xref: /linux/mm/migrate.c (revision c7d6cb4c43a6baf940f4ae42541dcc1a1a74b2a3)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Memory Migration functionality - linux/mm/migrate.c
4   *
5   * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6   *
7   * Page migration was first developed in the context of the memory hotplug
8   * project. The main authors of the migration code are:
9   *
10   * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11   * Hirokazu Takahashi <taka@valinux.co.jp>
12   * Dave Hansen <haveblue@us.ibm.com>
13   * Christoph Lameter
14   */
15  
16  #include <linux/migrate.h>
17  #include <linux/export.h>
18  #include <linux/swap.h>
19  #include <linux/swapops.h>
20  #include <linux/pagemap.h>
21  #include <linux/buffer_head.h>
22  #include <linux/mm_inline.h>
23  #include <linux/ksm.h>
24  #include <linux/rmap.h>
25  #include <linux/topology.h>
26  #include <linux/cpu.h>
27  #include <linux/cpuset.h>
28  #include <linux/writeback.h>
29  #include <linux/mempolicy.h>
30  #include <linux/vmalloc.h>
31  #include <linux/security.h>
32  #include <linux/backing-dev.h>
33  #include <linux/compaction.h>
34  #include <linux/syscalls.h>
35  #include <linux/compat.h>
36  #include <linux/hugetlb.h>
37  #include <linux/gfp.h>
38  #include <linux/pfn_t.h>
39  #include <linux/page_idle.h>
40  #include <linux/page_owner.h>
41  #include <linux/sched/mm.h>
42  #include <linux/ptrace.h>
43  #include <linux/memory.h>
44  #include <linux/sched/sysctl.h>
45  #include <linux/memory-tiers.h>
46  #include <linux/pagewalk.h>
47  
48  #include <asm/tlbflush.h>
49  
50  #include <trace/events/migrate.h>
51  
52  #include "internal.h"
53  
54  bool isolate_movable_page(struct page *page, isolate_mode_t mode)
55  {
56  	struct folio *folio = folio_get_nontail_page(page);
57  	const struct movable_operations *mops;
58  
59  	/*
60  	 * Avoid burning cycles with pages that are yet under __free_pages(),
61  	 * or just got freed under us.
62  	 *
63  	 * In case we 'win' a race for a movable page being freed under us and
64  	 * raise its refcount preventing __free_pages() from doing its job
65  	 * the put_page() at the end of this block will take care of
66  	 * release this page, thus avoiding a nasty leakage.
67  	 */
68  	if (!folio)
69  		goto out;
70  
71  	if (unlikely(folio_test_slab(folio)))
72  		goto out_putfolio;
73  	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
74  	smp_rmb();
75  	/*
76  	 * Check movable flag before taking the page lock because
77  	 * we use non-atomic bitops on newly allocated page flags so
78  	 * unconditionally grabbing the lock ruins page's owner side.
79  	 */
80  	if (unlikely(!__folio_test_movable(folio)))
81  		goto out_putfolio;
82  	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
83  	smp_rmb();
84  	if (unlikely(folio_test_slab(folio)))
85  		goto out_putfolio;
86  
87  	/*
88  	 * As movable pages are not isolated from LRU lists, concurrent
89  	 * compaction threads can race against page migration functions
90  	 * as well as race against the releasing a page.
91  	 *
92  	 * In order to avoid having an already isolated movable page
93  	 * being (wrongly) re-isolated while it is under migration,
94  	 * or to avoid attempting to isolate pages being released,
95  	 * lets be sure we have the page lock
96  	 * before proceeding with the movable page isolation steps.
97  	 */
98  	if (unlikely(!folio_trylock(folio)))
99  		goto out_putfolio;
100  
101  	if (!folio_test_movable(folio) || folio_test_isolated(folio))
102  		goto out_no_isolated;
103  
104  	mops = folio_movable_ops(folio);
105  	VM_BUG_ON_FOLIO(!mops, folio);
106  
107  	if (!mops->isolate_page(&folio->page, mode))
108  		goto out_no_isolated;
109  
110  	/* Driver shouldn't use the isolated flag */
111  	WARN_ON_ONCE(folio_test_isolated(folio));
112  	folio_set_isolated(folio);
113  	folio_unlock(folio);
114  
115  	return true;
116  
117  out_no_isolated:
118  	folio_unlock(folio);
119  out_putfolio:
120  	folio_put(folio);
121  out:
122  	return false;
123  }
124  
125  static void putback_movable_folio(struct folio *folio)
126  {
127  	const struct movable_operations *mops = folio_movable_ops(folio);
128  
129  	mops->putback_page(&folio->page);
130  	folio_clear_isolated(folio);
131  }
132  
133  /*
134   * Put previously isolated pages back onto the appropriate lists
135   * from where they were once taken off for compaction/migration.
136   *
137   * This function shall be used whenever the isolated pageset has been
138   * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
139   * and isolate_hugetlb().
140   */
141  void putback_movable_pages(struct list_head *l)
142  {
143  	struct folio *folio;
144  	struct folio *folio2;
145  
146  	list_for_each_entry_safe(folio, folio2, l, lru) {
147  		if (unlikely(folio_test_hugetlb(folio))) {
148  			folio_putback_active_hugetlb(folio);
149  			continue;
150  		}
151  		list_del(&folio->lru);
152  		/*
153  		 * We isolated non-lru movable folio so here we can use
154  		 * __folio_test_movable because LRU folio's mapping cannot
155  		 * have PAGE_MAPPING_MOVABLE.
156  		 */
157  		if (unlikely(__folio_test_movable(folio))) {
158  			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
159  			folio_lock(folio);
160  			if (folio_test_movable(folio))
161  				putback_movable_folio(folio);
162  			else
163  				folio_clear_isolated(folio);
164  			folio_unlock(folio);
165  			folio_put(folio);
166  		} else {
167  			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
168  					folio_is_file_lru(folio), -folio_nr_pages(folio));
169  			folio_putback_lru(folio);
170  		}
171  	}
172  }
173  
174  /* Must be called with an elevated refcount on the non-hugetlb folio */
175  bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
176  {
177  	bool isolated, lru;
178  
179  	if (folio_test_hugetlb(folio))
180  		return isolate_hugetlb(folio, list);
181  
182  	lru = !__folio_test_movable(folio);
183  	if (lru)
184  		isolated = folio_isolate_lru(folio);
185  	else
186  		isolated = isolate_movable_page(&folio->page,
187  						ISOLATE_UNEVICTABLE);
188  
189  	if (!isolated)
190  		return false;
191  
192  	list_add(&folio->lru, list);
193  	if (lru)
194  		node_stat_add_folio(folio, NR_ISOLATED_ANON +
195  				    folio_is_file_lru(folio));
196  
197  	return true;
198  }
199  
200  static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
201  					  struct folio *folio,
202  					  unsigned long idx)
203  {
204  	struct page *page = folio_page(folio, idx);
205  	bool contains_data;
206  	pte_t newpte;
207  	void *addr;
208  
209  	if (PageCompound(page))
210  		return false;
211  	VM_BUG_ON_PAGE(!PageAnon(page), page);
212  	VM_BUG_ON_PAGE(!PageLocked(page), page);
213  	VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page);
214  
215  	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
216  	    mm_forbids_zeropage(pvmw->vma->vm_mm))
217  		return false;
218  
219  	/*
220  	 * The pmd entry mapping the old thp was flushed and the pte mapping
221  	 * this subpage has been non present. If the subpage is only zero-filled
222  	 * then map it to the shared zeropage.
223  	 */
224  	addr = kmap_local_page(page);
225  	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
226  	kunmap_local(addr);
227  
228  	if (contains_data)
229  		return false;
230  
231  	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
232  					pvmw->vma->vm_page_prot));
233  	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
234  
235  	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
236  	return true;
237  }
238  
239  struct rmap_walk_arg {
240  	struct folio *folio;
241  	bool map_unused_to_zeropage;
242  };
243  
244  /*
245   * Restore a potential migration pte to a working pte entry
246   */
247  static bool remove_migration_pte(struct folio *folio,
248  		struct vm_area_struct *vma, unsigned long addr, void *arg)
249  {
250  	struct rmap_walk_arg *rmap_walk_arg = arg;
251  	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
252  
253  	while (page_vma_mapped_walk(&pvmw)) {
254  		rmap_t rmap_flags = RMAP_NONE;
255  		pte_t old_pte;
256  		pte_t pte;
257  		swp_entry_t entry;
258  		struct page *new;
259  		unsigned long idx = 0;
260  
261  		/* pgoff is invalid for ksm pages, but they are never large */
262  		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
263  			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
264  		new = folio_page(folio, idx);
265  
266  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
267  		/* PMD-mapped THP migration entry */
268  		if (!pvmw.pte) {
269  			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
270  					!folio_test_pmd_mappable(folio), folio);
271  			remove_migration_pmd(&pvmw, new);
272  			continue;
273  		}
274  #endif
275  		if (rmap_walk_arg->map_unused_to_zeropage &&
276  		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
277  			continue;
278  
279  		folio_get(folio);
280  		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
281  		old_pte = ptep_get(pvmw.pte);
282  
283  		entry = pte_to_swp_entry(old_pte);
284  		if (!is_migration_entry_young(entry))
285  			pte = pte_mkold(pte);
286  		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
287  			pte = pte_mkdirty(pte);
288  		if (pte_swp_soft_dirty(old_pte))
289  			pte = pte_mksoft_dirty(pte);
290  		else
291  			pte = pte_clear_soft_dirty(pte);
292  
293  		if (is_writable_migration_entry(entry))
294  			pte = pte_mkwrite(pte, vma);
295  		else if (pte_swp_uffd_wp(old_pte))
296  			pte = pte_mkuffd_wp(pte);
297  
298  		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
299  			rmap_flags |= RMAP_EXCLUSIVE;
300  
301  		if (unlikely(is_device_private_page(new))) {
302  			if (pte_write(pte))
303  				entry = make_writable_device_private_entry(
304  							page_to_pfn(new));
305  			else
306  				entry = make_readable_device_private_entry(
307  							page_to_pfn(new));
308  			pte = swp_entry_to_pte(entry);
309  			if (pte_swp_soft_dirty(old_pte))
310  				pte = pte_swp_mksoft_dirty(pte);
311  			if (pte_swp_uffd_wp(old_pte))
312  				pte = pte_swp_mkuffd_wp(pte);
313  		}
314  
315  #ifdef CONFIG_HUGETLB_PAGE
316  		if (folio_test_hugetlb(folio)) {
317  			struct hstate *h = hstate_vma(vma);
318  			unsigned int shift = huge_page_shift(h);
319  			unsigned long psize = huge_page_size(h);
320  
321  			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
322  			if (folio_test_anon(folio))
323  				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
324  						      rmap_flags);
325  			else
326  				hugetlb_add_file_rmap(folio);
327  			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
328  					psize);
329  		} else
330  #endif
331  		{
332  			if (folio_test_anon(folio))
333  				folio_add_anon_rmap_pte(folio, new, vma,
334  							pvmw.address, rmap_flags);
335  			else
336  				folio_add_file_rmap_pte(folio, new, vma);
337  			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
338  		}
339  		if (vma->vm_flags & VM_LOCKED)
340  			mlock_drain_local();
341  
342  		trace_remove_migration_pte(pvmw.address, pte_val(pte),
343  					   compound_order(new));
344  
345  		/* No need to invalidate - it was non-present before */
346  		update_mmu_cache(vma, pvmw.address, pvmw.pte);
347  	}
348  
349  	return true;
350  }
351  
352  /*
353   * Get rid of all migration entries and replace them by
354   * references to the indicated page.
