1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 42 #include <asm/tlbflush.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/migrate.h> 46 47 #include "internal.h" 48 49 /* 50 * migrate_prep() needs to be called before we start compiling a list of pages 51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 52 * undesirable, use migrate_prep_local() 53 */ 54 int migrate_prep(void) 55 { 56 /* 57 * Clear the LRU lists so pages can be isolated. 58 * Note that pages may be moved off the LRU after we have 59 * drained them. Those pages will fail to migrate like other 60 * pages that may be busy. 61 */ 62 lru_add_drain_all(); 63 64 return 0; 65 } 66 67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 68 int migrate_prep_local(void) 69 { 70 lru_add_drain(); 71 72 return 0; 73 } 74 75 /* 76 * Put previously isolated pages back onto the appropriate lists 77 * from where they were once taken off for compaction/migration. 78 * 79 * This function shall be used whenever the isolated pageset has been 80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 81 * and isolate_huge_page(). 82 */ 83 void putback_movable_pages(struct list_head *l) 84 { 85 struct page *page; 86 struct page *page2; 87 88 list_for_each_entry_safe(page, page2, l, lru) { 89 if (unlikely(PageHuge(page))) { 90 putback_active_hugepage(page); 91 continue; 92 } 93 list_del(&page->lru); 94 dec_zone_page_state(page, NR_ISOLATED_ANON + 95 page_is_file_cache(page)); 96 if (unlikely(isolated_balloon_page(page))) 97 balloon_page_putback(page); 98 else 99 putback_lru_page(page); 100 } 101 } 102 103 /* 104 * Restore a potential migration pte to a working pte entry 105 */ 106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 107 unsigned long addr, void *old) 108 { 109 struct mm_struct *mm = vma->vm_mm; 110 swp_entry_t entry; 111 pmd_t *pmd; 112 pte_t *ptep, pte; 113 spinlock_t *ptl; 114 115 if (unlikely(PageHuge(new))) { 116 ptep = huge_pte_offset(mm, addr); 117 if (!ptep) 118 goto out; 119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 120 } else { 121 pmd = mm_find_pmd(mm, addr); 122 if (!pmd) 123 goto out; 124 125 ptep = pte_offset_map(pmd, addr); 126 127 /* 128 * Peek to check is_swap_pte() before taking ptlock? No, we 129 * can race mremap's move_ptes(), which skips anon_vma lock. 130 */ 131 132 ptl = pte_lockptr(mm, pmd); 133 } 134 135 spin_lock(ptl); 136 pte = *ptep; 137 if (!is_swap_pte(pte)) 138 goto unlock; 139 140 entry = pte_to_swp_entry(pte); 141 142 if (!is_migration_entry(entry) || 143 migration_entry_to_page(entry) != old) 144 goto unlock; 145 146 get_page(new); 147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 148 if (pte_swp_soft_dirty(*ptep)) 149 pte = pte_mksoft_dirty(pte); 150 151 /* Recheck VMA as permissions can change since migration started */ 152 if (is_write_migration_entry(entry)) 153 pte = maybe_mkwrite(pte, vma); 154 155 #ifdef CONFIG_HUGETLB_PAGE 156 if (PageHuge(new)) { 157 pte = pte_mkhuge(pte); 158 pte = arch_make_huge_pte(pte, vma, new, 0); 159 } 160 #endif 161 flush_dcache_page(new); 162 set_pte_at(mm, addr, ptep, pte); 163 164 if (PageHuge(new)) { 165 if (PageAnon(new)) 166 hugepage_add_anon_rmap(new, vma, addr); 167 else 168 page_dup_rmap(new); 169 } else if (PageAnon(new)) 170 page_add_anon_rmap(new, vma, addr); 171 else 172 page_add_file_rmap(new); 173 174 /* No need to invalidate - it was non-present before */ 175 update_mmu_cache(vma, addr, ptep); 176 unlock: 177 pte_unmap_unlock(ptep, ptl); 178 out: 179 return SWAP_AGAIN; 180 } 181 182 /* 183 * Get rid of all migration entries and replace them by 184 * references to the indicated page. 185 */ 186 static void remove_migration_ptes(struct page *old, struct page *new) 187 { 188 struct rmap_walk_control rwc = { 189 .rmap_one = remove_migration_pte, 190 .arg = old, 191 }; 192 193 rmap_walk(new, &rwc); 194 } 195 196 /* 197 * Something used the pte of a page under migration. We need to 198 * get to the page and wait until migration is finished. 199 * When we return from this function the fault will be retried. 200 */ 201 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 202 spinlock_t *ptl) 203 { 204 pte_t pte; 205 swp_entry_t entry; 206 struct page *page; 207 208 spin_lock(ptl); 209 pte = *ptep; 210 if (!is_swap_pte(pte)) 211 goto out; 212 213 entry = pte_to_swp_entry(pte); 214 if (!is_migration_entry(entry)) 215 goto out; 216 217 page = migration_entry_to_page(entry); 218 219 /* 220 * Once radix-tree replacement of page migration started, page_count 221 * *must* be zero. And, we don't want to call wait_on_page_locked() 222 * against a page without get_page(). 223 * So, we use get_page_unless_zero(), here. Even failed, page fault 224 * will occur again. 225 */ 226 if (!get_page_unless_zero(page)) 227 goto out; 228 pte_unmap_unlock(ptep, ptl); 229 wait_on_page_locked(page); 230 put_page(page); 231 return; 232 out: 233 pte_unmap_unlock(ptep, ptl); 234 } 235 236 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 237 unsigned long address) 238 { 239 spinlock_t *ptl = pte_lockptr(mm, pmd); 240 pte_t *ptep = pte_offset_map(pmd, address); 241 __migration_entry_wait(mm, ptep, ptl); 242 } 243 244 void migration_entry_wait_huge(struct vm_area_struct *vma, 245 struct mm_struct *mm, pte_t *pte) 246 { 247 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 248 __migration_entry_wait(mm, pte, ptl); 249 } 250 251 #ifdef CONFIG_BLOCK 252 /* Returns true if all buffers are successfully locked */ 253 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 254 enum migrate_mode mode) 255 { 256 struct buffer_head *bh = head; 257 258 /* Simple case, sync compaction */ 259 if (mode != MIGRATE_ASYNC) { 260 do { 261 get_bh(bh); 262 lock_buffer(bh); 263 bh = bh->b_this_page; 264 265 } while (bh != head); 266 267 return true; 268 } 269 270 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 271 do { 272 get_bh(bh); 273 if (!trylock_buffer(bh)) { 274 /* 275 * We failed to lock the buffer and cannot stall in 276 * async migration. Release the taken locks 277 */ 278 struct buffer_head *failed_bh = bh; 279 put_bh(failed_bh); 280 bh = head; 281 while (bh != failed_bh) { 282 unlock_buffer(bh); 283 put_bh(bh); 284 bh = bh->b_this_page; 285 } 286 return false; 287 } 288 289 bh = bh->b_this_page; 290 } while (bh != head); 291 return true; 292 } 293 #else 294 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 295 enum migrate_mode mode) 296 { 297 return true; 298 } 299 #endif /* CONFIG_BLOCK */ 300 301 /* 302 * Replace the page in the mapping. 