xref: /linux/mm/migrate.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include "internal.h"
39 
40 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41 
42 /*
43  * migrate_prep() needs to be called before we start compiling a list of pages
44  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45  * undesirable, use migrate_prep_local()
46  */
47 int migrate_prep(void)
48 {
49 	/*
50 	 * Clear the LRU lists so pages can be isolated.
51 	 * Note that pages may be moved off the LRU after we have
52 	 * drained them. Those pages will fail to migrate like other
53 	 * pages that may be busy.
54 	 */
55 	lru_add_drain_all();
56 
57 	return 0;
58 }
59 
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 	lru_add_drain();
64 
65 	return 0;
66 }
67 
68 /*
69  * Add isolated pages on the list back to the LRU under page lock
70  * to avoid leaking evictable pages back onto unevictable list.
71  */
72 void putback_lru_pages(struct list_head *l)
73 {
74 	struct page *page;
75 	struct page *page2;
76 
77 	list_for_each_entry_safe(page, page2, l, lru) {
78 		list_del(&page->lru);
79 		dec_zone_page_state(page, NR_ISOLATED_ANON +
80 				page_is_file_cache(page));
81 		putback_lru_page(page);
82 	}
83 }
84 
85 /*
86  * Restore a potential migration pte to a working pte entry
87  */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 				 unsigned long addr, void *old)
90 {
91 	struct mm_struct *mm = vma->vm_mm;
92 	swp_entry_t entry;
93  	pgd_t *pgd;
94  	pud_t *pud;
95  	pmd_t *pmd;
96 	pte_t *ptep, pte;
97  	spinlock_t *ptl;
98 
99 	if (unlikely(PageHuge(new))) {
100 		ptep = huge_pte_offset(mm, addr);
101 		if (!ptep)
102 			goto out;
103 		ptl = &mm->page_table_lock;
104 	} else {
105 		pgd = pgd_offset(mm, addr);
106 		if (!pgd_present(*pgd))
107 			goto out;
108 
109 		pud = pud_offset(pgd, addr);
110 		if (!pud_present(*pud))
111 			goto out;
112 
113 		pmd = pmd_offset(pud, addr);
114 		if (!pmd_present(*pmd))
115 			goto out;
116 
117 		ptep = pte_offset_map(pmd, addr);
118 
119 		if (!is_swap_pte(*ptep)) {
120 			pte_unmap(ptep);
121 			goto out;
122 		}
123 
124 		ptl = pte_lockptr(mm, pmd);
125 	}
126 
127  	spin_lock(ptl);
128 	pte = *ptep;
129 	if (!is_swap_pte(pte))
130 		goto unlock;
131 
132 	entry = pte_to_swp_entry(pte);
133 
134 	if (!is_migration_entry(entry) ||
135 	    migration_entry_to_page(entry) != old)
136 		goto unlock;
137 
138 	get_page(new);
139 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 	if (is_write_migration_entry(entry))
141 		pte = pte_mkwrite(pte);
142 #ifdef CONFIG_HUGETLB_PAGE
143 	if (PageHuge(new))
144 		pte = pte_mkhuge(pte);
145 #endif
146 	flush_cache_page(vma, addr, pte_pfn(pte));
147 	set_pte_at(mm, addr, ptep, pte);
148 
149 	if (PageHuge(new)) {
150 		if (PageAnon(new))
151 			hugepage_add_anon_rmap(new, vma, addr);
152 		else
153 			page_dup_rmap(new);
154 	} else if (PageAnon(new))
155 		page_add_anon_rmap(new, vma, addr);
156 	else
157 		page_add_file_rmap(new);
158 
159 	/* No need to invalidate - it was non-present before */
160 	update_mmu_cache(vma, addr, ptep);
161 unlock:
162 	pte_unmap_unlock(ptep, ptl);
163 out:
164 	return SWAP_AGAIN;
165 }
166 
167 /*
168  * Get rid of all migration entries and replace them by
169  * references to the indicated page.
170  */
171 static void remove_migration_ptes(struct page *old, struct page *new)
172 {
173 	rmap_walk(new, remove_migration_pte, old);
174 }
175 
176 /*
177  * Something used the pte of a page under migration. We need to
178  * get to the page and wait until migration is finished.
179  * When we return from this function the fault will be retried.
180  *
181  * This function is called from do_swap_page().
182  */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 				unsigned long address)
185 {
186 	pte_t *ptep, pte;
187 	spinlock_t *ptl;
188 	swp_entry_t entry;
189 	struct page *page;
190 
191 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 	pte = *ptep;
193 	if (!is_swap_pte(pte))
194 		goto out;
195 
196 	entry = pte_to_swp_entry(pte);
197 	if (!is_migration_entry(entry))
198 		goto out;
199 
200 	page = migration_entry_to_page(entry);
201 
202 	/*
203 	 * Once radix-tree replacement of page migration started, page_count
204 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 	 * against a page without get_page().
206 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 	 * will occur again.
