xref: /linux/mm/migrate.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 
42 #include <asm/tlbflush.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
46 
47 #include "internal.h"
48 
49 /*
50  * migrate_prep() needs to be called before we start compiling a list of pages
51  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52  * undesirable, use migrate_prep_local()
53  */
54 int migrate_prep(void)
55 {
56 	/*
57 	 * Clear the LRU lists so pages can be isolated.
58 	 * Note that pages may be moved off the LRU after we have
59 	 * drained them. Those pages will fail to migrate like other
60 	 * pages that may be busy.
61 	 */
62 	lru_add_drain_all();
63 
64 	return 0;
65 }
66 
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
69 {
70 	lru_add_drain();
71 
72 	return 0;
73 }
74 
75 /*
76  * Put previously isolated pages back onto the appropriate lists
77  * from where they were once taken off for compaction/migration.
78  *
79  * This function shall be used whenever the isolated pageset has been
80  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81  * and isolate_huge_page().
82  */
83 void putback_movable_pages(struct list_head *l)
84 {
85 	struct page *page;
86 	struct page *page2;
87 
88 	list_for_each_entry_safe(page, page2, l, lru) {
89 		if (unlikely(PageHuge(page))) {
90 			putback_active_hugepage(page);
91 			continue;
92 		}
93 		list_del(&page->lru);
94 		dec_zone_page_state(page, NR_ISOLATED_ANON +
95 				page_is_file_cache(page));
96 		if (unlikely(isolated_balloon_page(page)))
97 			balloon_page_putback(page);
98 		else
99 			putback_lru_page(page);
100 	}
101 }
102 
103 /*
104  * Restore a potential migration pte to a working pte entry
105  */
106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 				 unsigned long addr, void *old)
108 {
109 	struct mm_struct *mm = vma->vm_mm;
110 	swp_entry_t entry;
111  	pmd_t *pmd;
112 	pte_t *ptep, pte;
113  	spinlock_t *ptl;
114 
115 	if (unlikely(PageHuge(new))) {
116 		ptep = huge_pte_offset(mm, addr);
117 		if (!ptep)
118 			goto out;
119 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 	} else {
121 		pmd = mm_find_pmd(mm, addr);
122 		if (!pmd)
123 			goto out;
124 
125 		ptep = pte_offset_map(pmd, addr);
126 
127 		/*
128 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
129 		 * can race mremap's move_ptes(), which skips anon_vma lock.
130 		 */
131 
132 		ptl = pte_lockptr(mm, pmd);
133 	}
134 
135  	spin_lock(ptl);
136 	pte = *ptep;
137 	if (!is_swap_pte(pte))
138 		goto unlock;
139 
140 	entry = pte_to_swp_entry(pte);
141 
142 	if (!is_migration_entry(entry) ||
143 	    migration_entry_to_page(entry) != old)
144 		goto unlock;
145 
146 	get_page(new);
147 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 	if (pte_swp_soft_dirty(*ptep))
149 		pte = pte_mksoft_dirty(pte);
150 
151 	/* Recheck VMA as permissions can change since migration started  */
152 	if (is_write_migration_entry(entry))
153 		pte = maybe_mkwrite(pte, vma);
154 
155 #ifdef CONFIG_HUGETLB_PAGE
156 	if (PageHuge(new)) {
157 		pte = pte_mkhuge(pte);
158 		pte = arch_make_huge_pte(pte, vma, new, 0);
159 	}
160 #endif
161 	flush_dcache_page(new);
162 	set_pte_at(mm, addr, ptep, pte);
163 
164 	if (PageHuge(new)) {
165 		if (PageAnon(new))
166 			hugepage_add_anon_rmap(new, vma, addr);
167 		else
168 			page_dup_rmap(new);
169 	} else if (PageAnon(new))
170 		page_add_anon_rmap(new, vma, addr);
171 	else
172 		page_add_file_rmap(new);
173 
174 	/* No need to invalidate - it was non-present before */
175 	update_mmu_cache(vma, addr, ptep);
176 unlock:
177 	pte_unmap_unlock(ptep, ptl);
178 out:
179 	return SWAP_AGAIN;
180 }
181 
182 /*
183  * Get rid of all migration entries and replace them by
184  * references to the indicated page.
185  */
186 static void remove_migration_ptes(struct page *old, struct page *new)
187 {
188 	struct rmap_walk_control rwc = {
189 		.rmap_one = remove_migration_pte,
190 		.arg = old,
191 	};
192 
193 	rmap_walk(new, &rwc);
194 }
195 
196 /*
197  * Something used the pte of a page under migration. We need to
198  * get to the page and wait until migration is finished.
199  * When we return from this function the fault will be retried.
200  */
201 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
202 				spinlock_t *ptl)
203 {
204 	pte_t pte;
205 	swp_entry_t entry;
206 	struct page *page;
207 
208 	spin_lock(ptl);
209 	pte = *ptep;
210 	if (!is_swap_pte(pte))
211 		goto out;
212 
213 	entry = pte_to_swp_entry(pte);
214 	if (!is_migration_entry(entry))
215 		goto out;
216 
217 	page = migration_entry_to_page(entry);
218 
219 	/*
220 	 * Once radix-tree replacement of page migration started, page_count
221 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
222 	 * against a page without get_page().
223 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
224 	 * will occur again.
225 	 */
226 	if (!get_page_unless_zero(page))
227 		goto out;
228 	pte_unmap_unlock(ptep, ptl);
229 	wait_on_page_locked(page);
230 	put_page(page);
231 	return;
232 out:
233 	pte_unmap_unlock(ptep, ptl);
234 }
235 
236 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
237 				unsigned long address)
238 {
239 	spinlock_t *ptl = pte_lockptr(mm, pmd);
240 	pte_t *ptep = pte_offset_map(pmd, address);
241 	__migration_entry_wait(mm, ptep, ptl);
242 }
243 
244 void migration_entry_wait_huge(struct vm_area_struct *vma,
245 		struct mm_struct *mm, pte_t *pte)
246 {
247 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
248 	__migration_entry_wait(mm, pte, ptl);
249 }
250 
251 #ifdef CONFIG_BLOCK
252 /* Returns true if all buffers are successfully locked */
253 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
254 							enum migrate_mode mode)
255 {
256 	struct buffer_head *bh = head;
257 
258 	/* Simple case, sync compaction */
259 	if (mode != MIGRATE_ASYNC) {
260 		do {
261 			get_bh(bh);
262 			lock_buffer(bh);
263 			bh = bh->b_this_page;
264 
265 		} while (bh != head);
266 
267 		return true;
268 	}
269 
270 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
271 	do {
272 		get_bh(bh);
273 		if (!trylock_buffer(bh)) {
274 			/*
275 			 * We failed to lock the buffer and cannot stall in
276 			 * async migration. Release the taken locks
277 			 */
278 			struct buffer_head *failed_bh = bh;
279 			put_bh(failed_bh);
280 			bh = head;
281 			while (bh != failed_bh) {
282 				unlock_buffer(bh);
283 				put_bh(bh);
284 				bh = bh->b_this_page;
285 			}
286 			return false;
287 		}
288 
289 		bh = bh->b_this_page;
290 	} while (bh != head);
291 	return true;
292 }
293 #else
294 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
295 							enum migrate_mode mode)
296 {
297 	return true;
298 }
299 #endif /* CONFIG_BLOCK */
300 
301 /*
302  * Replace the page in the mapping.
