succeeded += nr_pages; 1848 stats->nr_thp_succeeded += is_thp; 1849 break; 1850 default: 1851 if (is_large) { 1852 nr_large_failed++; 1853 stats->nr_thp_failed += is_thp; 1854 } else if (!no_split_folio_counting) { 1855 nr_failed++; 1856 } 1857 1858 stats->nr_failed_pages += nr_pages; 1859 break; 1860 } 1861 dst = dst2; 1862 dst2 = list_next_entry(dst, lru); 1863 } 1864 } 1865 nr_failed += retry; 1866 nr_large_failed += large_retry; 1867 stats->nr_thp_failed += thp_retry; 1868 stats->nr_failed_pages += nr_retry_pages; 1869 1870 if (rc_saved) 1871 rc = rc_saved; 1872 else 1873 rc = nr_failed + nr_large_failed; 1874 out: 1875 /* Cleanup remaining folios */ 1876 dst = list_first_entry(&dst_folios, struct folio, lru); 1877 dst2 = list_next_entry(dst, lru); 1878 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1879 int page_was_mapped = 0; 1880 struct anon_vma *anon_vma = NULL; 1881 1882 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1883 migrate_folio_undo_src(folio, page_was_mapped, anon_vma, 1884 true, ret_folios); 1885 list_del(&dst->lru); 1886 migrate_folio_undo_dst(dst, true, put_new_page, private); 1887 dst = dst2; 1888 dst2 = list_next_entry(dst, lru); 1889 } 1890 1891 /* 1892 * Try to migrate split folios of fail-to-migrate large folios, no 1893 * nr_failed counting in this round, since all split folios of a 1894 * large folio is counted as 1 failure in the first round. 1895 */ 1896 if (rc >= 0 && !list_empty(&split_folios)) { 1897 /* 1898 * Move non-migrated folios (after NR_MAX_MIGRATE_PAGES_RETRY 1899 * retries) to ret_folios to avoid migrating them again. 1900 */ 1901 list_splice_init(from, ret_folios); 1902 list_splice_init(&split_folios, from); 1903 no_split_folio_counting = true; 1904 goto retry; 1905 } 1906 1907 /* 1908 * We have unlocked all locked folios, so we can force lock now, let's 1909 * try again. 1910 */ 1911 if (rc == -EDEADLOCK) 1912 goto retry; 1913 1914 return rc; 1915 } 1916 1917 /* 1918 * migrate_pages - migrate the folios specified in a list, to the free folios 1919 * supplied as the target for the page migration 1920 * 1921 * @from: The list of folios to be migrated. 1922 * @get_new_page: The function used to allocate free folios to be used 1923 * as the target of the folio migration. 1924 * @put_new_page: The function used to free target folios if migration 1925 * fails, or NULL if no special handling is necessary. 1926 * @private: Private data to be passed on to get_new_page() 1927 * @mode: The migration mode that specifies the constraints for 1928 * folio migration, if any. 1929 * @reason: The reason for folio migration. 1930 * @ret_succeeded: Set to the number of folios migrated successfully if 1931 * the caller passes a non-NULL pointer. 1932 * 1933 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1934 * are movable any more because the list has become empty or no retryable folios 1935 * exist any more. It is caller's responsibility to call putback_movable_pages() 1936 * only if ret != 0. 1937 * 1938 * Returns the number of {normal folio, large folio, hugetlb} that were not 1939 * migrated, or an error code. The number of large folio splits will be 1940 * considered as the number of non-migrated large folio, no matter how many 1941 * split folios of the large folio are migrated successfully. 