xref: /linux/mm/migrate.c (revision c434e25b62f8efcfbb6bf1f7ce55960206c1137e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use the isolated flag */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __folio_test_movable because LRU folio's mapping cannot
161 		 * have PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 
215 		entry = pte_to_swp_entry(old_pte);
216 		if (!is_migration_entry_young(entry))
217 			pte = pte_mkold(pte);
218 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
219 			pte = pte_mkdirty(pte);
220 		if (pte_swp_soft_dirty(old_pte))
221 			pte = pte_mksoft_dirty(pte);
222 		else
223 			pte = pte_clear_soft_dirty(pte);
224 
225 		if (is_writable_migration_entry(entry))
226 			pte = pte_mkwrite(pte, vma);
227 		else if (pte_swp_uffd_wp(old_pte))
228 			pte = pte_mkuffd_wp(pte);
229 
230 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 			rmap_flags |= RMAP_EXCLUSIVE;
232 
233 		if (unlikely(is_device_private_page(new))) {
234 			if (pte_write(pte))
235 				entry = make_writable_device_private_entry(
236 							page_to_pfn(new));
237 			else
238 				entry = make_readable_device_private_entry(
239 							page_to_pfn(new));
240 			pte = swp_entry_to_pte(entry);
241 			if (pte_swp_soft_dirty(old_pte))
242 				pte = pte_swp_mksoft_dirty(pte);
243 			if (pte_swp_uffd_wp(old_pte))
244 				pte = pte_swp_mkuffd_wp(pte);
245 		}
246 
247 #ifdef CONFIG_HUGETLB_PAGE
248 		if (folio_test_hugetlb(folio)) {
249 			struct hstate *h = hstate_vma(vma);
250 			unsigned int shift = huge_page_shift(h);
251 			unsigned long psize = huge_page_size(h);
252 
253 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
254 			if (folio_test_anon(folio))
255 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
256 						      rmap_flags);
257 			else
258 				hugetlb_add_file_rmap(folio);
259 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
260 					psize);
261 		} else
262 #endif
263 		{
264 			if (folio_test_anon(folio))
265 				folio_add_anon_rmap_pte(folio, new, vma,
266 							pvmw.address, rmap_flags);
267 			else
268 				folio_add_file_rmap_pte(folio, new, vma);
269 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 		}
271 		if (vma->vm_flags & VM_LOCKED)
272 			mlock_drain_local();
273 
274 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
275 					   compound_order(new));
276 
277 		/* No need to invalidate - it was non-present before */
278 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 	}
280 
281 	return true;
282 }
283 
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
289 {
290 	struct rmap_walk_control rwc = {
291 		.rmap_one = remove_migration_pte,
292 		.arg = src,
293 	};
294 
295 	if (locked)
296 		rmap_walk_locked(dst, &rwc);
297 	else
298 		rmap_walk(dst, &rwc);
299 }
300 
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
307 			  unsigned long address)
308 {
309 	spinlock_t *ptl;
310 	pte_t *ptep;
311 	pte_t pte;
312 	swp_entry_t entry;
313 
314 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
315 	if (!ptep)
316 		return;
317 
318 	pte = ptep_get(ptep);
319 	pte_unmap(ptep);
320 
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	migration_entry_wait_on_locked(entry, ptl);
329 	return;
330 out:
331 	spin_unlock(ptl);
332 }
333 
334 #ifdef CONFIG_HUGETLB_PAGE
335 /*
336  * The vma read lock must be held upon entry. Holding that lock prevents either
337  * the pte or the ptl from being freed.
338  *
339  * This function will release the vma lock before returning.
340  */
341 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
342 {
343 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
344 	pte_t pte;
345 
346 	hugetlb_vma_assert_locked(vma);
347 	spin_lock(ptl);
348 	pte = huge_ptep_get(ptep);
349 
350 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
351 		spin_unlock(ptl);
352 		hugetlb_vma_unlock_read(vma);
353 	} else {
354 		/*
355 		 * If migration entry existed, safe to release vma lock
356 		 * here because the pgtable page won't be freed without the
357 		 * pgtable lock released.  See comment right above pgtable
358 		 * lock release in migration_entry_wait_on_locked().
359 		 */
360 		hugetlb_vma_unlock_read(vma);
361 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
362 	}
363 }
364 #endif
365 
366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
368 {
369 	spinlock_t *ptl;
370 
371 	ptl = pmd_lock(mm, pmd);
372 	if (!is_pmd_migration_entry(*pmd))
373 		goto unlock;
374 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
375 	return;
376 unlock:
377 	spin_unlock(ptl);
378 }
379 #endif
380 
381 static int folio_expected_refs(struct address_space *mapping,
382 		struct folio *folio)
383 {
384 	int refs = 1;
385 	if (!mapping)
386 		return refs;
387 
388 	refs += folio_nr_pages(folio);
389 	if (folio_test_private(folio))
390 		refs++;
391 
392 	return refs;
393 }
394 
395 /*
396  * Replace the page in the mapping.
397  *
398  * The number of remaining references must be:
399  * 1 for anonymous pages without a mapping
400  * 2 for pages with a mapping
401  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402  */
403 int folio_migrate_mapping(struct address_space *mapping,
404 		struct folio *newfolio, struct folio *folio, int extra_count)
405 {
406 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
407 	struct zone *oldzone, *newzone;
408 	int dirty;
409 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
410 	long nr = folio_nr_pages(folio);
411 	long entries, i;
412 
413 	if (!mapping) {
414 		/* Anonymous page without mapping */
415 		if (folio_ref_count(folio) != expected_count)
416 			return -EAGAIN;
417 
418 		/* Take off deferred split queue while frozen and memcg set */
419 		if (folio_test_large(folio) &&
420 		    folio_test_large_rmappable(folio)) {
421 			if (!folio_ref_freeze(folio, expected_count))
422 				return -EAGAIN;
423 			folio_undo_large_rmappable(folio);
424 			folio_ref_unfreeze(folio, expected_count);
425 		}
426 
427 		/* No turning back from here */
428 		newfolio->index = folio->index;
429 		newfolio->mapping = folio->mapping;
430 		if (folio_test_swapbacked(folio))
431 			__folio_set_swapbacked(newfolio);
432 
433 		return MIGRATEPAGE_SUCCESS;
434 	}
435 
436 	oldzone = folio_zone(folio);
437 	newzone = folio_zone(newfolio);
438 
439 	xas_lock_irq(&xas);
440 	if (!folio_ref_freeze(folio, expected_count)) {
441 		xas_unlock_irq(&xas);
442 		return -EAGAIN;
443 	}
444 
445 	/* Take off deferred split queue while frozen and memcg set */
446 	if (folio_test_large(folio) && folio_test_large_rmappable(folio))
447 		folio_undo_large_rmappable(folio);
448 
449 	/*
450 	 * Now we know that no one else is looking at the folio:
451 	 * no turning back from here.
452 	 */
453 	newfolio->index = folio->index;
454 	newfolio->mapping = folio->mapping;
455 	folio_ref_add(newfolio, nr); /* add cache reference */
456 	if (folio_test_swapbacked(folio)) {
457 		__folio_set_swapbacked(newfolio);
458 		if (folio_test_swapcache(folio)) {
459 			folio_set_swapcache(newfolio);
460 			newfolio->private = folio_get_private(folio);
461 		}
462 		entries = nr;
463 	} else {
464 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
465 		entries = 1;
466 	}
467 
468 	/* Move dirty while page refs frozen and newpage not yet exposed */
469 	dirty = folio_test_dirty(folio);
470 	if (dirty) {
471 		folio_clear_dirty(folio);
472 		folio_set_dirty(newfolio);
473 	}
474 
475 	/* Swap cache still stores N entries instead of a high-order entry */
476 	for (i = 0; i < entries; i++) {
477 		xas_store(&xas, newfolio);
478 		xas_next(&xas);
479 	}
480 
481 	/*
482 	 * Drop cache reference from old page by unfreezing
483 	 * to one less reference.
484 	 * We know this isn't the last reference.
485 	 */
486 	folio_ref_unfreeze(folio, expected_count - nr);
487 
488 	xas_unlock(&xas);
489 	/* Leave irq disabled to prevent preemption while updating stats */
490 
491 	/*
492 	 * If moved to a different zone then also account
493 	 * the page for that zone. Other VM counters will be
494 	 * taken care of when we establish references to the
495 	 * new page and drop references to the old page.
496 	 *
497 	 * Note that anonymous pages are accounted for
498 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
499 	 * are mapped to swap space.
500 	 */
501 	if (newzone != oldzone) {
502 		struct lruvec *old_lruvec, *new_lruvec;
503 		struct mem_cgroup *memcg;
504 
505 		memcg = folio_memcg(folio);
506 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
507 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
508 
509 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
510 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
511 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
512 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
513 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
514 
515 			if (folio_test_pmd_mappable(folio)) {
516 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
517 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
518 			}
519 		}
520 #ifdef CONFIG_SWAP
521 		if (folio_test_swapcache(folio)) {
522 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
523 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
524 		}
525 #endif
526 		if (dirty && mapping_can_writeback(mapping)) {
527 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
528 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
529 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
530 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
531 		}
532 	}
533 	local_irq_enable();
534 
535 	return MIGRATEPAGE_SUCCESS;
536 }
537 EXPORT_SYMBOL(folio_migrate_mapping);
538 
539 /*
540  * The expected number of remaining references is the same as that
541  * of folio_migrate_mapping().