208 	 */
209 	if (!get_page_unless_zero(page))
210 		goto out;
211 	pte_unmap_unlock(ptep, ptl);
212 	wait_on_page_locked(page);
213 	put_page(page);
214 	return;
215 out:
216 	pte_unmap_unlock(ptep, ptl);
217 }
218 
219 /*
220  * Replace the page in the mapping.
221  *
222  * The number of remaining references must be:
223  * 1 for anonymous pages without a mapping
224  * 2 for pages with a mapping
225  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
226  */
227 static int migrate_page_move_mapping(struct address_space *mapping,
228 		struct page *newpage, struct page *page)
229 {
230 	int expected_count;
231 	void **pslot;
232 
233 	if (!mapping) {
234 		/* Anonymous page without mapping */
235 		if (page_count(page) != 1)
236 			return -EAGAIN;
237 		return 0;
238 	}
239 
240 	spin_lock_irq(&mapping->tree_lock);
241 
242 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
243  					page_index(page));
244 
245 	expected_count = 2 + page_has_private(page);
246 	if (page_count(page) != expected_count ||
247 			(struct page *)radix_tree_deref_slot(pslot) != page) {
248 		spin_unlock_irq(&mapping->tree_lock);
249 		return -EAGAIN;
250 	}
251 
252 	if (!page_freeze_refs(page, expected_count)) {
253 		spin_unlock_irq(&mapping->tree_lock);
254 		return -EAGAIN;
255 	}
256 
257 	/*
258 	 * Now we know that no one else is looking at the page.
259 	 */
260 	get_page(newpage);	/* add cache reference */
261 	if (PageSwapCache(page)) {
262 		SetPageSwapCache(newpage);
263 		set_page_private(newpage, page_private(page));
264 	}
265 
266 	radix_tree_replace_slot(pslot, newpage);
267 
268 	page_unfreeze_refs(page, expected_count);
269 	/*
270 	 * Drop cache reference from old page.
271 	 * We know this isn't the last reference.
272 	 */
273 	__put_page(page);
274 
275 	/*
276 	 * If moved to a different zone then also account
277 	 * the page for that zone. Other VM counters will be
278 	 * taken care of when we establish references to the
279 	 * new page and drop references to the old page.
280 	 *
281 	 * Note that anonymous pages are accounted for
282 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 	 * are mapped to swap space.
284 	 */
285 	__dec_zone_page_state(page, NR_FILE_PAGES);
286 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
287 	if (PageSwapBacked(page)) {
288 		__dec_zone_page_state(page, NR_SHMEM);
289 		__inc_zone_page_state(newpage, NR_SHMEM);
290 	}
291 	spin_unlock_irq(&mapping->tree_lock);
292 
293 	return 0;
294 }
295 
296 /*
297  * The expected number of remaining references is the same as that
298  * of migrate_page_move_mapping().
299  */
300 int migrate_huge_page_move_mapping(struct address_space *mapping,
301 				   struct page *newpage, struct page *page)
302 {
303 	int expected_count;
304 	void **pslot;
305 
306 	if (!mapping) {
307 		if (page_count(page) != 1)
308 			return -EAGAIN;
309 		return 0;
310 	}
311 
312 	spin_lock_irq(&mapping->tree_lock);
313 
314 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 					page_index(page));
316 
317 	expected_count = 2 + page_has_private(page);
318 	if (page_count(page) != expected_count ||
319 	    (struct page *)radix_tree_deref_slot(pslot) != page) {
320 		spin_unlock_irq(&mapping->tree_lock);
321 		return -EAGAIN;
322 	}
323 
324 	if (!page_freeze_refs(page, expected_count)) {
325 		spin_unlock_irq(&mapping->tree_lock);
326 		return -EAGAIN;
327 	}
328 
329 	get_page(newpage);
330 
331 	radix_tree_replace_slot(pslot, newpage);
332 
333 	page_unfreeze_refs(page, expected_count);
334 
335 	__put_page(page);
336 
337 	spin_unlock_irq(&mapping->tree_lock);
338 	return 0;
339 }
340 
341 /*
342  * Copy the page to its new location
343  */
344 void migrate_page_copy(struct page *newpage, struct page *page)
345 {
346 	if (PageHuge(page))
347 		copy_huge_page(newpage, page);
348 	else
349 		copy_highpage(newpage, page);
350 
351 	if (PageError(page))
352 		SetPageError(newpage);
353 	if (PageReferenced(page))
354 		SetPageReferenced(newpage);
355 	if (PageUptodate(page))
356 		SetPageUptodate(newpage);
357 	if (TestClearPageActive(page)) {
358 		VM_BUG_ON(PageUnevictable(page));
359 		SetPageActive(newpage);
360 	} else if (TestClearPageUnevictable(page))
361 		SetPageUnevictable(newpage);
362 	if (PageChecked(page))
363 		SetPageChecked(newpage);
364 	if (PageMappedToDisk(page))
365 		SetPageMappedToDisk(newpage);
366 
367 	if (PageDirty(page)) {
368 		clear_page_dirty_for_io(page);
369 		/*
370 		 * Want to mark the page and the radix tree as dirty, and
371 		 * redo the accounting that clear_page_dirty_for_io undid,
372 		 * but we can't use set_page_dirty because that function
373 		 * is actually a signal that all of the page has become dirty.
