1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 const struct movable_operations *mops; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mops = page_movable_ops(page); 101 VM_BUG_ON_PAGE(!mops, page); 102 103 if (!mops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 const struct movable_operations *mops = page_movable_ops(page); 124 125 mops->putback_page(page); 126 ClearPageIsolated(page); 127 } 128 129 /* 130 * Put previously isolated pages back onto the appropriate lists 131 * from where they were once taken off for compaction/migration. 132 * 133 * This function shall be used whenever the isolated pageset has been 134 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 135 * and isolate_hugetlb(). 136 */ 137 void putback_movable_pages(struct list_head *l) 138 { 139 struct page *page; 140 struct page *page2; 141 142 list_for_each_entry_safe(page, page2, l, lru) { 143 if (unlikely(PageHuge(page))) { 144 putback_active_hugepage(page); 145 continue; 146 } 147 list_del(&page->lru); 148 /* 149 * We isolated non-lru movable page so here we can use 150 * __PageMovable because LRU page's mapping cannot have 151 * PAGE_MAPPING_MOVABLE. 152 */ 153 if (unlikely(__PageMovable(page))) { 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 lock_page(page); 156 if (PageMovable(page)) 157 putback_movable_page(page); 158 else 159 ClearPageIsolated(page); 160 unlock_page(page); 161 put_page(page); 162 } else { 163 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 164 page_is_file_lru(page), -thp_nr_pages(page)); 165 putback_lru_page(page); 166 } 167 } 168 } 169 170 /* 171 * Restore a potential migration pte to a working pte entry 172 */ 173 static bool remove_migration_pte(struct folio *folio, 174 struct vm_area_struct *vma, unsigned long addr, void *old) 175 { 176 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 177 178 while (page_vma_mapped_walk(&pvmw)) { 179 rmap_t rmap_flags = RMAP_NONE; 180 pte_t pte; 181 swp_entry_t entry; 182 struct page *new; 183 unsigned long idx = 0; 184 185 /* pgoff is invalid for ksm pages, but they are never large */ 186 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 188 new = folio_page(folio, idx); 189 190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 191 /* PMD-mapped THP migration entry */ 192 if (!pvmw.pte) { 193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 194 !folio_test_pmd_mappable(folio), folio); 195 remove_migration_pmd(&pvmw, new); 196 continue; 197 } 198 #endif 199 200 folio_get(folio); 201 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 202 if (pte_swp_soft_dirty(*pvmw.pte)) 203 pte = pte_mksoft_dirty(pte); 204 205 /* 206 * Recheck VMA as permissions can change since migration started 207 */ 208 entry = pte_to_swp_entry(*pvmw.pte); 209 if (is_writable_migration_entry(entry)) 210 pte = maybe_mkwrite(pte, vma); 211 else if (pte_swp_uffd_wp(*pvmw.pte)) 212 pte = pte_mkuffd_wp(pte); 213 214 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 215 rmap_flags |= RMAP_EXCLUSIVE; 216 217 if (unlikely(is_device_private_page(new))) { 218 if (pte_write(pte)) 219 entry = make_writable_device_private_entry( 220 page_to_pfn(new)); 221 else 222 entry = make_readable_device_private_entry( 223 page_to_pfn(new)); 224 pte = swp_entry_to_pte(entry); 225 if (pte_swp_soft_dirty(*pvmw.pte)) 226 pte = pte_swp_mksoft_dirty(pte); 227 if (pte_swp_uffd_wp(*pvmw.pte)) 228 pte = pte_swp_mkuffd_wp(pte); 229 } 230 231 #ifdef CONFIG_HUGETLB_PAGE 232 if (folio_test_hugetlb(folio)) { 233 unsigned int shift = huge_page_shift(hstate_vma(vma)); 234 235 pte = pte_mkhuge(pte); 236 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 237 if (folio_test_anon(folio)) 238 hugepage_add_anon_rmap(new, vma, pvmw.address, 239 rmap_flags); 240 else 241 page_dup_file_rmap(new, true); 242 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 243 } else 244 #endif 245 { 246 if (folio_test_anon(folio)) 247 page_add_anon_rmap(new, vma, pvmw.address, 248 rmap_flags); 249 else 250 page_add_file_rmap(new, vma, false); 251 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 252 } 253 if (vma->vm_flags & VM_LOCKED) 254 mlock_page_drain_local(); 255 256 trace_remove_migration_pte(pvmw.address, pte_val(pte), 257 compound_order(new)); 258 259 /* No need to invalidate - it was non-present before */ 260 update_mmu_cache(vma, pvmw.address, pvmw.pte); 261 } 262 263 return true; 264 } 265 266 /* 267 * Get rid of all migration entries and replace them by 268 * references to the indicated page. 269 */ 270 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 271 { 272 struct rmap_walk_control rwc = { 273 .rmap_one = remove_migration_pte, 274 .arg = src, 275 }; 276 277 if (locked) 278 rmap_walk_locked(dst, &rwc); 279 else 280 rmap_walk(dst, &rwc); 281 } 282 283 /* 284 * Something used the pte of a page under migration. We need to 285 * get to the page and wait until migration is finished. 286 * When we return from this function the fault will be retried. 