542  */
543 int migrate_huge_page_move_mapping(struct address_space *mapping,
544 				   struct folio *dst, struct folio *src)
545 {
546 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
547 	int expected_count;
548 
549 	xas_lock_irq(&xas);
550 	expected_count = folio_expected_refs(mapping, src);
551 	if (!folio_ref_freeze(src, expected_count)) {
552 		xas_unlock_irq(&xas);
553 		return -EAGAIN;
554 	}
555 
556 	dst->index = src->index;
557 	dst->mapping = src->mapping;
558 
559 	folio_ref_add(dst, folio_nr_pages(dst));
560 
561 	xas_store(&xas, dst);
562 
563 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
564 
565 	xas_unlock_irq(&xas);
566 
567 	return MIGRATEPAGE_SUCCESS;
568 }
569 
570 /*
571  * Copy the flags and some other ancillary information
572  */
573 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
574 {
575 	int cpupid;
576 
577 	if (folio_test_error(folio))
578 		folio_set_error(newfolio);
579 	if (folio_test_referenced(folio))
580 		folio_set_referenced(newfolio);
581 	if (folio_test_uptodate(folio))
582 		folio_mark_uptodate(newfolio);
583 	if (folio_test_clear_active(folio)) {
584 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
585 		folio_set_active(newfolio);
586 	} else if (folio_test_clear_unevictable(folio))
587 		folio_set_unevictable(newfolio);
588 	if (folio_test_workingset(folio))
589 		folio_set_workingset(newfolio);
590 	if (folio_test_checked(folio))
591 		folio_set_checked(newfolio);
592 	/*
593 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
594 	 * migration entries. We can still have PG_anon_exclusive set on an
595 	 * effectively unmapped and unreferenced first sub-pages of an
596 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
597 	 */
598 	if (folio_test_mappedtodisk(folio))
599 		folio_set_mappedtodisk(newfolio);
600 
601 	/* Move dirty on pages not done by folio_migrate_mapping() */
602 	if (folio_test_dirty(folio))
603 		folio_set_dirty(newfolio);
604 
605 	if (folio_test_young(folio))
606 		folio_set_young(newfolio);
607 	if (folio_test_idle(folio))
608 		folio_set_idle(newfolio);
609 
610 	/*
611 	 * Copy NUMA information to the new page, to prevent over-eager
612 	 * future migrations of this same page.
613 	 */
614 	cpupid = folio_xchg_last_cpupid(folio, -1);
615 	/*
616 	 * For memory tiering mode, when migrate between slow and fast
617 	 * memory node, reset cpupid, because that is used to record
618 	 * page access time in slow memory node.
619 	 */
620 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
621 		bool f_toptier = node_is_toptier(folio_nid(folio));
622 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
623 
624 		if (f_toptier != t_toptier)
625 			cpupid = -1;
626 	}
627 	folio_xchg_last_cpupid(newfolio, cpupid);
628 
629 	folio_migrate_ksm(newfolio, folio);
630 	/*
631 	 * Please do not reorder this without considering how mm/ksm.c's
632 	 * ksm_get_folio() depends upon ksm_migrate_page() and PageSwapCache().
633 	 */
634 	if (folio_test_swapcache(folio))
635 		folio_clear_swapcache(folio);
636 	folio_clear_private(folio);
637 
638 	/* page->private contains hugetlb specific flags */
639 	if (!folio_test_hugetlb(folio))
640 		folio->private = NULL;
641 
642 	/*
643 	 * If any waiters have accumulated on the new page then
644 	 * wake them up.
645 	 */
646 	if (folio_test_writeback(newfolio))
647 		folio_end_writeback(newfolio);
648 
649 	/*
650 	 * PG_readahead shares the same bit with PG_reclaim.  The above
651 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
652 	 * bit after that.
653 	 */
654 	if (folio_test_readahead(folio))
655 		folio_set_readahead(newfolio);
656 
657 	folio_copy_owner(newfolio, folio);
658 
659 	mem_cgroup_migrate(folio, newfolio);
660 }
661 EXPORT_SYMBOL(folio_migrate_flags);
662 
663 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
664 {
665 	folio_copy(newfolio, folio);
666 	folio_migrate_flags(newfolio, folio);
667 }
668 EXPORT_SYMBOL(folio_migrate_copy);
669 
670 /************************************************************
671  *                    Migration functions
672  ***********************************************************/
673 
674 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
675 		struct folio *src, enum migrate_mode mode, int extra_count)
676 {
677 	int rc;
678 
679 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
680 
681 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
682 
683 	if (rc != MIGRATEPAGE_SUCCESS)
684 		return rc;
685 
686 	if (mode != MIGRATE_SYNC_NO_COPY)
687 		folio_migrate_copy(dst, src);
688 	else
689 		folio_migrate_flags(dst, src);
690 	return MIGRATEPAGE_SUCCESS;
691 }
692 
693 /**
694  * migrate_folio() - Simple folio migration.
695  * @mapping: The address_space containing the folio.
696  * @dst: The folio to migrate the data to.
697  * @src: The folio containing the current data.
698  * @mode: How to migrate the page.
699  *
700  * Common logic to directly migrate a single LRU folio suitable for
701  * folios that do not use PagePrivate/PagePrivate2.
702  *
703  * Folios are locked upon entry and exit.
704  */
705 int migrate_folio(struct address_space *mapping, struct folio *dst,
706 		struct folio *src, enum migrate_mode mode)
707 {
708 	return migrate_folio_extra(mapping, dst, src, mode, 0);
709 }
710 EXPORT_SYMBOL(migrate_folio);
711 
712 #ifdef CONFIG_BUFFER_HEAD
713 /* Returns true if all buffers are successfully locked */
714 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
715 							enum migrate_mode mode)
716 {
717 	struct buffer_head *bh = head;
718 	struct buffer_head *failed_bh;
719 
720 	do {
721 		if (!trylock_buffer(bh)) {
722 			if (mode == MIGRATE_ASYNC)
723 				goto unlock;
724 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
725 				goto unlock;
726 			lock_buffer(bh);
727 		}
728 
729 		bh = bh->b_this_page;
730 	} while (bh != head);
731 
732 	return true;
733 
734 unlock:
735 	/* We failed to lock the buffer and cannot stall. */
736 	failed_bh = bh;
737 	bh = head;
738 	while (bh != failed_bh) {
739 		unlock_buffer(bh);
740 		bh = bh->b_this_page;
741 	}
742 
743 	return false;
744 }
745 
746 static int __buffer_migrate_folio(struct address_space *mapping,
747 		struct folio *dst, struct folio *src, enum migrate_mode mode,
748 		bool check_refs)
749 {
750 	struct buffer_head *bh, *head;
751 	int rc;
752 	int expected_count;
753 
754 	head = folio_buffers(src);
755 	if (!head)
756 		return migrate_folio(mapping, dst, src, mode);
757 
758 	/* Check whether page does not have extra refs before we do more work */
759 	expected_count = folio_expected_refs(mapping, src);
760 	if (folio_ref_count(src) != expected_count)
761 		return -EAGAIN;
762 
763 	if (!buffer_migrate_lock_buffers(head, mode))
764 		return -EAGAIN;
765 
766 	if (check_refs) {
767 		bool busy;
768 		bool invalidated = false;
769 
770 recheck_buffers:
771 		busy = false;
772 		spin_lock(&mapping->i_private_lock);
773 		bh = head;
774 		do {
775 			if (atomic_read(&bh->b_count)) {
776 				busy = true;
777 				break;
778 			}
779 			bh = bh->b_this_page;
780 		} while (bh != head);
781 		if (busy) {
782 			if (invalidated) {
783 				rc = -EAGAIN;
784 				goto unlock_buffers;
785 			}
786 			spin_unlock(&mapping->i_private_lock);
787 			invalidate_bh_lrus();
788 			invalidated = true;
789 			goto recheck_buffers;
790 		}
791 	}
792 
793 	rc = folio_migrate_mapping(mapping, dst, src, 0);
794 	if (rc != MIGRATEPAGE_SUCCESS)
795 		goto unlock_buffers;
796 
797 	folio_attach_private(dst, folio_detach_private(src));
798 
799 	bh = head;
800 	do {
801 		folio_set_bh(bh, dst, bh_offset(bh));
802 		bh = bh->b_this_page;
803 	} while (bh != head);
804 
805 	if (mode != MIGRATE_SYNC_NO_COPY)
806 		folio_migrate_copy(dst, src);
807 	else
808 		folio_migrate_flags(dst, src);
809 
810 	rc = MIGRATEPAGE_SUCCESS;
811 unlock_buffers:
812 	if (check_refs)
813 		spin_unlock(&mapping->i_private_lock);
814 	bh = head;
815 	do {
816 		unlock_buffer(bh);
817 		bh = bh->b_this_page;
818 	} while (bh != head);
819 
820 	return rc;
821 }
822 
823 /**
824  * buffer_migrate_folio() - Migration function for folios with buffers.
825  * @mapping: The address space containing @src.
826  * @dst: The folio to migrate to.
827  * @src: The folio to migrate from.
828  * @mode: How to migrate the folio.
829  *
830  * This function can only be used if the underlying filesystem guarantees
831  * that no other references to @src exist. For example attached buffer
832  * heads are accessed only under the folio lock.  If your filesystem cannot
833  * provide this guarantee, buffer_migrate_folio_norefs() may be more
834  * appropriate.
835  *
836  * Return: 0 on success or a negative errno on failure.
837  */
838 int buffer_migrate_folio(struct address_space *mapping,
839 		struct folio *dst, struct folio *src, enum migrate_mode mode)
840 {
841 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
842 }
843 EXPORT_SYMBOL(buffer_migrate_folio);
844 
845 /**
846  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
847  * @mapping: The address space containing @src.
848  * @dst: The folio to migrate to.
849  * @src: The folio to migrate from.
850  * @mode: How to migrate the folio.
851  *
852  * Like buffer_migrate_folio() except that this variant is more careful
853  * and checks that there are also no buffer head references. This function
854  * is the right one for mappings where buffer heads are directly looked
855  * up and referenced (such as block device mappings).
856  *
857  * Return: 0 on success or a negative errno on failure.