374 		 * Wheras only part of our page may be dirty.
375 		 */
376 		__set_page_dirty_nobuffers(newpage);
377  	}
378 
379 	mlock_migrate_page(newpage, page);
380 	ksm_migrate_page(newpage, page);
381 
382 	ClearPageSwapCache(page);
383 	ClearPagePrivate(page);
384 	set_page_private(page, 0);
385 	page->mapping = NULL;
386 
387 	/*
388 	 * If any waiters have accumulated on the new page then
389 	 * wake them up.
390 	 */
391 	if (PageWriteback(newpage))
392 		end_page_writeback(newpage);
393 }
394 
395 /************************************************************
396  *                    Migration functions
397  ***********************************************************/
398 
399 /* Always fail migration. Used for mappings that are not movable */
400 int fail_migrate_page(struct address_space *mapping,
401 			struct page *newpage, struct page *page)
402 {
403 	return -EIO;
404 }
405 EXPORT_SYMBOL(fail_migrate_page);
406 
407 /*
408  * Common logic to directly migrate a single page suitable for
409  * pages that do not use PagePrivate/PagePrivate2.
410  *
411  * Pages are locked upon entry and exit.
412  */
413 int migrate_page(struct address_space *mapping,
414 		struct page *newpage, struct page *page)
415 {
416 	int rc;
417 
418 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
419 
420 	rc = migrate_page_move_mapping(mapping, newpage, page);
421 
422 	if (rc)
423 		return rc;
424 
425 	migrate_page_copy(newpage, page);
426 	return 0;
427 }
428 EXPORT_SYMBOL(migrate_page);
429 
430 #ifdef CONFIG_BLOCK
431 /*
432  * Migration function for pages with buffers. This function can only be used
433  * if the underlying filesystem guarantees that no other references to "page"
434  * exist.
435  */
436 int buffer_migrate_page(struct address_space *mapping,
437 		struct page *newpage, struct page *page)
438 {
439 	struct buffer_head *bh, *head;
440 	int rc;
441 
442 	if (!page_has_buffers(page))
443 		return migrate_page(mapping, newpage, page);
444 
445 	head = page_buffers(page);
446 
447 	rc = migrate_page_move_mapping(mapping, newpage, page);
448 
449 	if (rc)
450 		return rc;
451 
452 	bh = head;
453 	do {
454 		get_bh(bh);
455 		lock_buffer(bh);
456 		bh = bh->b_this_page;
457 
458 	} while (bh != head);
459 
460 	ClearPagePrivate(page);
461 	set_page_private(newpage, page_private(page));
462 	set_page_private(page, 0);
463 	put_page(page);
464 	get_page(newpage);
465 
466 	bh = head;
467 	do {
468 		set_bh_page(bh, newpage, bh_offset(bh));
469 		bh = bh->b_this_page;
470 
471 	} while (bh != head);
472 
473 	SetPagePrivate(newpage);
474 
475 	migrate_page_copy(newpage, page);
476 
477 	bh = head;
478 	do {
479 		unlock_buffer(bh);
480  		put_bh(bh);
481 		bh = bh->b_this_page;
482 
483 	} while (bh != head);
484 
485 	return 0;
486 }
487 EXPORT_SYMBOL(buffer_migrate_page);
488 #endif
489 
490 /*
491  * Writeback a page to clean the dirty state
492  */
493 static int writeout(struct address_space *mapping, struct page *page)
494 {
495 	struct writeback_control wbc = {
496 		.sync_mode = WB_SYNC_NONE,
497 		.nr_to_write = 1,
498 		.range_start = 0,
499 		.range_end = LLONG_MAX,
500 		.for_reclaim = 1
501 	};
502 	int rc;
503 
504 	if (!mapping->a_ops->writepage)
505 		/* No write method for the address space */
506 		return -EINVAL;
507 
508 	if (!clear_page_dirty_for_io(page))
509 		/* Someone else already triggered a write */
510 		return -EAGAIN;
511 
512 	/*
513 	 * A dirty page may imply that the underlying filesystem has
514 	 * the page on some queue. So the page must be clean for
515 	 * migration. Writeout may mean we loose the lock and the
516 	 * page state is no longer what we checked for earlier.
517 	 * At this point we know that the migration attempt cannot
518 	 * be successful.
519 	 */
520 	remove_migration_ptes(page, page);
521 
522 	rc = mapping->a_ops->writepage(page, &wbc);
523 
524 	if (rc != AOP_WRITEPAGE_ACTIVATE)
525 		/* unlocked. Relock */
526 		lock_page(page);
527 
528 	return (rc < 0) ? -EIO : -EAGAIN;
529 }
530 
531 /*
532  * Default handling if a filesystem does not provide a migration function.