287 */ 288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 289 spinlock_t *ptl) 290 { 291 pte_t pte; 292 swp_entry_t entry; 293 294 spin_lock(ptl); 295 pte = *ptep; 296 if (!is_swap_pte(pte)) 297 goto out; 298 299 entry = pte_to_swp_entry(pte); 300 if (!is_migration_entry(entry)) 301 goto out; 302 303 migration_entry_wait_on_locked(entry, ptep, ptl); 304 return; 305 out: 306 pte_unmap_unlock(ptep, ptl); 307 } 308 309 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 310 unsigned long address) 311 { 312 spinlock_t *ptl = pte_lockptr(mm, pmd); 313 pte_t *ptep = pte_offset_map(pmd, address); 314 __migration_entry_wait(mm, ptep, ptl); 315 } 316 317 #ifdef CONFIG_HUGETLB_PAGE 318 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) 319 { 320 pte_t pte; 321 322 spin_lock(ptl); 323 pte = huge_ptep_get(ptep); 324 325 if (unlikely(!is_hugetlb_entry_migration(pte))) 326 spin_unlock(ptl); 327 else 328 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 329 } 330 331 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 332 { 333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 334 335 __migration_entry_wait_huge(pte, ptl); 336 } 337 #endif 338 339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 340 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 341 { 342 spinlock_t *ptl; 343 344 ptl = pmd_lock(mm, pmd); 345 if (!is_pmd_migration_entry(*pmd)) 346 goto unlock; 347 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 348 return; 349 unlock: 350 spin_unlock(ptl); 351 } 352 #endif 353 354 static int folio_expected_refs(struct address_space *mapping, 355 struct folio *folio) 356 { 357 int refs = 1; 358 if (!mapping) 359 return refs; 360 361 refs += folio_nr_pages(folio); 362 if (folio_test_private(folio)) 363 refs++; 364 365 return refs; 366 } 367 368 /* 369 * Replace the page in the mapping. 370 * 371 * The number of remaining references must be: 372 * 1 for anonymous pages without a mapping 373 * 2 for pages with a mapping 374 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 375 */ 376 int folio_migrate_mapping(struct address_space *mapping, 377 struct folio *newfolio, struct folio *folio, int extra_count) 378 { 379 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 380 struct zone *oldzone, *newzone; 381 int dirty; 382 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 383 long nr = folio_nr_pages(folio); 384 385 if (!mapping) { 386 /* Anonymous page without mapping */ 387 if (folio_ref_count(folio) != expected_count) 388 return -EAGAIN; 389 390 /* No turning back from here */ 391 newfolio->index = folio->index; 392 newfolio->mapping = folio->mapping; 393 if (folio_test_swapbacked(folio)) 394 __folio_set_swapbacked(newfolio); 395 396 return MIGRATEPAGE_SUCCESS; 397 } 398 399 oldzone = folio_zone(folio); 400 newzone = folio_zone(newfolio); 401 402 xas_lock_irq(&xas); 403 if (!folio_ref_freeze(folio, expected_count)) { 404 xas_unlock_irq(&xas); 405 return -EAGAIN; 406 } 407 408 /* 409 * Now we know that no one else is looking at the folio: 410 * no turning back from here. 411 */ 412 newfolio->index = folio->index; 413 newfolio->mapping = folio->mapping; 414 folio_ref_add(newfolio, nr); /* add cache reference */ 415 if (folio_test_swapbacked(folio)) { 416 __folio_set_swapbacked(newfolio); 417 if (folio_test_swapcache(folio)) { 418 folio_set_swapcache(newfolio); 419 newfolio->private = folio_get_private(folio); 420 } 421 } else { 422 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 423 } 424 425 /* Move dirty while page refs frozen and newpage not yet exposed */ 426 dirty = folio_test_dirty(folio); 427 if (dirty) { 428 folio_clear_dirty(folio); 429 folio_set_dirty(newfolio); 430 } 431 432 xas_store(&xas, newfolio); 433 434 /* 435 * Drop cache reference from old page by unfreezing 436 * to one less reference. 437 * We know this isn't the last reference. 438 */ 439 folio_ref_unfreeze(folio, expected_count - nr); 440 441 xas_unlock(&xas); 442 /* Leave irq disabled to prevent preemption while updating stats */ 443 444 /* 445 * If moved to a different zone then also account 446 * the page for that zone. Other VM counters will be 447 * taken care of when we establish references to the 448 * new page and drop references to the old page. 449 * 450 * Note that anonymous pages are accounted for 451 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 452 * are mapped to swap space. 