303 * 304 * The number of remaining references must be: 305 * 1 for anonymous pages without a mapping 306 * 2 for pages with a mapping 307 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 308 */ 309 int migrate_page_move_mapping(struct address_space *mapping, 310 struct page *newpage, struct page *page, 311 struct buffer_head *head, enum migrate_mode mode, 312 int extra_count) 313 { 314 int expected_count = 1 + extra_count; 315 void **pslot; 316 317 if (!mapping) { 318 /* Anonymous page without mapping */ 319 if (page_count(page) != expected_count) 320 return -EAGAIN; 321 return MIGRATEPAGE_SUCCESS; 322 } 323 324 spin_lock_irq(&mapping->tree_lock); 325 326 pslot = radix_tree_lookup_slot(&mapping->page_tree, 327 page_index(page)); 328 329 expected_count += 1 + page_has_private(page); 330 if (page_count(page) != expected_count || 331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 332 spin_unlock_irq(&mapping->tree_lock); 333 return -EAGAIN; 334 } 335 336 if (!page_freeze_refs(page, expected_count)) { 337 spin_unlock_irq(&mapping->tree_lock); 338 return -EAGAIN; 339 } 340 341 /* 342 * In the async migration case of moving a page with buffers, lock the 343 * buffers using trylock before the mapping is moved. If the mapping 344 * was moved, we later failed to lock the buffers and could not move 345 * the mapping back due to an elevated page count, we would have to 346 * block waiting on other references to be dropped. 347 */ 348 if (mode == MIGRATE_ASYNC && head && 349 !buffer_migrate_lock_buffers(head, mode)) { 350 page_unfreeze_refs(page, expected_count); 351 spin_unlock_irq(&mapping->tree_lock); 352 return -EAGAIN; 353 } 354 355 /* 356 * Now we know that no one else is looking at the page. 357 */ 358 get_page(newpage); /* add cache reference */ 359 if (PageSwapCache(page)) { 360 SetPageSwapCache(newpage); 361 set_page_private(newpage, page_private(page)); 362 } 363 364 radix_tree_replace_slot(pslot, newpage); 365 366 /* 367 * Drop cache reference from old page by unfreezing 368 * to one less reference. 369 * We know this isn't the last reference. 370 */ 371 page_unfreeze_refs(page, expected_count - 1); 372 373 /* 374 * If moved to a different zone then also account 375 * the page for that zone. Other VM counters will be 376 * taken care of when we establish references to the 377 * new page and drop references to the old page. 378 * 379 * Note that anonymous pages are accounted for 380 * via NR_FILE_PAGES and NR_ANON_PAGES if they 381 * are mapped to swap space. 382 */ 383 __dec_zone_page_state(page, NR_FILE_PAGES); 384 __inc_zone_page_state(newpage, NR_FILE_PAGES); 385 if (!PageSwapCache(page) && PageSwapBacked(page)) { 386 __dec_zone_page_state(page, NR_SHMEM); 387 __inc_zone_page_state(newpage, NR_SHMEM); 388 } 389 spin_unlock_irq(&mapping->tree_lock); 390 391 return MIGRATEPAGE_SUCCESS; 392 } 393 394 /* 395 * The expected number of remaining references is the same as that 396 * of migrate_page_move_mapping(). 397 */ 398 int migrate_huge_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page) 400 { 401 int expected_count; 402 void **pslot; 403 404 if (!mapping) { 405 if (page_count(page) != 1) 406 return -EAGAIN; 407 return MIGRATEPAGE_SUCCESS; 408 } 409 410 spin_lock_irq(&mapping->tree_lock); 411 412 pslot = radix_tree_lookup_slot(&mapping->page_tree, 413 page_index(page)); 414 415 expected_count = 2 + page_has_private(page); 416 if (page_count(page) != expected_count || 417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 418 spin_unlock_irq(&mapping->tree_lock); 419 return -EAGAIN; 420 } 421 422 if (!page_freeze_refs(page, expected_count)) { 423 spin_unlock_irq(&mapping->tree_lock); 424 return -EAGAIN; 425 } 426 427 get_page(newpage); 428 429 radix_tree_replace_slot(pslot, newpage); 430 431 page_unfreeze_refs(page, expected_count - 1); 432 433 spin_unlock_irq(&mapping->tree_lock); 434 return MIGRATEPAGE_SUCCESS; 435 } 436 437 /* 438 * Gigantic pages are so large that we do not guarantee that page++ pointer 439 * arithmetic will work across the entire page. We need something more 440 * specialized. 441 */ 442 static void __copy_gigantic_page(struct page *dst, struct page *src, 443 int nr_pages) 444 { 445 int i; 446 struct page *dst_base = dst; 447 struct page *src_base = src; 448 449 for (i = 0; i < nr_pages; ) { 450 cond_resched(); 451 copy_highpage(dst, src); 452 453 i++; 454 dst = mem_map_next(dst, dst_base, i); 455 src = mem_map_next(src, src_base, i); 456 } 457 } 458 459 static void copy_huge_page(struct page *dst, struct page *src) 460 { 461 int i; 462 int nr_pages; 463 464 if (PageHuge(src)) { 465 /* hugetlbfs page */ 466 struct hstate *h = page_hstate(src); 467 nr_pages = pages_per_huge_page(h); 468 469 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 470 __copy_gigantic_page(dst, src, nr_pages); 471 return; 472 } 473 } else { 474 /* thp page */ 475 BUG_ON(!PageTransHuge(src)); 476 nr_pages = hpage_nr_pages(src); 477 } 478 479 for (i = 0; i < nr_pages; i++) { 480 cond_resched(); 481 copy_highpage(dst + i, src + i); 482 } 483 } 484 485 /* 486 * Copy the page to its new location 487 */ 488 void migrate_page_copy(struct page *newpage, struct page *page) 489 { 490 int cpupid; 491 492 if (PageHuge(page) || PageTransHuge(page)) 493 copy_huge_page(newpage, page); 494 else 495 copy_highpage(newpage, page); 496 497 if (PageError(page)) 498 SetPageError(newpage); 499 if (PageReferenced(page)) 500 SetPageReferenced(newpage); 501 if (PageUptodate(page)) 502 SetPageUptodate(newpage); 503 if (TestClearPageActive(page)) { 504 VM_BUG_ON_PAGE(PageUnevictable(page), page); 505 SetPageActive(newpage); 506 } else if (TestClearPageUnevictable(page)) 507 SetPageUnevictable(newpage); 508 if (PageChecked(page)) 509 SetPageChecked(newpage); 510 if (PageMappedToDisk(page)) 511 SetPageMappedToDisk(newpage); 512 513 if (PageDirty(page)) { 514 clear_page_dirty_for_io(page); 515 /* 516 * Want to mark the page and the radix tree as dirty, and 517 * redo the accounting that clear_page_dirty_for_io undid, 518 * but we can't use set_page_dirty because that function 519 * is actually a signal that all of the page has become dirty. 520 * Whereas only part of our page may be dirty. 