858  */
859 int buffer_migrate_folio_norefs(struct address_space *mapping,
860 		struct folio *dst, struct folio *src, enum migrate_mode mode)
861 {
862 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
863 }
864 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
865 #endif /* CONFIG_BUFFER_HEAD */
866 
867 int filemap_migrate_folio(struct address_space *mapping,
868 		struct folio *dst, struct folio *src, enum migrate_mode mode)
869 {
870 	int ret;
871 
872 	ret = folio_migrate_mapping(mapping, dst, src, 0);
873 	if (ret != MIGRATEPAGE_SUCCESS)
874 		return ret;
875 
876 	if (folio_get_private(src))
877 		folio_attach_private(dst, folio_detach_private(src));
878 
879 	if (mode != MIGRATE_SYNC_NO_COPY)
880 		folio_migrate_copy(dst, src);
881 	else
882 		folio_migrate_flags(dst, src);
883 	return MIGRATEPAGE_SUCCESS;
884 }
885 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
886 
887 /*
888  * Writeback a folio to clean the dirty state
889  */
890 static int writeout(struct address_space *mapping, struct folio *folio)
891 {
892 	struct writeback_control wbc = {
893 		.sync_mode = WB_SYNC_NONE,
894 		.nr_to_write = 1,
895 		.range_start = 0,
896 		.range_end = LLONG_MAX,
897 		.for_reclaim = 1
898 	};
899 	int rc;
900 
901 	if (!mapping->a_ops->writepage)
902 		/* No write method for the address space */
903 		return -EINVAL;
904 
905 	if (!folio_clear_dirty_for_io(folio))
906 		/* Someone else already triggered a write */
907 		return -EAGAIN;
908 
909 	/*
910 	 * A dirty folio may imply that the underlying filesystem has
911 	 * the folio on some queue. So the folio must be clean for
912 	 * migration. Writeout may mean we lose the lock and the
913 	 * folio state is no longer what we checked for earlier.
914 	 * At this point we know that the migration attempt cannot
915 	 * be successful.
916 	 */
917 	remove_migration_ptes(folio, folio, false);
918 
919 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
920 
921 	if (rc != AOP_WRITEPAGE_ACTIVATE)
922 		/* unlocked. Relock */
923 		folio_lock(folio);
924 
925 	return (rc < 0) ? -EIO : -EAGAIN;
926 }
927 
928 /*
929  * Default handling if a filesystem does not provide a migration function.
930  */
931 static int fallback_migrate_folio(struct address_space *mapping,
932 		struct folio *dst, struct folio *src, enum migrate_mode mode)
933 {
934 	if (folio_test_dirty(src)) {
935 		/* Only writeback folios in full synchronous migration */
936 		switch (mode) {
937 		case MIGRATE_SYNC:
938 		case MIGRATE_SYNC_NO_COPY:
939 			break;
940 		default:
941 			return -EBUSY;
942 		}
943 		return writeout(mapping, src);
944 	}
945 
946 	/*
947 	 * Buffers may be managed in a filesystem specific way.
948 	 * We must have no buffers or drop them.
949 	 */
950 	if (!filemap_release_folio(src, GFP_KERNEL))
951 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
952 
953 	return migrate_folio(mapping, dst, src, mode);
954 }
955 
956 /*
957  * Move a page to a newly allocated page
958  * The page is locked and all ptes have been successfully removed.
959  *
960  * The new page will have replaced the old page if this function
961  * is successful.
962  *
963  * Return value:
964  *   < 0 - error code
965  *  MIGRATEPAGE_SUCCESS - success
966  */
967 static int move_to_new_folio(struct folio *dst, struct folio *src,
968 				enum migrate_mode mode)
969 {
970 	int rc = -EAGAIN;
971 	bool is_lru = !__folio_test_movable(src);
972 
973 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
974 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
975 
976 	if (likely(is_lru)) {
977 		struct address_space *mapping = folio_mapping(src);
978 
979 		if (!mapping)
980 			rc = migrate_folio(mapping, dst, src, mode);
981 		else if (mapping_unmovable(mapping))
982 			rc = -EOPNOTSUPP;
983 		else if (mapping->a_ops->migrate_folio)
984 			/*
985 			 * Most folios have a mapping and most filesystems
986 			 * provide a migrate_folio callback. Anonymous folios
987 			 * are part of swap space which also has its own
988 			 * migrate_folio callback. This is the most common path
989 			 * for page migration.
990 			 */
991 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
992 								mode);
993 		else
994 			rc = fallback_migrate_folio(mapping, dst, src, mode);
995 	} else {
996 		const struct movable_operations *mops;
997 
998 		/*
999 		 * In case of non-lru page, it could be released after
1000 		 * isolation step. In that case, we shouldn't try migration.
1001 		 */
1002 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1003 		if (!folio_test_movable(src)) {
1004 			rc = MIGRATEPAGE_SUCCESS;
1005 			folio_clear_isolated(src);
1006 			goto out;
1007 		}
1008 
1009 		mops = folio_movable_ops(src);
1010 		rc = mops->migrate_page(&dst->page, &src->page, mode);
1011 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1012 				!folio_test_isolated(src));
1013 	}
1014 
1015 	/*
1016 	 * When successful, old pagecache src->mapping must be cleared before
1017 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1018 	 */
1019 	if (rc == MIGRATEPAGE_SUCCESS) {
1020 		if (__folio_test_movable(src)) {
1021 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1022 
1023 			/*
1024 			 * We clear PG_movable under page_lock so any compactor
1025 			 * cannot try to migrate this page.
1026 			 */
1027 			folio_clear_isolated(src);
1028 		}
1029 
1030 		/*
1031 		 * Anonymous and movable src->mapping will be cleared by
1032 		 * free_pages_prepare so don't reset it here for keeping
1033 		 * the type to work PageAnon, for example.
1034 		 */
1035 		if (!folio_mapping_flags(src))
1036 			src->mapping = NULL;
1037 
1038 		if (likely(!folio_is_zone_device(dst)))
1039 			flush_dcache_folio(dst);
1040 	}
1041 out:
1042 	return rc;
1043 }
1044 
1045 /*
1046  * To record some information during migration, we use unused private
1047  * field of struct folio of the newly allocated destination folio.
1048  * This is safe because nobody is using it except us.
1049  */
1050 enum {
1051 	PAGE_WAS_MAPPED = BIT(0),
1052 	PAGE_WAS_MLOCKED = BIT(1),
1053 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1054 };
1055 
1056 static void __migrate_folio_record(struct folio *dst,
1057 				   int old_page_state,
1058 				   struct anon_vma *anon_vma)
1059 {
1060 	dst->private = (void *)anon_vma + old_page_state;
1061 }
1062 
1063 static void __migrate_folio_extract(struct folio *dst,
1064 				   int *old_page_state,
1065 				   struct anon_vma **anon_vmap)
1066 {
1067 	unsigned long private = (unsigned long)dst->private;
1068 
1069 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1070 	*old_page_state = private & PAGE_OLD_STATES;
1071 	dst->private = NULL;
1072 }
1073 
1074 /* Restore the source folio to the original state upon failure */
1075 static void migrate_folio_undo_src(struct folio *src,
1076 				   int page_was_mapped,
1077 				   struct anon_vma *anon_vma,
1078 				   bool locked,
1079 				   struct list_head *ret)
1080 {
1081 	if (page_was_mapped)
1082 		remove_migration_ptes(src, src, false);
1083 	/* Drop an anon_vma reference if we took one */
1084 	if (anon_vma)
1085 		put_anon_vma(anon_vma);
1086 	if (locked)
1087 		folio_unlock(src);
1088 	if (ret)
1089 		list_move_tail(&src->lru, ret);
1090 }
1091 
1092 /* Restore the destination folio to the original state upon failure */
1093 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1094 		free_folio_t put_new_folio, unsigned long private)
1095 {
1096 	if (locked)
1097 		folio_unlock(dst);
1098 	if (put_new_folio)
1099 		put_new_folio(dst, private);
1100 	else
1101 		folio_put(dst);
1102 }
1103 
1104 /* Cleanup src folio upon migration success */
1105 static void migrate_folio_done(struct folio *src,
1106 			       enum migrate_reason reason)
1107 {
1108 	/*
1109 	 * Compaction can migrate also non-LRU pages which are
1110 	 * not accounted to NR_ISOLATED_*. They can be recognized
1111 	 * as __folio_test_movable
1112 	 */
1113 	if (likely(!__folio_test_movable(src)))
1114 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1115 				    folio_is_file_lru(src), -folio_nr_pages(src));
1116 
1117 	if (reason != MR_MEMORY_FAILURE)
1118 		/* We release the page in page_handle_poison. */
1119 		folio_put(src);
1120 }
1121 
1122 /* Obtain the lock on page, remove all ptes. */
1123 static int migrate_folio_unmap(new_folio_t get_new_folio,
1124 		free_folio_t put_new_folio, unsigned long private,
1125 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1126 		enum migrate_reason reason, struct list_head *ret)
1127 {
1128 	struct folio *dst;
1129 	int rc = -EAGAIN;
1130 	int old_page_state = 0;
1131 	struct anon_vma *anon_vma = NULL;
1132 	bool is_lru = !__folio_test_movable(src);
1133 	bool locked = false;
1134 	bool dst_locked = false;
1135 
1136 	if (folio_ref_count(src) == 1) {
1137 		/* Folio was freed from under us. So we are done. */
1138 		folio_clear_active(src);
1139 		folio_clear_unevictable(src);
1140 		/* free_pages_prepare() will clear PG_isolated. */
1141 		list_del(&src->lru);
1142 		migrate_folio_done(src, reason);
1143 		return MIGRATEPAGE_SUCCESS;
1144 	}
1145 
1146 	dst = get_new_folio(src, private);
1147 	if (!dst)
1148 		return -ENOMEM;
1149 	*dstp = dst;
1150 
1151 	dst->private = NULL;
1152 
1153 	if (!folio_trylock(src)) {
1154 		if (mode == MIGRATE_ASYNC)
1155 			goto out;
1156 
1157 		/*
1158 		 * It's not safe for direct compaction to call lock_page.
1159 		 * For example, during page readahead pages are added locked
1160 		 * to the LRU. Later, when the IO completes the pages are
1161 		 * marked uptodate and unlocked. However, the queueing
1162 		 * could be merging multiple pages for one bio (e.g.