1942 */ 1943 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1944 free_page_t put_new_page, unsigned long private, 1945 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1946 { 1947 int rc, rc_gather; 1948 int nr_pages; 1949 struct folio *folio, *folio2; 1950 LIST_HEAD(folios); 1951 LIST_HEAD(ret_folios); 1952 struct migrate_pages_stats stats; 1953 1954 trace_mm_migrate_pages_start(mode, reason); 1955 1956 memset(&stats, 0, sizeof(stats)); 1957 1958 rc_gather = migrate_hugetlbs(from, get_new_page, put_new_page, private, 1959 mode, reason, &stats, &ret_folios); 1960 if (rc_gather < 0) 1961 goto out; 1962 again: 1963 nr_pages = 0; 1964 list_for_each_entry_safe(folio, folio2, from, lru) { 1965 /* Retried hugetlb folios will be kept in list */ 1966 if (folio_test_hugetlb(folio)) { 1967 list_move_tail(&folio->lru, &ret_folios); 1968 continue; 1969 } 1970 1971 nr_pages += folio_nr_pages(folio); 1972 if (nr_pages > NR_MAX_BATCHED_MIGRATION) 1973 break; 1974 } 1975 if (nr_pages > NR_MAX_BATCHED_MIGRATION) 1976 list_cut_before(&folios, from, &folio->lru); 1977 else 1978 list_splice_init(from, &folios); 1979 rc = migrate_pages_batch(&folios, get_new_page, put_new_page, private, 1980 mode, reason, &ret_folios, &stats); 1981 list_splice_tail_init(&folios, &ret_folios); 1982 if (rc < 0) { 1983 rc_gather = rc; 1984 goto out; 1985 } 1986 rc_gather += rc; 1987 if (!list_empty(from)) 1988 goto again; 1989 out: 1990 /* 1991 * Put the permanent failure folio back to migration list, they 1992 * will be put back to the right list by the caller. 1993 */ 1994 list_splice(&ret_folios, from); 1995 1996 /* 1997 * Return 0 in case all split folios of fail-to-migrate large folios 1998 * are migrated successfully. 1999 */ 2000 if (list_empty(from)) 2001 rc_gather = 0; 2002 2003 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2004 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2005 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2006 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2007 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2008 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2009 stats.nr_thp_succeeded, stats.nr_thp_failed, 2010 stats.nr_thp_split, mode, reason); 2011 2012 if (ret_succeeded) 2013 *ret_succeeded = stats.nr_succeeded; 2014 2015 return rc_gather; 2016 } 2017 2018 struct page *alloc_migration_target(struct page *page, unsigned long private) 2019 { 2020 struct folio *folio = page_folio(page); 2021 struct migration_target_control *mtc; 2022 gfp_t gfp_mask; 2023 unsigned int order = 0; 2024 struct folio *hugetlb_folio = NULL; 2025 struct folio *new_folio = NULL; 2026 int nid; 2027 int zidx; 2028 2029 mtc = (struct migration_target_control *)private; 2030 gfp_mask = mtc->gfp_mask; 2031 nid = mtc->nid; 2032 if (nid == NUMA_NO_NODE) 2033 nid = folio_nid(folio); 2034 2035 if (folio_test_hugetlb(folio)) { 2036 struct hstate *h = folio_hstate(folio); 2037 2038 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2039 hugetlb_folio = alloc_hugetlb_folio_nodemask(h, nid, 2040 mtc->nmask, gfp_mask); 2041 return &hugetlb_folio->page; 2042 } 2043 2044 if (folio_test_large(folio)) { 2045 /* 2046 * clear __GFP_RECLAIM to make the migration callback 2047 * consistent with regular THP allocations. 2048 */ 2049 gfp_mask &= ~__GFP_RECLAIM; 2050 gfp_mask |= GFP_TRANSHUGE; 2051 order = folio_order(folio); 2052 } 2053 zidx = zone_idx(folio_zone(folio)); 2054 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2055 gfp_mask |= __GFP_HIGHMEM; 2056 2057 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2058 2059 return &new_folio->page; 2060 } 2061 2062 #ifdef CONFIG_NUMA 2063 2064 static int store_status(int __user *status, int start, int value, int nr) 2065 { 2066 while (nr-- > 0) { 2067 if (put_user(value, status + start)) 2068 return -EFAULT; 2069 start++; 2070 } 2071 2072 return 0; 2073 } 2074 2075 static int do_move_pages_to_node(struct mm_struct *mm, 2076 struct list_head *pagelist, int node) 2077 { 2078 int err; 2079 struct migration_target_control mtc = { 2080 .nid = node, 2081 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2082 }; 2083 2084 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2085 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2086 if (err) 2087 putback_movable_pages(pagelist); 2088 return err; 2089 } 2090 2091 /* 2092 * Resolves the given address to a struct page, isolates it from the LRU and 2093 * puts it to the given pagelist. 