355   */
356  void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
357  {
358  	struct rmap_walk_arg rmap_walk_arg = {
359  		.folio = src,
360  		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
361  	};
362  
363  	struct rmap_walk_control rwc = {
364  		.rmap_one = remove_migration_pte,
365  		.arg = &rmap_walk_arg,
366  	};
367  
368  	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
369  
370  	if (flags & RMP_LOCKED)
371  		rmap_walk_locked(dst, &rwc);
372  	else
373  		rmap_walk(dst, &rwc);
374  }
375  
376  /*
377   * Something used the pte of a page under migration. We need to
378   * get to the page and wait until migration is finished.
379   * When we return from this function the fault will be retried.
380   */
381  void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
382  			  unsigned long address)
383  {
384  	spinlock_t *ptl;
385  	pte_t *ptep;
386  	pte_t pte;
387  	swp_entry_t entry;
388  
389  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
390  	if (!ptep)
391  		return;
392  
393  	pte = ptep_get(ptep);
394  	pte_unmap(ptep);
395  
396  	if (!is_swap_pte(pte))
397  		goto out;
398  
399  	entry = pte_to_swp_entry(pte);
400  	if (!is_migration_entry(entry))
401  		goto out;
402  
403  	migration_entry_wait_on_locked(entry, ptl);
404  	return;
405  out:
406  	spin_unlock(ptl);
407  }
408  
409  #ifdef CONFIG_HUGETLB_PAGE
410  /*
411   * The vma read lock must be held upon entry. Holding that lock prevents either
412   * the pte or the ptl from being freed.
413   *
414   * This function will release the vma lock before returning.
415   */
416  void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
417  {
418  	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
419  	pte_t pte;
420  
421  	hugetlb_vma_assert_locked(vma);
422  	spin_lock(ptl);
423  	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
424  
425  	if (unlikely(!is_hugetlb_entry_migration(pte))) {
426  		spin_unlock(ptl);
427  		hugetlb_vma_unlock_read(vma);
428  	} else {
429  		/*
430  		 * If migration entry existed, safe to release vma lock
431  		 * here because the pgtable page won't be freed without the
432  		 * pgtable lock released.  See comment right above pgtable
433  		 * lock release in migration_entry_wait_on_locked().
434  		 */
435  		hugetlb_vma_unlock_read(vma);
436  		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
437  	}
438  }
439  #endif
440  
441  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
442  void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
443  {
444  	spinlock_t *ptl;
445  
446  	ptl = pmd_lock(mm, pmd);
447  	if (!is_pmd_migration_entry(*pmd))
448  		goto unlock;
449  	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
450  	return;
451  unlock:
452  	spin_unlock(ptl);
453  }
454  #endif
455  
456  static int folio_expected_refs(struct address_space *mapping,
457  		struct folio *folio)
458  {
459  	int refs = 1;
460  	if (!mapping)
461  		return refs;
462  
463  	refs += folio_nr_pages(folio);
464  	if (folio_test_private(folio))
465  		refs++;
466  
467  	return refs;
468  }
469  
470  /*
471   * Replace the folio in the mapping.
472   *
473   * The number of remaining references must be:
474   * 1 for anonymous folios without a mapping
475   * 2 for folios with a mapping
476   * 3 for folios with a mapping and the private flag set.
477   */
478  static int __folio_migrate_mapping(struct address_space *mapping,
479  		struct folio *newfolio, struct folio *folio, int expected_count)
480  {
481  	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
482  	struct zone *oldzone, *newzone;
483  	int dirty;
484  	long nr = folio_nr_pages(folio);
485  	long entries, i;
486  
487  	if (!mapping) {
488  		/* Take off deferred split queue while frozen and memcg set */
489  		if (folio_test_large(folio) &&
490  		    folio_test_large_rmappable(folio)) {
491  			if (!folio_ref_freeze(folio, expected_count))
492  				return -EAGAIN;
493  			folio_unqueue_deferred_split(folio);
494  			folio_ref_unfreeze(folio, expected_count);
495  		}
496  
497  		/* No turning back from here */
498  		newfolio->index = folio->index;
499  		newfolio->mapping = folio->mapping;
500  		if (folio_test_anon(folio) && folio_test_large(folio))
501  			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
502  		if (folio_test_swapbacked(folio))
503  			__folio_set_swapbacked(newfolio);
504  
505  		return MIGRATEPAGE_SUCCESS;
506  	}
507  
508  	oldzone = folio_zone(folio);
509  	newzone = folio_zone(newfolio);
510  
511  	xas_lock_irq(&xas);
512  	if (!folio_ref_freeze(folio, expected_count)) {
513  		xas_unlock_irq(&xas);
514  		return -EAGAIN;
515  	}
516  
517  	/* Take off deferred split queue while frozen and memcg set */
518  	folio_unqueue_deferred_split(folio);
519  
520  	/*
521  	 * Now we know that no one else is looking at the folio:
522  	 * no turning back from here.
523  	 */
524  	newfolio->index = folio->index;
525  	newfolio->mapping = folio->mapping;
526  	if (folio_test_anon(folio) && folio_test_large(folio))
527  		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
528  	folio_ref_add(newfolio, nr); /* add cache reference */
529  	if (folio_test_swapbacked(folio)) {
530  		__folio_set_swapbacked(newfolio);
531  		if (folio_test_swapcache(folio)) {
532  			folio_set_swapcache(newfolio);
533  			newfolio->private = folio_get_private(folio);
534  		}
535  		entries = nr;
536  	} else {
537  		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
538  		entries = 1;
539  	}
540  
541  	/* Move dirty while folio refs frozen and newfolio not yet exposed */
542  	dirty = folio_test_dirty(folio);
543  	if (dirty) {
544  		folio_clear_dirty(folio);
545  		folio_set_dirty(newfolio);
546  	}
547  
548  	/* Swap cache still stores N entries instead of a high-order entry */
549  	for (i = 0; i < entries; i++) {
550  		xas_store(&xas, newfolio);
551  		xas_next(&xas);
552  	}
553  
554  	/*
555  	 * Drop cache reference from old folio by unfreezing
556  	 * to one less reference.
557  	 * We know this isn't the last reference.
558  	 */
559  	folio_ref_unfreeze(folio, expected_count - nr);
560  
561  	xas_unlock(&xas);
562  	/* Leave irq disabled to prevent preemption while updating stats */
563  
564  	/*
565  	 * If moved to a different zone then also account
566  	 * the folio for that zone. Other VM counters will be
567  	 * taken care of when we establish references to the
568  	 * new folio and drop references to the old folio.
569  	 *
570  	 * Note that anonymous folios are accounted for
571  	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
572  	 * are mapped to swap space.
573  	 */
574  	if (newzone != oldzone) {
575  		struct lruvec *old_lruvec, *new_lruvec;
576  		struct mem_cgroup *memcg;
577  
578  		memcg = folio_memcg(folio);
579  		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
580  		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
581  
582  		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
583  		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
584  		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
585  			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
586  			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
587  
588  			if (folio_test_pmd_mappable(folio)) {
589  				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
590  				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
591  			}
592  		}
593  #ifdef CONFIG_SWAP
594  		if (folio_test_swapcache(folio)) {
595  			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
596  			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
597  		}
598  #endif
599  		if (dirty && mapping_can_writeback(mapping)) {
600  			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
601  			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
602  			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
603  			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
604  		}
605  	}
606  	local_irq_enable();
607  
608  	return MIGRATEPAGE_SUCCESS;
609  }
610  
611  int folio_migrate_mapping(struct address_space *mapping,
612  		struct folio *newfolio, struct folio *folio, int extra_count)
613  {
614  	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
615  
616  	if (folio_ref_count(folio) != expected_count)
617  		return -EAGAIN;
618  
619  	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
620  }
621  EXPORT_SYMBOL(folio_migrate_mapping);
622  
623  /*
624   * The expected number of remaining references is the same as that
625   * of folio_migrate_mapping().
626   */
627  int migrate_huge_page_move_mapping(struct address_space *mapping,
628  				   struct folio *dst, struct folio *src)
629  {
630  	XA_STATE(xas, &mapping->i_pages, folio_index(src));
631  	int rc, expected_count = folio_expected_refs(mapping, src);
632  
633  	if (folio_ref_count(src) != expected_count)
634  		return -EAGAIN;
635  
636  	rc = folio_mc_copy(dst, src);
637  	if (unlikely(rc))
638  		return rc;
639  
640  	xas_lock_irq(&xas);
641  	if (!folio_ref_freeze(src, expected_count)) {
642  		xas_unlock_irq(&xas);
643  		return -EAGAIN;
644  	}
645  
646  	dst->index = src->index;
647  	dst->mapping = src->mapping;
648  
649  	folio_ref_add(dst, folio_nr_pages(dst));
650  
651  	xas_store(&xas, dst);
652  
653  	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
654  
655  	xas_unlock_irq(&xas);
656  
657  	return MIGRATEPAGE_SUCCESS;
658  }
659  
660  /*
661   * Copy the flags and some other ancillary information
662   */
663  void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
664  {
665  	int cpupid;
666  
667  	if (folio_test_referenced(folio))
668  		folio_set_referenced(newfolio);
669  	if (folio_test_uptodate(folio))
670  		folio_mark_uptodate(newfolio);
671  	if (folio_test_clear_active(folio)) {
672  		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
673  		folio_set_active(newfolio);
674  	} else if (folio_test_clear_unevictable(folio))
675  		folio_set_unevictable(newfolio);
676  	if (folio_test_workingset(folio))
677  		folio_set_workingset(newfolio);
678  	if (folio_test_checked(folio))
679  		folio_set_checked(newfolio);
680  	/*
681  	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
682  	 * migration entries. We can still have PG_anon_exclusive set on an
683  	 * effectively unmapped and unreferenced first sub-pages of an
684  	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
685  	 */
686  	if (folio_test_mappedtodisk(folio))
687  		folio_set_mappedtodisk(newfolio);
688  
689  	/* Move dirty on pages not done by folio_migrate_mapping() */
690  	if (folio_test_dirty(folio))
691  		folio_set_dirty(newfolio);
692  
693  	if (folio_test_young(folio))
694  		folio_set_young(newfolio);
695  	if (folio_test_idle(folio))
696  		folio_set_idle(newfolio);
697  
698  	folio_migrate_refs(newfolio, folio);
699  	/*
700  	 * Copy NUMA information to the new page, to prevent over-eager
701  	 * future migrations of this same page.
702  	 */
703  	cpupid = folio_xchg_last_cpupid(folio, -1);
704  	/*
705  	 * For memory tiering mode, when migrate between slow and fast
706  	 * memory node, reset cpupid, because that is used to record
707  	 * page access time in slow memory node.
708  	 */
709  	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
710  		bool f_toptier = node_is_toptier(folio_nid(folio));
711  		bool t_toptier = node_is_toptier(folio_nid(newfolio));
712  
713  		if (f_toptier != t_toptier)
714  			cpupid = -1;
715  	}
716  	folio_xchg_last_cpupid(newfolio, cpupid);
717  
718  	folio_migrate_ksm(newfolio, folio);
719  	/*
720  	 * Please do not reorder this without considering how mm/ksm.c's
721  	 * ksm_get_folio() depends upon ksm_migrate_page() and the
722  	 * swapcache flag.