1163 		 * mpage_readahead). If an allocation happens for the
1164 		 * second or third page, the process can end up locking
1165 		 * the same page twice and deadlocking. Rather than
1166 		 * trying to be clever about what pages can be locked,
1167 		 * avoid the use of lock_page for direct compaction
1168 		 * altogether.
1169 		 */
1170 		if (current->flags & PF_MEMALLOC)
1171 			goto out;
1172 
1173 		/*
1174 		 * In "light" mode, we can wait for transient locks (eg
1175 		 * inserting a page into the page table), but it's not
1176 		 * worth waiting for I/O.
1177 		 */
1178 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1179 			goto out;
1180 
1181 		folio_lock(src);
1182 	}
1183 	locked = true;
1184 	if (folio_test_mlocked(src))
1185 		old_page_state |= PAGE_WAS_MLOCKED;
1186 
1187 	if (folio_test_writeback(src)) {
1188 		/*
1189 		 * Only in the case of a full synchronous migration is it
1190 		 * necessary to wait for PageWriteback. In the async case,
1191 		 * the retry loop is too short and in the sync-light case,
1192 		 * the overhead of stalling is too much
1193 		 */
1194 		switch (mode) {
1195 		case MIGRATE_SYNC:
1196 		case MIGRATE_SYNC_NO_COPY:
1197 			break;
1198 		default:
1199 			rc = -EBUSY;
1200 			goto out;
1201 		}
1202 		folio_wait_writeback(src);
1203 	}
1204 
1205 	/*
1206 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1207 	 * we cannot notice that anon_vma is freed while we migrate a page.
1208 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1209 	 * of migration. File cache pages are no problem because of page_lock()
1210 	 * File Caches may use write_page() or lock_page() in migration, then,
1211 	 * just care Anon page here.
1212 	 *
1213 	 * Only folio_get_anon_vma() understands the subtleties of
1214 	 * getting a hold on an anon_vma from outside one of its mms.
1215 	 * But if we cannot get anon_vma, then we won't need it anyway,
1216 	 * because that implies that the anon page is no longer mapped
1217 	 * (and cannot be remapped so long as we hold the page lock).
1218 	 */
1219 	if (folio_test_anon(src) && !folio_test_ksm(src))
1220 		anon_vma = folio_get_anon_vma(src);
1221 
1222 	/*
1223 	 * Block others from accessing the new page when we get around to
1224 	 * establishing additional references. We are usually the only one
1225 	 * holding a reference to dst at this point. We used to have a BUG
1226 	 * here if folio_trylock(dst) fails, but would like to allow for
1227 	 * cases where there might be a race with the previous use of dst.
1228 	 * This is much like races on refcount of oldpage: just don't BUG().
1229 	 */
1230 	if (unlikely(!folio_trylock(dst)))
1231 		goto out;
1232 	dst_locked = true;
1233 
1234 	if (unlikely(!is_lru)) {
1235 		__migrate_folio_record(dst, old_page_state, anon_vma);
1236 		return MIGRATEPAGE_UNMAP;
1237 	}
1238 
1239 	/*
1240 	 * Corner case handling:
1241 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1242 	 * and treated as swapcache but it has no rmap yet.
1243 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1244 	 * trigger a BUG.  So handle it here.
1245 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1246 	 * fs-private metadata. The page can be picked up due to memory
1247 	 * offlining.  Everywhere else except page reclaim, the page is
1248 	 * invisible to the vm, so the page can not be migrated.  So try to
1249 	 * free the metadata, so the page can be freed.
1250 	 */
1251 	if (!src->mapping) {
1252 		if (folio_test_private(src)) {
1253 			try_to_free_buffers(src);
1254 			goto out;
1255 		}
1256 	} else if (folio_mapped(src)) {
1257 		/* Establish migration ptes */
1258 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1259 			       !folio_test_ksm(src) && !anon_vma, src);
1260 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1261 		old_page_state |= PAGE_WAS_MAPPED;
1262 	}
1263 
1264 	if (!folio_mapped(src)) {
1265 		__migrate_folio_record(dst, old_page_state, anon_vma);
1266 		return MIGRATEPAGE_UNMAP;
1267 	}
1268 
1269 out:
1270 	/*
1271 	 * A folio that has not been unmapped will be restored to
1272 	 * right list unless we want to retry.
1273 	 */
1274 	if (rc == -EAGAIN)
1275 		ret = NULL;
1276 
1277 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1278 			       anon_vma, locked, ret);
1279 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1280 
1281 	return rc;
1282 }
1283 
1284 /* Migrate the folio to the newly allocated folio in dst. */
1285 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1286 			      struct folio *src, struct folio *dst,
1287 			      enum migrate_mode mode, enum migrate_reason reason,
1288 			      struct list_head *ret)
1289 {
1290 	int rc;
1291 	int old_page_state = 0;
1292 	struct anon_vma *anon_vma = NULL;
1293 	bool is_lru = !__folio_test_movable(src);
1294 	struct list_head *prev;
1295 
1296 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1297 	prev = dst->lru.prev;
1298 	list_del(&dst->lru);
1299 
1300 	rc = move_to_new_folio(dst, src, mode);
1301 	if (rc)
1302 		goto out;
1303 
1304 	if (unlikely(!is_lru))
1305 		goto out_unlock_both;
1306 
1307 	/*
1308 	 * When successful, push dst to LRU immediately: so that if it
1309 	 * turns out to be an mlocked page, remove_migration_ptes() will
1310 	 * automatically build up the correct dst->mlock_count for it.
1311 	 *
1312 	 * We would like to do something similar for the old page, when
1313 	 * unsuccessful, and other cases when a page has been temporarily
1314 	 * isolated from the unevictable LRU: but this case is the easiest.
1315 	 */
1316 	folio_add_lru(dst);
1317 	if (old_page_state & PAGE_WAS_MLOCKED)
1318 		lru_add_drain();
1319 
1320 	if (old_page_state & PAGE_WAS_MAPPED)
1321 		remove_migration_ptes(src, dst, false);
1322 
1323 out_unlock_both:
1324 	folio_unlock(dst);
1325 	set_page_owner_migrate_reason(&dst->page, reason);
1326 	/*
1327 	 * If migration is successful, decrease refcount of dst,
1328 	 * which will not free the page because new page owner increased
1329 	 * refcounter.
1330 	 */
1331 	folio_put(dst);
1332 
1333 	/*
1334 	 * A folio that has been migrated has all references removed
1335 	 * and will be freed.
1336 	 */
1337 	list_del(&src->lru);
1338 	/* Drop an anon_vma reference if we took one */
1339 	if (anon_vma)
1340 		put_anon_vma(anon_vma);
1341 	folio_unlock(src);
1342 	migrate_folio_done(src, reason);
1343 
1344 	return rc;
1345 out:
1346 	/*
1347 	 * A folio that has not been migrated will be restored to
1348 	 * right list unless we want to retry.
1349 	 */
1350 	if (rc == -EAGAIN) {
1351 		list_add(&dst->lru, prev);
1352 		__migrate_folio_record(dst, old_page_state, anon_vma);
1353 		return rc;
1354 	}
1355 
1356 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1357 			       anon_vma, true, ret);
1358 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1359 
1360 	return rc;
1361 }
1362 
1363 /*
1364  * Counterpart of unmap_and_move_page() for hugepage migration.
1365  *
1366  * This function doesn't wait the completion of hugepage I/O
1367  * because there is no race between I/O and migration for hugepage.
1368  * Note that currently hugepage I/O occurs only in direct I/O
1369  * where no lock is held and PG_writeback is irrelevant,
1370  * and writeback status of all subpages are counted in the reference
1371  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1372  * under direct I/O, the reference of the head page is 512 and a bit more.)
1373  * This means that when we try to migrate hugepage whose subpages are
1374  * doing direct I/O, some references remain after try_to_unmap() and
1375  * hugepage migration fails without data corruption.
1376  *
1377  * There is also no race when direct I/O is issued on the page under migration,
1378  * because then pte is replaced with migration swap entry and direct I/O code
1379  * will wait in the page fault for migration to complete.
1380  */
1381 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1382 		free_folio_t put_new_folio, unsigned long private,
1383 		struct folio *src, int force, enum migrate_mode mode,
1384 		int reason, struct list_head *ret)
1385 {
1386 	struct folio *dst;
1387 	int rc = -EAGAIN;
1388 	int page_was_mapped = 0;
1389 	struct anon_vma *anon_vma = NULL;
1390 	struct address_space *mapping = NULL;
1391 
1392 	if (folio_ref_count(src) == 1) {
1393 		/* page was freed from under us. So we are done. */
1394 		folio_putback_active_hugetlb(src);
1395 		return MIGRATEPAGE_SUCCESS;
1396 	}
1397 
1398 	dst = get_new_folio(src, private);
1399 	if (!dst)
1400 		return -ENOMEM;
1401 
1402 	if (!folio_trylock(src)) {
1403 		if (!force)
1404 			goto out;
1405 		switch (mode) {
1406 		case MIGRATE_SYNC:
1407 		case MIGRATE_SYNC_NO_COPY:
1408 			break;
1409 		default:
1410 			goto out;
1411 		}
1412 		folio_lock(src);
1413 	}
1414 
1415 	/*
1416 	 * Check for pages which are in the process of being freed.  Without
1417 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1418 	 * be called and we could leak usage counts for subpools.
1419 	 */
1420 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1421 		rc = -EBUSY;
1422 		goto out_unlock;
1423 	}
1424 
1425 	if (folio_test_anon(src))
1426 		anon_vma = folio_get_anon_vma(src);
1427 
1428 	if (unlikely(!folio_trylock(dst)))
1429 		goto put_anon;
1430 
1431 	if (folio_mapped(src)) {
1432 		enum ttu_flags ttu = 0;
1433 
1434 		if (!folio_test_anon(src)) {
1435 			/*
1436 			 * In shared mappings, try_to_unmap could potentially
1437 			 * call huge_pmd_unshare.  Because of this, take
1438 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1439 			 * to let lower levels know we have taken the lock.