2094 * Returns: 2095 * errno - if the page cannot be found/isolated 2096 * 0 - when it doesn't have to be migrated because it is already on the 2097 * target node 2098 * 1 - when it has been queued 2099 */ 2100 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 2101 int node, struct list_head *pagelist, bool migrate_all) 2102 { 2103 struct vm_area_struct *vma; 2104 struct page *page; 2105 int err; 2106 bool isolated; 2107 2108 mmap_read_lock(mm); 2109 err = -EFAULT; 2110 vma = vma_lookup(mm, addr); 2111 if (!vma || !vma_migratable(vma)) 2112 goto out; 2113 2114 /* FOLL_DUMP to ignore special (like zero) pages */ 2115 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2116 2117 err = PTR_ERR(page); 2118 if (IS_ERR(page)) 2119 goto out; 2120 2121 err = -ENOENT; 2122 if (!page) 2123 goto out; 2124 2125 if (is_zone_device_page(page)) 2126 goto out_putpage; 2127 2128 err = 0; 2129 if (page_to_nid(page) == node) 2130 goto out_putpage; 2131 2132 err = -EACCES; 2133 if (page_mapcount(page) > 1 && !migrate_all) 2134 goto out_putpage; 2135 2136 if (PageHuge(page)) { 2137 if (PageHead(page)) { 2138 isolated = isolate_hugetlb(page_folio(page), pagelist); 2139 err = isolated ? 1 : -EBUSY; 2140 } 2141 } else { 2142 struct page *head; 2143 2144 head = compound_head(page); 2145 isolated = isolate_lru_page(head); 2146 if (!isolated) { 2147 err = -EBUSY; 2148 goto out_putpage; 2149 } 2150 2151 err = 1; 2152 list_add_tail(&head->lru, pagelist); 2153 mod_node_page_state(page_pgdat(head), 2154 NR_ISOLATED_ANON + page_is_file_lru(head), 2155 thp_nr_pages(head)); 2156 } 2157 out_putpage: 2158 /* 2159 * Either remove the duplicate refcount from 2160 * isolate_lru_page() or drop the page ref if it was 2161 * not isolated. 2162 */ 2163 put_page(page); 2164 out: 2165 mmap_read_unlock(mm); 2166 return err; 2167 } 2168 2169 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2170 struct list_head *pagelist, int __user *status, 2171 int start, int i, unsigned long nr_pages) 2172 { 2173 int err; 2174 2175 if (list_empty(pagelist)) 2176 return 0; 2177 2178 err = do_move_pages_to_node(mm, pagelist, node); 2179 if (err) { 2180 /* 2181 * Positive err means the number of failed 2182 * pages to migrate. Since we are going to 2183 * abort and return the number of non-migrated 2184 * pages, so need to include the rest of the 2185 * nr_pages that have not been attempted as 2186 * well. 2187 */ 2188 if (err > 0) 2189 err += nr_pages - i; 2190 return err; 2191 } 2192 return store_status(status, start, node, i - start); 2193 } 2194 2195 /* 2196 * Migrate an array of page address onto an array of nodes and fill 2197 * the corresponding array of status. 