533  */
534 static int fallback_migrate_page(struct address_space *mapping,
535 	struct page *newpage, struct page *page)
536 {
537 	if (PageDirty(page))
538 		return writeout(mapping, page);
539 
540 	/*
541 	 * Buffers may be managed in a filesystem specific way.
542 	 * We must have no buffers or drop them.
543 	 */
544 	if (page_has_private(page) &&
545 	    !try_to_release_page(page, GFP_KERNEL))
546 		return -EAGAIN;
547 
548 	return migrate_page(mapping, newpage, page);
549 }
550 
551 /*
552  * Move a page to a newly allocated page
553  * The page is locked and all ptes have been successfully removed.
554  *
555  * The new page will have replaced the old page if this function
556  * is successful.
557  *
558  * Return value:
559  *   < 0 - error code
560  *  == 0 - success
561  */
562 static int move_to_new_page(struct page *newpage, struct page *page,
563 						int remap_swapcache)
564 {
565 	struct address_space *mapping;
566 	int rc;
567 
568 	/*
569 	 * Block others from accessing the page when we get around to
570 	 * establishing additional references. We are the only one
571 	 * holding a reference to the new page at this point.
572 	 */
573 	if (!trylock_page(newpage))
574 		BUG();
575 
576 	/* Prepare mapping for the new page.*/
577 	newpage->index = page->index;
578 	newpage->mapping = page->mapping;
579 	if (PageSwapBacked(page))
580 		SetPageSwapBacked(newpage);
581 
582 	mapping = page_mapping(page);
583 	if (!mapping)
584 		rc = migrate_page(mapping, newpage, page);
585 	else if (mapping->a_ops->migratepage)
586 		/*
587 		 * Most pages have a mapping and most filesystems
588 		 * should provide a migration function. Anonymous
589 		 * pages are part of swap space which also has its
590 		 * own migration function. This is the most common
591 		 * path for page migration.
592 		 */
593 		rc = mapping->a_ops->migratepage(mapping,
594 						newpage, page);
595 	else
596 		rc = fallback_migrate_page(mapping, newpage, page);
597 
598 	if (rc) {
599 		newpage->mapping = NULL;
600 	} else {
601 		if (remap_swapcache)
602 			remove_migration_ptes(page, newpage);
603 	}
604 
605 	unlock_page(newpage);
606 
607 	return rc;
608 }
609 
610 /*
611  * Obtain the lock on page, remove all ptes and migrate the page
612  * to the newly allocated page in newpage.
613  */
614 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
615 			struct page *page, int force, int offlining)
616 {
617 	int rc = 0;
618 	int *result = NULL;
619 	struct page *newpage = get_new_page(page, private, &result);
620 	int remap_swapcache = 1;
621 	int rcu_locked = 0;
622 	int charge = 0;
623 	struct mem_cgroup *mem = NULL;
624 	struct anon_vma *anon_vma = NULL;
625 
626 	if (!newpage)
627 		return -ENOMEM;
628 
629 	if (page_count(page) == 1) {
630 		/* page was freed from under us. So we are done. */
631 		goto move_newpage;
632 	}
633 
634 	/* prepare cgroup just returns 0 or -ENOMEM */
635 	rc = -EAGAIN;
636 
637 	if (!trylock_page(page)) {
638 		if (!force)
639 			goto move_newpage;
640 		lock_page(page);
641 	}
642 
643 	/*
644 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
645 	 * and can safely migrate a KSM page.  The other cases have skipped
646 	 * PageKsm along with PageReserved - but it is only now when we have
647 	 * the page lock that we can be certain it will not go KSM beneath us
648 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
649 	 * its pagecount raised, but only here do we take the page lock which
650 	 * serializes that).
651 	 */
652 	if (PageKsm(page) && !offlining) {
653 		rc = -EBUSY;
654 		goto unlock;
655 	}
656 
657 	/* charge against new page */
658 	charge = mem_cgroup_prepare_migration(page, newpage, &mem);
659 	if (charge == -ENOMEM) {
660 		rc = -ENOMEM;
661 		goto unlock;
662 	}
663 	BUG_ON(charge);
664 
665 	if (PageWriteback(page)) {
666 		if (!force)
667 			goto uncharge;
668 		wait_on_page_writeback(page);
669 	}
670 	/*
671 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
672 	 * we cannot notice that anon_vma is freed while we migrates a page.
673 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
674 	 * of migration. File cache pages are no problem because of page_lock()
675 	 * File Caches may use write_page() or lock_page() in migration, then,
676 	 * just care Anon page here.
677 	 */
678 	if (PageAnon(page)) {
679 		rcu_read_lock();
680 		rcu_locked = 1;
681 
682 		/* Determine how to safely use anon_vma */
683 		if (!page_mapped(page)) {
684 			if (!PageSwapCache(page))
685 				goto rcu_unlock;
686 
687 			/*
688 			 * We cannot be sure that the anon_vma of an unmapped
689 			 * swapcache page is safe to use because we don't
690 			 * know in advance if the VMA that this page belonged
691 			 * to still exists. If the VMA and others sharing the
692 			 * data have been freed, then the anon_vma could
693 			 * already be invalid.