453 */ 454 if (newzone != oldzone) { 455 struct lruvec *old_lruvec, *new_lruvec; 456 struct mem_cgroup *memcg; 457 458 memcg = folio_memcg(folio); 459 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 460 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 461 462 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 463 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 464 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 465 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 466 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 467 } 468 #ifdef CONFIG_SWAP 469 if (folio_test_swapcache(folio)) { 470 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 471 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 472 } 473 #endif 474 if (dirty && mapping_can_writeback(mapping)) { 475 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 476 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 477 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 478 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 479 } 480 } 481 local_irq_enable(); 482 483 return MIGRATEPAGE_SUCCESS; 484 } 485 EXPORT_SYMBOL(folio_migrate_mapping); 486 487 /* 488 * The expected number of remaining references is the same as that 489 * of folio_migrate_mapping(). 490 */ 491 int migrate_huge_page_move_mapping(struct address_space *mapping, 492 struct folio *dst, struct folio *src) 493 { 494 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 495 int expected_count; 496 497 xas_lock_irq(&xas); 498 expected_count = 2 + folio_has_private(src); 499 if (!folio_ref_freeze(src, expected_count)) { 500 xas_unlock_irq(&xas); 501 return -EAGAIN; 502 } 503 504 dst->index = src->index; 505 dst->mapping = src->mapping; 506 507 folio_get(dst); 508 509 xas_store(&xas, dst); 510 511 folio_ref_unfreeze(src, expected_count - 1); 512 513 xas_unlock_irq(&xas); 514 515 return MIGRATEPAGE_SUCCESS; 516 } 517 518 /* 519 * Copy the flags and some other ancillary information 520 */ 521 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 522 { 523 int cpupid; 524 525 if (folio_test_error(folio)) 526 folio_set_error(newfolio); 527 if (folio_test_referenced(folio)) 528 folio_set_referenced(newfolio); 529 if (folio_test_uptodate(folio)) 530 folio_mark_uptodate(newfolio); 531 if (folio_test_clear_active(folio)) { 532 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 533 folio_set_active(newfolio); 534 } else if (folio_test_clear_unevictable(folio)) 535 folio_set_unevictable(newfolio); 536 if (folio_test_workingset(folio)) 537 folio_set_workingset(newfolio); 538 if (folio_test_checked(folio)) 539 folio_set_checked(newfolio); 540 /* 541 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 542 * migration entries. We can still have PG_anon_exclusive set on an 543 * effectively unmapped and unreferenced first sub-pages of an 544 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 545 */ 546 if (folio_test_mappedtodisk(folio)) 547 folio_set_mappedtodisk(newfolio); 548 549 /* Move dirty on pages not done by folio_migrate_mapping() */ 550 if (folio_test_dirty(folio)) 551 folio_set_dirty(newfolio); 552 553 if (folio_test_young(folio)) 554 folio_set_young(newfolio); 555 if (folio_test_idle(folio)) 556 folio_set_idle(newfolio); 557 558 /* 559 * Copy NUMA information to the new page, to prevent over-eager 560 * future migrations of this same page. 561 */ 562 cpupid = page_cpupid_xchg_last(&folio->page, -1); 563 page_cpupid_xchg_last(&newfolio->page, cpupid); 564 565 folio_migrate_ksm(newfolio, folio); 566 /* 567 * Please do not reorder this without considering how mm/ksm.c's 568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 569 */ 570 if (folio_test_swapcache(folio)) 571 folio_clear_swapcache(folio); 572 folio_clear_private(folio); 573 574 /* page->private contains hugetlb specific flags */ 575 if (!folio_test_hugetlb(folio)) 576 folio->private = NULL; 577 578 /* 579 * If any waiters have accumulated on the new page then 580 * wake them up. 581 */ 582 if (folio_test_writeback(newfolio)) 583 folio_end_writeback(newfolio); 584 585 /* 586 * PG_readahead shares the same bit with PG_reclaim. The above 587 * end_page_writeback() may clear PG_readahead mistakenly, so set the 588 * bit after that. 589 */ 590 if (folio_test_readahead(folio)) 591 folio_set_readahead(newfolio); 592 593 folio_copy_owner(newfolio, folio); 594 595 if (!folio_test_hugetlb(folio)) 596 mem_cgroup_migrate(folio, newfolio); 597 } 598 EXPORT_SYMBOL(folio_migrate_flags); 599 600 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 601 { 602 folio_copy(newfolio, folio); 603 folio_migrate_flags(newfolio, folio); 604 } 605 EXPORT_SYMBOL(folio_migrate_copy); 606 607 /************************************************************ 608 * Migration functions 609 ***********************************************************/ 610 611 /** 612 * migrate_folio() - Simple folio migration. 613 * @mapping: The address_space containing the folio. 614 * @dst: The folio to migrate the data to. 615 * @src: The folio containing the current data. 616 * @mode: How to migrate the page. 617 * 618 * Common logic to directly migrate a single LRU folio suitable for 619 * folios that do not use PagePrivate/PagePrivate2. 