2198 */ 2199 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2200 unsigned long nr_pages, 2201 const void __user * __user *pages, 2202 const int __user *nodes, 2203 int __user *status, int flags) 2204 { 2205 int current_node = NUMA_NO_NODE; 2206 LIST_HEAD(pagelist); 2207 int start, i; 2208 int err = 0, err1; 2209 2210 lru_cache_disable(); 2211 2212 for (i = start = 0; i < nr_pages; i++) { 2213 const void __user *p; 2214 unsigned long addr; 2215 int node; 2216 2217 err = -EFAULT; 2218 if (get_user(p, pages + i)) 2219 goto out_flush; 2220 if (get_user(node, nodes + i)) 2221 goto out_flush; 2222 addr = (unsigned long)untagged_addr(p); 2223 2224 err = -ENODEV; 2225 if (node < 0 || node >= MAX_NUMNODES) 2226 goto out_flush; 2227 if (!node_state(node, N_MEMORY)) 2228 goto out_flush; 2229 2230 err = -EACCES; 2231 if (!node_isset(node, task_nodes)) 2232 goto out_flush; 2233 2234 if (current_node == NUMA_NO_NODE) { 2235 current_node = node; 2236 start = i; 2237 } else if (node != current_node) { 2238 err = move_pages_and_store_status(mm, current_node, 2239 &pagelist, status, start, i, nr_pages); 2240 if (err) 2241 goto out; 2242 start = i; 2243 current_node = node; 2244 } 2245 2246 /* 2247 * Errors in the page lookup or isolation are not fatal and we simply 2248 * report them via status 2249 */ 2250 err = add_page_for_migration(mm, addr, current_node, 2251 &pagelist, flags & MPOL_MF_MOVE_ALL); 2252 2253 if (err > 0) { 2254 /* The page is successfully queued for migration */ 2255 continue; 2256 } 2257 2258 /* 2259 * The move_pages() man page does not have an -EEXIST choice, so 2260 * use -EFAULT instead. 2261 */ 2262 if (err == -EEXIST) 2263 err = -EFAULT; 2264 2265 /* 2266 * If the page is already on the target node (!err), store the 2267 * node, otherwise, store the err. 2268 */ 2269 err = store_status(status, i, err ? : current_node, 1); 2270 if (err) 2271 goto out_flush; 2272 2273 err = move_pages_and_store_status(mm, current_node, &pagelist, 2274 status, start, i, nr_pages); 2275 if (err) { 2276 /* We have accounted for page i */ 2277 if (err > 0) 2278 err--; 2279 goto out; 2280 } 2281 current_node = NUMA_NO_NODE; 2282 } 2283 out_flush: 2284 /* Make sure we do not overwrite the existing error */ 2285 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2286 status, start, i, nr_pages); 2287 if (err >= 0) 2288 err = err1; 2289 out: 2290 lru_cache_enable(); 2291 return err; 2292 } 2293 2294 /* 2295 * Determine the nodes of an array of pages and store it in an array of status. 2296 */ 2297 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2298 const void __user **pages, int *status) 2299 { 2300 unsigned long i; 2301 2302 mmap_read_lock(mm); 2303 2304 for (i = 0; i < nr_pages; i++) { 2305 unsigned long addr = (unsigned long)(*pages); 2306 struct vm_area_struct *vma; 2307 struct page *page; 2308 int err = -EFAULT; 2309 2310 vma = vma_lookup(mm, addr); 2311 if (!vma) 2312 goto set_status; 2313 2314 /* FOLL_DUMP to ignore special (like zero) pages */ 2315 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2316 2317 err = PTR_ERR(page); 2318 if (IS_ERR(page)) 2319 goto set_status; 2320 2321 err = -ENOENT; 2322 if (!page) 2323 goto set_status; 2324 2325 if (!is_zone_device_page(page)) 2326 err = page_to_nid(page); 2327 2328 put_page(page); 2329 set_status: 2330 *status = err; 2331 2332 pages++; 2333 status++; 2334 } 2335 2336 mmap_read_unlock(mm); 2337 } 2338 2339 static int get_compat_pages_array(const void __user *chunk_pages[], 2340 const void __user * __user *pages, 2341 unsigned long chunk_nr) 2342 { 2343 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2344 compat_uptr_t p; 2345 int i; 2346 2347 for (i = 0; i < chunk_nr; i++) { 2348 if (get_user(p, pages32 + i)) 2349 return -EFAULT; 2350 chunk_pages[i] = compat_ptr(p); 2351 } 2352 2353 return 0; 2354 } 2355 2356 /* 2357 * Determine the nodes of a user array of pages and store it in 2358 * a user array of status. 