1440 			 */
1441 			mapping = hugetlb_folio_mapping_lock_write(src);
1442 			if (unlikely(!mapping))
1443 				goto unlock_put_anon;
1444 
1445 			ttu = TTU_RMAP_LOCKED;
1446 		}
1447 
1448 		try_to_migrate(src, ttu);
1449 		page_was_mapped = 1;
1450 
1451 		if (ttu & TTU_RMAP_LOCKED)
1452 			i_mmap_unlock_write(mapping);
1453 	}
1454 
1455 	if (!folio_mapped(src))
1456 		rc = move_to_new_folio(dst, src, mode);
1457 
1458 	if (page_was_mapped)
1459 		remove_migration_ptes(src,
1460 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1461 
1462 unlock_put_anon:
1463 	folio_unlock(dst);
1464 
1465 put_anon:
1466 	if (anon_vma)
1467 		put_anon_vma(anon_vma);
1468 
1469 	if (rc == MIGRATEPAGE_SUCCESS) {
1470 		move_hugetlb_state(src, dst, reason);
1471 		put_new_folio = NULL;
1472 	}
1473 
1474 out_unlock:
1475 	folio_unlock(src);
1476 out:
1477 	if (rc == MIGRATEPAGE_SUCCESS)
1478 		folio_putback_active_hugetlb(src);
1479 	else if (rc != -EAGAIN)
1480 		list_move_tail(&src->lru, ret);
1481 
1482 	/*
1483 	 * If migration was not successful and there's a freeing callback, use
1484 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1485 	 * isolation.
1486 	 */
1487 	if (put_new_folio)
1488 		put_new_folio(dst, private);
1489 	else
1490 		folio_putback_active_hugetlb(dst);
1491 
1492 	return rc;
1493 }
1494 
1495 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1496 {
1497 	int rc;
1498 
1499 	folio_lock(folio);
1500 	rc = split_folio_to_list(folio, split_folios);
1501 	folio_unlock(folio);
1502 	if (!rc)
1503 		list_move_tail(&folio->lru, split_folios);
1504 
1505 	return rc;
1506 }
1507 
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1510 #else
1511 #define NR_MAX_BATCHED_MIGRATION	512
1512 #endif
1513 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1514 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1515 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1516 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1517 
1518 struct migrate_pages_stats {
1519 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1520 				   units of base pages */
1521 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1522 				   units of base pages.  Untried folios aren't counted */
1523 	int nr_thp_succeeded;	/* THP migrated successfully */
1524 	int nr_thp_failed;	/* THP failed to be migrated */
1525 	int nr_thp_split;	/* THP split before migrating */
1526 	int nr_split;	/* Large folio (include THP) split before migrating */
1527 };
1528 
1529 /*
1530  * Returns the number of hugetlb folios that were not migrated, or an error code
1531  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1532  * any more because the list has become empty or no retryable hugetlb folios
1533  * exist any more. It is caller's responsibility to call putback_movable_pages()
1534  * only if ret != 0.
1535  */
1536 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1537 			    free_folio_t put_new_folio, unsigned long private,
1538 			    enum migrate_mode mode, int reason,
1539 			    struct migrate_pages_stats *stats,
1540 			    struct list_head *ret_folios)
1541 {
1542 	int retry = 1;
1543 	int nr_failed = 0;
1544 	int nr_retry_pages = 0;
1545 	int pass = 0;
1546 	struct folio *folio, *folio2;
1547 	int rc, nr_pages;
1548 
1549 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1550 		retry = 0;
1551 		nr_retry_pages = 0;
1552 
1553 		list_for_each_entry_safe(folio, folio2, from, lru) {
1554 			if (!folio_test_hugetlb(folio))
1555 				continue;
1556 
1557 			nr_pages = folio_nr_pages(folio);
1558 
1559 			cond_resched();
1560 
1561 			/*
1562 			 * Migratability of hugepages depends on architectures and
1563 			 * their size.  This check is necessary because some callers
1564 			 * of hugepage migration like soft offline and memory
1565 			 * hotremove don't walk through page tables or check whether
1566 			 * the hugepage is pmd-based or not before kicking migration.
1567 			 */
1568 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1569 				nr_failed++;
1570 				stats->nr_failed_pages += nr_pages;
1571 				list_move_tail(&folio->lru, ret_folios);
1572 				continue;
1573 			}
1574 
1575 			rc = unmap_and_move_huge_page(get_new_folio,
1576 						      put_new_folio, private,
1577 						      folio, pass > 2, mode,
1578 						      reason, ret_folios);
1579 			/*
1580 			 * The rules are:
1581 			 *	Success: hugetlb folio will be put back
1582 			 *	-EAGAIN: stay on the from list
1583 			 *	-ENOMEM: stay on the from list
1584 			 *	Other errno: put on ret_folios list
1585 			 */
1586 			switch(rc) {
1587 			case -ENOMEM:
1588 				/*
1589 				 * When memory is low, don't bother to try to migrate
1590 				 * other folios, just exit.
1591 				 */
1592 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1593 				return -ENOMEM;
1594 			case -EAGAIN:
1595 				retry++;
1596 				nr_retry_pages += nr_pages;
1597 				break;
1598 			case MIGRATEPAGE_SUCCESS:
1599 				stats->nr_succeeded += nr_pages;
1600 				break;
1601 			default:
1602 				/*
1603 				 * Permanent failure (-EBUSY, etc.):
1604 				 * unlike -EAGAIN case, the failed folio is
1605 				 * removed from migration folio list and not
1606 				 * retried in the next outer loop.
1607 				 */
1608 				nr_failed++;
1609 				stats->nr_failed_pages += nr_pages;
1610 				break;
1611 			}
1612 		}
1613 	}
1614 	/*
1615 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1616 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1617 	 * folios as failed.
1618 	 */
1619 	nr_failed += retry;
1620 	stats->nr_failed_pages += nr_retry_pages;
1621 
1622 	return nr_failed;
1623 }
1624 
1625 /*
1626  * migrate_pages_batch() first unmaps folios in the from list as many as
1627  * possible, then move the unmapped folios.
1628  *
1629  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1630  * lock or bit when we have locked more than one folio.  Which may cause
1631  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1632  * length of the from list must be <= 1.
1633  */
1634 static int migrate_pages_batch(struct list_head *from,
1635 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1636 		unsigned long private, enum migrate_mode mode, int reason,
1637 		struct list_head *ret_folios, struct list_head *split_folios,
1638 		struct migrate_pages_stats *stats, int nr_pass)
1639 {
1640 	int retry = 1;
1641 	int thp_retry = 1;
1642 	int nr_failed = 0;
1643 	int nr_retry_pages = 0;
1644 	int pass = 0;
1645 	bool is_thp = false;
1646 	bool is_large = false;
1647 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1648 	int rc, rc_saved = 0, nr_pages;
1649 	LIST_HEAD(unmap_folios);
1650 	LIST_HEAD(dst_folios);
1651 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1652 
1653 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1654 			!list_empty(from) && !list_is_singular(from));
1655 
1656 	for (pass = 0; pass < nr_pass && retry; pass++) {
1657 		retry = 0;
1658 		thp_retry = 0;
1659 		nr_retry_pages = 0;
1660 
1661 		list_for_each_entry_safe(folio, folio2, from, lru) {
1662 			is_large = folio_test_large(folio);
1663 			is_thp = is_large && folio_test_pmd_mappable(folio);
1664 			nr_pages = folio_nr_pages(folio);
1665 
1666 			cond_resched();
1667 
1668 			/*
1669 			 * The rare folio on the deferred split list should
1670 			 * be split now. It should not count as a failure:
1671 			 * but increment nr_failed because, without doing so,
1672 			 * migrate_pages() may report success with (split but
1673 			 * unmigrated) pages still on its fromlist; whereas it
1674 			 * always reports success when its fromlist is empty.
1675 			 * stats->nr_thp_failed should be increased too,
1676 			 * otherwise stats inconsistency will happen when
1677 			 * migrate_pages_batch is called via migrate_pages()
1678 			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1679 			 *
1680 			 * Only check it without removing it from the list.
1681 			 * Since the folio can be on deferred_split_scan()
1682 			 * local list and removing it can cause the local list
1683 			 * corruption. Folio split process below can handle it
1684 			 * with the help of folio_ref_freeze().
1685 			 *
1686 			 * nr_pages > 2 is needed to avoid checking order-1
1687 			 * page cache folios. They exist, in contrast to
1688 			 * non-existent order-1 anonymous folios, and do not
1689 			 * use _deferred_list.
1690 			 */
1691 			if (nr_pages > 2 &&
1692 			   !list_empty(&folio->_deferred_list)) {
1693 				if (try_split_folio(folio, split_folios) == 0) {
1694 					nr_failed++;
1695 					stats->nr_thp_failed += is_thp;
1696 					stats->nr_thp_split += is_thp;
1697 					stats->nr_split++;
1698 					continue;
1699 				}
1700 			}
1701 
1702 			/*
1703 			 * Large folio migration might be unsupported or
1704 			 * the allocation might be failed so we should retry
1705 			 * on the same folio with the large folio split
1706 			 * to normal folios.
1707 			 *
1708 			 * Split folios are put in split_folios, and
1709 			 * we will migrate them after the rest of the
1710 			 * list is processed.
1711 			 */
1712 			if (!thp_migration_supported() && is_thp) {
1713 				nr_failed++;
1714 				stats->nr_thp_failed++;
1715 				if (!try_split_folio(folio, split_folios)) {
1716 					stats->nr_thp_split++;
1717 					stats->nr_split++;
1718 					continue;
1719 				}
1720 				stats->nr_failed_pages += nr_pages;
1721 				list_move_tail(&folio->lru, ret_folios);
1722 				continue;
1723 			}
1724 
1725 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1726 					private, folio, &dst, mode, reason,
1727 					ret_folios);
1728 			/*
1729 			 * The rules are:
1730 			 *	Success: folio will be freed
1731 			 *	Unmap: folio will be put on unmap_folios list,
1732 			 *	       dst folio put on dst_folios list
1733 			 *	-EAGAIN: stay on the from list
1734 			 *	-ENOMEM: stay on the from list
1735 			 *	Other errno: put on ret_folios list
1736 			 */
1737 			switch(rc) {
1738 			case -ENOMEM:
1739 				/*
1740 				 * When memory is low, don't bother to try to migrate
1741 				 * other folios, move unmapped folios, then exit.