694 			 *
695 			 * To avoid this possibility, swapcache pages get
696 			 * migrated but are not remapped when migration
697 			 * completes
698 			 */
699 			remap_swapcache = 0;
700 		} else {
701 			/*
702 			 * Take a reference count on the anon_vma if the
703 			 * page is mapped so that it is guaranteed to
704 			 * exist when the page is remapped later
705 			 */
706 			anon_vma = page_anon_vma(page);
707 			get_anon_vma(anon_vma);
708 		}
709 	}
710 
711 	/*
712 	 * Corner case handling:
713 	 * 1. When a new swap-cache page is read into, it is added to the LRU
714 	 * and treated as swapcache but it has no rmap yet.
715 	 * Calling try_to_unmap() against a page->mapping==NULL page will
716 	 * trigger a BUG.  So handle it here.
717 	 * 2. An orphaned page (see truncate_complete_page) might have
718 	 * fs-private metadata. The page can be picked up due to memory
719 	 * offlining.  Everywhere else except page reclaim, the page is
720 	 * invisible to the vm, so the page can not be migrated.  So try to
721 	 * free the metadata, so the page can be freed.
722 	 */
723 	if (!page->mapping) {
724 		if (!PageAnon(page) && page_has_private(page)) {
725 			/*
726 			 * Go direct to try_to_free_buffers() here because
727 			 * a) that's what try_to_release_page() would do anyway
728 			 * b) we may be under rcu_read_lock() here, so we can't
729 			 *    use GFP_KERNEL which is what try_to_release_page()
730 			 *    needs to be effective.
731 			 */
732 			try_to_free_buffers(page);
733 			goto rcu_unlock;
734 		}
735 		goto skip_unmap;
736 	}
737 
738 	/* Establish migration ptes or remove ptes */
739 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
740 
741 skip_unmap:
742 	if (!page_mapped(page))
743 		rc = move_to_new_page(newpage, page, remap_swapcache);
744 
745 	if (rc && remap_swapcache)
746 		remove_migration_ptes(page, page);
747 rcu_unlock:
748 
749 	/* Drop an anon_vma reference if we took one */
750 	if (anon_vma)
751 		drop_anon_vma(anon_vma);
752 
753 	if (rcu_locked)
754 		rcu_read_unlock();
755 uncharge:
756 	if (!charge)
757 		mem_cgroup_end_migration(mem, page, newpage);
758 unlock:
759 	unlock_page(page);
760 
761 	if (rc != -EAGAIN) {
762  		/*
763  		 * A page that has been migrated has all references
764  		 * removed and will be freed. A page that has not been
765  		 * migrated will have kepts its references and be
766  		 * restored.
767  		 */
768  		list_del(&page->lru);
769 		dec_zone_page_state(page, NR_ISOLATED_ANON +
770 				page_is_file_cache(page));
771 		putback_lru_page(page);
772 	}
773 
774 move_newpage:
775 
776 	/*
777 	 * Move the new page to the LRU. If migration was not successful
778 	 * then this will free the page.
779 	 */
780 	putback_lru_page(newpage);
781 
782 	if (result) {
783 		if (rc)
784 			*result = rc;
785 		else
786 			*result = page_to_nid(newpage);
787 	}
788 	return rc;
789 }
790 
791 /*
792  * Counterpart of unmap_and_move_page() for hugepage migration.
793  *
794  * This function doesn't wait the completion of hugepage I/O
795  * because there is no race between I/O and migration for hugepage.
796  * Note that currently hugepage I/O occurs only in direct I/O
797  * where no lock is held and PG_writeback is irrelevant,
798  * and writeback status of all subpages are counted in the reference
799  * count of the head page (i.e. if all subpages of a 2MB hugepage are
800  * under direct I/O, the reference of the head page is 512 and a bit more.)
801  * This means that when we try to migrate hugepage whose subpages are
802  * doing direct I/O, some references remain after try_to_unmap() and
803  * hugepage migration fails without data corruption.
804  *
805  * There is also no race when direct I/O is issued on the page under migration,
806  * because then pte is replaced with migration swap entry and direct I/O code
807  * will wait in the page fault for migration to complete.