620 * 621 * Folios are locked upon entry and exit. 622 */ 623 int migrate_folio(struct address_space *mapping, struct folio *dst, 624 struct folio *src, enum migrate_mode mode) 625 { 626 int rc; 627 628 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 629 630 rc = folio_migrate_mapping(mapping, dst, src, 0); 631 632 if (rc != MIGRATEPAGE_SUCCESS) 633 return rc; 634 635 if (mode != MIGRATE_SYNC_NO_COPY) 636 folio_migrate_copy(dst, src); 637 else 638 folio_migrate_flags(dst, src); 639 return MIGRATEPAGE_SUCCESS; 640 } 641 EXPORT_SYMBOL(migrate_folio); 642 643 #ifdef CONFIG_BLOCK 644 /* Returns true if all buffers are successfully locked */ 645 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 646 enum migrate_mode mode) 647 { 648 struct buffer_head *bh = head; 649 650 /* Simple case, sync compaction */ 651 if (mode != MIGRATE_ASYNC) { 652 do { 653 lock_buffer(bh); 654 bh = bh->b_this_page; 655 656 } while (bh != head); 657 658 return true; 659 } 660 661 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 662 do { 663 if (!trylock_buffer(bh)) { 664 /* 665 * We failed to lock the buffer and cannot stall in 666 * async migration. Release the taken locks 667 */ 668 struct buffer_head *failed_bh = bh; 669 bh = head; 670 while (bh != failed_bh) { 671 unlock_buffer(bh); 672 bh = bh->b_this_page; 673 } 674 return false; 675 } 676 677 bh = bh->b_this_page; 678 } while (bh != head); 679 return true; 680 } 681 682 static int __buffer_migrate_folio(struct address_space *mapping, 683 struct folio *dst, struct folio *src, enum migrate_mode mode, 684 bool check_refs) 685 { 686 struct buffer_head *bh, *head; 687 int rc; 688 int expected_count; 689 690 head = folio_buffers(src); 691 if (!head) 692 return migrate_folio(mapping, dst, src, mode); 693 694 /* Check whether page does not have extra refs before we do more work */ 695 expected_count = folio_expected_refs(mapping, src); 696 if (folio_ref_count(src) != expected_count) 697 return -EAGAIN; 698 699 if (!buffer_migrate_lock_buffers(head, mode)) 700 return -EAGAIN; 701 702 if (check_refs) { 703 bool busy; 704 bool invalidated = false; 705 706 recheck_buffers: 707 busy = false; 708 spin_lock(&mapping->private_lock); 709 bh = head; 710 do { 711 if (atomic_read(&bh->b_count)) { 712 busy = true; 713 break; 714 } 715 bh = bh->b_this_page; 716 } while (bh != head); 717 if (busy) { 718 if (invalidated) { 719 rc = -EAGAIN; 720 goto unlock_buffers; 721 } 722 spin_unlock(&mapping->private_lock); 723 invalidate_bh_lrus(); 724 invalidated = true; 725 goto recheck_buffers; 726 } 727 } 728 729 rc = folio_migrate_mapping(mapping, dst, src, 0); 730 if (rc != MIGRATEPAGE_SUCCESS) 731 goto unlock_buffers; 732 733 folio_attach_private(dst, folio_detach_private(src)); 734 735 bh = head; 736 do { 737 set_bh_page(bh, &dst->page, bh_offset(bh)); 738 bh = bh->b_this_page; 739 } while (bh != head); 740 741 if (mode != MIGRATE_SYNC_NO_COPY) 742 folio_migrate_copy(dst, src); 743 else 744 folio_migrate_flags(dst, src); 745 746 rc = MIGRATEPAGE_SUCCESS; 747 unlock_buffers: 748 if (check_refs) 749 spin_unlock(&mapping->private_lock); 750 bh = head; 751 do { 752 unlock_buffer(bh); 753 bh = bh->b_this_page; 754 } while (bh != head); 755 756 return rc; 757 } 758 759 /** 760 * buffer_migrate_folio() - Migration function for folios with buffers. 761 * @mapping: The address space containing @src. 762 * @dst: The folio to migrate to. 763 * @src: The folio to migrate from. 764 * @mode: How to migrate the folio. 765 * 766 * This function can only be used if the underlying filesystem guarantees 767 * that no other references to @src exist. For example attached buffer 768 * heads are accessed only under the folio lock. If your filesystem cannot 769 * provide this guarantee, buffer_migrate_folio_norefs() may be more 770 * appropriate. 771 * 772 * Return: 0 on success or a negative errno on failure. 773 */ 774 int buffer_migrate_folio(struct address_space *mapping, 775 struct folio *dst, struct folio *src, enum migrate_mode mode) 776 { 777 return __buffer_migrate_folio(mapping, dst, src, mode, false); 778 } 779 EXPORT_SYMBOL(buffer_migrate_folio); 780 781 /** 782 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 783 * @mapping: The address space containing @src. 784 * @dst: The folio to migrate to. 785 * @src: The folio to migrate from. 786 * @mode: How to migrate the folio. 787 * 788 * Like buffer_migrate_folio() except that this variant is more careful 789 * and checks that there are also no buffer head references. This function 790 * is the right one for mappings where buffer heads are directly looked 791 * up and referenced (such as block device mappings). 792 * 793 * Return: 0 on success or a negative errno on failure. 