1742 				 */
1743 				nr_failed++;
1744 				stats->nr_thp_failed += is_thp;
1745 				/* Large folio NUMA faulting doesn't split to retry. */
1746 				if (is_large && !nosplit) {
1747 					int ret = try_split_folio(folio, split_folios);
1748 
1749 					if (!ret) {
1750 						stats->nr_thp_split += is_thp;
1751 						stats->nr_split++;
1752 						break;
1753 					} else if (reason == MR_LONGTERM_PIN &&
1754 						   ret == -EAGAIN) {
1755 						/*
1756 						 * Try again to split large folio to
1757 						 * mitigate the failure of longterm pinning.
1758 						 */
1759 						retry++;
1760 						thp_retry += is_thp;
1761 						nr_retry_pages += nr_pages;
1762 						/* Undo duplicated failure counting. */
1763 						nr_failed--;
1764 						stats->nr_thp_failed -= is_thp;
1765 						break;
1766 					}
1767 				}
1768 
1769 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1770 				/* nr_failed isn't updated for not used */
1771 				stats->nr_thp_failed += thp_retry;
1772 				rc_saved = rc;
1773 				if (list_empty(&unmap_folios))
1774 					goto out;
1775 				else
1776 					goto move;
1777 			case -EAGAIN:
1778 				retry++;
1779 				thp_retry += is_thp;
1780 				nr_retry_pages += nr_pages;
1781 				break;
1782 			case MIGRATEPAGE_SUCCESS:
1783 				stats->nr_succeeded += nr_pages;
1784 				stats->nr_thp_succeeded += is_thp;
1785 				break;
1786 			case MIGRATEPAGE_UNMAP:
1787 				list_move_tail(&folio->lru, &unmap_folios);
1788 				list_add_tail(&dst->lru, &dst_folios);
1789 				break;
1790 			default:
1791 				/*
1792 				 * Permanent failure (-EBUSY, etc.):
1793 				 * unlike -EAGAIN case, the failed folio is
1794 				 * removed from migration folio list and not
1795 				 * retried in the next outer loop.
1796 				 */
1797 				nr_failed++;
1798 				stats->nr_thp_failed += is_thp;
1799 				stats->nr_failed_pages += nr_pages;
1800 				break;
1801 			}
1802 		}
1803 	}
1804 	nr_failed += retry;
1805 	stats->nr_thp_failed += thp_retry;
1806 	stats->nr_failed_pages += nr_retry_pages;
1807 move:
1808 	/* Flush TLBs for all unmapped folios */
1809 	try_to_unmap_flush();
1810 
1811 	retry = 1;
1812 	for (pass = 0; pass < nr_pass && retry; pass++) {
1813 		retry = 0;
1814 		thp_retry = 0;
1815 		nr_retry_pages = 0;
1816 
1817 		dst = list_first_entry(&dst_folios, struct folio, lru);
1818 		dst2 = list_next_entry(dst, lru);
1819 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1820 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1821 			nr_pages = folio_nr_pages(folio);
1822 
1823 			cond_resched();
1824 
1825 			rc = migrate_folio_move(put_new_folio, private,
1826 						folio, dst, mode,
1827 						reason, ret_folios);
1828 			/*
1829 			 * The rules are:
1830 			 *	Success: folio will be freed
1831 			 *	-EAGAIN: stay on the unmap_folios list
1832 			 *	Other errno: put on ret_folios list
1833 			 */
1834 			switch(rc) {
1835 			case -EAGAIN:
1836 				retry++;
1837 				thp_retry += is_thp;
1838 				nr_retry_pages += nr_pages;
1839 				break;
1840 			case MIGRATEPAGE_SUCCESS:
1841 				stats->nr_succeeded += nr_pages;
1842 				stats->nr_thp_succeeded += is_thp;
1843 				break;
1844 			default:
1845 				nr_failed++;
1846 				stats->nr_thp_failed += is_thp;
1847 				stats->nr_failed_pages += nr_pages;
1848 				break;
1849 			}
1850 			dst = dst2;
1851 			dst2 = list_next_entry(dst, lru);
1852 		}
1853 	}
1854 	nr_failed += retry;
1855 	stats->nr_thp_failed += thp_retry;
1856 	stats->nr_failed_pages += nr_retry_pages;
1857 
1858 	rc = rc_saved ? : nr_failed;
1859 out:
1860 	/* Cleanup remaining folios */
1861 	dst = list_first_entry(&dst_folios, struct folio, lru);
1862 	dst2 = list_next_entry(dst, lru);
1863 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1864 		int old_page_state = 0;
1865 		struct anon_vma *anon_vma = NULL;
1866 
1867 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1868 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1869 				       anon_vma, true, ret_folios);
1870 		list_del(&dst->lru);
1871 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1872 		dst = dst2;
1873 		dst2 = list_next_entry(dst, lru);
1874 	}
1875 
1876 	return rc;
1877 }
1878 
1879 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1880 		free_folio_t put_new_folio, unsigned long private,
1881 		enum migrate_mode mode, int reason,
1882 		struct list_head *ret_folios, struct list_head *split_folios,
1883 		struct migrate_pages_stats *stats)
1884 {
1885 	int rc, nr_failed = 0;
1886 	LIST_HEAD(folios);
1887 	struct migrate_pages_stats astats;
1888 
1889 	memset(&astats, 0, sizeof(astats));
1890 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1891 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1892 				 reason, &folios, split_folios, &astats,
1893 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1894 	stats->nr_succeeded += astats.nr_succeeded;
1895 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1896 	stats->nr_thp_split += astats.nr_thp_split;
1897 	stats->nr_split += astats.nr_split;
1898 	if (rc < 0) {
1899 		stats->nr_failed_pages += astats.nr_failed_pages;
1900 		stats->nr_thp_failed += astats.nr_thp_failed;
1901 		list_splice_tail(&folios, ret_folios);
1902 		return rc;
1903 	}
1904 	stats->nr_thp_failed += astats.nr_thp_split;
1905 	/*
1906 	 * Do not count rc, as pages will be retried below.
1907 	 * Count nr_split only, since it includes nr_thp_split.
1908 	 */
1909 	nr_failed += astats.nr_split;
1910 	/*
1911 	 * Fall back to migrate all failed folios one by one synchronously. All
1912 	 * failed folios except split THPs will be retried, so their failure
1913 	 * isn't counted
1914 	 */
1915 	list_splice_tail_init(&folios, from);
1916 	while (!list_empty(from)) {
1917 		list_move(from->next, &folios);
1918 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1919 					 private, mode, reason, ret_folios,
1920 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1921 		list_splice_tail_init(&folios, ret_folios);
1922 		if (rc < 0)
1923 			return rc;
1924 		nr_failed += rc;
1925 	}
1926 
1927 	return nr_failed;
1928 }
1929 
1930 /*
1931  * migrate_pages - migrate the folios specified in a list, to the free folios
1932  *		   supplied as the target for the page migration
1933  *
1934  * @from:		The list of folios to be migrated.
1935  * @get_new_folio:	The function used to allocate free folios to be used
1936  *			as the target of the folio migration.
1937  * @put_new_folio:	The function used to free target folios if migration
1938  *			fails, or NULL if no special handling is necessary.
1939  * @private:		Private data to be passed on to get_new_folio()
1940  * @mode:		The migration mode that specifies the constraints for
1941  *			folio migration, if any.
1942  * @reason:		The reason for folio migration.
1943  * @ret_succeeded:	Set to the number of folios migrated successfully if
1944  *			the caller passes a non-NULL pointer.
1945  *
1946  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1947  * are movable any more because the list has become empty or no retryable folios
1948  * exist any more. It is caller's responsibility to call putback_movable_pages()
1949  * only if ret != 0.
1950  *
1951  * Returns the number of {normal folio, large folio, hugetlb} that were not
1952  * migrated, or an error code. The number of large folio splits will be
1953  * considered as the number of non-migrated large folio, no matter how many
1954  * split folios of the large folio are migrated successfully.
1955  */
1956 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1957 		free_folio_t put_new_folio, unsigned long private,
1958 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1959 {
1960 	int rc, rc_gather;
1961 	int nr_pages;
1962 	struct folio *folio, *folio2;
1963 	LIST_HEAD(folios);
1964 	LIST_HEAD(ret_folios);
1965 	LIST_HEAD(split_folios);
1966 	struct migrate_pages_stats stats;
1967 
1968 	trace_mm_migrate_pages_start(mode, reason);
1969 
1970 	memset(&stats, 0, sizeof(stats));
1971 
1972 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1973 				     mode, reason, &stats, &ret_folios);
1974 	if (rc_gather < 0)
1975 		goto out;
1976 
1977 again:
1978 	nr_pages = 0;
1979 	list_for_each_entry_safe(folio, folio2, from, lru) {
1980 		/* Retried hugetlb folios will be kept in list  */
1981 		if (folio_test_hugetlb(folio)) {
1982 			list_move_tail(&folio->lru, &ret_folios);
1983 			continue;
1984 		}
1985 
1986 		nr_pages += folio_nr_pages(folio);
1987 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1988 			break;
1989 	}
1990 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1991 		list_cut_before(&folios, from, &folio2->lru);
1992 	else
1993 		list_splice_init(from, &folios);
1994 	if (mode == MIGRATE_ASYNC)
1995 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1996 				private, mode, reason, &ret_folios,
1997 				&split_folios, &stats,
1998 				NR_MAX_MIGRATE_PAGES_RETRY);
1999 	else
2000 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2001 				private, mode, reason, &ret_folios,
2002 				&split_folios, &stats);
2003 	list_splice_tail_init(&folios, &ret_folios);
2004 	if (rc < 0) {
2005 		rc_gather = rc;
2006 		list_splice_tail(&split_folios, &ret_folios);
2007 		goto out;
2008 	}
2009 	if (!list_empty(&split_folios)) {
2010 		/*
2011 		 * Failure isn't counted since all split folios of a large folio
2012 		 * is counted as 1 failure already.  And, we only try to migrate
2013 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2014 		 */
2015 		migrate_pages_batch(&split_folios, get_new_folio,
2016 				put_new_folio, private, MIGRATE_ASYNC, reason,
2017 				&ret_folios, NULL, &stats, 1);
2018 		list_splice_tail_init(&split_folios, &ret_folios);
2019 	}
2020 	rc_gather += rc;
2021 	if (!list_empty(from))
2022 		goto again;
2023 out:
2024 	/*
2025 	 * Put the permanent failure folio back to migration list, they
2026 	 * will be put back to the right list by the caller.