2359 */ 2360 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2361 const void __user * __user *pages, 2362 int __user *status) 2363 { 2364 #define DO_PAGES_STAT_CHUNK_NR 16UL 2365 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2366 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2367 2368 while (nr_pages) { 2369 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2370 2371 if (in_compat_syscall()) { 2372 if (get_compat_pages_array(chunk_pages, pages, 2373 chunk_nr)) 2374 break; 2375 } else { 2376 if (copy_from_user(chunk_pages, pages, 2377 chunk_nr * sizeof(*chunk_pages))) 2378 break; 2379 } 2380 2381 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2382 2383 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2384 break; 2385 2386 pages += chunk_nr; 2387 status += chunk_nr; 2388 nr_pages -= chunk_nr; 2389 } 2390 return nr_pages ? -EFAULT : 0; 2391 } 2392 2393 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2394 { 2395 struct task_struct *task; 2396 struct mm_struct *mm; 2397 2398 /* 2399 * There is no need to check if current process has the right to modify 2400 * the specified process when they are same. 2401 */ 2402 if (!pid) { 2403 mmget(current->mm); 2404 *mem_nodes = cpuset_mems_allowed(current); 2405 return current->mm; 2406 } 2407 2408 /* Find the mm_struct */ 2409 rcu_read_lock(); 2410 task = find_task_by_vpid(pid); 2411 if (!task) { 2412 rcu_read_unlock(); 2413 return ERR_PTR(-ESRCH); 2414 } 2415 get_task_struct(task); 2416 2417 /* 2418 * Check if this process has the right to modify the specified 2419 * process. Use the regular "ptrace_may_access()" checks. 2420 */ 2421 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2422 rcu_read_unlock(); 2423 mm = ERR_PTR(-EPERM); 2424 goto out; 2425 } 2426 rcu_read_unlock(); 2427 2428 mm = ERR_PTR(security_task_movememory(task)); 2429 if (IS_ERR(mm)) 2430 goto out; 2431 *mem_nodes = cpuset_mems_allowed(task); 2432 mm = get_task_mm(task); 2433 out: 2434 put_task_struct(task); 2435 if (!mm) 2436 mm = ERR_PTR(-EINVAL); 2437 return mm; 2438 } 2439 2440 /* 2441 * Move a list of pages in the address space of the currently executing 2442 * process. 2443 */ 2444 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2445 const void __user * __user *pages, 2446 const int __user *nodes, 2447 int __user *status, int flags) 2448 { 2449 struct mm_struct *mm; 2450 int err; 2451 nodemask_t task_nodes; 2452 2453 /* Check flags */ 2454 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2455 return -EINVAL; 2456 2457 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2458 return -EPERM; 2459 2460 mm = find_mm_struct(pid, &task_nodes); 2461 if (IS_ERR(mm)) 2462 return PTR_ERR(mm); 2463 2464 if (nodes) 2465 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2466 nodes, status, flags); 2467 else 2468 err = do_pages_stat(mm, nr_pages, pages, status); 2469 2470 mmput(mm); 2471 return err; 2472 } 2473 2474 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2475 const void __user * __user *, pages, 2476 const int __user *, nodes, 2477 int __user *, status, int, flags) 2478 { 2479 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2480 } 2481 2482 #ifdef CONFIG_NUMA_BALANCING 2483 /* 2484 * Returns true if this is a safe migration target node for misplaced NUMA 2485 * pages. Currently it only checks the watermarks which is crude. 