521 */ 522 if (PageSwapBacked(page)) 523 SetPageDirty(newpage); 524 else 525 __set_page_dirty_nobuffers(newpage); 526 } 527 528 if (page_is_young(page)) 529 set_page_young(newpage); 530 if (page_is_idle(page)) 531 set_page_idle(newpage); 532 533 /* 534 * Copy NUMA information to the new page, to prevent over-eager 535 * future migrations of this same page. 536 */ 537 cpupid = page_cpupid_xchg_last(page, -1); 538 page_cpupid_xchg_last(newpage, cpupid); 539 540 mlock_migrate_page(newpage, page); 541 ksm_migrate_page(newpage, page); 542 /* 543 * Please do not reorder this without considering how mm/ksm.c's 544 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 545 */ 546 if (PageSwapCache(page)) 547 ClearPageSwapCache(page); 548 ClearPagePrivate(page); 549 set_page_private(page, 0); 550 551 /* 552 * If any waiters have accumulated on the new page then 553 * wake them up. 554 */ 555 if (PageWriteback(newpage)) 556 end_page_writeback(newpage); 557 } 558 559 /************************************************************ 560 * Migration functions 561 ***********************************************************/ 562 563 /* 564 * Common logic to directly migrate a single page suitable for 565 * pages that do not use PagePrivate/PagePrivate2. 566 * 567 * Pages are locked upon entry and exit. 568 */ 569 int migrate_page(struct address_space *mapping, 570 struct page *newpage, struct page *page, 571 enum migrate_mode mode) 572 { 573 int rc; 574 575 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 576 577 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 578 579 if (rc != MIGRATEPAGE_SUCCESS) 580 return rc; 581 582 migrate_page_copy(newpage, page); 583 return MIGRATEPAGE_SUCCESS; 584 } 585 EXPORT_SYMBOL(migrate_page); 586 587 #ifdef CONFIG_BLOCK 588 /* 589 * Migration function for pages with buffers. This function can only be used 590 * if the underlying filesystem guarantees that no other references to "page" 591 * exist. 592 */ 593 int buffer_migrate_page(struct address_space *mapping, 594 struct page *newpage, struct page *page, enum migrate_mode mode) 595 { 596 struct buffer_head *bh, *head; 597 int rc; 598 599 if (!page_has_buffers(page)) 600 return migrate_page(mapping, newpage, page, mode); 601 602 head = page_buffers(page); 603 604 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 605 606 if (rc != MIGRATEPAGE_SUCCESS) 607 return rc; 608 609 /* 610 * In the async case, migrate_page_move_mapping locked the buffers 611 * with an IRQ-safe spinlock held. In the sync case, the buffers 612 * need to be locked now 613 */ 614 if (mode != MIGRATE_ASYNC) 615 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 616 617 ClearPagePrivate(page); 618 set_page_private(newpage, page_private(page)); 619 set_page_private(page, 0); 620 put_page(page); 621 get_page(newpage); 622 623 bh = head; 624 do { 625 set_bh_page(bh, newpage, bh_offset(bh)); 626 bh = bh->b_this_page; 627 628 } while (bh != head); 629 630 SetPagePrivate(newpage); 631 632 migrate_page_copy(newpage, page); 633 634 bh = head; 635 do { 636 unlock_buffer(bh); 637 put_bh(bh); 638 bh = bh->b_this_page; 639 640 } while (bh != head); 641 642 return MIGRATEPAGE_SUCCESS; 643 } 644 EXPORT_SYMBOL(buffer_migrate_page); 645 #endif 646 647 /* 648 * Writeback a page to clean the dirty state 649 */ 650 static int writeout(struct address_space *mapping, struct page *page) 651 { 652 struct writeback_control wbc = { 653 .sync_mode = WB_SYNC_NONE, 654 .nr_to_write = 1, 655 .range_start = 0, 656 .range_end = LLONG_MAX, 657 .for_reclaim = 1 658 }; 659 int rc; 660 661 if (!mapping->a_ops->writepage) 662 /* No write method for the address space */ 663 return -EINVAL; 664 665 if (!clear_page_dirty_for_io(page)) 666 /* Someone else already triggered a write */ 667 return -EAGAIN; 668 669 /* 670 * A dirty page may imply that the underlying filesystem has 671 * the page on some queue. So the page must be clean for 672 * migration. Writeout may mean we loose the lock and the 673 * page state is no longer what we checked for earlier. 674 * At this point we know that the migration attempt cannot 675 * be successful. 676 */ 677 remove_migration_ptes(page, page); 678 679 rc = mapping->a_ops->writepage(page, &wbc); 680 681 if (rc != AOP_WRITEPAGE_ACTIVATE) 682 /* unlocked. Relock */ 683 lock_page(page); 684 685 return (rc < 0) ? -EIO : -EAGAIN; 686 } 687 688 /* 689 * Default handling if a filesystem does not provide a migration function. 690 */ 691 static int fallback_migrate_page(struct address_space *mapping, 692 struct page *newpage, struct page *page, enum migrate_mode mode) 693 { 694 if (PageDirty(page)) { 695 /* Only writeback pages in full synchronous migration */ 696 if (mode != MIGRATE_SYNC) 697 return -EBUSY; 698 return writeout(mapping, page); 699 } 700 701 /* 702 * Buffers may be managed in a filesystem specific way. 703 * We must have no buffers or drop them. 704 */ 705 if (page_has_private(page) && 706 !try_to_release_page(page, GFP_KERNEL)) 707 return -EAGAIN; 708 709 return migrate_page(mapping, newpage, page, mode); 710 } 711 712 /* 713 * Move a page to a newly allocated page 714 * The page is locked and all ptes have been successfully removed. 715 * 716 * The new page will have replaced the old page if this function 717 * is successful. 718 * 719 * Return value: 720 * < 0 - error code 721 * MIGRATEPAGE_SUCCESS - success 722 */ 723 static int move_to_new_page(struct page *newpage, struct page *page, 724 int page_was_mapped, enum migrate_mode mode) 725 { 726 struct address_space *mapping; 727 int rc; 728 729 /* 730 * Block others from accessing the page when we get around to 731 * establishing additional references. We are the only one 732 * holding a reference to the new page at this point. 733 */ 734 if (!trylock_page(newpage)) 735 BUG(); 736 737 /* Prepare mapping for the new page.*/ 738 newpage->index = page->index; 739 newpage->mapping = page->mapping; 740 if (PageSwapBacked(page)) 741 SetPageSwapBacked(newpage); 742 743 /* 744 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus 745 * needs newpage's memcg set to transfer memcg dirty page accounting. 746 * So perform memcg migration in two steps: 747 * 1. set newpage->mem_cgroup (here) 748 * 2. clear page->mem_cgroup (below) 749 */ 750 set_page_memcg(newpage, page_memcg(page)); 751 752 mapping = page_mapping(page); 753 if (!mapping) 754 rc = migrate_page(mapping, newpage, page, mode); 755 else if (mapping->a_ops->migratepage) 756 /* 757 * Most pages have a mapping and most filesystems provide a 758 * migratepage callback. Anonymous pages are part of swap 759 * space which also has its own migratepage callback. This 760 * is the most common path for page migration. 