303  *
304  * The number of remaining references must be:
305  * 1 for anonymous pages without a mapping
306  * 2 for pages with a mapping
307  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
308  */
309 int migrate_page_move_mapping(struct address_space *mapping,
310 		struct page *newpage, struct page *page,
311 		struct buffer_head *head, enum migrate_mode mode,
312 		int extra_count)
313 {
314 	int expected_count = 1 + extra_count;
315 	void **pslot;
316 
317 	if (!mapping) {
318 		/* Anonymous page without mapping */
319 		if (page_count(page) != expected_count)
320 			return -EAGAIN;
321 		return MIGRATEPAGE_SUCCESS;
322 	}
323 
324 	spin_lock_irq(&mapping->tree_lock);
325 
326 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
327  					page_index(page));
328 
329 	expected_count += 1 + page_has_private(page);
330 	if (page_count(page) != expected_count ||
331 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 		spin_unlock_irq(&mapping->tree_lock);
333 		return -EAGAIN;
334 	}
335 
336 	if (!page_freeze_refs(page, expected_count)) {
337 		spin_unlock_irq(&mapping->tree_lock);
338 		return -EAGAIN;
339 	}
340 
341 	/*
342 	 * In the async migration case of moving a page with buffers, lock the
343 	 * buffers using trylock before the mapping is moved. If the mapping
344 	 * was moved, we later failed to lock the buffers and could not move
345 	 * the mapping back due to an elevated page count, we would have to
346 	 * block waiting on other references to be dropped.
347 	 */
348 	if (mode == MIGRATE_ASYNC && head &&
349 			!buffer_migrate_lock_buffers(head, mode)) {
350 		page_unfreeze_refs(page, expected_count);
351 		spin_unlock_irq(&mapping->tree_lock);
352 		return -EAGAIN;
353 	}
354 
355 	/*
356 	 * Now we know that no one else is looking at the page.
357 	 */
358 	get_page(newpage);	/* add cache reference */
359 	if (PageSwapCache(page)) {
360 		SetPageSwapCache(newpage);
361 		set_page_private(newpage, page_private(page));
362 	}
363 
364 	radix_tree_replace_slot(pslot, newpage);
365 
366 	/*
367 	 * Drop cache reference from old page by unfreezing
368 	 * to one less reference.
369 	 * We know this isn't the last reference.
370 	 */
371 	page_unfreeze_refs(page, expected_count - 1);
372 
373 	/*
374 	 * If moved to a different zone then also account
375 	 * the page for that zone. Other VM counters will be
376 	 * taken care of when we establish references to the
377 	 * new page and drop references to the old page.
378 	 *
379 	 * Note that anonymous pages are accounted for
380 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 	 * are mapped to swap space.
382 	 */
383 	__dec_zone_page_state(page, NR_FILE_PAGES);
384 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
385 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 		__dec_zone_page_state(page, NR_SHMEM);
387 		__inc_zone_page_state(newpage, NR_SHMEM);
388 	}
389 	spin_unlock_irq(&mapping->tree_lock);
390 
391 	return MIGRATEPAGE_SUCCESS;
392 }
393 
394 /*
395  * The expected number of remaining references is the same as that
396  * of migrate_page_move_mapping().
397  */
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 				   struct page *newpage, struct page *page)
400 {
401 	int expected_count;
402 	void **pslot;
403 
404 	if (!mapping) {
405 		if (page_count(page) != 1)
406 			return -EAGAIN;
407 		return MIGRATEPAGE_SUCCESS;
408 	}
409 
410 	spin_lock_irq(&mapping->tree_lock);
411 
412 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 					page_index(page));
414 
415 	expected_count = 2 + page_has_private(page);
416 	if (page_count(page) != expected_count ||
417 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 		spin_unlock_irq(&mapping->tree_lock);
419 		return -EAGAIN;
420 	}
421 
422 	if (!page_freeze_refs(page, expected_count)) {
423 		spin_unlock_irq(&mapping->tree_lock);
424 		return -EAGAIN;
425 	}
426 
427 	get_page(newpage);
428 
429 	radix_tree_replace_slot(pslot, newpage);
430 
431 	page_unfreeze_refs(page, expected_count - 1);
432 
433 	spin_unlock_irq(&mapping->tree_lock);
434 	return MIGRATEPAGE_SUCCESS;
435 }
436 
437 /*
438  * Gigantic pages are so large that we do not guarantee that page++ pointer
439  * arithmetic will work across the entire page.  We need something more
440  * specialized.
441  */
442 static void __copy_gigantic_page(struct page *dst, struct page *src,
443 				int nr_pages)
444 {
445 	int i;
446 	struct page *dst_base = dst;
447 	struct page *src_base = src;
448 
449 	for (i = 0; i < nr_pages; ) {
450 		cond_resched();
451 		copy_highpage(dst, src);
452 
453 		i++;
454 		dst = mem_map_next(dst, dst_base, i);
455 		src = mem_map_next(src, src_base, i);
456 	}
457 }
458 
459 static void copy_huge_page(struct page *dst, struct page *src)
460 {
461 	int i;
462 	int nr_pages;
463 
464 	if (PageHuge(src)) {
465 		/* hugetlbfs page */
466 		struct hstate *h = page_hstate(src);
467 		nr_pages = pages_per_huge_page(h);
468 
469 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
470 			__copy_gigantic_page(dst, src, nr_pages);
471 			return;
472 		}
473 	} else {
474 		/* thp page */
475 		BUG_ON(!PageTransHuge(src));
476 		nr_pages = hpage_nr_pages(src);
477 	}
478 
479 	for (i = 0; i < nr_pages; i++) {
480 		cond_resched();
481 		copy_highpage(dst + i, src + i);
482 	}
483 }
484 
485 /*
486  * Copy the page to its new location
487  */
488 void migrate_page_copy(struct page *newpage, struct page *page)
489 {
490 	int cpupid;
491 
492 	if (PageHuge(page) || PageTransHuge(page))
493 		copy_huge_page(newpage, page);
494 	else
495 		copy_highpage(newpage, page);
496 
497 	if (PageError(page))
498 		SetPageError(newpage);
499 	if (PageReferenced(page))
500 		SetPageReferenced(newpage);
501 	if (PageUptodate(page))
502 		SetPageUptodate(newpage);
503 	if (TestClearPageActive(page)) {
504 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
505 		SetPageActive(newpage);
506 	} else if (TestClearPageUnevictable(page))
507 		SetPageUnevictable(newpage);
508 	if (PageChecked(page))
509 		SetPageChecked(newpage);
510 	if (PageMappedToDisk(page))
511 		SetPageMappedToDisk(newpage);
512 
513 	if (PageDirty(page)) {
514 		clear_page_dirty_for_io(page);
515 		/*
516 		 * Want to mark the page and the radix tree as dirty, and
517 		 * redo the accounting that clear_page_dirty_for_io undid,
518 		 * but we can't use set_page_dirty because that function
519 		 * is actually a signal that all of the page has become dirty.