723  	 */
724  	if (folio_test_swapcache(folio))
725  		folio_clear_swapcache(folio);
726  	folio_clear_private(folio);
727  
728  	/* page->private contains hugetlb specific flags */
729  	if (!folio_test_hugetlb(folio))
730  		folio->private = NULL;
731  
732  	/*
733  	 * If any waiters have accumulated on the new page then
734  	 * wake them up.
735  	 */
736  	if (folio_test_writeback(newfolio))
737  		folio_end_writeback(newfolio);
738  
739  	/*
740  	 * PG_readahead shares the same bit with PG_reclaim.  The above
741  	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
742  	 * bit after that.
743  	 */
744  	if (folio_test_readahead(folio))
745  		folio_set_readahead(newfolio);
746  
747  	folio_copy_owner(newfolio, folio);
748  	pgalloc_tag_swap(newfolio, folio);
749  
750  	mem_cgroup_migrate(folio, newfolio);
751  }
752  EXPORT_SYMBOL(folio_migrate_flags);
753  
754  /************************************************************
755   *                    Migration functions
756   ***********************************************************/
757  
758  static int __migrate_folio(struct address_space *mapping, struct folio *dst,
759  			   struct folio *src, void *src_private,
760  			   enum migrate_mode mode)
761  {
762  	int rc, expected_count = folio_expected_refs(mapping, src);
763  
764  	/* Check whether src does not have extra refs before we do more work */
765  	if (folio_ref_count(src) != expected_count)
766  		return -EAGAIN;
767  
768  	rc = folio_mc_copy(dst, src);
769  	if (unlikely(rc))
770  		return rc;
771  
772  	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
773  	if (rc != MIGRATEPAGE_SUCCESS)
774  		return rc;
775  
776  	if (src_private)
777  		folio_attach_private(dst, folio_detach_private(src));
778  
779  	folio_migrate_flags(dst, src);
780  	return MIGRATEPAGE_SUCCESS;
781  }
782  
783  /**
784   * migrate_folio() - Simple folio migration.
785   * @mapping: The address_space containing the folio.
786   * @dst: The folio to migrate the data to.
787   * @src: The folio containing the current data.
788   * @mode: How to migrate the page.
789   *
790   * Common logic to directly migrate a single LRU folio suitable for
791   * folios that do not have private data.
792   *
793   * Folios are locked upon entry and exit.
794   */
795  int migrate_folio(struct address_space *mapping, struct folio *dst,
796  		  struct folio *src, enum migrate_mode mode)
797  {
798  	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
799  	return __migrate_folio(mapping, dst, src, NULL, mode);
800  }
801  EXPORT_SYMBOL(migrate_folio);
802  
803  #ifdef CONFIG_BUFFER_HEAD
804  /* Returns true if all buffers are successfully locked */
805  static bool buffer_migrate_lock_buffers(struct buffer_head *head,
806  							enum migrate_mode mode)
807  {
808  	struct buffer_head *bh = head;
809  	struct buffer_head *failed_bh;
810  
811  	do {
812  		if (!trylock_buffer(bh)) {
813  			if (mode == MIGRATE_ASYNC)
814  				goto unlock;
815  			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
816  				goto unlock;
817  			lock_buffer(bh);
818  		}
819  
820  		bh = bh->b_this_page;
821  	} while (bh != head);
822  
823  	return true;
824  
825  unlock:
826  	/* We failed to lock the buffer and cannot stall. */
827  	failed_bh = bh;
828  	bh = head;
829  	while (bh != failed_bh) {
830  		unlock_buffer(bh);
831  		bh = bh->b_this_page;
832  	}
833  
834  	return false;
835  }
836  
837  static int __buffer_migrate_folio(struct address_space *mapping,
838  		struct folio *dst, struct folio *src, enum migrate_mode mode,
839  		bool check_refs)
840  {
841  	struct buffer_head *bh, *head;
842  	int rc;
843  	int expected_count;
844  
845  	head = folio_buffers(src);
846  	if (!head)
847  		return migrate_folio(mapping, dst, src, mode);
848  
849  	/* Check whether page does not have extra refs before we do more work */
850  	expected_count = folio_expected_refs(mapping, src);
851  	if (folio_ref_count(src) != expected_count)
852  		return -EAGAIN;
853  
854  	if (!buffer_migrate_lock_buffers(head, mode))
855  		return -EAGAIN;
856  
857  	if (check_refs) {
858  		bool busy;
859  		bool invalidated = false;
860  
861  recheck_buffers:
862  		busy = false;
863  		spin_lock(&mapping->i_private_lock);
864  		bh = head;
865  		do {
866  			if (atomic_read(&bh->b_count)) {
867  				busy = true;
868  				break;
869  			}
870  			bh = bh->b_this_page;
871  		} while (bh != head);
872  		if (busy) {
873  			if (invalidated) {
874  				rc = -EAGAIN;
875  				goto unlock_buffers;
876  			}
877  			spin_unlock(&mapping->i_private_lock);
878  			invalidate_bh_lrus();
879  			invalidated = true;
880  			goto recheck_buffers;
881  		}
882  	}
883  
884  	rc = filemap_migrate_folio(mapping, dst, src, mode);
885  	if (rc != MIGRATEPAGE_SUCCESS)
886  		goto unlock_buffers;
887  
888  	bh = head;
889  	do {
890  		folio_set_bh(bh, dst, bh_offset(bh));
891  		bh = bh->b_this_page;
892  	} while (bh != head);
893  
894  unlock_buffers:
895  	if (check_refs)
896  		spin_unlock(&mapping->i_private_lock);
897  	bh = head;
898  	do {
899  		unlock_buffer(bh);
900  		bh = bh->b_this_page;
901  	} while (bh != head);
902  
903  	return rc;
904  }
905  
906  /**
907   * buffer_migrate_folio() - Migration function for folios with buffers.
908   * @mapping: The address space containing @src.
909   * @dst: The folio to migrate to.
910   * @src: The folio to migrate from.
911   * @mode: How to migrate the folio.
912   *
913   * This function can only be used if the underlying filesystem guarantees
914   * that no other references to @src exist. For example attached buffer
915   * heads are accessed only under the folio lock.  If your filesystem cannot
916   * provide this guarantee, buffer_migrate_folio_norefs() may be more
917   * appropriate.
918   *
919   * Return: 0 on success or a negative errno on failure.
920   */
921  int buffer_migrate_folio(struct address_space *mapping,
922  		struct folio *dst, struct folio *src, enum migrate_mode mode)
923  {
924  	return __buffer_migrate_folio(mapping, dst, src, mode, false);
925  }
926  EXPORT_SYMBOL(buffer_migrate_folio);
927  
928  /**
929   * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
930   * @mapping: The address space containing @src.
931   * @dst: The folio to migrate to.
932   * @src: The folio to migrate from.
933   * @mode: How to migrate the folio.
934   *
935   * Like buffer_migrate_folio() except that this variant is more careful
936   * and checks that there are also no buffer head references. This function
937   * is the right one for mappings where buffer heads are directly looked
938   * up and referenced (such as block device mappings).
939   *
940   * Return: 0 on success or a negative errno on failure.
941   */
942  int buffer_migrate_folio_norefs(struct address_space *mapping,
943  		struct folio *dst, struct folio *src, enum migrate_mode mode)
944  {
945  	return __buffer_migrate_folio(mapping, dst, src, mode, true);
946  }
947  EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
948  #endif /* CONFIG_BUFFER_HEAD */
949  
950  int filemap_migrate_folio(struct address_space *mapping,
951  		struct folio *dst, struct folio *src, enum migrate_mode mode)
952  {
953  	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
954  }
955  EXPORT_SYMBOL_GPL(filemap_migrate_folio);
956  
957  /*
958   * Writeback a folio to clean the dirty state
959   */
960  static int writeout(struct address_space *mapping, struct folio *folio)
961  {
962  	struct writeback_control wbc = {
963  		.sync_mode = WB_SYNC_NONE,
964  		.nr_to_write = 1,
965  		.range_start = 0,
966  		.range_end = LLONG_MAX,
967  		.for_reclaim = 1
968  	};
969  	int rc;
970  
971  	if (!mapping->a_ops->writepage)
972  		/* No write method for the address space */
973  		return -EINVAL;
974  
975  	if (!folio_clear_dirty_for_io(folio))
976  		/* Someone else already triggered a write */
977  		return -EAGAIN;
978  
979  	/*
980  	 * A dirty folio may imply that the underlying filesystem has
981  	 * the folio on some queue. So the folio must be clean for
982  	 * migration. Writeout may mean we lose the lock and the
983  	 * folio state is no longer what we checked for earlier.
984  	 * At this point we know that the migration attempt cannot
985  	 * be successful.
986  	 */
987  	remove_migration_ptes(folio, folio, 0);
988  
989  	rc = mapping->a_ops->writepage(&folio->page, &wbc);
990  
991  	if (rc != AOP_WRITEPAGE_ACTIVATE)
992  		/* unlocked. Relock */
993  		folio_lock(folio);
994  
995  	return (rc < 0) ? -EIO : -EAGAIN;
996  }
997  
998  /*
999   * Default handling if a filesystem does not provide a migration function.
1000   */
1001  static int fallback_migrate_folio(struct address_space *mapping,
1002  		struct folio *dst, struct folio *src, enum migrate_mode mode)
1003  {
1004  	if (folio_test_dirty(src)) {
1005  		/* Only writeback folios in full synchronous migration */
1006  		switch (mode) {
1007  		case MIGRATE_SYNC:
1008  			break;
1009  		default:
1010  			return -EBUSY;
1011  		}
1012  		return writeout(mapping, src);
1013  	}
1014  
1015  	/*
1016  	 * Buffers may be managed in a filesystem specific way.
1017  	 * We must have no buffers or drop them.
1018  	 */
1019  	if (!filemap_release_folio(src, GFP_KERNEL))
1020  		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1021  
1022  	return migrate_folio(mapping, dst, src, mode);
1023  }
1024  
1025  /*
1026   * Move a page to a newly allocated page
1027   * The page is locked and all ptes have been successfully removed.
1028   *
1029   * The new page will have replaced the old page if this function
1030   * is successful.
1031   *
1032   * Return value:
1033   *   < 0 - error code
1034   *  MIGRATEPAGE_SUCCESS - success
1035   */
1036  static int move_to_new_folio(struct folio *dst, struct folio *src,
1037  				enum migrate_mode mode)
1038  {
1039  	int rc = -EAGAIN;
1040  	bool is_lru = !__folio_test_movable(src);
1041  
1042  	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1043  	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1044  
1045  	if (likely(is_lru)) {
1046  		struct address_space *mapping = folio_mapping(src);
1047  
1048  		if (!mapping)
1049  			rc = migrate_folio(mapping, dst, src, mode);
1050  		else if (mapping_inaccessible(mapping))
1051  			rc = -EOPNOTSUPP;
1052  		else if (mapping->a_ops->migrate_folio)
1053  			/*
1054  			 * Most folios have a mapping and most filesystems
1055  			 * provide a migrate_folio callback. Anonymous folios
1056  			 * are part of swap space which also has its own
1057  			 * migrate_folio callback. This is the most common path
1058  			 * for page migration.