761 */ 762 rc = mapping->a_ops->migratepage(mapping, 763 newpage, page, mode); 764 else 765 rc = fallback_migrate_page(mapping, newpage, page, mode); 766 767 if (rc != MIGRATEPAGE_SUCCESS) { 768 set_page_memcg(newpage, NULL); 769 newpage->mapping = NULL; 770 } else { 771 set_page_memcg(page, NULL); 772 if (page_was_mapped) 773 remove_migration_ptes(page, newpage); 774 page->mapping = NULL; 775 } 776 777 unlock_page(newpage); 778 779 return rc; 780 } 781 782 static int __unmap_and_move(struct page *page, struct page *newpage, 783 int force, enum migrate_mode mode) 784 { 785 int rc = -EAGAIN; 786 int page_was_mapped = 0; 787 struct anon_vma *anon_vma = NULL; 788 789 if (!trylock_page(page)) { 790 if (!force || mode == MIGRATE_ASYNC) 791 goto out; 792 793 /* 794 * It's not safe for direct compaction to call lock_page. 795 * For example, during page readahead pages are added locked 796 * to the LRU. Later, when the IO completes the pages are 797 * marked uptodate and unlocked. However, the queueing 798 * could be merging multiple pages for one bio (e.g. 799 * mpage_readpages). If an allocation happens for the 800 * second or third page, the process can end up locking 801 * the same page twice and deadlocking. Rather than 802 * trying to be clever about what pages can be locked, 803 * avoid the use of lock_page for direct compaction 804 * altogether. 805 */ 806 if (current->flags & PF_MEMALLOC) 807 goto out; 808 809 lock_page(page); 810 } 811 812 if (PageWriteback(page)) { 813 /* 814 * Only in the case of a full synchronous migration is it 815 * necessary to wait for PageWriteback. In the async case, 816 * the retry loop is too short and in the sync-light case, 817 * the overhead of stalling is too much 818 */ 819 if (mode != MIGRATE_SYNC) { 820 rc = -EBUSY; 821 goto out_unlock; 822 } 823 if (!force) 824 goto out_unlock; 825 wait_on_page_writeback(page); 826 } 827 /* 828 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 829 * we cannot notice that anon_vma is freed while we migrates a page. 830 * This get_anon_vma() delays freeing anon_vma pointer until the end 831 * of migration. File cache pages are no problem because of page_lock() 832 * File Caches may use write_page() or lock_page() in migration, then, 833 * just care Anon page here. 834 */ 835 if (PageAnon(page) && !PageKsm(page)) { 836 /* 837 * Only page_lock_anon_vma_read() understands the subtleties of 838 * getting a hold on an anon_vma from outside one of its mms. 839 */ 840 anon_vma = page_get_anon_vma(page); 841 if (anon_vma) { 842 /* 843 * Anon page 844 */ 845 } else if (PageSwapCache(page)) { 846 /* 847 * We cannot be sure that the anon_vma of an unmapped 848 * swapcache page is safe to use because we don't 849 * know in advance if the VMA that this page belonged 850 * to still exists. If the VMA and others sharing the 851 * data have been freed, then the anon_vma could 852 * already be invalid. 853 * 854 * To avoid this possibility, swapcache pages get 855 * migrated but are not remapped when migration 856 * completes 857 */ 858 } else { 859 goto out_unlock; 860 } 861 } 862 863 if (unlikely(isolated_balloon_page(page))) { 864 /* 865 * A ballooned page does not need any special attention from 866 * physical to virtual reverse mapping procedures. 867 * Skip any attempt to unmap PTEs or to remap swap cache, 868 * in order to avoid burning cycles at rmap level, and perform 869 * the page migration right away (proteced by page lock). 870 */ 871 rc = balloon_page_migrate(newpage, page, mode); 872 goto out_unlock; 873 } 874 875 /* 876 * Corner case handling: 877 * 1. When a new swap-cache page is read into, it is added to the LRU 878 * and treated as swapcache but it has no rmap yet. 879 * Calling try_to_unmap() against a page->mapping==NULL page will 880 * trigger a BUG. So handle it here. 881 * 2. An orphaned page (see truncate_complete_page) might have 882 * fs-private metadata. The page can be picked up due to memory 883 * offlining. Everywhere else except page reclaim, the page is 884 * invisible to the vm, so the page can not be migrated. So try to 885 * free the metadata, so the page can be freed. 886 */ 887 if (!page->mapping) { 888 VM_BUG_ON_PAGE(PageAnon(page), page); 889 if (page_has_private(page)) { 890 try_to_free_buffers(page); 891 goto out_unlock; 892 } 893 goto skip_unmap; 894 } 895 896 /* Establish migration ptes or remove ptes */ 897 if (page_mapped(page)) { 898 try_to_unmap(page, 899 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 900 page_was_mapped = 1; 901 } 902 903 skip_unmap: 904 if (!page_mapped(page)) 905 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 906 907 if (rc && page_was_mapped) 908 remove_migration_ptes(page, page); 909 910 /* Drop an anon_vma reference if we took one */ 911 if (anon_vma) 912 put_anon_vma(anon_vma); 913 914 out_unlock: 915 unlock_page(page); 916 out: 917 return rc; 918 } 919 920 /* 921 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 922 * around it. 923 */ 924 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 925 #define ICE_noinline noinline 926 #else 927 #define ICE_noinline 928 #endif 929 930 /* 931 * Obtain the lock on page, remove all ptes and migrate the page 932 * to the newly allocated page in newpage. 933 */ 934 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 935 free_page_t put_new_page, 936 unsigned long private, struct page *page, 937 int force, enum migrate_mode mode, 938 enum migrate_reason reason) 939 { 940 int rc = 0; 941 int *result = NULL; 942 struct page *newpage = get_new_page(page, private, &result); 943 944 if (!newpage) 945 return -ENOMEM; 946 947 if (page_count(page) == 1) { 948 /* page was freed from under us. So we are done. */ 949 goto out; 950 } 951 952 if (unlikely(PageTransHuge(page))) 953 if (unlikely(split_huge_page(page))) 954 goto out; 955 956 rc = __unmap_and_move(page, newpage, force, mode); 957 958 out: 959 if (rc != -EAGAIN) { 960 /* 961 * A page that has been migrated has all references 962 * removed and will be freed. A page that has not been 963 * migrated will have kepts its references and be 964 * restored. 965 */ 966 list_del(&page->lru); 967 dec_zone_page_state(page, NR_ISOLATED_ANON + 968 page_is_file_cache(page)); 969 /* Soft-offlined page shouldn't go through lru cache list */ 970 if (reason == MR_MEMORY_FAILURE) { 971 put_page(page); 972 if (!test_set_page_hwpoison(page)) 973 num_poisoned_pages_inc(); 974 } else 975 putback_lru_page(page); 976 } 977 978 /* 979 * If migration was not successful and there's a freeing callback, use 980 * it. Otherwise, putback_lru_page() will drop the reference grabbed 981 * during isolation. 