808  */
809 static int unmap_and_move_huge_page(new_page_t get_new_page,
810 				unsigned long private, struct page *hpage,
811 				int force, int offlining)
812 {
813 	int rc = 0;
814 	int *result = NULL;
815 	struct page *new_hpage = get_new_page(hpage, private, &result);
816 	int rcu_locked = 0;
817 	struct anon_vma *anon_vma = NULL;
818 
819 	if (!new_hpage)
820 		return -ENOMEM;
821 
822 	rc = -EAGAIN;
823 
824 	if (!trylock_page(hpage)) {
825 		if (!force)
826 			goto out;
827 		lock_page(hpage);
828 	}
829 
830 	if (PageAnon(hpage)) {
831 		rcu_read_lock();
832 		rcu_locked = 1;
833 
834 		if (page_mapped(hpage)) {
835 			anon_vma = page_anon_vma(hpage);
836 			atomic_inc(&anon_vma->external_refcount);
837 		}
838 	}
839 
840 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
841 
842 	if (!page_mapped(hpage))
843 		rc = move_to_new_page(new_hpage, hpage, 1);
844 
845 	if (rc)
846 		remove_migration_ptes(hpage, hpage);
847 
848 	if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
849 					    &anon_vma->lock)) {
850 		int empty = list_empty(&anon_vma->head);
851 		spin_unlock(&anon_vma->lock);
852 		if (empty)
853 			anon_vma_free(anon_vma);
854 	}
855 
856 	if (rcu_locked)
857 		rcu_read_unlock();
858 out:
859 	unlock_page(hpage);
860 
861 	if (rc != -EAGAIN) {
862 		list_del(&hpage->lru);
863 		put_page(hpage);
864 	}
865 
866 	put_page(new_hpage);
867 
868 	if (result) {
869 		if (rc)
870 			*result = rc;
871 		else
872 			*result = page_to_nid(new_hpage);
873 	}
874 	return rc;
875 }
876 
877 /*
878  * migrate_pages
879  *
880  * The function takes one list of pages to migrate and a function
881  * that determines from the page to be migrated and the private data
882  * the target of the move and allocates the page.
883  *
884  * The function returns after 10 attempts or if no pages
885  * are movable anymore because to has become empty
886  * or no retryable pages exist anymore.
887  * Caller should call putback_lru_pages to return pages to the LRU
888  * or free list.
889  *
890  * Return: Number of pages not migrated or error code.
891  */
892 int migrate_pages(struct list_head *from,
893 		new_page_t get_new_page, unsigned long private, int offlining)
894 {
895 	int retry = 1;
896 	int nr_failed = 0;
897 	int pass = 0;
898 	struct page *page;
899 	struct page *page2;
900 	int swapwrite = current->flags & PF_SWAPWRITE;
901 	int rc;
902 
903 	if (!swapwrite)
904 		current->flags |= PF_SWAPWRITE;
905 
906 	for(pass = 0; pass < 10 && retry; pass++) {
907 		retry = 0;
908 
909 		list_for_each_entry_safe(page, page2, from, lru) {
910 			cond_resched();
911 
912 			rc = unmap_and_move(get_new_page, private,
913 						page, pass > 2, offlining);
914 
915 			switch(rc) {
916 			case -ENOMEM:
917 				goto out;
918 			case -EAGAIN:
919 				retry++;
920 				break;
921 			case 0:
922 				break;
923 			default:
924 				/* Permanent failure */
925 				nr_failed++;
926 				break;
927 			}
928 		}
929 	}
930 	rc = 0;
931 out:
932 	if (!swapwrite)
933 		current->flags &= ~PF_SWAPWRITE;
934 
935 	if (rc)
936 		return rc;
937 
938 	return nr_failed + retry;
939 }
940 
941 int migrate_huge_pages(struct list_head *from,
942 		new_page_t get_new_page, unsigned long private, int offlining)
943 {
944 	int retry = 1;
945 	int nr_failed = 0;
946 	int pass = 0;
947 	struct page *page;
948 	struct page *page2;
949 	int rc;
950 
951 	for (pass = 0; pass < 10 && retry; pass++) {
952 		retry = 0;
953 
954 		list_for_each_entry_safe(page, page2, from, lru) {
955 			cond_resched();
956 
957 			rc = unmap_and_move_huge_page(get_new_page,
958 					private, page, pass > 2, offlining);
959 
960 			switch(rc) {
961 			case -ENOMEM:
962 				goto out;
963 			case -EAGAIN:
964 				retry++;
965 				break;
966 			case 0:
967 				break;
968 			default:
969 				/* Permanent failure */
970 				nr_failed++;
971 				break;
972 			}
973 		}
974 	}
975 	rc = 0;
976 out:
977 
978 	list_for_each_entry_safe(page, page2, from, lru)
979 		put_page(page);
980 
981 	if (rc)
982 		return rc;
983 
984 	return nr_failed + retry;
985 }
986 
987 #ifdef CONFIG_NUMA
988 /*
989  * Move a list of individual pages
990  */
991 struct page_to_node {
992 	unsigned long addr;
993 	struct page *page;
994 	int node;
995 	int status;
996 };
997 
998 static struct page *new_page_node(struct page *p, unsigned long private,
999 		int **result)
1000 {
1001 	struct page_to_node *pm = (struct page_to_node *)private;
1002 
1003 	while (pm->node != MAX_NUMNODES && pm->page != p)
1004 		pm++;
1005 
1006 	if (pm->node == MAX_NUMNODES)
1007 		return NULL;
1008 
1009 	*result = &pm->status;
1010 
1011 	return alloc_pages_exact_node(pm->node,
1012 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1013 }
1014 
1015 /*
1016  * Move a set of pages as indicated in the pm array. The addr
1017  * field must be set to the virtual address of the page to be moved
1018  * and the node number must contain a valid target node.