794 */ 795 int buffer_migrate_folio_norefs(struct address_space *mapping, 796 struct folio *dst, struct folio *src, enum migrate_mode mode) 797 { 798 return __buffer_migrate_folio(mapping, dst, src, mode, true); 799 } 800 #endif 801 802 int filemap_migrate_folio(struct address_space *mapping, 803 struct folio *dst, struct folio *src, enum migrate_mode mode) 804 { 805 int ret; 806 807 ret = folio_migrate_mapping(mapping, dst, src, 0); 808 if (ret != MIGRATEPAGE_SUCCESS) 809 return ret; 810 811 if (folio_get_private(src)) 812 folio_attach_private(dst, folio_detach_private(src)); 813 814 if (mode != MIGRATE_SYNC_NO_COPY) 815 folio_migrate_copy(dst, src); 816 else 817 folio_migrate_flags(dst, src); 818 return MIGRATEPAGE_SUCCESS; 819 } 820 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 821 822 /* 823 * Writeback a folio to clean the dirty state 824 */ 825 static int writeout(struct address_space *mapping, struct folio *folio) 826 { 827 struct writeback_control wbc = { 828 .sync_mode = WB_SYNC_NONE, 829 .nr_to_write = 1, 830 .range_start = 0, 831 .range_end = LLONG_MAX, 832 .for_reclaim = 1 833 }; 834 int rc; 835 836 if (!mapping->a_ops->writepage) 837 /* No write method for the address space */ 838 return -EINVAL; 839 840 if (!folio_clear_dirty_for_io(folio)) 841 /* Someone else already triggered a write */ 842 return -EAGAIN; 843 844 /* 845 * A dirty folio may imply that the underlying filesystem has 846 * the folio on some queue. So the folio must be clean for 847 * migration. Writeout may mean we lose the lock and the 848 * folio state is no longer what we checked for earlier. 849 * At this point we know that the migration attempt cannot 850 * be successful. 851 */ 852 remove_migration_ptes(folio, folio, false); 853 854 rc = mapping->a_ops->writepage(&folio->page, &wbc); 855 856 if (rc != AOP_WRITEPAGE_ACTIVATE) 857 /* unlocked. Relock */ 858 folio_lock(folio); 859 860 return (rc < 0) ? -EIO : -EAGAIN; 861 } 862 863 /* 864 * Default handling if a filesystem does not provide a migration function. 865 */ 866 static int fallback_migrate_folio(struct address_space *mapping, 867 struct folio *dst, struct folio *src, enum migrate_mode mode) 868 { 869 if (folio_test_dirty(src)) { 870 /* Only writeback folios in full synchronous migration */ 871 switch (mode) { 872 case MIGRATE_SYNC: 873 case MIGRATE_SYNC_NO_COPY: 874 break; 875 default: 876 return -EBUSY; 877 } 878 return writeout(mapping, src); 879 } 880 881 /* 882 * Buffers may be managed in a filesystem specific way. 883 * We must have no buffers or drop them. 884 */ 885 if (folio_test_private(src) && 886 !filemap_release_folio(src, GFP_KERNEL)) 887 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 888 889 return migrate_folio(mapping, dst, src, mode); 890 } 891 892 /* 893 * Move a page to a newly allocated page 894 * The page is locked and all ptes have been successfully removed. 895 * 896 * The new page will have replaced the old page if this function 897 * is successful. 898 * 899 * Return value: 900 * < 0 - error code 901 * MIGRATEPAGE_SUCCESS - success 902 */ 903 static int move_to_new_folio(struct folio *dst, struct folio *src, 904 enum migrate_mode mode) 905 { 906 int rc = -EAGAIN; 907 bool is_lru = !__PageMovable(&src->page); 908 909 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 910 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 911 912 if (likely(is_lru)) { 913 struct address_space *mapping = folio_mapping(src); 914 915 if (!mapping) 916 rc = migrate_folio(mapping, dst, src, mode); 917 else if (mapping->a_ops->migrate_folio) 918 /* 919 * Most folios have a mapping and most filesystems 920 * provide a migrate_folio callback. Anonymous folios 921 * are part of swap space which also has its own 922 * migrate_folio callback. This is the most common path 923 * for page migration. 924 */ 925 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 926 mode); 927 else 928 rc = fallback_migrate_folio(mapping, dst, src, mode); 929 } else { 930 const struct movable_operations *mops; 931 932 /* 933 * In case of non-lru page, it could be released after 934 * isolation step. In that case, we shouldn't try migration. 935 */ 936 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 937 if (!folio_test_movable(src)) { 938 rc = MIGRATEPAGE_SUCCESS; 939 folio_clear_isolated(src); 940 goto out; 941 } 942 943 mops = page_movable_ops(&src->page); 944 rc = mops->migrate_page(&dst->page, &src->page, mode); 945 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 946 !folio_test_isolated(src)); 947 } 948 949 /* 950 * When successful, old pagecache src->mapping must be cleared before 951 * src is freed; but stats require that PageAnon be left as PageAnon. 952 */ 953 if (rc == MIGRATEPAGE_SUCCESS) { 954 if (__PageMovable(&src->page)) { 955 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 956 957 /* 958 * We clear PG_movable under page_lock so any compactor 959 * cannot try to migrate this page. 960 */ 961 folio_clear_isolated(src); 962 } 963 964 /* 965 * Anonymous and movable src->mapping will be cleared by 966 * free_pages_prepare so don't reset it here for keeping 967 * the type to work PageAnon, for example. 968 */ 969 if (!folio_mapping_flags(src)) 970 src->mapping = NULL; 971 972 if (likely(!folio_is_zone_device(dst))) 973 flush_dcache_folio(dst); 974 } 975 out: 976 return rc; 977 } 978 979 static int __unmap_and_move(struct page *page, struct page *newpage, 980 int force, enum migrate_mode mode) 981 { 982 struct folio *folio = page_folio(page); 983 struct folio *dst = page_folio(newpage); 984 int rc = -EAGAIN; 985 bool page_was_mapped = false; 986 struct anon_vma *anon_vma = NULL; 987 bool is_lru = !