982 */ 983 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 984 ClearPageSwapBacked(newpage); 985 put_new_page(newpage, private); 986 } else if (unlikely(__is_movable_balloon_page(newpage))) { 987 /* drop our reference, page already in the balloon */ 988 put_page(newpage); 989 } else 990 putback_lru_page(newpage); 991 992 if (result) { 993 if (rc) 994 *result = rc; 995 else 996 *result = page_to_nid(newpage); 997 } 998 return rc; 999 } 1000 1001 /* 1002 * Counterpart of unmap_and_move_page() for hugepage migration. 1003 * 1004 * This function doesn't wait the completion of hugepage I/O 1005 * because there is no race between I/O and migration for hugepage. 1006 * Note that currently hugepage I/O occurs only in direct I/O 1007 * where no lock is held and PG_writeback is irrelevant, 1008 * and writeback status of all subpages are counted in the reference 1009 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1010 * under direct I/O, the reference of the head page is 512 and a bit more.) 1011 * This means that when we try to migrate hugepage whose subpages are 1012 * doing direct I/O, some references remain after try_to_unmap() and 1013 * hugepage migration fails without data corruption. 1014 * 1015 * There is also no race when direct I/O is issued on the page under migration, 1016 * because then pte is replaced with migration swap entry and direct I/O code 1017 * will wait in the page fault for migration to complete. 1018 */ 1019 static int unmap_and_move_huge_page(new_page_t get_new_page, 1020 free_page_t put_new_page, unsigned long private, 1021 struct page *hpage, int force, 1022 enum migrate_mode mode) 1023 { 1024 int rc = 0; 1025 int *result = NULL; 1026 int page_was_mapped = 0; 1027 struct page *new_hpage; 1028 struct anon_vma *anon_vma = NULL; 1029 1030 /* 1031 * Movability of hugepages depends on architectures and hugepage size. 1032 * This check is necessary because some callers of hugepage migration 1033 * like soft offline and memory hotremove don't walk through page 1034 * tables or check whether the hugepage is pmd-based or not before 1035 * kicking migration. 1036 */ 1037 if (!hugepage_migration_supported(page_hstate(hpage))) { 1038 putback_active_hugepage(hpage); 1039 return -ENOSYS; 1040 } 1041 1042 new_hpage = get_new_page(hpage, private, &result); 1043 if (!new_hpage) 1044 return -ENOMEM; 1045 1046 rc = -EAGAIN; 1047 1048 if (!trylock_page(hpage)) { 1049 if (!force || mode != MIGRATE_SYNC) 1050 goto out; 1051 lock_page(hpage); 1052 } 1053 1054 if (PageAnon(hpage)) 1055 anon_vma = page_get_anon_vma(hpage); 1056 1057 if (page_mapped(hpage)) { 1058 try_to_unmap(hpage, 1059 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1060 page_was_mapped = 1; 1061 } 1062 1063 if (!page_mapped(hpage)) 1064 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1065 1066 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1067 remove_migration_ptes(hpage, hpage); 1068 1069 if (anon_vma) 1070 put_anon_vma(anon_vma); 1071 1072 if (rc == MIGRATEPAGE_SUCCESS) 1073 hugetlb_cgroup_migrate(hpage, new_hpage); 1074 1075 unlock_page(hpage); 1076 out: 1077 if (rc != -EAGAIN) 1078 putback_active_hugepage(hpage); 1079 1080 /* 1081 * If migration was not successful and there's a freeing callback, use 1082 * it. Otherwise, put_page() will drop the reference grabbed during 1083 * isolation. 1084 */ 1085 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1086 put_new_page(new_hpage, private); 1087 else 1088 putback_active_hugepage(new_hpage); 1089 1090 if (result) { 1091 if (rc) 1092 *result = rc; 1093 else 1094 *result = page_to_nid(new_hpage); 1095 } 1096 return rc; 1097 } 1098 1099 /* 1100 * migrate_pages - migrate the pages specified in a list, to the free pages 1101 * supplied as the target for the page migration 1102 * 1103 * @from: The list of pages to be migrated. 1104 * @get_new_page: The function used to allocate free pages to be used 1105 * as the target of the page migration. 1106 * @put_new_page: The function used to free target pages if migration 1107 * fails, or NULL if no special handling is necessary. 1108 * @private: Private data to be passed on to get_new_page() 1109 * @mode: The migration mode that specifies the constraints for 1110 * page migration, if any. 1111 * @reason: The reason for page migration. 1112 * 1113 * The function returns after 10 attempts or if no pages are movable any more 1114 * because the list has become empty or no retryable pages exist any more. 1115 * The caller should call putback_lru_pages() to return pages to the LRU 1116 * or free list only if ret != 0. 1117 * 1118 * Returns the number of pages that were not migrated, or an error code. 1119 */ 1120 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1121 free_page_t put_new_page, unsigned long private, 1122 enum migrate_mode mode, int reason) 1123 { 1124 int retry = 1; 1125 int nr_failed = 0; 1126 int nr_succeeded = 0; 1127 int pass = 0; 1128 struct page *page; 1129 struct page *page2; 1130 int swapwrite = current->flags & PF_SWAPWRITE; 1131 int rc; 1132 1133 if (!swapwrite) 1134 current->flags |= PF_SWAPWRITE; 1135 1136 for(pass = 0; pass < 10 && retry; pass++) { 1137 retry = 0; 1138 1139 list_for_each_entry_safe(page, page2, from, lru) { 1140 cond_resched(); 1141 1142 if (PageHuge(page)) 1143 rc = unmap_and_move_huge_page(get_new_page, 1144 put_new_page, private, page, 1145 pass > 2, mode); 1146 else 1147 rc = unmap_and_move(get_new_page, put_new_page, 1148 private, page, pass > 2, mode, 1149 reason); 1150 1151 switch(rc) { 1152 case -ENOMEM: 1153 goto out; 1154 case -EAGAIN: 1155 retry++; 1156 break; 1157 case MIGRATEPAGE_SUCCESS: 1158 nr_succeeded++; 1159 break; 1160 default: 1161 /* 1162 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1163 * unlike -EAGAIN case, the failed page is 1164 * removed from migration page list and not 1165 * retried in the next outer loop. 1166 */ 1167 nr_failed++; 1168 break; 1169 } 1170 } 1171 } 1172 rc = nr_failed + retry; 1173 out: 1174 if (nr_succeeded) 1175 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1176 if (nr_failed) 1177 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1178 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1179 1180 if (!swapwrite) 1181 current->flags &= ~PF_SWAPWRITE; 1182 1183 return rc; 1184 } 1185 1186 #ifdef CONFIG_NUMA 1187 /* 1188 * Move