1059  			 */
1060  			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1061  								mode);
1062  		else
1063  			rc = fallback_migrate_folio(mapping, dst, src, mode);
1064  	} else {
1065  		const struct movable_operations *mops;
1066  
1067  		/*
1068  		 * In case of non-lru page, it could be released after
1069  		 * isolation step. In that case, we shouldn't try migration.
1070  		 */
1071  		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1072  		if (!folio_test_movable(src)) {
1073  			rc = MIGRATEPAGE_SUCCESS;
1074  			folio_clear_isolated(src);
1075  			goto out;
1076  		}
1077  
1078  		mops = folio_movable_ops(src);
1079  		rc = mops->migrate_page(&dst->page, &src->page, mode);
1080  		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1081  				!folio_test_isolated(src));
1082  	}
1083  
1084  	/*
1085  	 * When successful, old pagecache src->mapping must be cleared before
1086  	 * src is freed; but stats require that PageAnon be left as PageAnon.
1087  	 */
1088  	if (rc == MIGRATEPAGE_SUCCESS) {
1089  		if (__folio_test_movable(src)) {
1090  			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1091  
1092  			/*
1093  			 * We clear PG_movable under page_lock so any compactor
1094  			 * cannot try to migrate this page.
1095  			 */
1096  			folio_clear_isolated(src);
1097  		}
1098  
1099  		/*
1100  		 * Anonymous and movable src->mapping will be cleared by
1101  		 * free_pages_prepare so don't reset it here for keeping
1102  		 * the type to work PageAnon, for example.
1103  		 */
1104  		if (!folio_mapping_flags(src))
1105  			src->mapping = NULL;
1106  
1107  		if (likely(!folio_is_zone_device(dst)))
1108  			flush_dcache_folio(dst);
1109  	}
1110  out:
1111  	return rc;
1112  }
1113  
1114  /*
1115   * To record some information during migration, we use unused private
1116   * field of struct folio of the newly allocated destination folio.
1117   * This is safe because nobody is using it except us.
1118   */
1119  enum {
1120  	PAGE_WAS_MAPPED = BIT(0),
1121  	PAGE_WAS_MLOCKED = BIT(1),
1122  	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1123  };
1124  
1125  static void __migrate_folio_record(struct folio *dst,
1126  				   int old_page_state,
1127  				   struct anon_vma *anon_vma)
1128  {
1129  	dst->private = (void *)anon_vma + old_page_state;
1130  }
1131  
1132  static void __migrate_folio_extract(struct folio *dst,
1133  				   int *old_page_state,
1134  				   struct anon_vma **anon_vmap)
1135  {
1136  	unsigned long private = (unsigned long)dst->private;
1137  
1138  	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1139  	*old_page_state = private & PAGE_OLD_STATES;
1140  	dst->private = NULL;
1141  }
1142  
1143  /* Restore the source folio to the original state upon failure */
1144  static void migrate_folio_undo_src(struct folio *src,
1145  				   int page_was_mapped,
1146  				   struct anon_vma *anon_vma,
1147  				   bool locked,
1148  				   struct list_head *ret)
1149  {
1150  	if (page_was_mapped)
1151  		remove_migration_ptes(src, src, 0);
1152  	/* Drop an anon_vma reference if we took one */
1153  	if (anon_vma)
1154  		put_anon_vma(anon_vma);
1155  	if (locked)
1156  		folio_unlock(src);
1157  	if (ret)
1158  		list_move_tail(&src->lru, ret);
1159  }
1160  
1161  /* Restore the destination folio to the original state upon failure */
1162  static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1163  		free_folio_t put_new_folio, unsigned long private)
1164  {
1165  	if (locked)
1166  		folio_unlock(dst);
1167  	if (put_new_folio)
1168  		put_new_folio(dst, private);
1169  	else
1170  		folio_put(dst);
1171  }
1172  
1173  /* Cleanup src folio upon migration success */
1174  static void migrate_folio_done(struct folio *src,
1175  			       enum migrate_reason reason)
1176  {
1177  	/*
1178  	 * Compaction can migrate also non-LRU pages which are
1179  	 * not accounted to NR_ISOLATED_*. They can be recognized
1180  	 * as __folio_test_movable
1181  	 */
1182  	if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION)
1183  		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1184  				    folio_is_file_lru(src), -folio_nr_pages(src));
1185  
1186  	if (reason != MR_MEMORY_FAILURE)
1187  		/* We release the page in page_handle_poison. */
1188  		folio_put(src);
1189  }
1190  
1191  /* Obtain the lock on page, remove all ptes. */
1192  static int migrate_folio_unmap(new_folio_t get_new_folio,
1193  		free_folio_t put_new_folio, unsigned long private,
1194  		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1195  		enum migrate_reason reason, struct list_head *ret)
1196  {
1197  	struct folio *dst;
1198  	int rc = -EAGAIN;
1199  	int old_page_state = 0;
1200  	struct anon_vma *anon_vma = NULL;
1201  	bool is_lru = data_race(!__folio_test_movable(src));
1202  	bool locked = false;
1203  	bool dst_locked = false;
1204  
1205  	if (folio_ref_count(src) == 1) {
1206  		/* Folio was freed from under us. So we are done. */
1207  		folio_clear_active(src);
1208  		folio_clear_unevictable(src);
1209  		/* free_pages_prepare() will clear PG_isolated. */
1210  		list_del(&src->lru);
1211  		migrate_folio_done(src, reason);
1212  		return MIGRATEPAGE_SUCCESS;
1213  	}
1214  
1215  	dst = get_new_folio(src, private);
1216  	if (!dst)
1217  		return -ENOMEM;
1218  	*dstp = dst;
1219  
1220  	dst->private = NULL;
1221  
1222  	if (!folio_trylock(src)) {
1223  		if (mode == MIGRATE_ASYNC)
1224  			goto out;
1225  
1226  		/*
1227  		 * It's not safe for direct compaction to call lock_page.
1228  		 * For example, during page readahead pages are added locked
1229  		 * to the LRU. Later, when the IO completes the pages are
1230  		 * marked uptodate and unlocked. However, the queueing
1231  		 * could be merging multiple pages for one bio (e.g.
1232  		 * mpage_readahead). If an allocation happens for the
1233  		 * second or third page, the process can end up locking
1234  		 * the same page twice and deadlocking. Rather than
1235  		 * trying to be clever about what pages can be locked,
1236  		 * avoid the use of lock_page for direct compaction
1237  		 * altogether.
1238  		 */
1239  		if (current->flags & PF_MEMALLOC)
1240  			goto out;
1241  
1242  		/*
1243  		 * In "light" mode, we can wait for transient locks (eg
1244  		 * inserting a page into the page table), but it's not
1245  		 * worth waiting for I/O.
1246  		 */
1247  		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1248  			goto out;
1249  
1250  		folio_lock(src);
1251  	}
1252  	locked = true;
1253  	if (folio_test_mlocked(src))
1254  		old_page_state |= PAGE_WAS_MLOCKED;
1255  
1256  	if (folio_test_writeback(src)) {
1257  		/*
1258  		 * Only in the case of a full synchronous migration is it
1259  		 * necessary to wait for PageWriteback. In the async case,
1260  		 * the retry loop is too short and in the sync-light case,
1261  		 * the overhead of stalling is too much
1262  		 */
1263  		switch (mode) {
1264  		case MIGRATE_SYNC:
1265  			break;
1266  		default:
1267  			rc = -EBUSY;
1268  			goto out;
1269  		}
1270  		folio_wait_writeback(src);
1271  	}
1272  
1273  	/*
1274  	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1275  	 * we cannot notice that anon_vma is freed while we migrate a page.
1276  	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1277  	 * of migration. File cache pages are no problem because of page_lock()
1278  	 * File Caches may use write_page() or lock_page() in migration, then,
1279  	 * just care Anon page here.
1280  	 *
1281  	 * Only folio_get_anon_vma() understands the subtleties of
1282  	 * getting a hold on an anon_vma from outside one of its mms.
1283  	 * But if we cannot get anon_vma, then we won't need it anyway,
1284  	 * because that implies that the anon page is no longer mapped
1285  	 * (and cannot be remapped so long as we hold the page lock).
1286  	 */
1287  	if (folio_test_anon(src) && !folio_test_ksm(src))
1288  		anon_vma = folio_get_anon_vma(src);
1289  
1290  	/*
1291  	 * Block others from accessing the new page when we get around to
1292  	 * establishing additional references. We are usually the only one
1293  	 * holding a reference to dst at this point. We used to have a BUG
1294  	 * here if folio_trylock(dst) fails, but would like to allow for
1295  	 * cases where there might be a race with the previous use of dst.
1296  	 * This is much like races on refcount of oldpage: just don't BUG().
1297  	 */
1298  	if (unlikely(!folio_trylock(dst)))
1299  		goto out;
1300  	dst_locked = true;
1301  
1302  	if (unlikely(!is_lru)) {
1303  		__migrate_folio_record(dst, old_page_state, anon_vma);
1304  		return MIGRATEPAGE_UNMAP;
1305  	}
1306  
1307  	/*
1308  	 * Corner case handling:
1309  	 * 1. When a new swap-cache page is read into, it is added to the LRU
1310  	 * and treated as swapcache but it has no rmap yet.
1311  	 * Calling try_to_unmap() against a src->mapping==NULL page will
1312  	 * trigger a BUG.  So handle it here.
1313  	 * 2. An orphaned page (see truncate_cleanup_page) might have
1314  	 * fs-private metadata. The page can be picked up due to memory
1315  	 * offlining.  Everywhere else except page reclaim, the page is
1316  	 * invisible to the vm, so the page can not be migrated.  So try to
1317  	 * free the metadata, so the page can be freed.
1318  	 */
1319  	if (!src->mapping) {
1320  		if (folio_test_private(src)) {
1321  			try_to_free_buffers(src);
1322  			goto out;
1323  		}
1324  	} else if (folio_mapped(src)) {
1325  		/* Establish migration ptes */
1326  		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1327  			       !folio_test_ksm(src) && !anon_vma, src);
1328  		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1329  		old_page_state |= PAGE_WAS_MAPPED;
1330  	}
1331  
1332  	if (!folio_mapped(src)) {
1333  		__migrate_folio_record(dst, old_page_state, anon_vma);
1334  		return MIGRATEPAGE_UNMAP;
1335  	}
1336  
1337  out:
1338  	/*
1339  	 * A folio that has not been unmapped will be restored to
1340  	 * right list unless we want to retry.
1341  	 */
1342  	if (rc == -EAGAIN)
1343  		ret = NULL;
1344  
1345  	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1346  			       anon_vma, locked, ret);
1347  	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1348  
1349  	return rc;
1350  }
1351  
1352  /* Migrate the folio to the newly allocated folio in dst. */
1353  static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1354  			      struct folio *src, struct folio *dst,
1355  			      enum migrate_mode mode, enum migrate_reason reason,
1356  			      struct list_head *ret)
1357  {
1358  	int rc;
1359  	int old_page_state = 0;
1360  	struct anon_vma *anon_vma = NULL;
1361  	bool is_lru = !__folio_test_movable(src);
1362  	struct list_head *prev;
1363  
1364  	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1365  	prev = dst->lru.prev;
1366  	list_del(&dst->lru);
1367  
1368  	rc = move_to_new_folio(dst, src, mode);
1369  	if (rc)
1370  		goto out;
1371  
1372  	if (unlikely(!is_lru))
1373  		goto out_unlock_both;
1374  
1375  	/*
1376  	 * When successful, push dst to LRU immediately: so that if it
1377  	 * turns out to be an mlocked page, remove_migration_ptes() will
1378  	 * automatically build up the correct dst->mlock_count for it.