__PageMovable(page); 988 989 if (!trylock_page(page)) { 990 if (!force || mode == MIGRATE_ASYNC) 991 goto out; 992 993 /* 994 * It's not safe for direct compaction to call lock_page. 995 * For example, during page readahead pages are added locked 996 * to the LRU. Later, when the IO completes the pages are 997 * marked uptodate and unlocked. However, the queueing 998 * could be merging multiple pages for one bio (e.g. 999 * mpage_readahead). If an allocation happens for the 1000 * second or third page, the process can end up locking 1001 * the same page twice and deadlocking. Rather than 1002 * trying to be clever about what pages can be locked, 1003 * avoid the use of lock_page for direct compaction 1004 * altogether. 1005 */ 1006 if (current->flags & PF_MEMALLOC) 1007 goto out; 1008 1009 lock_page(page); 1010 } 1011 1012 if (PageWriteback(page)) { 1013 /* 1014 * Only in the case of a full synchronous migration is it 1015 * necessary to wait for PageWriteback. In the async case, 1016 * the retry loop is too short and in the sync-light case, 1017 * the overhead of stalling is too much 1018 */ 1019 switch (mode) { 1020 case MIGRATE_SYNC: 1021 case MIGRATE_SYNC_NO_COPY: 1022 break; 1023 default: 1024 rc = -EBUSY; 1025 goto out_unlock; 1026 } 1027 if (!force) 1028 goto out_unlock; 1029 wait_on_page_writeback(page); 1030 } 1031 1032 /* 1033 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 1034 * we cannot notice that anon_vma is freed while we migrates a page. 1035 * This get_anon_vma() delays freeing anon_vma pointer until the end 1036 * of migration. File cache pages are no problem because of page_lock() 1037 * File Caches may use write_page() or lock_page() in migration, then, 1038 * just care Anon page here. 1039 * 1040 * Only page_get_anon_vma() understands the subtleties of 1041 * getting a hold on an anon_vma from outside one of its mms. 1042 * But if we cannot get anon_vma, then we won't need it anyway, 1043 * because that implies that the anon page is no longer mapped 1044 * (and cannot be remapped so long as we hold the page lock). 1045 */ 1046 if (PageAnon(page) && !PageKsm(page)) 1047 anon_vma = page_get_anon_vma(page); 1048 1049 /* 1050 * Block others from accessing the new page when we get around to 1051 * establishing additional references. We are usually the only one 1052 * holding a reference to newpage at this point. We used to have a BUG 1053 * here if trylock_page(newpage) fails, but would like to allow for 1054 * cases where there might be a race with the previous use of newpage. 1055 * This is much like races on refcount of oldpage: just don't BUG(). 1056 */ 1057 if (unlikely(!trylock_page(newpage))) 1058 goto out_unlock; 1059 1060 if (unlikely(!is_lru)) { 1061 rc = move_to_new_folio(dst, folio, mode); 1062 goto out_unlock_both; 1063 } 1064 1065 /* 1066 * Corner case handling: 1067 * 1. When a new swap-cache page is read into, it is added to the LRU 1068 * and treated as swapcache but it has no rmap yet. 1069 * Calling try_to_unmap() against a page->mapping==NULL page will 1070 * trigger a BUG. So handle it here. 1071 * 2. An orphaned page (see truncate_cleanup_page) might have 1072 * fs-private metadata. The page can be picked up due to memory 1073 * offlining. Everywhere else except page reclaim, the page is 1074 * invisible to the vm, so the page can not be migrated. So try to 1075 * free the metadata, so the page can be freed. 1076 */ 1077 if (!page->mapping) { 1078 VM_BUG_ON_PAGE(PageAnon(page), page); 1079 if (page_has_private(page)) { 1080 try_to_free_buffers(folio); 1081 goto out_unlock_both; 1082 } 1083 } else if (page_mapped(page)) { 1084 /* Establish migration ptes */ 1085 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1086 page); 1087 try_to_migrate(folio, 0); 1088 page_was_mapped = true; 1089 } 1090 1091 if (!page_mapped(page)) 1092 rc = move_to_new_folio(dst, folio, mode); 1093 1094 /* 1095 * When successful, push newpage to LRU immediately: so that if it 1096 * turns out to be an mlocked page, remove_migration_ptes() will 1097 * automatically build up the correct newpage->mlock_count for it. 1098 * 1099 * We would like to do something similar for the old page, when 1100 * unsuccessful, and other cases when a page has been temporarily 1101 * isolated from the unevictable LRU: but this case is the easiest. 1102 */ 1103 if (rc == MIGRATEPAGE_SUCCESS) { 1104 lru_cache_add(newpage); 1105 if (page_was_mapped) 1106 lru_add_drain(); 1107 } 1108 1109 if (page_was_mapped) 1110 remove_migration_ptes(folio, 1111 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); 1112 1113 out_unlock_both: 1114 unlock_page(newpage); 1115 out_unlock: 1116 /* Drop an anon_vma reference if we took one */ 1117 if (anon_vma) 1118 put_anon_vma(anon_vma); 1119 unlock_page(page); 1120 out: 1121 /* 1122 * If migration is successful, decrease refcount of the newpage, 1123 * which will not free the page because new page owner increased 1124 * refcounter. 