a list of individual pages 1189 */ 1190 struct page_to_node { 1191 unsigned long addr; 1192 struct page *page; 1193 int node; 1194 int status; 1195 }; 1196 1197 static struct page *new_page_node(struct page *p, unsigned long private, 1198 int **result) 1199 { 1200 struct page_to_node *pm = (struct page_to_node *)private; 1201 1202 while (pm->node != MAX_NUMNODES && pm->page != p) 1203 pm++; 1204 1205 if (pm->node == MAX_NUMNODES) 1206 return NULL; 1207 1208 *result = &pm->status; 1209 1210 if (PageHuge(p)) 1211 return alloc_huge_page_node(page_hstate(compound_head(p)), 1212 pm->node); 1213 else 1214 return __alloc_pages_node(pm->node, 1215 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1216 } 1217 1218 /* 1219 * Move a set of pages as indicated in the pm array. The addr 1220 * field must be set to the virtual address of the page to be moved 1221 * and the node number must contain a valid target node. 1222 * The pm array ends with node = MAX_NUMNODES. 1223 */ 1224 static int do_move_page_to_node_array(struct mm_struct *mm, 1225 struct page_to_node *pm, 1226 int migrate_all) 1227 { 1228 int err; 1229 struct page_to_node *pp; 1230 LIST_HEAD(pagelist); 1231 1232 down_read(&mm->mmap_sem); 1233 1234 /* 1235 * Build a list of pages to migrate 1236 */ 1237 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1238 struct vm_area_struct *vma; 1239 struct page *page; 1240 1241 err = -EFAULT; 1242 vma = find_vma(mm, pp->addr); 1243 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1244 goto set_status; 1245 1246 /* FOLL_DUMP to ignore special (like zero) pages */ 1247 page = follow_page(vma, pp->addr, 1248 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1249 1250 err = PTR_ERR(page); 1251 if (IS_ERR(page)) 1252 goto set_status; 1253 1254 err = -ENOENT; 1255 if (!page) 1256 goto set_status; 1257 1258 pp->page = page; 1259 err = page_to_nid(page); 1260 1261 if (err == pp->node) 1262 /* 1263 * Node already in the right place 1264 */ 1265 goto put_and_set; 1266 1267 err = -EACCES; 1268 if (page_mapcount(page) > 1 && 1269 !migrate_all) 1270 goto put_and_set; 1271 1272 if (PageHuge(page)) { 1273 if (PageHead(page)) 1274 isolate_huge_page(page, &pagelist); 1275 goto put_and_set; 1276 } 1277 1278 err = isolate_lru_page(page); 1279 if (!err) { 1280 list_add_tail(&page->lru, &pagelist); 1281 inc_zone_page_state(page, NR_ISOLATED_ANON + 1282 page_is_file_cache(page)); 1283 } 1284 put_and_set: 1285 /* 1286 * Either remove the duplicate refcount from 1287 * isolate_lru_page() or drop the page ref if it was 1288 * not isolated. 1289 */ 1290 put_page(page); 1291 set_status: 1292 pp->status = err; 1293 } 1294 1295 err = 0; 1296 if (!list_empty(&pagelist)) { 1297 err = migrate_pages(&pagelist, new_page_node, NULL, 1298 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1299 if (err) 1300 putback_movable_pages(&pagelist); 1301 } 1302 1303 up_read(&mm->mmap_sem); 1304 return err; 1305 } 1306 1307 /* 1308 * Migrate an array of page address onto an array of nodes and fill 1309 * the corresponding array of status. 1310 */ 1311 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1312 unsigned long nr_pages, 1313 const void __user * __user *pages, 1314 const int __user *nodes, 1315 int __user *status, int flags) 1316 { 1317 struct page_to_node *pm; 1318 unsigned long chunk_nr_pages; 1319 unsigned long chunk_start; 1320 int err; 1321 1322 err = -ENOMEM; 1323 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1324 if (!pm) 1325 goto out; 1326 1327 migrate_prep(); 1328 1329 /* 1330 * Store a chunk of page_to_node array in a page, 1331 * but keep the last one as a marker 1332 */ 1333 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1334 1335 for (chunk_start = 0; 1336 chunk_start < nr_pages; 1337 chunk_start += chunk_nr_pages) { 1338 int j; 1339 1340 if (chunk_start + chunk_nr_pages > nr_pages) 1341 chunk_nr_pages = nr_pages - chunk_start; 1342 1343 /* fill the chunk pm with addrs and nodes from user-space */ 1344 for (j = 0; j < chunk_nr_pages; j++) { 1345 const void __user *p; 1346 int node; 1347 1348 err = -EFAULT; 1349 if (get_user(p, pages + j + chunk_start)) 1350 goto out_pm; 1351 pm[j].addr = (unsigned long) p; 1352 1353 if (get_user(node, nodes + j + chunk_start)) 1354 goto out_pm; 1355 1356 err = -ENODEV; 1357 if (node < 0 || node >= MAX_NUMNODES) 1358 goto out_pm; 1359 1360 if (!node_state(node, N_MEMORY)) 1361 goto out_pm; 1362 1363 err = -EACCES; 1364 if (!node_isset(node, task_nodes)) 1365 goto out_pm; 1366 1367 pm[j].node = node; 1368 } 1369 1370 /* End marker for this chunk */ 1371 pm[chunk_nr_pages].node = MAX_NUMNODES; 1372 1373 /* Migrate this chunk */ 1374 err = do_move_page_to_node_array(mm, pm, 1375 flags & MPOL_MF_MOVE_ALL); 1376 if (err < 0) 1377 goto out_pm; 1378 1379 /* Return status information */ 1380 for (j = 0; j < chunk_nr_pages; j++) 1381 if (put_user(pm[j].status, status + j + chunk_start)) { 1382 err = -EFAULT; 1383 goto out_pm; 1384 } 1385 } 1386 err = 0; 1387 1388 out_pm: 1389 free_page((unsigned long)pm); 1390 out: 1391 return err; 1392 } 1393 1394 /* 1395 * Determine the nodes of an array of pages and store it in an array of status. 1396 */ 1397 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1398 const void __user **pages, int *status) 1399 { 1400 unsigned long i; 1401 1402 down_read(&mm->mmap_sem); 1403 1404 for (i = 0; i < nr_pages; i++) { 1405 unsigned long addr = (unsigned long)(*pages); 1406 struct vm_area_struct *vma; 1407 struct page *page; 1408 int err = -EFAULT; 1409 1410 vma = find_vma(mm, addr); 1411 if (!vma || addr < vma->vm_start) 1412 goto set_status; 1413 1414 /* FOLL_DUMP to ignore special (like zero) pages */ 1415 page = follow_page(vma, addr, FOLL_DUMP); 1416 1417 err = PTR_ERR(page); 1418 if (IS_ERR(page)) 1419 goto set_status; 1420 1421 err = page ? page_to_nid(page) : -ENOENT; 1422 set_status: 1423 *status = err; 1424 1425 pages++; 1426 status++; 1427 } 1428 1429 up_read(&mm->mmap_sem); 1430 } 1431 1432 /* 1433 * Determine the nodes of a user array of pages and store it in 1434 * a user array of status. 