1379  	 *
1380  	 * We would like to do something similar for the old page, when
1381  	 * unsuccessful, and other cases when a page has been temporarily
1382  	 * isolated from the unevictable LRU: but this case is the easiest.
1383  	 */
1384  	folio_add_lru(dst);
1385  	if (old_page_state & PAGE_WAS_MLOCKED)
1386  		lru_add_drain();
1387  
1388  	if (old_page_state & PAGE_WAS_MAPPED)
1389  		remove_migration_ptes(src, dst, 0);
1390  
1391  out_unlock_both:
1392  	folio_unlock(dst);
1393  	set_page_owner_migrate_reason(&dst->page, reason);
1394  	/*
1395  	 * If migration is successful, decrease refcount of dst,
1396  	 * which will not free the page because new page owner increased
1397  	 * refcounter.
1398  	 */
1399  	folio_put(dst);
1400  
1401  	/*
1402  	 * A folio that has been migrated has all references removed
1403  	 * and will be freed.
1404  	 */
1405  	list_del(&src->lru);
1406  	/* Drop an anon_vma reference if we took one */
1407  	if (anon_vma)
1408  		put_anon_vma(anon_vma);
1409  	folio_unlock(src);
1410  	migrate_folio_done(src, reason);
1411  
1412  	return rc;
1413  out:
1414  	/*
1415  	 * A folio that has not been migrated will be restored to
1416  	 * right list unless we want to retry.
1417  	 */
1418  	if (rc == -EAGAIN) {
1419  		list_add(&dst->lru, prev);
1420  		__migrate_folio_record(dst, old_page_state, anon_vma);
1421  		return rc;
1422  	}
1423  
1424  	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1425  			       anon_vma, true, ret);
1426  	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1427  
1428  	return rc;
1429  }
1430  
1431  /*
1432   * Counterpart of unmap_and_move_page() for hugepage migration.
1433   *
1434   * This function doesn't wait the completion of hugepage I/O
1435   * because there is no race between I/O and migration for hugepage.
1436   * Note that currently hugepage I/O occurs only in direct I/O
1437   * where no lock is held and PG_writeback is irrelevant,
1438   * and writeback status of all subpages are counted in the reference
1439   * count of the head page (i.e. if all subpages of a 2MB hugepage are
1440   * under direct I/O, the reference of the head page is 512 and a bit more.)
1441   * This means that when we try to migrate hugepage whose subpages are
1442   * doing direct I/O, some references remain after try_to_unmap() and
1443   * hugepage migration fails without data corruption.
1444   *
1445   * There is also no race when direct I/O is issued on the page under migration,
1446   * because then pte is replaced with migration swap entry and direct I/O code
1447   * will wait in the page fault for migration to complete.
1448   */
1449  static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1450  		free_folio_t put_new_folio, unsigned long private,
1451  		struct folio *src, int force, enum migrate_mode mode,
1452  		int reason, struct list_head *ret)
1453  {
1454  	struct folio *dst;
1455  	int rc = -EAGAIN;
1456  	int page_was_mapped = 0;
1457  	struct anon_vma *anon_vma = NULL;
1458  	struct address_space *mapping = NULL;
1459  
1460  	if (folio_ref_count(src) == 1) {
1461  		/* page was freed from under us. So we are done. */
1462  		folio_putback_active_hugetlb(src);
1463  		return MIGRATEPAGE_SUCCESS;
1464  	}
1465  
1466  	dst = get_new_folio(src, private);
1467  	if (!dst)
1468  		return -ENOMEM;
1469  
1470  	if (!folio_trylock(src)) {
1471  		if (!force)
1472  			goto out;
1473  		switch (mode) {
1474  		case MIGRATE_SYNC:
1475  			break;
1476  		default:
1477  			goto out;
1478  		}
1479  		folio_lock(src);
1480  	}
1481  
1482  	/*
1483  	 * Check for pages which are in the process of being freed.  Without
1484  	 * folio_mapping() set, hugetlbfs specific move page routine will not
1485  	 * be called and we could leak usage counts for subpools.
1486  	 */
1487  	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1488  		rc = -EBUSY;
1489  		goto out_unlock;
1490  	}
1491  
1492  	if (folio_test_anon(src))
1493  		anon_vma = folio_get_anon_vma(src);
1494  
1495  	if (unlikely(!folio_trylock(dst)))
1496  		goto put_anon;
1497  
1498  	if (folio_mapped(src)) {
1499  		enum ttu_flags ttu = 0;
1500  
1501  		if (!folio_test_anon(src)) {
1502  			/*
1503  			 * In shared mappings, try_to_unmap could potentially
1504  			 * call huge_pmd_unshare.  Because of this, take
1505  			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1506  			 * to let lower levels know we have taken the lock.
1507  			 */
1508  			mapping = hugetlb_folio_mapping_lock_write(src);
1509  			if (unlikely(!mapping))
1510  				goto unlock_put_anon;
1511  
1512  			ttu = TTU_RMAP_LOCKED;
1513  		}
1514  
1515  		try_to_migrate(src, ttu);
1516  		page_was_mapped = 1;
1517  
1518  		if (ttu & TTU_RMAP_LOCKED)
1519  			i_mmap_unlock_write(mapping);
1520  	}
1521  
1522  	if (!folio_mapped(src))
1523  		rc = move_to_new_folio(dst, src, mode);
1524  
1525  	if (page_was_mapped)
1526  		remove_migration_ptes(src,
1527  			rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1528  
1529  unlock_put_anon:
1530  	folio_unlock(dst);
1531  
1532  put_anon:
1533  	if (anon_vma)
1534  		put_anon_vma(anon_vma);
1535  
1536  	if (rc == MIGRATEPAGE_SUCCESS) {
1537  		move_hugetlb_state(src, dst, reason);
1538  		put_new_folio = NULL;
1539  	}
1540  
1541  out_unlock:
1542  	folio_unlock(src);
1543  out:
1544  	if (rc == MIGRATEPAGE_SUCCESS)
1545  		folio_putback_active_hugetlb(src);
1546  	else if (rc != -EAGAIN)
1547  		list_move_tail(&src->lru, ret);
1548  
1549  	/*
1550  	 * If migration was not successful and there's a freeing callback, use
1551  	 * it.  Otherwise, put_page() will drop the reference grabbed during
1552  	 * isolation.
1553  	 */
1554  	if (put_new_folio)
1555  		put_new_folio(dst, private);
1556  	else
1557  		folio_putback_active_hugetlb(dst);
1558  
1559  	return rc;
1560  }
1561  
1562  static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1563  				  enum migrate_mode mode)
1564  {
1565  	int rc;
1566  
1567  	if (mode == MIGRATE_ASYNC) {
1568  		if (!folio_trylock(folio))
1569  			return -EAGAIN;
1570  	} else {
1571  		folio_lock(folio);
1572  	}
1573  	rc = split_folio_to_list(folio, split_folios);
1574  	folio_unlock(folio);
1575  	if (!rc)
1576  		list_move_tail(&folio->lru, split_folios);
1577  
1578  	return rc;
1579  }
1580  
1581  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1582  #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1583  #else
1584  #define NR_MAX_BATCHED_MIGRATION	512
1585  #endif
1586  #define NR_MAX_MIGRATE_PAGES_RETRY	10
1587  #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1588  #define NR_MAX_MIGRATE_SYNC_RETRY					\
1589  	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1590  
1591  struct migrate_pages_stats {
1592  	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1593  				   units of base pages */
1594  	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1595  				   units of base pages.  Untried folios aren't counted */
1596  	int nr_thp_succeeded;	/* THP migrated successfully */
1597  	int nr_thp_failed;	/* THP failed to be migrated */
1598  	int nr_thp_split;	/* THP split before migrating */
1599  	int nr_split;	/* Large folio (include THP) split before migrating */
1600  };
1601  
1602  /*
1603   * Returns the number of hugetlb folios that were not migrated, or an error code
1604   * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1605   * any more because the list has become empty or no retryable hugetlb folios
1606   * exist any more. It is caller's responsibility to call putback_movable_pages()
1607   * only if ret != 0.
1608   */
1609  static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1610  			    free_folio_t put_new_folio, unsigned long private,
1611  			    enum migrate_mode mode, int reason,
1612  			    struct migrate_pages_stats *stats,
1613  			    struct list_head *ret_folios)
1614  {
1615  	int retry = 1;
1616  	int nr_failed = 0;
1617  	int nr_retry_pages = 0;
1618  	int pass = 0;
1619  	struct folio *folio, *folio2;
1620  	int rc, nr_pages;
1621  
1622  	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1623  		retry = 0;
1624  		nr_retry_pages = 0;
1625  
1626  		list_for_each_entry_safe(folio, folio2, from, lru) {
1627  			if (!folio_test_hugetlb(folio))
1628  				continue;
1629  
1630  			nr_pages = folio_nr_pages(folio);
1631  
1632  			cond_resched();
1633  
1634  			/*
1635  			 * Migratability of hugepages depends on architectures and
1636  			 * their size.  This check is necessary because some callers
1637  			 * of hugepage migration like soft offline and memory
1638  			 * hotremove don't walk through page tables or check whether
1639  			 * the hugepage is pmd-based or not before kicking migration.
1640  			 */
1641  			if (!hugepage_migration_supported(folio_hstate(folio))) {
1642  				nr_failed++;
1643  				stats->nr_failed_pages += nr_pages;
1644  				list_move_tail(&folio->lru, ret_folios);
1645  				continue;
1646  			}
1647  
1648  			rc = unmap_and_move_huge_page(get_new_folio,
1649  						      put_new_folio, private,
1650  						      folio, pass > 2, mode,
1651  						      reason, ret_folios);
1652  			/*
1653  			 * The rules are:
1654  			 *	Success: hugetlb folio will be put back
1655  			 *	-EAGAIN: stay on the from list
1656  			 *	-ENOMEM: stay on the from list
1657  			 *	Other errno: put on ret_folios list
1658  			 */
1659  			switch(rc) {
1660  			case -ENOMEM:
1661  				/*
1662  				 * When memory is low, don't bother to try to migrate
1663  				 * other folios, just exit.
1664  				 */
1665  				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1666  				return -ENOMEM;
1667  			case -EAGAIN:
1668  				retry++;
1669  				nr_retry_pages += nr_pages;
1670  				break;
1671  			case MIGRATEPAGE_SUCCESS:
1672  				stats->nr_succeeded += nr_pages;
1673  				break;
1674  			default:
1675  				/*
1676  				 * Permanent failure (-EBUSY, etc.):
1677  				 * unlike -EAGAIN case, the failed folio is
1678  				 * removed from migration folio list and not
1679  				 * retried in the next outer loop.
1680  				 */
1681  				nr_failed++;
1682  				stats->nr_failed_pages += nr_pages;
1683  				break;
1684  			}
1685  		}
1686  	}
1687  	/*
1688  	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1689  	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1690  	 * folios as failed.
1691  	 */
1692  	nr_failed += retry;
1693  	stats->nr_failed_pages += nr_retry_pages;
1694  
1695  	return nr_failed;
1696  }
1697  
1698  /*
1699   * migrate_pages_batch() first unmaps folios in the from list as many as
1700   * possible, then move the unmapped folios.