520 		 * Whereas only part of our page may be dirty.
521 		 */
522 		if (PageSwapBacked(page))
523 			SetPageDirty(newpage);
524 		else
525 			__set_page_dirty_nobuffers(newpage);
526  	}
527 
528 	if (page_is_young(page))
529 		set_page_young(newpage);
530 	if (page_is_idle(page))
531 		set_page_idle(newpage);
532 
533 	/*
534 	 * Copy NUMA information to the new page, to prevent over-eager
535 	 * future migrations of this same page.
536 	 */
537 	cpupid = page_cpupid_xchg_last(page, -1);
538 	page_cpupid_xchg_last(newpage, cpupid);
539 
540 	mlock_migrate_page(newpage, page);
541 	ksm_migrate_page(newpage, page);
542 	/*
543 	 * Please do not reorder this without considering how mm/ksm.c's
544 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
545 	 */
546 	if (PageSwapCache(page))
547 		ClearPageSwapCache(page);
548 	ClearPagePrivate(page);
549 	set_page_private(page, 0);
550 
551 	/*
552 	 * If any waiters have accumulated on the new page then
553 	 * wake them up.
554 	 */
555 	if (PageWriteback(newpage))
556 		end_page_writeback(newpage);
557 }
558 
559 /************************************************************
560  *                    Migration functions
561  ***********************************************************/
562 
563 /*
564  * Common logic to directly migrate a single page suitable for
565  * pages that do not use PagePrivate/PagePrivate2.
566  *
567  * Pages are locked upon entry and exit.
568  */
569 int migrate_page(struct address_space *mapping,
570 		struct page *newpage, struct page *page,
571 		enum migrate_mode mode)
572 {
573 	int rc;
574 
575 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
576 
577 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
578 
579 	if (rc != MIGRATEPAGE_SUCCESS)
580 		return rc;
581 
582 	migrate_page_copy(newpage, page);
583 	return MIGRATEPAGE_SUCCESS;
584 }
585 EXPORT_SYMBOL(migrate_page);
586 
587 #ifdef CONFIG_BLOCK
588 /*
589  * Migration function for pages with buffers. This function can only be used
590  * if the underlying filesystem guarantees that no other references to "page"
591  * exist.
592  */
593 int buffer_migrate_page(struct address_space *mapping,
594 		struct page *newpage, struct page *page, enum migrate_mode mode)
595 {
596 	struct buffer_head *bh, *head;
597 	int rc;
598 
599 	if (!page_has_buffers(page))
600 		return migrate_page(mapping, newpage, page, mode);
601 
602 	head = page_buffers(page);
603 
604 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
605 
606 	if (rc != MIGRATEPAGE_SUCCESS)
607 		return rc;
608 
609 	/*
610 	 * In the async case, migrate_page_move_mapping locked the buffers
611 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
612 	 * need to be locked now
613 	 */
614 	if (mode != MIGRATE_ASYNC)
615 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
616 
617 	ClearPagePrivate(page);
618 	set_page_private(newpage, page_private(page));
619 	set_page_private(page, 0);
620 	put_page(page);
621 	get_page(newpage);
622 
623 	bh = head;
624 	do {
625 		set_bh_page(bh, newpage, bh_offset(bh));
626 		bh = bh->b_this_page;
627 
628 	} while (bh != head);
629 
630 	SetPagePrivate(newpage);
631 
632 	migrate_page_copy(newpage, page);
633 
634 	bh = head;
635 	do {
636 		unlock_buffer(bh);
637  		put_bh(bh);
638 		bh = bh->b_this_page;
639 
640 	} while (bh != head);
641 
642 	return MIGRATEPAGE_SUCCESS;
643 }
644 EXPORT_SYMBOL(buffer_migrate_page);
645 #endif
646 
647 /*
648  * Writeback a page to clean the dirty state
649  */
650 static int writeout(struct address_space *mapping, struct page *page)
651 {
652 	struct writeback_control wbc = {
653 		.sync_mode = WB_SYNC_NONE,
654 		.nr_to_write = 1,
655 		.range_start = 0,
656 		.range_end = LLONG_MAX,
657 		.for_reclaim = 1
658 	};
659 	int rc;
660 
661 	if (!mapping->a_ops->writepage)
662 		/* No write method for the address space */
663 		return -EINVAL;
664 
665 	if (!clear_page_dirty_for_io(page))
666 		/* Someone else already triggered a write */
667 		return -EAGAIN;
668 
669 	/*
670 	 * A dirty page may imply that the underlying filesystem has
671 	 * the page on some queue. So the page must be clean for
672 	 * migration. Writeout may mean we loose the lock and the
673 	 * page state is no longer what we checked for earlier.
674 	 * At this point we know that the migration attempt cannot
675 	 * be successful.
676 	 */
677 	remove_migration_ptes(page, page);
678 
679 	rc = mapping->a_ops->writepage(page, &wbc);
680 
681 	if (rc != AOP_WRITEPAGE_ACTIVATE)
682 		/* unlocked. Relock */
683 		lock_page(page);
684 
685 	return (rc < 0) ? -EIO : -EAGAIN;
686 }
687 
688 /*
689  * Default handling if a filesystem does not provide a migration function.
690  */
691 static int fallback_migrate_page(struct address_space *mapping,
692 	struct page *newpage, struct page *page, enum migrate_mode mode)
693 {
694 	if (PageDirty(page)) {
695 		/* Only writeback pages in full synchronous migration */
696 		if (mode != MIGRATE_SYNC)
697 			return -EBUSY;
698 		return writeout(mapping, page);
699 	}
700 
701 	/*
702 	 * Buffers may be managed in a filesystem specific way.
703 	 * We must have no buffers or drop them.
704 	 */
705 	if (page_has_private(page) &&
706 	    !try_to_release_page(page, GFP_KERNEL))
707 		return -EAGAIN;
708 
709 	return migrate_page(mapping, newpage, page, mode);
710 }
711 
712 /*
713  * Move a page to a newly allocated page
714  * The page is locked and all ptes have been successfully removed.
715  *
716  * The new page will have replaced the old page if this function
717  * is successful.
718  *
719  * Return value:
720  *   < 0 - error code
721  *  MIGRATEPAGE_SUCCESS - success
722  */
723 static int move_to_new_page(struct page *newpage, struct page *page,
724 				int page_was_mapped, enum migrate_mode mode)
725 {
726 	struct address_space *mapping;
727 	int rc;
728 
729 	/*
730 	 * Block others from accessing the page when we get around to
731 	 * establishing additional references. We are the only one
732 	 * holding a reference to the new page at this point.
733 	 */
734 	if (!trylock_page(newpage))
735 		BUG();
736 
737 	/* Prepare mapping for the new page.*/
738 	newpage->index = page->index;
739 	newpage->mapping = page->mapping;
740 	if (PageSwapBacked(page))
741 		SetPageSwapBacked(newpage);
742 
743 	/*
744 	 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus
745 	 * needs newpage's memcg set to transfer memcg dirty page accounting.