1435 */ 1436 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1437 const void __user * __user *pages, 1438 int __user *status) 1439 { 1440 #define DO_PAGES_STAT_CHUNK_NR 16 1441 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1442 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1443 1444 while (nr_pages) { 1445 unsigned long chunk_nr; 1446 1447 chunk_nr = nr_pages; 1448 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1449 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1450 1451 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1452 break; 1453 1454 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1455 1456 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1457 break; 1458 1459 pages += chunk_nr; 1460 status += chunk_nr; 1461 nr_pages -= chunk_nr; 1462 } 1463 return nr_pages ? -EFAULT : 0; 1464 } 1465 1466 /* 1467 * Move a list of pages in the address space of the currently executing 1468 * process. 1469 */ 1470 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1471 const void __user * __user *, pages, 1472 const int __user *, nodes, 1473 int __user *, status, int, flags) 1474 { 1475 const struct cred *cred = current_cred(), *tcred; 1476 struct task_struct *task; 1477 struct mm_struct *mm; 1478 int err; 1479 nodemask_t task_nodes; 1480 1481 /* Check flags */ 1482 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1483 return -EINVAL; 1484 1485 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1486 return -EPERM; 1487 1488 /* Find the mm_struct */ 1489 rcu_read_lock(); 1490 task = pid ? find_task_by_vpid(pid) : current; 1491 if (!task) { 1492 rcu_read_unlock(); 1493 return -ESRCH; 1494 } 1495 get_task_struct(task); 1496 1497 /* 1498 * Check if this process has the right to modify the specified 1499 * process. The right exists if the process has administrative 1500 * capabilities, superuser privileges or the same 1501 * userid as the target process. 1502 */ 1503 tcred = __task_cred(task); 1504 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1505 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1506 !capable(CAP_SYS_NICE)) { 1507 rcu_read_unlock(); 1508 err = -EPERM; 1509 goto out; 1510 } 1511 rcu_read_unlock(); 1512 1513 err = security_task_movememory(task); 1514 if (err) 1515 goto out; 1516 1517 task_nodes = cpuset_mems_allowed(task); 1518 mm = get_task_mm(task); 1519 put_task_struct(task); 1520 1521 if (!mm) 1522 return -EINVAL; 1523 1524 if (nodes) 1525 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1526 nodes, status, flags); 1527 else 1528 err = do_pages_stat(mm, nr_pages, pages, status); 1529 1530 mmput(mm); 1531 return err; 1532 1533 out: 1534 put_task_struct(task); 1535 return err; 1536 } 1537 1538 #ifdef CONFIG_NUMA_BALANCING 1539 /* 1540 * Returns true if this is a safe migration target node for misplaced NUMA 1541 * pages. Currently it only checks the watermarks which crude 1542 */ 1543 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1544 unsigned long nr_migrate_pages) 1545 { 1546 int z; 1547 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1548 struct zone *zone = pgdat->node_zones + z; 1549 1550 if (!populated_zone(zone)) 1551 continue; 1552 1553 if (!zone_reclaimable(zone)) 1554 continue; 1555 1556 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1557 if (!zone_watermark_ok(zone, 0, 1558 high_wmark_pages(zone) + 1559 nr_migrate_pages, 1560 0, 0)) 1561 continue; 1562 return true; 1563 } 1564 return false; 1565 } 1566 1567 static struct page *alloc_misplaced_dst_page(struct page *page, 1568 unsigned long data, 1569 int **result) 1570 { 1571 int nid = (int) data; 1572 struct page *newpage; 1573 1574 newpage = __alloc_pages_node(nid, 1575 (GFP_HIGHUSER_MOVABLE | 1576 __GFP_THISNODE | __GFP_NOMEMALLOC | 1577 __GFP_NORETRY | __GFP_NOWARN) & 1578 ~GFP_IOFS, 0); 1579 1580 return newpage; 1581 } 1582 1583 /* 1584 * page migration rate limiting control. 1585 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1586 * window of time. Default here says do not migrate more than 1280M per second. 1587 */ 1588 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1589 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1590 1591 /* Returns true if the node is migrate rate-limited after the update */ 1592 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1593 unsigned long nr_pages) 1594 { 1595 /* 1596 * Rate-limit the amount of data that is being migrated to a node. 1597 * Optimal placement is no good if the memory bus is saturated and 1598 * all the time is being spent migrating! 1599 */ 1600 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1601 spin_lock(&pgdat->numabalancing_migrate_lock); 1602 pgdat->numabalancing_migrate_nr_pages = 0; 1603 pgdat->numabalancing_migrate_next_window = jiffies + 1604 msecs_to_jiffies(migrate_interval_millisecs); 1605 spin_unlock(&pgdat->numabalancing_migrate_lock); 1606 } 1607 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1608 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1609 nr_pages); 1610 return true; 1611 } 1612 1613 /* 1614 * This is an unlocked non-atomic update so errors are possible. 1615 * The consequences are failing to migrate when we potentiall should 1616 * have which is not severe enough to warrant locking. If it is ever 1617 * a problem, it can be converted to a per-cpu counter. 1618 */ 1619 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1620 return false; 1621 } 1622 1623 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1624 { 1625 int page_lru; 1626 1627 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1628 1629 /* Avoid migrating to a node that is nearly full */ 1630 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1631 return 0; 1632 1633 if (isolate_lru_page(page)) 1634 return 0; 1635 1636 /* 1637 * migrate_misplaced_transhuge_page() skips page migration's usual 1638 * check on page_count(), so we must do it here, now that the page 1639 * has been isolated: a GUP pin, or any other pin, prevents migration. 1640 * The expected page count is 3: 1 for page's mapcount and 1 for the 1641 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1642 */ 1643 if (PageTransHuge(page) && page_count(page) != 3) { 1644 putback_lru_page(page); 1645 return 0; 1646 } 1647 1648 page_lru = page_is_file_cache(page); 1649 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1650 hpage_nr_pages(page)); 1651 1652 /* 1653 * Isolating the page has taken another reference, so the 1654 * caller's reference can be safely dropped without the page 1655 * disappearing underneath us during migration. 1656 */ 1657 put_page(page); 1658 return 1; 1659 } 1660 1661 bool pmd_trans_migrating(pmd_t pmd) 1662 { 1663 struct page *page = pmd_page(pmd); 1664 return PageLocked(page); 1665 } 1666 1667 /* 1668 * Attempt to migrate a misplaced page to the specified destination 1669 * node. Caller is expected to have an elevated reference count on 1670 * the page that will be dropped by this function before returning. 