1125 */ 1126 if (rc == MIGRATEPAGE_SUCCESS) 1127 put_page(newpage); 1128 1129 return rc; 1130 } 1131 1132 /* 1133 * Obtain the lock on page, remove all ptes and migrate the page 1134 * to the newly allocated page in newpage. 1135 */ 1136 static int unmap_and_move(new_page_t get_new_page, 1137 free_page_t put_new_page, 1138 unsigned long private, struct page *page, 1139 int force, enum migrate_mode mode, 1140 enum migrate_reason reason, 1141 struct list_head *ret) 1142 { 1143 int rc = MIGRATEPAGE_SUCCESS; 1144 struct page *newpage = NULL; 1145 1146 if (!thp_migration_supported() && PageTransHuge(page)) 1147 return -ENOSYS; 1148 1149 if (page_count(page) == 1) { 1150 /* Page was freed from under us. So we are done. */ 1151 ClearPageActive(page); 1152 ClearPageUnevictable(page); 1153 /* free_pages_prepare() will clear PG_isolated. */ 1154 goto out; 1155 } 1156 1157 newpage = get_new_page(page, private); 1158 if (!newpage) 1159 return -ENOMEM; 1160 1161 newpage->private = 0; 1162 rc = __unmap_and_move(page, newpage, force, mode); 1163 if (rc == MIGRATEPAGE_SUCCESS) 1164 set_page_owner_migrate_reason(newpage, reason); 1165 1166 out: 1167 if (rc != -EAGAIN) { 1168 /* 1169 * A page that has been migrated has all references 1170 * removed and will be freed. A page that has not been 1171 * migrated will have kept its references and be restored. 1172 */ 1173 list_del(&page->lru); 1174 } 1175 1176 /* 1177 * If migration is successful, releases reference grabbed during 1178 * isolation. Otherwise, restore the page to right list unless 1179 * we want to retry. 1180 */ 1181 if (rc == MIGRATEPAGE_SUCCESS) { 1182 /* 1183 * Compaction can migrate also non-LRU pages which are 1184 * not accounted to NR_ISOLATED_*. They can be recognized 1185 * as __PageMovable 1186 */ 1187 if (likely(!__PageMovable(page))) 1188 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1189 page_is_file_lru(page), -thp_nr_pages(page)); 1190 1191 if (reason != MR_MEMORY_FAILURE) 1192 /* 1193 * We release the page in page_handle_poison. 1194 */ 1195 put_page(page); 1196 } else { 1197 if (rc != -EAGAIN) 1198 list_add_tail(&page->lru, ret); 1199 1200 if (put_new_page) 1201 put_new_page(newpage, private); 1202 else 1203 put_page(newpage); 1204 } 1205 1206 return rc; 1207 } 1208 1209 /* 1210 * Counterpart of unmap_and_move_page() for hugepage migration. 1211 * 1212 * This function doesn't wait the completion of hugepage I/O 1213 * because there is no race between I/O and migration for hugepage. 1214 * Note that currently hugepage I/O occurs only in direct I/O 1215 * where no lock is held and PG_writeback is irrelevant, 1216 * and writeback status of all subpages are counted in the reference 1217 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1218 * under direct I/O, the reference of the head page is 512 and a bit more.) 1219 * This means that when we try to migrate hugepage whose subpages are 1220 * doing direct I/O, some references remain after try_to_unmap() and 1221 * hugepage migration fails without data corruption. 1222 * 1223 * There is also no race when direct I/O is issued on the page under migration, 1224 * because then pte is replaced with migration swap entry and direct I/O code 1225 * will wait in the page fault for migration to complete. 1226 */ 1227 static int unmap_and_move_huge_page(new_page_t get_new_page, 1228 free_page_t put_new_page, unsigned long private, 1229 struct page *hpage, int force, 1230 enum migrate_mode mode, int reason, 1231 struct list_head *ret) 1232 { 1233 struct folio *dst, *src = page_folio(hpage); 1234 int rc = -EAGAIN; 1235 int page_was_mapped = 0; 1236 struct page *new_hpage; 1237 struct anon_vma *anon_vma = NULL; 1238 struct address_space *mapping = NULL; 1239 1240 /* 1241 * Migratability of hugepages depends on architectures and their size. 1242 * This check is necessary because some callers of hugepage migration 1243 * like soft offline and memory hotremove don't walk through page 1244 * tables or check whether the hugepage is pmd-based or not before 1245 * kicking migration. 1246 */ 1247 if (!hugepage_migration_supported(page_hstate(hpage))) { 1248 list_move_tail(&hpage->lru, ret); 1249 return -ENOSYS; 1250 } 1251 1252 if (page_count(hpage) == 1) { 1253 /* page was freed from under us. So we are done. */ 1254 putback_active_hugepage(hpage); 1255 return MIGRATEPAGE_SUCCESS; 1256 } 1257 1258 new_hpage = get_new_page(hpage, private); 1259 if (!new_hpage) 1260 return -ENOMEM; 1261 dst = page_folio(new_hpage); 1262 1263 if (!trylock_page(hpage)) { 1264 if (!force) 1265 goto out; 1266 switch (mode) { 1267 case MIGRATE_SYNC: 1268 case MIGRATE_SYNC_NO_COPY: 1269 break; 1270 default: 1271 goto out; 1272 } 1273 lock_page(hpage); 1274 } 1275 1276 /* 1277 * Check for pages which are in the process of being freed. Without 1278 * page_mapping() set, hugetlbfs specific move page routine will not 1279 * be called and we could leak usage counts for subpools. 