746 	 * So perform memcg migration in two steps:
747 	 * 1. set newpage->mem_cgroup (here)
748 	 * 2. clear page->mem_cgroup (below)
749 	 */
750 	set_page_memcg(newpage, page_memcg(page));
751 
752 	mapping = page_mapping(page);
753 	if (!mapping)
754 		rc = migrate_page(mapping, newpage, page, mode);
755 	else if (mapping->a_ops->migratepage)
756 		/*
757 		 * Most pages have a mapping and most filesystems provide a
758 		 * migratepage callback. Anonymous pages are part of swap
759 		 * space which also has its own migratepage callback. This
760 		 * is the most common path for page migration.
761 		 */
762 		rc = mapping->a_ops->migratepage(mapping,
763 						newpage, page, mode);
764 	else
765 		rc = fallback_migrate_page(mapping, newpage, page, mode);
766 
767 	if (rc != MIGRATEPAGE_SUCCESS) {
768 		set_page_memcg(newpage, NULL);
769 		newpage->mapping = NULL;
770 	} else {
771 		set_page_memcg(page, NULL);
772 		if (page_was_mapped)
773 			remove_migration_ptes(page, newpage);
774 		page->mapping = NULL;
775 	}
776 
777 	unlock_page(newpage);
778 
779 	return rc;
780 }
781 
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 				int force, enum migrate_mode mode)
784 {
785 	int rc = -EAGAIN;
786 	int page_was_mapped = 0;
787 	struct anon_vma *anon_vma = NULL;
788 
789 	if (!trylock_page(page)) {
790 		if (!force || mode == MIGRATE_ASYNC)
791 			goto out;
792 
793 		/*
794 		 * It's not safe for direct compaction to call lock_page.
795 		 * For example, during page readahead pages are added locked
796 		 * to the LRU. Later, when the IO completes the pages are
797 		 * marked uptodate and unlocked. However, the queueing
798 		 * could be merging multiple pages for one bio (e.g.
799 		 * mpage_readpages). If an allocation happens for the
800 		 * second or third page, the process can end up locking
801 		 * the same page twice and deadlocking. Rather than
802 		 * trying to be clever about what pages can be locked,
803 		 * avoid the use of lock_page for direct compaction
804 		 * altogether.
805 		 */
806 		if (current->flags & PF_MEMALLOC)
807 			goto out;
808 
809 		lock_page(page);
810 	}
811 
812 	if (PageWriteback(page)) {
813 		/*
814 		 * Only in the case of a full synchronous migration is it
815 		 * necessary to wait for PageWriteback. In the async case,
816 		 * the retry loop is too short and in the sync-light case,
817 		 * the overhead of stalling is too much
818 		 */
819 		if (mode != MIGRATE_SYNC) {
820 			rc = -EBUSY;
821 			goto out_unlock;
822 		}
823 		if (!force)
824 			goto out_unlock;
825 		wait_on_page_writeback(page);
826 	}
827 	/*
828 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
829 	 * we cannot notice that anon_vma is freed while we migrates a page.
830 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
831 	 * of migration. File cache pages are no problem because of page_lock()
832 	 * File Caches may use write_page() or lock_page() in migration, then,
833 	 * just care Anon page here.
834 	 */
835 	if (PageAnon(page) && !PageKsm(page)) {
836 		/*
837 		 * Only page_lock_anon_vma_read() understands the subtleties of
838 		 * getting a hold on an anon_vma from outside one of its mms.
839 		 */
840 		anon_vma = page_get_anon_vma(page);
841 		if (anon_vma) {
842 			/*
843 			 * Anon page
844 			 */
845 		} else if (PageSwapCache(page)) {
846 			/*
847 			 * We cannot be sure that the anon_vma of an unmapped
848 			 * swapcache page is safe to use because we don't
849 			 * know in advance if the VMA that this page belonged
850 			 * to still exists. If the VMA and others sharing the
851 			 * data have been freed, then the anon_vma could
852 			 * already be invalid.
853 			 *
854 			 * To avoid this possibility, swapcache pages get
855 			 * migrated but are not remapped when migration
856 			 * completes
857 			 */
858 		} else {
859 			goto out_unlock;
860 		}
861 	}
862 
863 	if (unlikely(isolated_balloon_page(page))) {
864 		/*
865 		 * A ballooned page does not need any special attention from
866 		 * physical to virtual reverse mapping procedures.
867 		 * Skip any attempt to unmap PTEs or to remap swap cache,
868 		 * in order to avoid burning cycles at rmap level, and perform
869 		 * the page migration right away (proteced by page lock).
870 		 */
871 		rc = balloon_page_migrate(newpage, page, mode);
872 		goto out_unlock;
873 	}
874 
875 	/*
876 	 * Corner case handling:
877 	 * 1. When a new swap-cache page is read into, it is added to the LRU
878 	 * and treated as swapcache but it has no rmap yet.
879 	 * Calling try_to_unmap() against a page->mapping==NULL page will
880 	 * trigger a BUG.  So handle it here.
881 	 * 2. An orphaned page (see truncate_complete_page) might have
882 	 * fs-private metadata. The page can be picked up due to memory
883 	 * offlining.  Everywhere else except page reclaim, the page is
884 	 * invisible to the vm, so the page can not be migrated.  So try to
885 	 * free the metadata, so the page can be freed.
886 	 */
887 	if (!page->mapping) {
888 		VM_BUG_ON_PAGE(PageAnon(page), page);
889 		if (page_has_private(page)) {
890 			try_to_free_buffers(page);
891 			goto out_unlock;
892 		}
893 		goto skip_unmap;
894 	}
895 
896 	/* Establish migration ptes or remove ptes */
897 	if (page_mapped(page)) {
898 		try_to_unmap(page,
899 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
900 		page_was_mapped = 1;
901 	}
902 
903 skip_unmap:
904 	if (!page_mapped(page))
905 		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
906 
907 	if (rc && page_was_mapped)
908 		remove_migration_ptes(page, page);
909 
910 	/* Drop an anon_vma reference if we took one */
911 	if (anon_vma)
912 		put_anon_vma(anon_vma);
913 
914 out_unlock:
915 	unlock_page(page);
916 out:
917 	return rc;
918 }
919 
920 /*
921  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
922  * around it.
923  */
924 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
925 #define ICE_noinline noinline
926 #else
927 #define ICE_noinline
928 #endif
929 
930 /*
931  * Obtain the lock on page, remove all ptes and migrate the page
932  * to the newly allocated page in newpage.
933  */
934 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
935 				   free_page_t put_new_page,
936 				   unsigned long private, struct page *page,
937 				   int force, enum migrate_mode mode,
938 				   enum migrate_reason reason)
939 {
940 	int rc = 0;
941 	int *result = NULL;
942 	struct page *newpage = get_new_page(page, private, &result);
943 
944 	if (!newpage)
945 		return -ENOMEM;
946 
947 	if (page_count(page) == 1) {
948 		/* page was freed from under us. So we are done. */
949 		goto out;
950 	}
951 
952 	if (unlikely(PageTransHuge(page)))
953 		if (unlikely(split_huge_page(page)))
954 			goto out;
955 
956 	rc = __unmap_and_move(page, newpage, force, mode);
957 
958 out:
959 	if (rc != -EAGAIN) {
960 		/*
961 		 * A page that has been migrated has all references
962 		 * removed and will be freed. A page that has not been
963 		 * migrated will have kepts its references and be
964 		 * restored.