2027 	 */
2028 	list_splice(&ret_folios, from);
2029 
2030 	/*
2031 	 * Return 0 in case all split folios of fail-to-migrate large folios
2032 	 * are migrated successfully.
2033 	 */
2034 	if (list_empty(from))
2035 		rc_gather = 0;
2036 
2037 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2038 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2039 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2040 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2041 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2042 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2043 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2044 			       stats.nr_thp_split, stats.nr_split, mode,
2045 			       reason);
2046 
2047 	if (ret_succeeded)
2048 		*ret_succeeded = stats.nr_succeeded;
2049 
2050 	return rc_gather;
2051 }
2052 
2053 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2054 {
2055 	struct migration_target_control *mtc;
2056 	gfp_t gfp_mask;
2057 	unsigned int order = 0;
2058 	int nid;
2059 	int zidx;
2060 
2061 	mtc = (struct migration_target_control *)private;
2062 	gfp_mask = mtc->gfp_mask;
2063 	nid = mtc->nid;
2064 	if (nid == NUMA_NO_NODE)
2065 		nid = folio_nid(src);
2066 
2067 	if (folio_test_hugetlb(src)) {
2068 		struct hstate *h = folio_hstate(src);
2069 
2070 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2071 		return alloc_hugetlb_folio_nodemask(h, nid,
2072 						mtc->nmask, gfp_mask,
2073 						htlb_allow_alloc_fallback(mtc->reason));
2074 	}
2075 
2076 	if (folio_test_large(src)) {
2077 		/*
2078 		 * clear __GFP_RECLAIM to make the migration callback
2079 		 * consistent with regular THP allocations.
2080 		 */
2081 		gfp_mask &= ~__GFP_RECLAIM;
2082 		gfp_mask |= GFP_TRANSHUGE;
2083 		order = folio_order(src);
2084 	}
2085 	zidx = zone_idx(folio_zone(src));
2086 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2087 		gfp_mask |= __GFP_HIGHMEM;
2088 
2089 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2090 }
2091 
2092 #ifdef CONFIG_NUMA
2093 
2094 static int store_status(int __user *status, int start, int value, int nr)
2095 {
2096 	while (nr-- > 0) {
2097 		if (put_user(value, status + start))
2098 			return -EFAULT;
2099 		start++;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2106 {
2107 	int err;
2108 	struct migration_target_control mtc = {
2109 		.nid = node,
2110 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2111 		.reason = MR_SYSCALL,
2112 	};
2113 
2114 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2115 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2116 	if (err)
2117 		putback_movable_pages(pagelist);
2118 	return err;
2119 }
2120 
2121 /*
2122  * Resolves the given address to a struct page, isolates it from the LRU and
2123  * puts it to the given pagelist.
2124  * Returns:
2125  *     errno - if the page cannot be found/isolated
2126  *     0 - when it doesn't have to be migrated because it is already on the
2127  *         target node
2128  *     1 - when it has been queued
2129  */
2130 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2131 		int node, struct list_head *pagelist, bool migrate_all)
2132 {
2133 	struct vm_area_struct *vma;
2134 	unsigned long addr;
2135 	struct page *page;
2136 	struct folio *folio;
2137 	int err;
2138 
2139 	mmap_read_lock(mm);
2140 	addr = (unsigned long)untagged_addr_remote(mm, p);
2141 
2142 	err = -EFAULT;
2143 	vma = vma_lookup(mm, addr);
2144 	if (!vma || !vma_migratable(vma))
2145 		goto out;
2146 
2147 	/* FOLL_DUMP to ignore special (like zero) pages */
2148 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2149 
2150 	err = PTR_ERR(page);
2151 	if (IS_ERR(page))
2152 		goto out;
2153 
2154 	err = -ENOENT;
2155 	if (!page)
2156 		goto out;
2157 
2158 	folio = page_folio(page);
2159 	if (folio_is_zone_device(folio))
2160 		goto out_putfolio;
2161 
2162 	err = 0;
2163 	if (folio_nid(folio) == node)
2164 		goto out_putfolio;
2165 
2166 	err = -EACCES;
2167 	if (folio_likely_mapped_shared(folio) && !migrate_all)
2168 		goto out_putfolio;
2169 
2170 	err = -EBUSY;
2171 	if (folio_test_hugetlb(folio)) {
2172 		if (isolate_hugetlb(folio, pagelist))
2173 			err = 1;
2174 	} else {
2175 		if (!folio_isolate_lru(folio))
2176 			goto out_putfolio;
2177 
2178 		err = 1;
2179 		list_add_tail(&folio->lru, pagelist);
2180 		node_stat_mod_folio(folio,
2181 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2182 			folio_nr_pages(folio));
2183 	}
2184 out_putfolio:
2185 	/*
2186 	 * Either remove the duplicate refcount from folio_isolate_lru()
2187 	 * or drop the folio ref if it was not isolated.
2188 	 */
2189 	folio_put(folio);
2190 out:
2191 	mmap_read_unlock(mm);
2192 	return err;
2193 }
2194 
2195 static int move_pages_and_store_status(int node,
2196 		struct list_head *pagelist, int __user *status,
2197 		int start, int i, unsigned long nr_pages)
2198 {
2199 	int err;
2200 
2201 	if (list_empty(pagelist))
2202 		return 0;
2203 
2204 	err = do_move_pages_to_node(pagelist, node);
2205 	if (err) {
2206 		/*
2207 		 * Positive err means the number of failed
2208 		 * pages to migrate.  Since we are going to
2209 		 * abort and return the number of non-migrated
2210 		 * pages, so need to include the rest of the
2211 		 * nr_pages that have not been attempted as
2212 		 * well.
2213 		 */
2214 		if (err > 0)
2215 			err += nr_pages - i;
2216 		return err;
2217 	}
2218 	return store_status(status, start, node, i - start);
2219 }
2220 
2221 /*
2222  * Migrate an array of page address onto an array of nodes and fill
2223  * the corresponding array of status.
2224  */
2225 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2226 			 unsigned long nr_pages,
2227 			 const void __user * __user *pages,
2228 			 const int __user *nodes,
2229 			 int __user *status, int flags)
2230 {
2231 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2232 	int current_node = NUMA_NO_NODE;
2233 	LIST_HEAD(pagelist);
2234 	int start, i;
2235 	int err = 0, err1;
2236 
2237 	lru_cache_disable();
2238 
2239 	for (i = start = 0; i < nr_pages; i++) {
2240 		const void __user *p;
2241 		int node;
2242 
2243 		err = -EFAULT;
2244 		if (in_compat_syscall()) {
2245 			compat_uptr_t cp;
2246 
2247 			if (get_user(cp, compat_pages + i))
2248 				goto out_flush;
2249 
2250 			p = compat_ptr(cp);
2251 		} else {
2252 			if (get_user(p, pages + i))
2253 				goto out_flush;
2254 		}
2255 		if (get_user(node, nodes + i))
2256 			goto out_flush;
2257 
2258 		err = -ENODEV;
2259 		if (node < 0 || node >= MAX_NUMNODES)
2260 			goto out_flush;
2261 		if (!node_state(node, N_MEMORY))
2262 			goto out_flush;
2263 
2264 		err = -EACCES;
2265 		if (!node_isset(node, task_nodes))
2266 			goto out_flush;
2267 
2268 		if (current_node == NUMA_NO_NODE) {
2269 			current_node = node;
2270 			start = i;
2271 		} else if (node != current_node) {
2272 			err = move_pages_and_store_status(current_node,
2273 					&pagelist, status, start, i, nr_pages);
2274 			if (err)
2275 				goto out;
2276 			start = i;
2277 			current_node = node;
2278 		}
2279 
2280 		/*
2281 		 * Errors in the page lookup or isolation are not fatal and we simply
2282 		 * report them via status
2283 		 */
2284 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2285 					     flags & MPOL_MF_MOVE_ALL);
2286 
2287 		if (err > 0) {
2288 			/* The page is successfully queued for migration */
2289 			continue;
2290 		}
2291 
2292 		/*
2293 		 * The move_pages() man page does not have an -EEXIST choice, so
2294 		 * use -EFAULT instead.
2295 		 */
2296 		if (err == -EEXIST)
2297 			err = -EFAULT;
2298 
2299 		/*
2300 		 * If the page is already on the target node (!err), store the
2301 		 * node, otherwise, store the err.
2302 		 */
2303 		err = store_status(status, i, err ? : current_node, 1);
2304 		if (err)
2305 			goto out_flush;
2306 
2307 		err = move_pages_and_store_status(current_node, &pagelist,
2308 				status, start, i, nr_pages);
2309 		if (err) {
2310 			/* We have accounted for page i */
2311 			if (err > 0)
2312 				err--;
2313 			goto out;
2314 		}
2315 		current_node = NUMA_NO_NODE;
2316 	}
2317 out_flush:
2318 	/* Make sure we do not overwrite the existing error */
2319 	err1 = move_pages_and_store_status(current_node, &pagelist,
2320 				status, start, i, nr_pages);
2321 	if (err >= 0)
2322 		err = err1;
2323 out:
2324 	lru_cache_enable();
2325 	return err;
2326 }
2327 
2328 /*
2329  * Determine the nodes of an array of pages and store it in an array of status.