2486 */ 2487 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2488 unsigned long nr_migrate_pages) 2489 { 2490 int z; 2491 2492 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2493 struct zone *zone = pgdat->node_zones + z; 2494 2495 if (!managed_zone(zone)) 2496 continue; 2497 2498 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2499 if (!zone_watermark_ok(zone, 0, 2500 high_wmark_pages(zone) + 2501 nr_migrate_pages, 2502 ZONE_MOVABLE, 0)) 2503 continue; 2504 return true; 2505 } 2506 return false; 2507 } 2508 2509 static struct page *alloc_misplaced_dst_page(struct page *page, 2510 unsigned long data) 2511 { 2512 int nid = (int) data; 2513 int order = compound_order(page); 2514 gfp_t gfp = __GFP_THISNODE; 2515 struct folio *new; 2516 2517 if (order > 0) 2518 gfp |= GFP_TRANSHUGE_LIGHT; 2519 else { 2520 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2521 __GFP_NOWARN; 2522 gfp &= ~__GFP_RECLAIM; 2523 } 2524 new = __folio_alloc_node(gfp, order, nid); 2525 2526 return &new->page; 2527 } 2528 2529 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2530 { 2531 int nr_pages = thp_nr_pages(page); 2532 int order = compound_order(page); 2533 2534 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2535 2536 /* Do not migrate THP mapped by multiple processes */ 2537 if (PageTransHuge(page) && total_mapcount(page) > 1) 2538 return 0; 2539 2540 /* Avoid migrating to a node that is nearly full */ 2541 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2542 int z; 2543 2544 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2545 return 0; 2546 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2547 if (managed_zone(pgdat->node_zones + z)) 2548 break; 2549 } 2550 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2551 return 0; 2552 } 2553 2554 if (!isolate_lru_page(page)) 2555 return 0; 2556 2557 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2558 nr_pages); 2559 2560 /* 2561 * Isolating the page has taken another reference, so the 2562 * caller's reference can be safely dropped without the page 2563 * disappearing underneath us during migration. 2564 */ 2565 put_page(page); 2566 return 1; 2567 } 2568 2569 /* 2570 * Attempt to migrate a misplaced page to the specified destination 2571 * node. Caller is expected to have an elevated reference count on 2572 * the page that will be dropped by this function before returning. 2573 */ 2574 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2575 int node) 2576 { 2577 pg_data_t *pgdat = NODE_DATA(node); 2578 int isolated; 2579 int nr_remaining; 2580 unsigned int nr_succeeded; 2581 LIST_HEAD(migratepages); 2582 int nr_pages = thp_nr_pages(page); 2583 2584 /* 2585 * Don't migrate file pages that are mapped in multiple processes 2586 * with execute permissions as they are probably shared libraries. 2587 */ 2588 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2589 (vma->vm_flags & VM_EXEC)) 2590 goto out; 2591 2592 /* 2593 * Also do not migrate dirty pages as not all filesystems can move 2594 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2595 */ 2596 if (page_is_file_lru(page) && PageDirty(page)) 2597 goto out; 2598 2599 isolated = numamigrate_isolate_page(pgdat, page); 2600 if (!isolated) 2601 goto out; 2602 2603 list_add(&page->lru, &migratepages); 2604 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2605 NULL, node, MIGRATE_ASYNC, 2606 MR_NUMA_MISPLACED, &nr_succeeded); 2607 if (nr_remaining) { 2608 if (!list_empty(&migratepages)) { 2609 list_del(&page->lru); 2610 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2611 page_is_file_lru(page), -nr_pages); 2612 putback_lru_page(page); 2613 } 2614 isolated = 0; 2615 } 2616 if (nr_succeeded) { 2617 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2618 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2619 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2620 nr_succeeded); 2621 } 2622 BUG_ON(!list_empty(&migratepages)); 2623 return isolated; 2624 2625 out: 2626 put_page(page); 2627 return 0; 2628 } 2629 #endif /* CONFIG_NUMA_BALANCING */ 2630 #endif /* CONFIG_NUMA */ 2631