965 		 */
966 		list_del(&page->lru);
967 		dec_zone_page_state(page, NR_ISOLATED_ANON +
968 				page_is_file_cache(page));
969 		/* Soft-offlined page shouldn't go through lru cache list */
970 		if (reason == MR_MEMORY_FAILURE) {
971 			put_page(page);
972 			if (!test_set_page_hwpoison(page))
973 				num_poisoned_pages_inc();
974 		} else
975 			putback_lru_page(page);
976 	}
977 
978 	/*
979 	 * If migration was not successful and there's a freeing callback, use
980 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
981 	 * during isolation.
982 	 */
983 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
984 		ClearPageSwapBacked(newpage);
985 		put_new_page(newpage, private);
986 	} else if (unlikely(__is_movable_balloon_page(newpage))) {
987 		/* drop our reference, page already in the balloon */
988 		put_page(newpage);
989 	} else
990 		putback_lru_page(newpage);
991 
992 	if (result) {
993 		if (rc)
994 			*result = rc;
995 		else
996 			*result = page_to_nid(newpage);
997 	}
998 	return rc;
999 }
1000 
1001 /*
1002  * Counterpart of unmap_and_move_page() for hugepage migration.
1003  *
1004  * This function doesn't wait the completion of hugepage I/O
1005  * because there is no race between I/O and migration for hugepage.
1006  * Note that currently hugepage I/O occurs only in direct I/O
1007  * where no lock is held and PG_writeback is irrelevant,
1008  * and writeback status of all subpages are counted in the reference
1009  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1010  * under direct I/O, the reference of the head page is 512 and a bit more.)
1011  * This means that when we try to migrate hugepage whose subpages are
1012  * doing direct I/O, some references remain after try_to_unmap() and
1013  * hugepage migration fails without data corruption.
1014  *
1015  * There is also no race when direct I/O is issued on the page under migration,
1016  * because then pte is replaced with migration swap entry and direct I/O code
1017  * will wait in the page fault for migration to complete.
1018  */
1019 static int unmap_and_move_huge_page(new_page_t get_new_page,
1020 				free_page_t put_new_page, unsigned long private,
1021 				struct page *hpage, int force,
1022 				enum migrate_mode mode)
1023 {
1024 	int rc = 0;
1025 	int *result = NULL;
1026 	int page_was_mapped = 0;
1027 	struct page *new_hpage;
1028 	struct anon_vma *anon_vma = NULL;
1029 
1030 	/*
1031 	 * Movability of hugepages depends on architectures and hugepage size.
1032 	 * This check is necessary because some callers of hugepage migration
1033 	 * like soft offline and memory hotremove don't walk through page
1034 	 * tables or check whether the hugepage is pmd-based or not before
1035 	 * kicking migration.
1036 	 */
1037 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1038 		putback_active_hugepage(hpage);
1039 		return -ENOSYS;
1040 	}
1041 
1042 	new_hpage = get_new_page(hpage, private, &result);
1043 	if (!new_hpage)
1044 		return -ENOMEM;
1045 
1046 	rc = -EAGAIN;
1047 
1048 	if (!trylock_page(hpage)) {
1049 		if (!force || mode != MIGRATE_SYNC)
1050 			goto out;
1051 		lock_page(hpage);
1052 	}
1053 
1054 	if (PageAnon(hpage))
1055 		anon_vma = page_get_anon_vma(hpage);
1056 
1057 	if (page_mapped(hpage)) {
1058 		try_to_unmap(hpage,
1059 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1060 		page_was_mapped = 1;
1061 	}
1062 
1063 	if (!page_mapped(hpage))
1064 		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1065 
1066 	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1067 		remove_migration_ptes(hpage, hpage);
1068 
1069 	if (anon_vma)
1070 		put_anon_vma(anon_vma);
1071 
1072 	if (rc == MIGRATEPAGE_SUCCESS)
1073 		hugetlb_cgroup_migrate(hpage, new_hpage);
1074 
1075 	unlock_page(hpage);
1076 out:
1077 	if (rc != -EAGAIN)
1078 		putback_active_hugepage(hpage);
1079 
1080 	/*
1081 	 * If migration was not successful and there's a freeing callback, use
1082 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1083 	 * isolation.
1084 	 */
1085 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1086 		put_new_page(new_hpage, private);
1087 	else
1088 		putback_active_hugepage(new_hpage);
1089 
1090 	if (result) {
1091 		if (rc)
1092 			*result = rc;
1093 		else
1094 			*result = page_to_nid(new_hpage);
1095 	}
1096 	return rc;
1097 }
1098 
1099 /*
1100  * migrate_pages - migrate the pages specified in a list, to the free pages
1101  *		   supplied as the target for the page migration
1102  *
1103  * @from:		The list of pages to be migrated.
1104  * @get_new_page:	The function used to allocate free pages to be used
1105  *			as the target of the page migration.
1106  * @put_new_page:	The function used to free target pages if migration
1107  *			fails, or NULL if no special handling is necessary.
1108  * @private:		Private data to be passed on to get_new_page()
1109  * @mode:		The migration mode that specifies the constraints for
1110  *			page migration, if any.
1111  * @reason:		The reason for page migration.
1112  *
1113  * The function returns after 10 attempts or if no pages are movable any more
1114  * because the list has become empty or no retryable pages exist any more.
1115  * The caller should call putback_lru_pages() to return pages to the LRU
1116  * or free list only if ret != 0.
1117  *
1118  * Returns the number of pages that were not migrated, or an error code.
1119  */
1120 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1121 		free_page_t put_new_page, unsigned long private,
1122 		enum migrate_mode mode, int reason)
1123 {
1124 	int retry = 1;
1125 	int nr_failed = 0;
1126 	int nr_succeeded = 0;
1127 	int pass = 0;
1128 	struct page *page;
1129 	struct page *page2;
1130 	int swapwrite = current->flags & PF_SWAPWRITE;
1131 	int rc;
1132 
1133 	if (!swapwrite)
1134 		current->flags |= PF_SWAPWRITE;
1135 
1136 	for(pass = 0; pass < 10 && retry; pass++) {
1137 		retry = 0;
1138 
1139 		list_for_each_entry_safe(page, page2, from, lru) {
1140 			cond_resched();
1141 
1142 			if (PageHuge(page))
1143 				rc = unmap_and_move_huge_page(get_new_page,
1144 						put_new_page, private, page,
1145 						pass > 2, mode);
1146 			else
1147 				rc = unmap_and_move(get_new_page, put_new_page,
1148 						private, page, pass > 2, mode,
1149 						reason);
1150 
1151 			switch(rc) {
1152 			case -ENOMEM:
1153 				goto out;
1154 			case -EAGAIN:
1155 				retry++;
1156 				break;
1157 			case MIGRATEPAGE_SUCCESS:
1158 				nr_succeeded++;
1159 				break;
1160 			default:
1161 				/*
1162 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1163 				 * unlike -EAGAIN case, the failed page is
1164 				 * removed from migration page list and not
1165 				 * retried in the next outer loop.