1701   *
1702   * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1703   * lock or bit when we have locked more than one folio.  Which may cause
1704   * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1705   * length of the from list must be <= 1.
1706   */
1707  static int migrate_pages_batch(struct list_head *from,
1708  		new_folio_t get_new_folio, free_folio_t put_new_folio,
1709  		unsigned long private, enum migrate_mode mode, int reason,
1710  		struct list_head *ret_folios, struct list_head *split_folios,
1711  		struct migrate_pages_stats *stats, int nr_pass)
1712  {
1713  	int retry = 1;
1714  	int thp_retry = 1;
1715  	int nr_failed = 0;
1716  	int nr_retry_pages = 0;
1717  	int pass = 0;
1718  	bool is_thp = false;
1719  	bool is_large = false;
1720  	struct folio *folio, *folio2, *dst = NULL, *dst2;
1721  	int rc, rc_saved = 0, nr_pages;
1722  	LIST_HEAD(unmap_folios);
1723  	LIST_HEAD(dst_folios);
1724  	bool nosplit = (reason == MR_NUMA_MISPLACED);
1725  
1726  	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1727  			!list_empty(from) && !list_is_singular(from));
1728  
1729  	for (pass = 0; pass < nr_pass && retry; pass++) {
1730  		retry = 0;
1731  		thp_retry = 0;
1732  		nr_retry_pages = 0;
1733  
1734  		list_for_each_entry_safe(folio, folio2, from, lru) {
1735  			is_large = folio_test_large(folio);
1736  			is_thp = folio_test_pmd_mappable(folio);
1737  			nr_pages = folio_nr_pages(folio);
1738  
1739  			cond_resched();
1740  
1741  			/*
1742  			 * The rare folio on the deferred split list should
1743  			 * be split now. It should not count as a failure:
1744  			 * but increment nr_failed because, without doing so,
1745  			 * migrate_pages() may report success with (split but
1746  			 * unmigrated) pages still on its fromlist; whereas it
1747  			 * always reports success when its fromlist is empty.
1748  			 * stats->nr_thp_failed should be increased too,
1749  			 * otherwise stats inconsistency will happen when
1750  			 * migrate_pages_batch is called via migrate_pages()
1751  			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1752  			 *
1753  			 * Only check it without removing it from the list.
1754  			 * Since the folio can be on deferred_split_scan()
1755  			 * local list and removing it can cause the local list
1756  			 * corruption. Folio split process below can handle it
1757  			 * with the help of folio_ref_freeze().
1758  			 *
1759  			 * nr_pages > 2 is needed to avoid checking order-1
1760  			 * page cache folios. They exist, in contrast to
1761  			 * non-existent order-1 anonymous folios, and do not
1762  			 * use _deferred_list.
1763  			 */
1764  			if (nr_pages > 2 &&
1765  			   !list_empty(&folio->_deferred_list) &&
1766  			   folio_test_partially_mapped(folio)) {
1767  				if (!try_split_folio(folio, split_folios, mode)) {
1768  					nr_failed++;
1769  					stats->nr_thp_failed += is_thp;
1770  					stats->nr_thp_split += is_thp;
1771  					stats->nr_split++;
1772  					continue;
1773  				}
1774  			}
1775  
1776  			/*
1777  			 * Large folio migration might be unsupported or
1778  			 * the allocation might be failed so we should retry
1779  			 * on the same folio with the large folio split
1780  			 * to normal folios.
1781  			 *
1782  			 * Split folios are put in split_folios, and
1783  			 * we will migrate them after the rest of the
1784  			 * list is processed.
1785  			 */
1786  			if (!thp_migration_supported() && is_thp) {
1787  				nr_failed++;
1788  				stats->nr_thp_failed++;
1789  				if (!try_split_folio(folio, split_folios, mode)) {
1790  					stats->nr_thp_split++;
1791  					stats->nr_split++;
1792  					continue;
1793  				}
1794  				stats->nr_failed_pages += nr_pages;
1795  				list_move_tail(&folio->lru, ret_folios);
1796  				continue;
1797  			}
1798  
1799  			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1800  					private, folio, &dst, mode, reason,
1801  					ret_folios);
1802  			/*
1803  			 * The rules are:
1804  			 *	Success: folio will be freed
1805  			 *	Unmap: folio will be put on unmap_folios list,
1806  			 *	       dst folio put on dst_folios list
1807  			 *	-EAGAIN: stay on the from list
1808  			 *	-ENOMEM: stay on the from list
1809  			 *	Other errno: put on ret_folios list
1810  			 */
1811  			switch(rc) {
1812  			case -ENOMEM:
1813  				/*
1814  				 * When memory is low, don't bother to try to migrate
1815  				 * other folios, move unmapped folios, then exit.
1816  				 */
1817  				nr_failed++;
1818  				stats->nr_thp_failed += is_thp;
1819  				/* Large folio NUMA faulting doesn't split to retry. */
1820  				if (is_large && !nosplit) {
1821  					int ret = try_split_folio(folio, split_folios, mode);
1822  
1823  					if (!ret) {
1824  						stats->nr_thp_split += is_thp;
1825  						stats->nr_split++;
1826  						break;
1827  					} else if (reason == MR_LONGTERM_PIN &&
1828  						   ret == -EAGAIN) {
1829  						/*
1830  						 * Try again to split large folio to
1831  						 * mitigate the failure of longterm pinning.
1832  						 */
1833  						retry++;
1834  						thp_retry += is_thp;
1835  						nr_retry_pages += nr_pages;
1836  						/* Undo duplicated failure counting. */
1837  						nr_failed--;
1838  						stats->nr_thp_failed -= is_thp;
1839  						break;
1840  					}
1841  				}
1842  
1843  				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1844  				/* nr_failed isn't updated for not used */
1845  				stats->nr_thp_failed += thp_retry;
1846  				rc_saved = rc;
1847  				if (list_empty(&unmap_folios))
1848  					goto out;
1849  				else
1850  					goto move;
1851  			case -EAGAIN:
1852  				retry++;
1853  				thp_retry += is_thp;
1854  				nr_retry_pages += nr_pages;
1855  				break;
1856  			case MIGRATEPAGE_SUCCESS:
1857  				stats->nr_succeeded += nr_pages;
1858  				stats->nr_thp_succeeded += is_thp;
1859  				break;
1860  			case MIGRATEPAGE_UNMAP:
1861  				list_move_tail(&folio->lru, &unmap_folios);
1862  				list_add_tail(&dst->lru, &dst_folios);
1863  				break;
1864  			default:
1865  				/*
1866  				 * Permanent failure (-EBUSY, etc.):
1867  				 * unlike -EAGAIN case, the failed folio is
1868  				 * removed from migration folio list and not
1869  				 * retried in the next outer loop.
1870  				 */
1871  				nr_failed++;
1872  				stats->nr_thp_failed += is_thp;
1873  				stats->nr_failed_pages += nr_pages;
1874  				break;
1875  			}
1876  		}
1877  	}
1878  	nr_failed += retry;
1879  	stats->nr_thp_failed += thp_retry;
1880  	stats->nr_failed_pages += nr_retry_pages;
1881  move:
1882  	/* Flush TLBs for all unmapped folios */
1883  	try_to_unmap_flush();
1884  
1885  	retry = 1;
1886  	for (pass = 0; pass < nr_pass && retry; pass++) {
1887  		retry = 0;
1888  		thp_retry = 0;
1889  		nr_retry_pages = 0;
1890  
1891  		dst = list_first_entry(&dst_folios, struct folio, lru);
1892  		dst2 = list_next_entry(dst, lru);
1893  		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1894  			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1895  			nr_pages = folio_nr_pages(folio);
1896  
1897  			cond_resched();
1898  
1899  			rc = migrate_folio_move(put_new_folio, private,
1900  						folio, dst, mode,
1901  						reason, ret_folios);
1902  			/*
1903  			 * The rules are:
1904  			 *	Success: folio will be freed
1905  			 *	-EAGAIN: stay on the unmap_folios list
1906  			 *	Other errno: put on ret_folios list
1907  			 */
1908  			switch(rc) {
1909  			case -EAGAIN:
1910  				retry++;
1911  				thp_retry += is_thp;
1912  				nr_retry_pages += nr_pages;
1913  				break;
1914  			case MIGRATEPAGE_SUCCESS:
1915  				stats->nr_succeeded += nr_pages;
1916  				stats->nr_thp_succeeded += is_thp;
1917  				break;
1918  			default:
1919  				nr_failed++;
1920  				stats->nr_thp_failed += is_thp;
1921  				stats->nr_failed_pages += nr_pages;
1922  				break;
1923  			}
1924  			dst = dst2;
1925  			dst2 = list_next_entry(dst, lru);
1926  		}
1927  	}
1928  	nr_failed += retry;
1929  	stats->nr_thp_failed += thp_retry;
1930  	stats->nr_failed_pages += nr_retry_pages;
1931  
1932  	rc = rc_saved ? : nr_failed;
1933  out:
1934  	/* Cleanup remaining folios */
1935  	dst = list_first_entry(&dst_folios, struct folio, lru);
1936  	dst2 = list_next_entry(dst, lru);
1937  	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1938  		int old_page_state = 0;
1939  		struct anon_vma *anon_vma = NULL;
1940  
1941  		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1942  		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1943  				       anon_vma, true, ret_folios);
1944  		list_del(&dst->lru);
1945  		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1946  		dst = dst2;
1947  		dst2 = list_next_entry(dst, lru);
1948  	}
1949  
1950  	return rc;
1951  }
1952  
1953  static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1954  		free_folio_t put_new_folio, unsigned long private,
1955  		enum migrate_mode mode, int reason,
1956  		struct list_head *ret_folios, struct list_head *split_folios,
1957  		struct migrate_pages_stats *stats)
1958  {
1959  	int rc, nr_failed = 0;
1960  	LIST_HEAD(folios);
1961  	struct migrate_pages_stats astats;
1962  
1963  	memset(&astats, 0, sizeof(astats));
1964  	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1965  	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1966  				 reason, &folios, split_folios, &astats,
1967  				 NR_MAX_MIGRATE_ASYNC_RETRY);
1968  	stats->nr_succeeded += astats.nr_succeeded;
1969  	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1970  	stats->nr_thp_split += astats.nr_thp_split;
1971  	stats->nr_split += astats.nr_split;
1972  	if (rc < 0) {
1973  		stats->nr_failed_pages += astats.nr_failed_pages;
1974  		stats->nr_thp_failed += astats.nr_thp_failed;
1975  		list_splice_tail(&folios, ret_folios);
1976  		return rc;
1977  	}
1978  	stats->nr_thp_failed += astats.nr_thp_split;
1979  	/*
1980  	 * Do not count rc, as pages will be retried below.
1981  	 * Count nr_split only, since it includes nr_thp_split.
1982  	 */
1983  	nr_failed += astats.nr_split;
1984  	/*
1985  	 * Fall back to migrate all failed folios one by one synchronously. All
1986  	 * failed folios except split THPs will be retried, so their failure
1987  	 * isn't counted
1988  	 */
1989  	list_splice_tail_init(&folios, from);
1990  	while (!list_empty(from)) {
1991  		list_move(from->next, &folios);
1992  		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1993  					 private, mode, reason, ret_folios,
1994  					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1995  		list_splice_tail_init(&folios, ret_folios);
1996  		if (rc < 0)
1997  			return rc;
1998  		nr_failed += rc;
1999  	}
2000  
2001  	return nr_failed;
2002  }
2003  
2004  /*
2005   * migrate_pages - migrate the folios specified in a list, to the free folios
2006   *		   supplied as the target for the page migration
2007   *
2008   * @from:		The list of folios to be migrated.