1019  * The pm array ends with node = MAX_NUMNODES.
1020  */
1021 static int do_move_page_to_node_array(struct mm_struct *mm,
1022 				      struct page_to_node *pm,
1023 				      int migrate_all)
1024 {
1025 	int err;
1026 	struct page_to_node *pp;
1027 	LIST_HEAD(pagelist);
1028 
1029 	down_read(&mm->mmap_sem);
1030 
1031 	/*
1032 	 * Build a list of pages to migrate
1033 	 */
1034 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1035 		struct vm_area_struct *vma;
1036 		struct page *page;
1037 
1038 		err = -EFAULT;
1039 		vma = find_vma(mm, pp->addr);
1040 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1041 			goto set_status;
1042 
1043 		page = follow_page(vma, pp->addr, FOLL_GET);
1044 
1045 		err = PTR_ERR(page);
1046 		if (IS_ERR(page))
1047 			goto set_status;
1048 
1049 		err = -ENOENT;
1050 		if (!page)
1051 			goto set_status;
1052 
1053 		/* Use PageReserved to check for zero page */
1054 		if (PageReserved(page) || PageKsm(page))
1055 			goto put_and_set;
1056 
1057 		pp->page = page;
1058 		err = page_to_nid(page);
1059 
1060 		if (err == pp->node)
1061 			/*
1062 			 * Node already in the right place
1063 			 */
1064 			goto put_and_set;
1065 
1066 		err = -EACCES;
1067 		if (page_mapcount(page) > 1 &&
1068 				!migrate_all)
1069 			goto put_and_set;
1070 
1071 		err = isolate_lru_page(page);
1072 		if (!err) {
1073 			list_add_tail(&page->lru, &pagelist);
1074 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1075 					    page_is_file_cache(page));
1076 		}
1077 put_and_set:
1078 		/*
1079 		 * Either remove the duplicate refcount from
1080 		 * isolate_lru_page() or drop the page ref if it was
1081 		 * not isolated.
1082 		 */
1083 		put_page(page);
1084 set_status:
1085 		pp->status = err;
1086 	}
1087 
1088 	err = 0;
1089 	if (!list_empty(&pagelist)) {
1090 		err = migrate_pages(&pagelist, new_page_node,
1091 				(unsigned long)pm, 0);
1092 		if (err)
1093 			putback_lru_pages(&pagelist);
1094 	}
1095 
1096 	up_read(&mm->mmap_sem);
1097 	return err;
1098 }
1099 
1100 /*
1101  * Migrate an array of page address onto an array of nodes and fill
1102  * the corresponding array of status.
1103  */
1104 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1105 			 unsigned long nr_pages,
1106 			 const void __user * __user *pages,
1107 			 const int __user *nodes,
1108 			 int __user *status, int flags)
1109 {
1110 	struct page_to_node *pm;
1111 	nodemask_t task_nodes;
1112 	unsigned long chunk_nr_pages;
1113 	unsigned long chunk_start;
1114 	int err;
1115 
1116 	task_nodes = cpuset_mems_allowed(task);
1117 
1118 	err = -ENOMEM;
1119 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1120 	if (!pm)
1121 		goto out;
1122 
1123 	migrate_prep();
1124 
1125 	/*
1126 	 * Store a chunk of page_to_node array in a page,
1127 	 * but keep the last one as a marker
1128 	 */
1129 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1130 
1131 	for (chunk_start = 0;
1132 	     chunk_start < nr_pages;
1133 	     chunk_start += chunk_nr_pages) {
1134 		int j;
1135 
1136 		if (chunk_start + chunk_nr_pages > nr_pages)
1137 			chunk_nr_pages = nr_pages - chunk_start;
1138 
1139 		/* fill the chunk pm with addrs and nodes from user-space */
1140 		for (j = 0; j < chunk_nr_pages; j++) {
1141 			const void __user *p;
1142 			int node;
1143 
1144 			err = -EFAULT;
1145 			if (get_user(p, pages + j + chunk_start))
1146 				goto out_pm;
1147 			pm[j].addr = (unsigned long) p;
1148 
1149 			if (get_user(node, nodes + j + chunk_start))
1150 				goto out_pm;
1151 
1152 			err = -ENODEV;
1153 			if (node < 0 || node >= MAX_NUMNODES)
1154 				goto out_pm;
1155 
1156 			if (!node_state(node, N_HIGH_MEMORY))
1157 				goto out_pm;
1158 
1159 			err = -EACCES;
1160 			if (!node_isset(node, task_nodes))
1161 				goto out_pm;
1162 
1163 			pm[j].node = node;
1164 		}
1165 
1166 		/* End marker for this chunk */
1167 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1168 
1169 		/* Migrate this chunk */
1170 		err = do_move_page_to_node_array(mm, pm,
1171 						 flags & MPOL_MF_MOVE_ALL);
1172 		if (err < 0)
1173 			goto out_pm;
1174 
1175 		/* Return status information */
1176 		for (j = 0; j < chunk_nr_pages; j++)
1177 			if (put_user(pm[j].status, status + j + chunk_start)) {
1178 				err = -EFAULT;
1179 				goto out_pm;
1180 			}
1181 	}
1182 	err = 0;
1183 
1184 out_pm:
1185 	free_page((unsigned long)pm);
1186 out:
1187 	return err;
1188 }
1189 
1190 /*
1191  * Determine the nodes of an array of pages and store it in an array of status.