1166 				 */
1167 				nr_failed++;
1168 				break;
1169 			}
1170 		}
1171 	}
1172 	rc = nr_failed + retry;
1173 out:
1174 	if (nr_succeeded)
1175 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1176 	if (nr_failed)
1177 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1178 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1179 
1180 	if (!swapwrite)
1181 		current->flags &= ~PF_SWAPWRITE;
1182 
1183 	return rc;
1184 }
1185 
1186 #ifdef CONFIG_NUMA
1187 /*
1188  * Move a list of individual pages
1189  */
1190 struct page_to_node {
1191 	unsigned long addr;
1192 	struct page *page;
1193 	int node;
1194 	int status;
1195 };
1196 
1197 static struct page *new_page_node(struct page *p, unsigned long private,
1198 		int **result)
1199 {
1200 	struct page_to_node *pm = (struct page_to_node *)private;
1201 
1202 	while (pm->node != MAX_NUMNODES && pm->page != p)
1203 		pm++;
1204 
1205 	if (pm->node == MAX_NUMNODES)
1206 		return NULL;
1207 
1208 	*result = &pm->status;
1209 
1210 	if (PageHuge(p))
1211 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1212 					pm->node);
1213 	else
1214 		return __alloc_pages_node(pm->node,
1215 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1216 }
1217 
1218 /*
1219  * Move a set of pages as indicated in the pm array. The addr
1220  * field must be set to the virtual address of the page to be moved
1221  * and the node number must contain a valid target node.
1222  * The pm array ends with node = MAX_NUMNODES.
1223  */
1224 static int do_move_page_to_node_array(struct mm_struct *mm,
1225 				      struct page_to_node *pm,
1226 				      int migrate_all)
1227 {
1228 	int err;
1229 	struct page_to_node *pp;
1230 	LIST_HEAD(pagelist);
1231 
1232 	down_read(&mm->mmap_sem);
1233 
1234 	/*
1235 	 * Build a list of pages to migrate
1236 	 */
1237 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1238 		struct vm_area_struct *vma;
1239 		struct page *page;
1240 
1241 		err = -EFAULT;
1242 		vma = find_vma(mm, pp->addr);
1243 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1244 			goto set_status;
1245 
1246 		/* FOLL_DUMP to ignore special (like zero) pages */
1247 		page = follow_page(vma, pp->addr,
1248 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1249 
1250 		err = PTR_ERR(page);
1251 		if (IS_ERR(page))
1252 			goto set_status;
1253 
1254 		err = -ENOENT;
1255 		if (!page)
1256 			goto set_status;
1257 
1258 		pp->page = page;
1259 		err = page_to_nid(page);
1260 
1261 		if (err == pp->node)
1262 			/*
1263 			 * Node already in the right place
1264 			 */
1265 			goto put_and_set;
1266 
1267 		err = -EACCES;
1268 		if (page_mapcount(page) > 1 &&
1269 				!migrate_all)
1270 			goto put_and_set;
1271 
1272 		if (PageHuge(page)) {
1273 			if (PageHead(page))
1274 				isolate_huge_page(page, &pagelist);
1275 			goto put_and_set;
1276 		}
1277 
1278 		err = isolate_lru_page(page);
1279 		if (!err) {
1280 			list_add_tail(&page->lru, &pagelist);
1281 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1282 					    page_is_file_cache(page));
1283 		}
1284 put_and_set:
1285 		/*
1286 		 * Either remove the duplicate refcount from
1287 		 * isolate_lru_page() or drop the page ref if it was
1288 		 * not isolated.
1289 		 */
1290 		put_page(page);
1291 set_status:
1292 		pp->status = err;
1293 	}
1294 
1295 	err = 0;
1296 	if (!list_empty(&pagelist)) {
1297 		err = migrate_pages(&pagelist, new_page_node, NULL,
1298 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1299 		if (err)
1300 			putback_movable_pages(&pagelist);
1301 	}
1302 
1303 	up_read(&mm->mmap_sem);
1304 	return err;
1305 }
1306 
1307 /*
1308  * Migrate an array of page address onto an array of nodes and fill
1309  * the corresponding array of status.
1310  */
1311 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1312 			 unsigned long nr_pages,
1313 			 const void __user * __user *pages,
1314 			 const int __user *nodes,
1315 			 int __user *status, int flags)
1316 {
1317 	struct page_to_node *pm;
1318 	unsigned long chunk_nr_pages;
1319 	unsigned long chunk_start;
1320 	int err;
1321 
1322 	err = -ENOMEM;
1323 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1324 	if (!pm)
1325 		goto out;
1326 
1327 	migrate_prep();
1328 
1329 	/*
1330 	 * Store a chunk of page_to_node array in a page,
1331 	 * but keep the last one as a marker
1332 	 */
1333 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1334 
1335 	for (chunk_start = 0;
1336 	     chunk_start < nr_pages;
1337 	     chunk_start += chunk_nr_pages) {
1338 		int j;
1339 
1340 		if (chunk_start + chunk_nr_pages > nr_pages)
1341 			chunk_nr_pages = nr_pages - chunk_start;
1342 
1343 		/* fill the chunk pm with addrs and nodes from user-space */
1344 		for (j = 0; j < chunk_nr_pages; j++) {
1345 			const void __user *p;
1346 			int node;
1347 
1348 			err = -EFAULT;
1349 			if (get_user(p, pages + j + chunk_start))
1350 				goto out_pm;
1351 			pm[j].addr = (unsigned long) p;
1352 
1353 			if (get_user(node, nodes + j + chunk_start))
1354 				goto out_pm;
1355 
1356 			err = -ENODEV;
1357 			if (node < 0 || node >= MAX_NUMNODES)
1358 				goto out_pm;
1359 
1360 			if (!node_state(node, N_MEMORY))
1361 				goto out_pm;
1362 
1363 			err = -EACCES;
1364 			if (!node_isset(node, task_nodes))
1365 				goto out_pm;
1366 
1367 			pm[j].node = node;
1368 		}
1369 
1370 		/* End marker for this chunk */
1371 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1372 
1373 		/* Migrate this chunk */
1374 		err = do_move_page_to_node_array(mm, pm,
1375 						 flags & MPOL_MF_MOVE_ALL);
1376 		if (err < 0)
1377 			goto out_pm;
1378 
1379 		/* Return status information */
1380 		for (j = 0; j < chunk_nr_pages; j++)
1381 			if (put_user(pm[j].status, status + j + chunk_start)) {
1382 				err = -EFAULT;
1383 				goto out_pm;
1384 			}
1385 	}
1386 	err = 0;
1387 
1388 out_pm:
1389 	free_page((unsigned long)pm);
1390 out:
1391 	return err;
1392 }
1393 
1394 /*
1395  * Determine the nodes of an array of pages and store it in an array of status.