2009   * @get_new_folio:	The function used to allocate free folios to be used
2010   *			as the target of the folio migration.
2011   * @put_new_folio:	The function used to free target folios if migration
2012   *			fails, or NULL if no special handling is necessary.
2013   * @private:		Private data to be passed on to get_new_folio()
2014   * @mode:		The migration mode that specifies the constraints for
2015   *			folio migration, if any.
2016   * @reason:		The reason for folio migration.
2017   * @ret_succeeded:	Set to the number of folios migrated successfully if
2018   *			the caller passes a non-NULL pointer.
2019   *
2020   * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2021   * are movable any more because the list has become empty or no retryable folios
2022   * exist any more. It is caller's responsibility to call putback_movable_pages()
2023   * only if ret != 0.
2024   *
2025   * Returns the number of {normal folio, large folio, hugetlb} that were not
2026   * migrated, or an error code. The number of large folio splits will be
2027   * considered as the number of non-migrated large folio, no matter how many
2028   * split folios of the large folio are migrated successfully.
2029   */
2030  int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2031  		free_folio_t put_new_folio, unsigned long private,
2032  		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2033  {
2034  	int rc, rc_gather;
2035  	int nr_pages;
2036  	struct folio *folio, *folio2;
2037  	LIST_HEAD(folios);
2038  	LIST_HEAD(ret_folios);
2039  	LIST_HEAD(split_folios);
2040  	struct migrate_pages_stats stats;
2041  
2042  	trace_mm_migrate_pages_start(mode, reason);
2043  
2044  	memset(&stats, 0, sizeof(stats));
2045  
2046  	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2047  				     mode, reason, &stats, &ret_folios);
2048  	if (rc_gather < 0)
2049  		goto out;
2050  
2051  again:
2052  	nr_pages = 0;
2053  	list_for_each_entry_safe(folio, folio2, from, lru) {
2054  		/* Retried hugetlb folios will be kept in list  */
2055  		if (folio_test_hugetlb(folio)) {
2056  			list_move_tail(&folio->lru, &ret_folios);
2057  			continue;
2058  		}
2059  
2060  		nr_pages += folio_nr_pages(folio);
2061  		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2062  			break;
2063  	}
2064  	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2065  		list_cut_before(&folios, from, &folio2->lru);
2066  	else
2067  		list_splice_init(from, &folios);
2068  	if (mode == MIGRATE_ASYNC)
2069  		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2070  				private, mode, reason, &ret_folios,
2071  				&split_folios, &stats,
2072  				NR_MAX_MIGRATE_PAGES_RETRY);
2073  	else
2074  		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2075  				private, mode, reason, &ret_folios,
2076  				&split_folios, &stats);
2077  	list_splice_tail_init(&folios, &ret_folios);
2078  	if (rc < 0) {
2079  		rc_gather = rc;
2080  		list_splice_tail(&split_folios, &ret_folios);
2081  		goto out;
2082  	}
2083  	if (!list_empty(&split_folios)) {
2084  		/*
2085  		 * Failure isn't counted since all split folios of a large folio
2086  		 * is counted as 1 failure already.  And, we only try to migrate
2087  		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2088  		 */
2089  		migrate_pages_batch(&split_folios, get_new_folio,
2090  				put_new_folio, private, MIGRATE_ASYNC, reason,
2091  				&ret_folios, NULL, &stats, 1);
2092  		list_splice_tail_init(&split_folios, &ret_folios);
2093  	}
2094  	rc_gather += rc;
2095  	if (!list_empty(from))
2096  		goto again;
2097  out:
2098  	/*
2099  	 * Put the permanent failure folio back to migration list, they
2100  	 * will be put back to the right list by the caller.
2101  	 */
2102  	list_splice(&ret_folios, from);
2103  
2104  	/*
2105  	 * Return 0 in case all split folios of fail-to-migrate large folios
2106  	 * are migrated successfully.
2107  	 */
2108  	if (list_empty(from))
2109  		rc_gather = 0;
2110  
2111  	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2112  	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2113  	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2114  	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2115  	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2116  	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2117  			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2118  			       stats.nr_thp_split, stats.nr_split, mode,
2119  			       reason);
2120  
2121  	if (ret_succeeded)
2122  		*ret_succeeded = stats.nr_succeeded;
2123  
2124  	return rc_gather;
2125  }
2126  
2127  struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2128  {
2129  	struct migration_target_control *mtc;
2130  	gfp_t gfp_mask;
2131  	unsigned int order = 0;
2132  	int nid;
2133  	int zidx;
2134  
2135  	mtc = (struct migration_target_control *)private;
2136  	gfp_mask = mtc->gfp_mask;
2137  	nid = mtc->nid;
2138  	if (nid == NUMA_NO_NODE)
2139  		nid = folio_nid(src);
2140  
2141  	if (folio_test_hugetlb(src)) {
2142  		struct hstate *h = folio_hstate(src);
2143  
2144  		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2145  		return alloc_hugetlb_folio_nodemask(h, nid,
2146  						mtc->nmask, gfp_mask,
2147  						htlb_allow_alloc_fallback(mtc->reason));
2148  	}
2149  
2150  	if (folio_test_large(src)) {
2151  		/*
2152  		 * clear __GFP_RECLAIM to make the migration callback
2153  		 * consistent with regular THP allocations.
2154  		 */
2155  		gfp_mask &= ~__GFP_RECLAIM;
2156  		gfp_mask |= GFP_TRANSHUGE;
2157  		order = folio_order(src);
2158  	}
2159  	zidx = zone_idx(folio_zone(src));
2160  	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2161  		gfp_mask |= __GFP_HIGHMEM;
2162  
2163  	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2164  }
2165  
2166  #ifdef CONFIG_NUMA
2167  
2168  static int store_status(int __user *status, int start, int value, int nr)
2169  {
2170  	while (nr-- > 0) {
2171  		if (put_user(value, status + start))
2172  			return -EFAULT;
2173  		start++;
2174  	}
2175  
2176  	return 0;
2177  }
2178  
2179  static int do_move_pages_to_node(struct list_head *pagelist, int node)
2180  {
2181  	int err;
2182  	struct migration_target_control mtc = {
2183  		.nid = node,
2184  		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2185  		.reason = MR_SYSCALL,
2186  	};
2187  
2188  	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2189  		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2190  	if (err)
2191  		putback_movable_pages(pagelist);
2192  	return err;
2193  }
2194  
2195  static int __add_folio_for_migration(struct folio *folio, int node,
2196  		struct list_head *pagelist, bool migrate_all)
2197  {
2198  	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2199  		return -EFAULT;
2200  
2201  	if (folio_is_zone_device(folio))
2202  		return -ENOENT;
2203  
2204  	if (folio_nid(folio) == node)
2205  		return 0;
2206  
2207  	if (folio_likely_mapped_shared(folio) && !migrate_all)
2208  		return -EACCES;
2209  
2210  	if (folio_test_hugetlb(folio)) {
2211  		if (isolate_hugetlb(folio, pagelist))
2212  			return 1;
2213  	} else if (folio_isolate_lru(folio)) {
2214  		list_add_tail(&folio->lru, pagelist);
2215  		node_stat_mod_folio(folio,
2216  			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2217  			folio_nr_pages(folio));
2218  		return 1;
2219  	}
2220  	return -EBUSY;
2221  }
2222  
2223  /*
2224   * Resolves the given address to a struct folio, isolates it from the LRU and
2225   * puts it to the given pagelist.
2226   * Returns:
2227   *     errno - if the folio cannot be found/isolated
2228   *     0 - when it doesn't have to be migrated because it is already on the
2229   *         target node
2230   *     1 - when it has been queued
2231   */
2232  static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2233  		int node, struct list_head *pagelist, bool migrate_all)
2234  {
2235  	struct vm_area_struct *vma;
2236  	struct folio_walk fw;
2237  	struct folio *folio;
2238  	unsigned long addr;
2239  	int err = -EFAULT;
2240  
2241  	mmap_read_lock(mm);
2242  	addr = (unsigned long)untagged_addr_remote(mm, p);
2243  
2244  	vma = vma_lookup(mm, addr);
2245  	if (vma && vma_migratable(vma)) {
2246  		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2247  		if (folio) {
2248  			err = __add_folio_for_migration(folio, node, pagelist,
2249  							migrate_all);
2250  			folio_walk_end(&fw, vma);
2251  		} else {
2252  			err = -ENOENT;
2253  		}
2254  	}
2255  	mmap_read_unlock(mm);
2256  	return err;
2257  }
2258  
2259  static int move_pages_and_store_status(int node,
2260  		struct list_head *pagelist, int __user *status,
2261  		int start, int i, unsigned long nr_pages)
2262  {
2263  	int err;
2264  
2265  	if (list_empty(pagelist))
2266  		return 0;
2267  
2268  	err = do_move_pages_to_node(pagelist, node);
2269  	if (err) {
2270  		/*
2271  		 * Positive err means the number of failed
2272  		 * pages to migrate.  Since we are going to
2273  		 * abort and return the number of non-migrated
2274  		 * pages, so need to include the rest of the
2275  		 * nr_pages that have not been attempted as
2276  		 * well.
2277  		 */
2278  		if (err > 0)
2279  			err += nr_pages - i;
2280  		return err;
2281  	}
2282  	return store_status(status, start, node, i - start);
2283  }
2284  
2285  /*
2286   * Migrate an array of page address onto an array of nodes and fill
2287   * the corresponding array of status.
2288   */
2289  static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2290  			 unsigned long nr_pages,
2291  			 const void __user * __user *pages,
2292  			 const int __user *nodes,
2293  			 int __user *status, int flags)
2294  {
2295  	compat_uptr_t __user *compat_pages = (void __user *)pages;
2296  	int current_node = NUMA_NO_NODE;
2297  	LIST_HEAD(pagelist);
2298  	int start, i;
2299  	int err = 0, err1;
2300  
2301  	lru_cache_disable();
2302  
2303  	for (i = start = 0; i < nr_pages; i++) {
2304  		const void __user *p;
2305  		int node;
2306  
2307  		err = -EFAULT;
2308  		if (in_compat_syscall()) {
2309  			compat_uptr_t cp;
2310  
2311  			if (get_user(cp, compat_pages + i))
2312  				goto out_flush;
2313  
2314  			p = compat_ptr(cp);
2315  		} else {
2316  			if (get_user(p, pages + i))
2317  				goto out_flush;
2318  		}
2319  		if (get_user(node, nodes + i))
2320  			goto out_flush;
2321  
2322  		err = -ENODEV;
2323  		if (node < 0 || node >= MAX_NUMNODES)
2324  			goto out_flush;
2325  		if (!node_state(node, N_MEMORY))
2326  			goto out_flush;
2327  
2328  		err = -EACCES;
2329  		if (!node_isset(node, task_nodes))
2330  			goto out_flush;
2331  
2332  		if (current_node == NUMA_NO_NODE) {
2333  			current_node = node;
2334  			start = i;
2335  		} else if (node != current_node) {
2336  			err = move_pages_and_store_status(current_node,
2337  					&pagelist, status, start, i, nr_pages);
2338  			if (err)
2339  				goto out;
2340  			start = i;
2341  			current_node = node;
2342  		}
2343  
2344  		/*
2345  		 * Errors in the page lookup or isolation are not fatal and we simply
2346  		 * report them via status
2347  		 */
2348  		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2349  					      flags & MPOL_MF_MOVE_ALL);
2350  
2351  		if (err > 0) {
2352  			/* The page is successfully queued for migration */
2353  			continue;
2354  		}
2355  
2356  		/*
2357  		 * The move_pages() man page does not have an -EEXIST choice, so
2358  		 * use -EFAULT instead.