1192  */
1193 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1194 				const void __user **pages, int *status)
1195 {
1196 	unsigned long i;
1197 
1198 	down_read(&mm->mmap_sem);
1199 
1200 	for (i = 0; i < nr_pages; i++) {
1201 		unsigned long addr = (unsigned long)(*pages);
1202 		struct vm_area_struct *vma;
1203 		struct page *page;
1204 		int err = -EFAULT;
1205 
1206 		vma = find_vma(mm, addr);
1207 		if (!vma || addr < vma->vm_start)
1208 			goto set_status;
1209 
1210 		page = follow_page(vma, addr, 0);
1211 
1212 		err = PTR_ERR(page);
1213 		if (IS_ERR(page))
1214 			goto set_status;
1215 
1216 		err = -ENOENT;
1217 		/* Use PageReserved to check for zero page */
1218 		if (!page || PageReserved(page) || PageKsm(page))
1219 			goto set_status;
1220 
1221 		err = page_to_nid(page);
1222 set_status:
1223 		*status = err;
1224 
1225 		pages++;
1226 		status++;
1227 	}
1228 
1229 	up_read(&mm->mmap_sem);
1230 }
1231 
1232 /*
1233  * Determine the nodes of a user array of pages and store it in
1234  * a user array of status.
1235  */
1236 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1237 			 const void __user * __user *pages,
1238 			 int __user *status)
1239 {
1240 #define DO_PAGES_STAT_CHUNK_NR 16
1241 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1242 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1243 
1244 	while (nr_pages) {
1245 		unsigned long chunk_nr;
1246 
1247 		chunk_nr = nr_pages;
1248 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1249 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1250 
1251 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1252 			break;
1253 
1254 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1255 
1256 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1257 			break;
1258 
1259 		pages += chunk_nr;
1260 		status += chunk_nr;
1261 		nr_pages -= chunk_nr;
1262 	}
1263 	return nr_pages ? -EFAULT : 0;
1264 }
1265 
1266 /*
1267  * Move a list of pages in the address space of the currently executing
1268  * process.
1269  */
1270 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1271 		const void __user * __user *, pages,
1272 		const int __user *, nodes,
1273 		int __user *, status, int, flags)
1274 {
1275 	const struct cred *cred = current_cred(), *tcred;
1276 	struct task_struct *task;
1277 	struct mm_struct *mm;
1278 	int err;
1279 
1280 	/* Check flags */
1281 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1282 		return -EINVAL;
1283 
1284 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1285 		return -EPERM;
1286 
1287 	/* Find the mm_struct */
1288 	read_lock(&tasklist_lock);
1289 	task = pid ? find_task_by_vpid(pid) : current;
1290 	if (!task) {
1291 		read_unlock(&tasklist_lock);
1292 		return -ESRCH;
1293 	}
1294 	mm = get_task_mm(task);
1295 	read_unlock(&tasklist_lock);
1296 
1297 	if (!mm)
1298 		return -EINVAL;
1299 
1300 	/*
1301 	 * Check if this process has the right to modify the specified
1302 	 * process. The right exists if the process has administrative
1303 	 * capabilities, superuser privileges or the same
1304 	 * userid as the target process.
1305 	 */
1306 	rcu_read_lock();
1307 	tcred = __task_cred(task);
1308 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1309 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1310 	    !capable(CAP_SYS_NICE)) {
1311 		rcu_read_unlock();
1312 		err = -EPERM;
1313 		goto out;
1314 	}
1315 	rcu_read_unlock();
1316 
1317  	err = security_task_movememory(task);
1318  	if (err)
1319 		goto out;
1320 
1321 	if (nodes) {
1322 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1323 				    flags);
1324 	} else {
1325 		err = do_pages_stat(mm, nr_pages, pages, status);
1326 	}
1327 
1328 out:
1329 	mmput(mm);
1330 	return err;
1331 }
1332 
1333 /*
1334  * Call migration functions in the vma_ops that may prepare
1335  * memory in a vm for migration. migration functions may perform
1336  * the migration for vmas that do not have an underlying page struct.
1337  */
1338 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1339 	const nodemask_t *from, unsigned long flags)
1340 {
1341  	struct vm_area_struct *vma;
1342  	int err = 0;
1343 
1344 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1345  		if (vma->vm_ops && vma->vm_ops->migrate) {
1346  			err = vma->vm_ops->migrate(vma, to, from, flags);
1347  			if (err)
1348  				break;
1349  		}
1350  	}
1351  	return err;
1352 }
1353 #endif
1354