1396  */
1397 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1398 				const void __user **pages, int *status)
1399 {
1400 	unsigned long i;
1401 
1402 	down_read(&mm->mmap_sem);
1403 
1404 	for (i = 0; i < nr_pages; i++) {
1405 		unsigned long addr = (unsigned long)(*pages);
1406 		struct vm_area_struct *vma;
1407 		struct page *page;
1408 		int err = -EFAULT;
1409 
1410 		vma = find_vma(mm, addr);
1411 		if (!vma || addr < vma->vm_start)
1412 			goto set_status;
1413 
1414 		/* FOLL_DUMP to ignore special (like zero) pages */
1415 		page = follow_page(vma, addr, FOLL_DUMP);
1416 
1417 		err = PTR_ERR(page);
1418 		if (IS_ERR(page))
1419 			goto set_status;
1420 
1421 		err = page ? page_to_nid(page) : -ENOENT;
1422 set_status:
1423 		*status = err;
1424 
1425 		pages++;
1426 		status++;
1427 	}
1428 
1429 	up_read(&mm->mmap_sem);
1430 }
1431 
1432 /*
1433  * Determine the nodes of a user array of pages and store it in
1434  * a user array of status.
1435  */
1436 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1437 			 const void __user * __user *pages,
1438 			 int __user *status)
1439 {
1440 #define DO_PAGES_STAT_CHUNK_NR 16
1441 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1442 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1443 
1444 	while (nr_pages) {
1445 		unsigned long chunk_nr;
1446 
1447 		chunk_nr = nr_pages;
1448 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1449 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1450 
1451 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1452 			break;
1453 
1454 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1455 
1456 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1457 			break;
1458 
1459 		pages += chunk_nr;
1460 		status += chunk_nr;
1461 		nr_pages -= chunk_nr;
1462 	}
1463 	return nr_pages ? -EFAULT : 0;
1464 }
1465 
1466 /*
1467  * Move a list of pages in the address space of the currently executing
1468  * process.
1469  */
1470 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1471 		const void __user * __user *, pages,
1472 		const int __user *, nodes,
1473 		int __user *, status, int, flags)
1474 {
1475 	const struct cred *cred = current_cred(), *tcred;
1476 	struct task_struct *task;
1477 	struct mm_struct *mm;
1478 	int err;
1479 	nodemask_t task_nodes;
1480 
1481 	/* Check flags */
1482 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1483 		return -EINVAL;
1484 
1485 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1486 		return -EPERM;
1487 
1488 	/* Find the mm_struct */
1489 	rcu_read_lock();
1490 	task = pid ? find_task_by_vpid(pid) : current;
1491 	if (!task) {
1492 		rcu_read_unlock();
1493 		return -ESRCH;
1494 	}
1495 	get_task_struct(task);
1496 
1497 	/*
1498 	 * Check if this process has the right to modify the specified
1499 	 * process. The right exists if the process has administrative
1500 	 * capabilities, superuser privileges or the same
1501 	 * userid as the target process.
1502 	 */
1503 	tcred = __task_cred(task);
1504 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1505 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1506 	    !capable(CAP_SYS_NICE)) {
1507 		rcu_read_unlock();
1508 		err = -EPERM;
1509 		goto out;
1510 	}
1511 	rcu_read_unlock();
1512 
1513  	err = security_task_movememory(task);
1514  	if (err)
1515 		goto out;
1516 
1517 	task_nodes = cpuset_mems_allowed(task);
1518 	mm = get_task_mm(task);
1519 	put_task_struct(task);
1520 
1521 	if (!mm)
1522 		return -EINVAL;
1523 
1524 	if (nodes)
1525 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1526 				    nodes, status, flags);
1527 	else
1528 		err = do_pages_stat(mm, nr_pages, pages, status);
1529 
1530 	mmput(mm);
1531 	return err;
1532 
1533 out:
1534 	put_task_struct(task);
1535 	return err;
1536 }
1537 
1538 #ifdef CONFIG_NUMA_BALANCING
1539 /*
1540  * Returns true if this is a safe migration target node for misplaced NUMA
1541  * pages. Currently it only checks the watermarks which crude
1542  */
1543 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1544 				   unsigned long nr_migrate_pages)
1545 {
1546 	int z;
1547 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1548 		struct zone *zone = pgdat->node_zones + z;
1549 
1550 		if (!populated_zone(zone))
1551 			continue;
1552 
1553 		if (!zone_reclaimable(zone))
1554 			continue;
1555 
1556 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1557 		if (!zone_watermark_ok(zone, 0,
1558 				       high_wmark_pages(zone) +
1559 				       nr_migrate_pages,
1560 				       0, 0))
1561 			continue;
1562 		return true;
1563 	}
1564 	return false;
1565 }
1566 
1567 static struct page *alloc_misplaced_dst_page(struct page *page,
1568 					   unsigned long data,
1569 					   int **result)
1570 {
1571 	int nid = (int) data;
1572 	struct page *newpage;
1573 
1574 	newpage = __alloc_pages_node(nid,
1575 					 (GFP_HIGHUSER_MOVABLE |
1576 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1577 					  __GFP_NORETRY | __GFP_NOWARN) &
1578 					 ~GFP_IOFS, 0);
1579 
1580 	return newpage;
1581 }
1582 
1583 /*
1584  * page migration rate limiting control.
1585  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1586  * window of time. Default here says do not migrate more than 1280M per second.
1587  */
1588 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1589 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1590 
1591 /* Returns true if the node is migrate rate-limited after the update */
1592 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1593 					unsigned long nr_pages)
1594 {
1595 	/*
1596 	 * Rate-limit the amount of data that is being migrated to a node.
1597 	 * Optimal placement is no good if the memory bus is saturated and
1598 	 * all the time is being spent migrating!
1599 	 */
1600 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1601 		spin_lock(&pgdat->numabalancing_migrate_lock);
1602 		pgdat->numabalancing_migrate_nr_pages = 0;
1603 		pgdat->numabalancing_migrate_next_window = jiffies +
1604 			msecs_to_jiffies(migrate_interval_millisecs);
1605 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1606 	}
1607 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1608 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1609 								nr_pages);
1610 		return true;
1611 	}
1612 
1613 	/*
1614 	 * This is an unlocked non-atomic update so errors are possible.
1615 	 * The consequences are failing to migrate when we potentiall should
1616 	 * have which is not severe enough to warrant locking. If it is ever
1617 	 * a problem, it can be converted to a per-cpu counter.
1618 	 */
1619 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1620 	return false;
1621 }
1622 
1623 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1624 {
1625 	int page_lru;
1626 
1627 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1628 
1629 	/* Avoid migrating to a node that is nearly full */
1630 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1631 		return 0;
1632 
1633 	if (isolate_lru_page(page))
1634 		return 0;
1635 
1636 	/*
1637 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1638 	 * check on page_count(), so we must do it here, now that the page
1639 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1640 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1641 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1642 	 */
1643 	if (PageTransHuge(page) && page_count(page) != 3) {
1644 		putback_lru_page(page);
1645 		return 0;
1646 	}
1647 
1648 	page_lru = page_is_file_cache(page);
1649 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1650 				hpage_nr_pages(page));
1651 
1652 	/*
1653 	 * Isolating the page has taken another reference, so the
1654 	 * caller's reference can be safely dropped without the page
1655 	 * disappearing underneath us during migration.
1656 	 */
1657 	put_page(page);
1658 	return 1;
1659 }
1660 
1661 bool pmd_trans_migrating(pmd_t pmd)
1662 {
1663 	struct page *page = pmd_page(pmd);
1664 	return PageLocked(page);
1665 }
1666 
1667 /*
1668  * Attempt to migrate a misplaced page to the specified destination
1669  * node. Caller is expected to have an elevated reference count on
1670  * the page that will be dropped by this function before returning.