2330  */
2331 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2332 				const void __user **pages, int *status)
2333 {
2334 	unsigned long i;
2335 
2336 	mmap_read_lock(mm);
2337 
2338 	for (i = 0; i < nr_pages; i++) {
2339 		unsigned long addr = (unsigned long)(*pages);
2340 		struct vm_area_struct *vma;
2341 		struct page *page;
2342 		int err = -EFAULT;
2343 
2344 		vma = vma_lookup(mm, addr);
2345 		if (!vma)
2346 			goto set_status;
2347 
2348 		/* FOLL_DUMP to ignore special (like zero) pages */
2349 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2350 
2351 		err = PTR_ERR(page);
2352 		if (IS_ERR(page))
2353 			goto set_status;
2354 
2355 		err = -ENOENT;
2356 		if (!page)
2357 			goto set_status;
2358 
2359 		if (!is_zone_device_page(page))
2360 			err = page_to_nid(page);
2361 
2362 		put_page(page);
2363 set_status:
2364 		*status = err;
2365 
2366 		pages++;
2367 		status++;
2368 	}
2369 
2370 	mmap_read_unlock(mm);
2371 }
2372 
2373 static int get_compat_pages_array(const void __user *chunk_pages[],
2374 				  const void __user * __user *pages,
2375 				  unsigned long chunk_nr)
2376 {
2377 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2378 	compat_uptr_t p;
2379 	int i;
2380 
2381 	for (i = 0; i < chunk_nr; i++) {
2382 		if (get_user(p, pages32 + i))
2383 			return -EFAULT;
2384 		chunk_pages[i] = compat_ptr(p);
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 /*
2391  * Determine the nodes of a user array of pages and store it in
2392  * a user array of status.
2393  */
2394 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2395 			 const void __user * __user *pages,
2396 			 int __user *status)
2397 {
2398 #define DO_PAGES_STAT_CHUNK_NR 16UL
2399 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2400 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2401 
2402 	while (nr_pages) {
2403 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2404 
2405 		if (in_compat_syscall()) {
2406 			if (get_compat_pages_array(chunk_pages, pages,
2407 						   chunk_nr))
2408 				break;
2409 		} else {
2410 			if (copy_from_user(chunk_pages, pages,
2411 				      chunk_nr * sizeof(*chunk_pages)))
2412 				break;
2413 		}
2414 
2415 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2416 
2417 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2418 			break;
2419 
2420 		pages += chunk_nr;
2421 		status += chunk_nr;
2422 		nr_pages -= chunk_nr;
2423 	}
2424 	return nr_pages ? -EFAULT : 0;
2425 }
2426 
2427 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2428 {
2429 	struct task_struct *task;
2430 	struct mm_struct *mm;
2431 
2432 	/*
2433 	 * There is no need to check if current process has the right to modify
2434 	 * the specified process when they are same.
2435 	 */
2436 	if (!pid) {
2437 		mmget(current->mm);
2438 		*mem_nodes = cpuset_mems_allowed(current);
2439 		return current->mm;
2440 	}
2441 
2442 	/* Find the mm_struct */
2443 	rcu_read_lock();
2444 	task = find_task_by_vpid(pid);
2445 	if (!task) {
2446 		rcu_read_unlock();
2447 		return ERR_PTR(-ESRCH);
2448 	}
2449 	get_task_struct(task);
2450 
2451 	/*
2452 	 * Check if this process has the right to modify the specified
2453 	 * process. Use the regular "ptrace_may_access()" checks.
2454 	 */
2455 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2456 		rcu_read_unlock();
2457 		mm = ERR_PTR(-EPERM);
2458 		goto out;
2459 	}
2460 	rcu_read_unlock();
2461 
2462 	mm = ERR_PTR(security_task_movememory(task));
2463 	if (IS_ERR(mm))
2464 		goto out;
2465 	*mem_nodes = cpuset_mems_allowed(task);
2466 	mm = get_task_mm(task);
2467 out:
2468 	put_task_struct(task);
2469 	if (!mm)
2470 		mm = ERR_PTR(-EINVAL);
2471 	return mm;
2472 }
2473 
2474 /*
2475  * Move a list of pages in the address space of the currently executing
2476  * process.
2477  */
2478 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2479 			     const void __user * __user *pages,
2480 			     const int __user *nodes,
2481 			     int __user *status, int flags)
2482 {
2483 	struct mm_struct *mm;
2484 	int err;
2485 	nodemask_t task_nodes;
2486 
2487 	/* Check flags */
2488 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2489 		return -EINVAL;
2490 
2491 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2492 		return -EPERM;
2493 
2494 	mm = find_mm_struct(pid, &task_nodes);
2495 	if (IS_ERR(mm))
2496 		return PTR_ERR(mm);
2497 
2498 	if (nodes)
2499 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2500 				    nodes, status, flags);
2501 	else
2502 		err = do_pages_stat(mm, nr_pages, pages, status);
2503 
2504 	mmput(mm);
2505 	return err;
2506 }
2507 
2508 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2509 		const void __user * __user *, pages,
2510 		const int __user *, nodes,
2511 		int __user *, status, int, flags)
2512 {
2513 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2514 }
2515 
2516 #ifdef CONFIG_NUMA_BALANCING
2517 /*
2518  * Returns true if this is a safe migration target node for misplaced NUMA
2519  * pages. Currently it only checks the watermarks which is crude.
2520  */
2521 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2522 				   unsigned long nr_migrate_pages)
2523 {
2524 	int z;
2525 
2526 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2527 		struct zone *zone = pgdat->node_zones + z;
2528 
2529 		if (!managed_zone(zone))
2530 			continue;
2531 
2532 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2533 		if (!zone_watermark_ok(zone, 0,
2534 				       high_wmark_pages(zone) +
2535 				       nr_migrate_pages,
2536 				       ZONE_MOVABLE, 0))
2537 			continue;
2538 		return true;
2539 	}
2540 	return false;
2541 }
2542 
2543 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2544 					   unsigned long data)
2545 {
2546 	int nid = (int) data;
2547 	int order = folio_order(src);
2548 	gfp_t gfp = __GFP_THISNODE;
2549 
2550 	if (order > 0)
2551 		gfp |= GFP_TRANSHUGE_LIGHT;
2552 	else {
2553 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2554 			__GFP_NOWARN;
2555 		gfp &= ~__GFP_RECLAIM;
2556 	}
2557 	return __folio_alloc_node(gfp, order, nid);
2558 }
2559 
2560 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
2561 {
2562 	int nr_pages = folio_nr_pages(folio);
2563 
2564 	/* Avoid migrating to a node that is nearly full */
2565 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2566 		int z;
2567 
2568 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2569 			return 0;
2570 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2571 			if (managed_zone(pgdat->node_zones + z))
2572 				break;
2573 		}
2574 
2575 		/*
2576 		 * If there are no managed zones, it should not proceed
2577 		 * further.
2578 		 */
2579 		if (z < 0)
2580 			return 0;
2581 
2582 		wakeup_kswapd(pgdat->node_zones + z, 0,
2583 			      folio_order(folio), ZONE_MOVABLE);
2584 		return 0;
2585 	}
2586 
2587 	if (!folio_isolate_lru(folio))
2588 		return 0;
2589 
2590 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2591 			    nr_pages);
2592 
2593 	/*
2594 	 * Isolating the folio has taken another reference, so the
2595 	 * caller's reference can be safely dropped without the folio
2596 	 * disappearing underneath us during migration.
2597 	 */
2598 	folio_put(folio);
2599 	return 1;
2600 }
2601 
2602 /*
2603  * Attempt to migrate a misplaced folio to the specified destination
2604  * node. Caller is expected to have an elevated reference count on
2605  * the folio that will be dropped by this function before returning.
2606  */
2607 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2608 			    int node)
2609 {
2610 	pg_data_t *pgdat = NODE_DATA(node);
2611 	int isolated;
2612 	int nr_remaining;
2613 	unsigned int nr_succeeded;
2614 	LIST_HEAD(migratepages);
2615 	int nr_pages = folio_nr_pages(folio);
2616 
2617 	/*
2618 	 * Don't migrate file folios that are mapped in multiple processes
2619 	 * with execute permissions as they are probably shared libraries.
2620 	 *
2621 	 * See folio_likely_mapped_shared() on possible imprecision when we
2622 	 * cannot easily detect if a folio is shared.
2623 	 */
2624 	if (folio_likely_mapped_shared(folio) && folio_is_file_lru(folio) &&
2625 	    (vma->vm_flags & VM_EXEC))
2626 		goto out;
2627 
2628 	/*
2629 	 * Also do not migrate dirty folios as not all filesystems can move
2630 	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
2631 	 */
2632 	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2633 		goto out;
2634 
2635 	isolated = numamigrate_isolate_folio(pgdat, folio);
2636 	if (!isolated)
2637 		goto out;
2638 
2639 	list_add(&folio->lru, &migratepages);
2640 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2641 				     NULL, node, MIGRATE_ASYNC,
2642 				     MR_NUMA_MISPLACED, &nr_succeeded);
2643 	if (nr_remaining) {
2644 		if (!list_empty(&migratepages)) {
2645 			list_del(&folio->lru);
2646 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2647 					folio_is_file_lru(folio), -nr_pages);
2648 			folio_putback_lru(folio);
2649 		}
2650 		isolated = 0;
2651 	}
2652 	if (nr_succeeded) {
2653 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2654 		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2655 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2656 					    nr_succeeded);
2657 	}
2658 	BUG_ON(!list_empty(&migratepages));
2659 	return isolated;
2660 
2661 out:
2662 	folio_put(folio);
2663 	return 0;
2664 }
2665 #endif /* CONFIG_NUMA_BALANCING */
2666 #endif /* CONFIG_NUMA */
2667