1671 */ 1672 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1673 int node) 1674 { 1675 pg_data_t *pgdat = NODE_DATA(node); 1676 int isolated; 1677 int nr_remaining; 1678 LIST_HEAD(migratepages); 1679 1680 /* 1681 * Don't migrate file pages that are mapped in multiple processes 1682 * with execute permissions as they are probably shared libraries. 1683 */ 1684 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1685 (vma->vm_flags & VM_EXEC)) 1686 goto out; 1687 1688 /* 1689 * Rate-limit the amount of data that is being migrated to a node. 1690 * Optimal placement is no good if the memory bus is saturated and 1691 * all the time is being spent migrating! 1692 */ 1693 if (numamigrate_update_ratelimit(pgdat, 1)) 1694 goto out; 1695 1696 isolated = numamigrate_isolate_page(pgdat, page); 1697 if (!isolated) 1698 goto out; 1699 1700 list_add(&page->lru, &migratepages); 1701 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1702 NULL, node, MIGRATE_ASYNC, 1703 MR_NUMA_MISPLACED); 1704 if (nr_remaining) { 1705 if (!list_empty(&migratepages)) { 1706 list_del(&page->lru); 1707 dec_zone_page_state(page, NR_ISOLATED_ANON + 1708 page_is_file_cache(page)); 1709 putback_lru_page(page); 1710 } 1711 isolated = 0; 1712 } else 1713 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1714 BUG_ON(!list_empty(&migratepages)); 1715 return isolated; 1716 1717 out: 1718 put_page(page); 1719 return 0; 1720 } 1721 #endif /* CONFIG_NUMA_BALANCING */ 1722 1723 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1724 /* 1725 * Migrates a THP to a given target node. page must be locked and is unlocked 1726 * before returning. 1727 */ 1728 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1729 struct vm_area_struct *vma, 1730 pmd_t *pmd, pmd_t entry, 1731 unsigned long address, 1732 struct page *page, int node) 1733 { 1734 spinlock_t *ptl; 1735 pg_data_t *pgdat = NODE_DATA(node); 1736 int isolated = 0; 1737 struct page *new_page = NULL; 1738 int page_lru = page_is_file_cache(page); 1739 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1740 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1741 pmd_t orig_entry; 1742 1743 /* 1744 * Rate-limit the amount of data that is being migrated to a node. 1745 * Optimal placement is no good if the memory bus is saturated and 1746 * all the time is being spent migrating! 1747 */ 1748 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1749 goto out_dropref; 1750 1751 new_page = alloc_pages_node(node, 1752 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1753 HPAGE_PMD_ORDER); 1754 if (!new_page) 1755 goto out_fail; 1756 1757 isolated = numamigrate_isolate_page(pgdat, page); 1758 if (!isolated) { 1759 put_page(new_page); 1760 goto out_fail; 1761 } 1762 1763 if (mm_tlb_flush_pending(mm)) 1764 flush_tlb_range(vma, mmun_start, mmun_end); 1765 1766 /* Prepare a page as a migration target */ 1767 __set_page_locked(new_page); 1768 SetPageSwapBacked(new_page); 1769 1770 /* anon mapping, we can simply copy page->mapping to the new page: */ 1771 new_page->mapping = page->mapping; 1772 new_page->index = page->index; 1773 migrate_page_copy(new_page, page); 1774 WARN_ON(PageLRU(new_page)); 1775 1776 /* Recheck the target PMD */ 1777 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1778 ptl = pmd_lock(mm, pmd); 1779 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1780 fail_putback: 1781 spin_unlock(ptl); 1782 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1783 1784 /* Reverse changes made by migrate_page_copy() */ 1785 if (TestClearPageActive(new_page)) 1786 SetPageActive(page); 1787 if (TestClearPageUnevictable(new_page)) 1788 SetPageUnevictable(page); 1789 mlock_migrate_page(page, new_page); 1790 1791 unlock_page(new_page); 1792 put_page(new_page); /* Free it */ 1793 1794 /* Retake the callers reference and putback on LRU */ 1795 get_page(page); 1796 putback_lru_page(page); 1797 mod_zone_page_state(page_zone(page), 1798 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1799 1800 goto out_unlock; 1801 } 1802 1803 orig_entry = *pmd; 1804 entry = mk_pmd(new_page, vma->vm_page_prot); 1805 entry = pmd_mkhuge(entry); 1806 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1807 1808 /* 1809 * Clear the old entry under pagetable lock and establish the new PTE. 1810 * Any parallel GUP will either observe the old page blocking on the 1811 * page lock, block on the page table lock or observe the new page. 1812 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1813 * guarantee the copy is visible before the pagetable update. 1814 */ 1815 flush_cache_range(vma, mmun_start, mmun_end); 1816 page_add_anon_rmap(new_page, vma, mmun_start); 1817 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1818 set_pmd_at(mm, mmun_start, pmd, entry); 1819 flush_tlb_range(vma, mmun_start, mmun_end); 1820 update_mmu_cache_pmd(vma, address, &entry); 1821 1822 if (page_count(page) != 2) { 1823 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1824 flush_tlb_range(vma, mmun_start, mmun_end); 1825 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1826 update_mmu_cache_pmd(vma, address, &entry); 1827 page_remove_rmap(new_page); 1828 goto fail_putback; 1829 } 1830 1831 mem_cgroup_migrate(page, new_page, false); 1832 1833 page_remove_rmap(page); 1834 1835 spin_unlock(ptl); 1836 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1837 1838 /* Take an "isolate" reference and put new page on the LRU. */ 1839 get_page(new_page); 1840 putback_lru_page(new_page); 1841 1842 unlock_page(new_page); 1843 unlock_page(page); 1844 put_page(page); /* Drop the rmap reference */ 1845 put_page(page); /* Drop the LRU isolation reference */ 1846 1847 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1848 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1849 1850 mod_zone_page_state(page_zone(page), 1851 NR_ISOLATED_ANON + page_lru, 1852 -HPAGE_PMD_NR); 1853 return isolated; 1854 1855 out_fail: 1856 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1857 out_dropref: 1858 ptl = pmd_lock(mm, pmd); 1859 if (pmd_same(*pmd, entry)) { 1860 entry = pmd_modify(entry, vma->vm_page_prot); 1861 set_pmd_at(mm, mmun_start, pmd, entry); 1862 update_mmu_cache_pmd(vma, address, &entry); 1863 } 1864 spin_unlock(ptl); 1865 1866 out_unlock: 1867 unlock_page(page); 1868 put_page(page); 1869 return 0; 1870 } 1871 #endif /* CONFIG_NUMA_BALANCING */ 1872 1873 #endif /* CONFIG_NUMA */ 1874