2359  		 */
2360  		if (err == -EEXIST)
2361  			err = -EFAULT;
2362  
2363  		/*
2364  		 * If the page is already on the target node (!err), store the
2365  		 * node, otherwise, store the err.
2366  		 */
2367  		err = store_status(status, i, err ? : current_node, 1);
2368  		if (err)
2369  			goto out_flush;
2370  
2371  		err = move_pages_and_store_status(current_node, &pagelist,
2372  				status, start, i, nr_pages);
2373  		if (err) {
2374  			/* We have accounted for page i */
2375  			if (err > 0)
2376  				err--;
2377  			goto out;
2378  		}
2379  		current_node = NUMA_NO_NODE;
2380  	}
2381  out_flush:
2382  	/* Make sure we do not overwrite the existing error */
2383  	err1 = move_pages_and_store_status(current_node, &pagelist,
2384  				status, start, i, nr_pages);
2385  	if (err >= 0)
2386  		err = err1;
2387  out:
2388  	lru_cache_enable();
2389  	return err;
2390  }
2391  
2392  /*
2393   * Determine the nodes of an array of pages and store it in an array of status.
2394   */
2395  static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2396  				const void __user **pages, int *status)
2397  {
2398  	unsigned long i;
2399  
2400  	mmap_read_lock(mm);
2401  
2402  	for (i = 0; i < nr_pages; i++) {
2403  		unsigned long addr = (unsigned long)(*pages);
2404  		struct vm_area_struct *vma;
2405  		struct folio_walk fw;
2406  		struct folio *folio;
2407  		int err = -EFAULT;
2408  
2409  		vma = vma_lookup(mm, addr);
2410  		if (!vma)
2411  			goto set_status;
2412  
2413  		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2414  		if (folio) {
2415  			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2416  				err = -EFAULT;
2417  			else if (folio_is_zone_device(folio))
2418  				err = -ENOENT;
2419  			else
2420  				err = folio_nid(folio);
2421  			folio_walk_end(&fw, vma);
2422  		} else {
2423  			err = -ENOENT;
2424  		}
2425  set_status:
2426  		*status = err;
2427  
2428  		pages++;
2429  		status++;
2430  	}
2431  
2432  	mmap_read_unlock(mm);
2433  }
2434  
2435  static int get_compat_pages_array(const void __user *chunk_pages[],
2436  				  const void __user * __user *pages,
2437  				  unsigned long chunk_nr)
2438  {
2439  	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2440  	compat_uptr_t p;
2441  	int i;
2442  
2443  	for (i = 0; i < chunk_nr; i++) {
2444  		if (get_user(p, pages32 + i))
2445  			return -EFAULT;
2446  		chunk_pages[i] = compat_ptr(p);
2447  	}
2448  
2449  	return 0;
2450  }
2451  
2452  /*
2453   * Determine the nodes of a user array of pages and store it in
2454   * a user array of status.
2455   */
2456  static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2457  			 const void __user * __user *pages,
2458  			 int __user *status)
2459  {
2460  #define DO_PAGES_STAT_CHUNK_NR 16UL
2461  	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2462  	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2463  
2464  	while (nr_pages) {
2465  		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2466  
2467  		if (in_compat_syscall()) {
2468  			if (get_compat_pages_array(chunk_pages, pages,
2469  						   chunk_nr))
2470  				break;
2471  		} else {
2472  			if (copy_from_user(chunk_pages, pages,
2473  				      chunk_nr * sizeof(*chunk_pages)))
2474  				break;
2475  		}
2476  
2477  		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2478  
2479  		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2480  			break;
2481  
2482  		pages += chunk_nr;
2483  		status += chunk_nr;
2484  		nr_pages -= chunk_nr;
2485  	}
2486  	return nr_pages ? -EFAULT : 0;
2487  }
2488  
2489  static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2490  {
2491  	struct task_struct *task;
2492  	struct mm_struct *mm;
2493  
2494  	/*
2495  	 * There is no need to check if current process has the right to modify
2496  	 * the specified process when they are same.
2497  	 */
2498  	if (!pid) {
2499  		mmget(current->mm);
2500  		*mem_nodes = cpuset_mems_allowed(current);
2501  		return current->mm;
2502  	}
2503  
2504  	task = find_get_task_by_vpid(pid);
2505  	if (!task) {
2506  		return ERR_PTR(-ESRCH);
2507  	}
2508  
2509  	/*
2510  	 * Check if this process has the right to modify the specified
2511  	 * process. Use the regular "ptrace_may_access()" checks.
2512  	 */
2513  	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2514  		mm = ERR_PTR(-EPERM);
2515  		goto out;
2516  	}
2517  
2518  	mm = ERR_PTR(security_task_movememory(task));
2519  	if (IS_ERR(mm))
2520  		goto out;
2521  	*mem_nodes = cpuset_mems_allowed(task);
2522  	mm = get_task_mm(task);
2523  out:
2524  	put_task_struct(task);
2525  	if (!mm)
2526  		mm = ERR_PTR(-EINVAL);
2527  	return mm;
2528  }
2529  
2530  /*
2531   * Move a list of pages in the address space of the currently executing
2532   * process.
2533   */
2534  static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2535  			     const void __user * __user *pages,
2536  			     const int __user *nodes,
2537  			     int __user *status, int flags)
2538  {
2539  	struct mm_struct *mm;
2540  	int err;
2541  	nodemask_t task_nodes;
2542  
2543  	/* Check flags */
2544  	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2545  		return -EINVAL;
2546  
2547  	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2548  		return -EPERM;
2549  
2550  	mm = find_mm_struct(pid, &task_nodes);
2551  	if (IS_ERR(mm))
2552  		return PTR_ERR(mm);
2553  
2554  	if (nodes)
2555  		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2556  				    nodes, status, flags);
2557  	else
2558  		err = do_pages_stat(mm, nr_pages, pages, status);
2559  
2560  	mmput(mm);
2561  	return err;
2562  }
2563  
2564  SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2565  		const void __user * __user *, pages,
2566  		const int __user *, nodes,
2567  		int __user *, status, int, flags)
2568  {
2569  	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2570  }
2571  
2572  #ifdef CONFIG_NUMA_BALANCING
2573  /*
2574   * Returns true if this is a safe migration target node for misplaced NUMA
2575   * pages. Currently it only checks the watermarks which is crude.
2576   */
2577  static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2578  				   unsigned long nr_migrate_pages)
2579  {
2580  	int z;
2581  
2582  	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2583  		struct zone *zone = pgdat->node_zones + z;
2584  
2585  		if (!managed_zone(zone))
2586  			continue;
2587  
2588  		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2589  		if (!zone_watermark_ok(zone, 0,
2590  				       high_wmark_pages(zone) +
2591  				       nr_migrate_pages,
2592  				       ZONE_MOVABLE, ALLOC_CMA))
2593  			continue;
2594  		return true;
2595  	}
2596  	return false;
2597  }
2598  
2599  static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2600  					   unsigned long data)
2601  {
2602  	int nid = (int) data;
2603  	int order = folio_order(src);
2604  	gfp_t gfp = __GFP_THISNODE;
2605  
2606  	if (order > 0)
2607  		gfp |= GFP_TRANSHUGE_LIGHT;
2608  	else {
2609  		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2610  			__GFP_NOWARN;
2611  		gfp &= ~__GFP_RECLAIM;
2612  	}
2613  	return __folio_alloc_node(gfp, order, nid);
2614  }
2615  
2616  /*
2617   * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2618   * permitted. Must be called with the PTL still held.
2619   */
2620  int migrate_misplaced_folio_prepare(struct folio *folio,
2621  		struct vm_area_struct *vma, int node)
2622  {
2623  	int nr_pages = folio_nr_pages(folio);
2624  	pg_data_t *pgdat = NODE_DATA(node);
2625  
2626  	if (folio_is_file_lru(folio)) {
2627  		/*
2628  		 * Do not migrate file folios that are mapped in multiple
2629  		 * processes with execute permissions as they are probably
2630  		 * shared libraries.
2631  		 *
2632  		 * See folio_likely_mapped_shared() on possible imprecision
2633  		 * when we cannot easily detect if a folio is shared.
2634  		 */
2635  		if ((vma->vm_flags & VM_EXEC) &&
2636  		    folio_likely_mapped_shared(folio))
2637  			return -EACCES;
2638  
2639  		/*
2640  		 * Do not migrate dirty folios as not all filesystems can move
2641  		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2642  		 * cycles.
2643  		 */
2644  		if (folio_test_dirty(folio))
2645  			return -EAGAIN;
2646  	}
2647  
2648  	/* Avoid migrating to a node that is nearly full */
2649  	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2650  		int z;
2651  
2652  		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2653  			return -EAGAIN;
2654  		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2655  			if (managed_zone(pgdat->node_zones + z))
2656  				break;
2657  		}
2658  
2659  		/*
2660  		 * If there are no managed zones, it should not proceed
2661  		 * further.
2662  		 */
2663  		if (z < 0)
2664  			return -EAGAIN;
2665  
2666  		wakeup_kswapd(pgdat->node_zones + z, 0,
2667  			      folio_order(folio), ZONE_MOVABLE);
2668  		return -EAGAIN;
2669  	}
2670  
2671  	if (!folio_isolate_lru(folio))
2672  		return -EAGAIN;
2673  
2674  	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2675  			    nr_pages);
2676  	return 0;
2677  }
2678  
2679  /*
2680   * Attempt to migrate a misplaced folio to the specified destination
2681   * node. Caller is expected to have isolated the folio by calling
2682   * migrate_misplaced_folio_prepare(), which will result in an
2683   * elevated reference count on the folio. This function will un-isolate the
2684   * folio, dereferencing the folio before returning.
2685   */
2686  int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2687  			    int node)
2688  {
2689  	pg_data_t *pgdat = NODE_DATA(node);
2690  	int nr_remaining;
2691  	unsigned int nr_succeeded;
2692  	LIST_HEAD(migratepages);
2693  	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2694  	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2695  
2696  	list_add(&folio->lru, &migratepages);
2697  	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2698  				     NULL, node, MIGRATE_ASYNC,
2699  				     MR_NUMA_MISPLACED, &nr_succeeded);
2700  	if (nr_remaining && !list_empty(&migratepages))
2701  		putback_movable_pages(&migratepages);
2702  	if (nr_succeeded) {
2703  		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2704  		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2705  		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2706  		    && !node_is_toptier(folio_nid(folio))
2707  		    && node_is_toptier(node))
2708  			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2709  	}
2710  	mem_cgroup_put(memcg);
2711  	BUG_ON(!list_empty(&migratepages));
2712  	return nr_remaining ? -EAGAIN : 0;
2713  }
2714  #endif /* CONFIG_NUMA_BALANCING */
2715  #endif /* CONFIG_NUMA */
2716