1671  */
1672 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1673 			   int node)
1674 {
1675 	pg_data_t *pgdat = NODE_DATA(node);
1676 	int isolated;
1677 	int nr_remaining;
1678 	LIST_HEAD(migratepages);
1679 
1680 	/*
1681 	 * Don't migrate file pages that are mapped in multiple processes
1682 	 * with execute permissions as they are probably shared libraries.
1683 	 */
1684 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1685 	    (vma->vm_flags & VM_EXEC))
1686 		goto out;
1687 
1688 	/*
1689 	 * Rate-limit the amount of data that is being migrated to a node.
1690 	 * Optimal placement is no good if the memory bus is saturated and
1691 	 * all the time is being spent migrating!
1692 	 */
1693 	if (numamigrate_update_ratelimit(pgdat, 1))
1694 		goto out;
1695 
1696 	isolated = numamigrate_isolate_page(pgdat, page);
1697 	if (!isolated)
1698 		goto out;
1699 
1700 	list_add(&page->lru, &migratepages);
1701 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1702 				     NULL, node, MIGRATE_ASYNC,
1703 				     MR_NUMA_MISPLACED);
1704 	if (nr_remaining) {
1705 		if (!list_empty(&migratepages)) {
1706 			list_del(&page->lru);
1707 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1708 					page_is_file_cache(page));
1709 			putback_lru_page(page);
1710 		}
1711 		isolated = 0;
1712 	} else
1713 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1714 	BUG_ON(!list_empty(&migratepages));
1715 	return isolated;
1716 
1717 out:
1718 	put_page(page);
1719 	return 0;
1720 }
1721 #endif /* CONFIG_NUMA_BALANCING */
1722 
1723 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1724 /*
1725  * Migrates a THP to a given target node. page must be locked and is unlocked
1726  * before returning.
1727  */
1728 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1729 				struct vm_area_struct *vma,
1730 				pmd_t *pmd, pmd_t entry,
1731 				unsigned long address,
1732 				struct page *page, int node)
1733 {
1734 	spinlock_t *ptl;
1735 	pg_data_t *pgdat = NODE_DATA(node);
1736 	int isolated = 0;
1737 	struct page *new_page = NULL;
1738 	int page_lru = page_is_file_cache(page);
1739 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1740 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1741 	pmd_t orig_entry;
1742 
1743 	/*
1744 	 * Rate-limit the amount of data that is being migrated to a node.
1745 	 * Optimal placement is no good if the memory bus is saturated and
1746 	 * all the time is being spent migrating!
1747 	 */
1748 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1749 		goto out_dropref;
1750 
1751 	new_page = alloc_pages_node(node,
1752 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1753 		HPAGE_PMD_ORDER);
1754 	if (!new_page)
1755 		goto out_fail;
1756 
1757 	isolated = numamigrate_isolate_page(pgdat, page);
1758 	if (!isolated) {
1759 		put_page(new_page);
1760 		goto out_fail;
1761 	}
1762 
1763 	if (mm_tlb_flush_pending(mm))
1764 		flush_tlb_range(vma, mmun_start, mmun_end);
1765 
1766 	/* Prepare a page as a migration target */
1767 	__set_page_locked(new_page);
1768 	SetPageSwapBacked(new_page);
1769 
1770 	/* anon mapping, we can simply copy page->mapping to the new page: */
1771 	new_page->mapping = page->mapping;
1772 	new_page->index = page->index;
1773 	migrate_page_copy(new_page, page);
1774 	WARN_ON(PageLRU(new_page));
1775 
1776 	/* Recheck the target PMD */
1777 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1778 	ptl = pmd_lock(mm, pmd);
1779 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1780 fail_putback:
1781 		spin_unlock(ptl);
1782 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1783 
1784 		/* Reverse changes made by migrate_page_copy() */
1785 		if (TestClearPageActive(new_page))
1786 			SetPageActive(page);
1787 		if (TestClearPageUnevictable(new_page))
1788 			SetPageUnevictable(page);
1789 		mlock_migrate_page(page, new_page);
1790 
1791 		unlock_page(new_page);
1792 		put_page(new_page);		/* Free it */
1793 
1794 		/* Retake the callers reference and putback on LRU */
1795 		get_page(page);
1796 		putback_lru_page(page);
1797 		mod_zone_page_state(page_zone(page),
1798 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1799 
1800 		goto out_unlock;
1801 	}
1802 
1803 	orig_entry = *pmd;
1804 	entry = mk_pmd(new_page, vma->vm_page_prot);
1805 	entry = pmd_mkhuge(entry);
1806 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1807 
1808 	/*
1809 	 * Clear the old entry under pagetable lock and establish the new PTE.
1810 	 * Any parallel GUP will either observe the old page blocking on the
1811 	 * page lock, block on the page table lock or observe the new page.
1812 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1813 	 * guarantee the copy is visible before the pagetable update.
1814 	 */
1815 	flush_cache_range(vma, mmun_start, mmun_end);
1816 	page_add_anon_rmap(new_page, vma, mmun_start);
1817 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1818 	set_pmd_at(mm, mmun_start, pmd, entry);
1819 	flush_tlb_range(vma, mmun_start, mmun_end);
1820 	update_mmu_cache_pmd(vma, address, &entry);
1821 
1822 	if (page_count(page) != 2) {
1823 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1824 		flush_tlb_range(vma, mmun_start, mmun_end);
1825 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1826 		update_mmu_cache_pmd(vma, address, &entry);
1827 		page_remove_rmap(new_page);
1828 		goto fail_putback;
1829 	}
1830 
1831 	mem_cgroup_migrate(page, new_page, false);
1832 
1833 	page_remove_rmap(page);
1834 
1835 	spin_unlock(ptl);
1836 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1837 
1838 	/* Take an "isolate" reference and put new page on the LRU. */
1839 	get_page(new_page);
1840 	putback_lru_page(new_page);
1841 
1842 	unlock_page(new_page);
1843 	unlock_page(page);
1844 	put_page(page);			/* Drop the rmap reference */
1845 	put_page(page);			/* Drop the LRU isolation reference */
1846 
1847 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1848 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1849 
1850 	mod_zone_page_state(page_zone(page),
1851 			NR_ISOLATED_ANON + page_lru,
1852 			-HPAGE_PMD_NR);
1853 	return isolated;
1854 
1855 out_fail:
1856 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1857 out_dropref:
1858 	ptl = pmd_lock(mm, pmd);
1859 	if (pmd_same(*pmd, entry)) {
1860 		entry = pmd_modify(entry, vma->vm_page_prot);
1861 		set_pmd_at(mm, mmun_start, pmd, entry);
1862 		update_mmu_cache_pmd(vma, address, &entry);
1863 	}
1864 	spin_unlock(ptl);
1865 
1866 out_unlock:
1867 	unlock_page(page);
1868 	put_page(page);
1869 	return 0;
1870 }
1871 #endif /* CONFIG_NUMA_BALANCING */
1872 
1873 #endif /* CONFIG_NUMA */
1874