1280 */ 1281 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1282 rc = -EBUSY; 1283 goto out_unlock; 1284 } 1285 1286 if (PageAnon(hpage)) 1287 anon_vma = page_get_anon_vma(hpage); 1288 1289 if (unlikely(!trylock_page(new_hpage))) 1290 goto put_anon; 1291 1292 if (page_mapped(hpage)) { 1293 enum ttu_flags ttu = 0; 1294 1295 if (!PageAnon(hpage)) { 1296 /* 1297 * In shared mappings, try_to_unmap could potentially 1298 * call huge_pmd_unshare. Because of this, take 1299 * semaphore in write mode here and set TTU_RMAP_LOCKED 1300 * to let lower levels know we have taken the lock. 1301 */ 1302 mapping = hugetlb_page_mapping_lock_write(hpage); 1303 if (unlikely(!mapping)) 1304 goto unlock_put_anon; 1305 1306 ttu = TTU_RMAP_LOCKED; 1307 } 1308 1309 try_to_migrate(src, ttu); 1310 page_was_mapped = 1; 1311 1312 if (ttu & TTU_RMAP_LOCKED) 1313 i_mmap_unlock_write(mapping); 1314 } 1315 1316 if (!page_mapped(hpage)) 1317 rc = move_to_new_folio(dst, src, mode); 1318 1319 if (page_was_mapped) 1320 remove_migration_ptes(src, 1321 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1322 1323 unlock_put_anon: 1324 unlock_page(new_hpage); 1325 1326 put_anon: 1327 if (anon_vma) 1328 put_anon_vma(anon_vma); 1329 1330 if (rc == MIGRATEPAGE_SUCCESS) { 1331 move_hugetlb_state(hpage, new_hpage, reason); 1332 put_new_page = NULL; 1333 } 1334 1335 out_unlock: 1336 unlock_page(hpage); 1337 out: 1338 if (rc == MIGRATEPAGE_SUCCESS) 1339 putback_active_hugepage(hpage); 1340 else if (rc != -EAGAIN) 1341 list_move_tail(&hpage->lru, ret); 1342 1343 /* 1344 * If migration was not successful and there's a freeing callback, use 1345 * it. Otherwise, put_page() will drop the reference grabbed during 1346 * isolation. 1347 */ 1348 if (put_new_page) 1349 put_new_page(new_hpage, private); 1350 else 1351 putback_active_hugepage(new_hpage); 1352 1353 return rc; 1354 } 1355 1356 static inline int try_split_thp(struct page *page, struct page **page2, 1357 struct list_head *from) 1358 { 1359 int rc = 0; 1360 1361 lock_page(page); 1362 rc = split_huge_page_to_list(page, from); 1363 unlock_page(page); 1364 if (!rc) 1365 list_safe_reset_next(page, *page2, lru); 1366 1367 return rc; 1368 } 1369 1370 /* 1371 * migrate_pages - migrate the pages specified in a list, to the free pages 1372 * supplied as the target for the page migration 1373 * 1374 * @from: The list of pages to be migrated. 1375 * @get_new_page: The function used to allocate free pages to be used 1376 * as the target of the page migration. 1377 * @put_new_page: The function used to free target pages if migration 1378 * fails, or NULL if no special handling is necessary. 1379 * @private: Private data to be passed on to get_new_page() 1380 * @mode: The migration mode that specifies the constraints for 1381 * page migration, if any. 1382 * @reason: The reason for page migration. 1383 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1384 * the caller passes a non-NULL pointer. 1385 * 1386 * The function returns after 10 attempts or if no pages are movable any more 1387 * because the list has become empty or no retryable pages exist any more. 1388 * It is caller's responsibility to call putback_movable_pages() to return pages 1389 * to the LRU or free list only if ret != 0. 1390 * 1391 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1392 * an error code. The number of THP splits will be considered as the number of 1393 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1394 */ 1395 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1396 free_page_t put_new_page, unsigned long private, 1397 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1398 { 1399 int retry = 1; 1400 int thp_retry = 1; 1401 int nr_failed = 0; 1402 int nr_failed_pages = 0; 1403 int nr_succeeded = 0; 1404 int nr_thp_succeeded = 0; 1405 int nr_thp_failed = 0; 1406 int nr_thp_split = 0; 1407 int pass = 0; 1408 bool is_thp = false; 1409 struct page *page; 1410 struct page *page2; 1411 int rc, nr_subpages; 1412 LIST_HEAD(ret_pages); 1413 LIST_HEAD(thp_split_pages); 1414 bool nosplit = (reason == MR_NUMA_MISPLACED); 1415 bool no_subpage_counting = false; 1416 1417 trace_mm_migrate_pages_start(mode, reason); 1418 1419 thp_subpage_migration: 1420 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1421 retry = 0; 1422 thp_retry = 0; 1423 1424 list_for_each_entry_safe(page, page2, from, lru) { 1425 retry: 1426 /* 1427 * THP statistics is based on the source huge page. 1428 * Capture required information that might get lost 1429 * during migration. 1430 */ 1431 is_thp = PageTransHuge(page) && !PageHuge(page); 1432 nr_subpages = compound_nr(page); 1433 cond_resched(); 1434 1435 if (PageHuge(page)) 1436 rc = unmap_and_move_huge_page(get_new_page, 1437 put_new_page, private, page, 1438 pass > 2, mode, reason, 1439 &ret_pages); 1440 else 1441 rc = unmap_and_move(get_new_page, put_new_page, 1442 private, page, pass > 2, mode, 1443 reason, &ret_pages); 1444 /* 1445 * The rules are: 1446 * Success: non hugetlb page will be freed, hugetlb 1447 * page will be put back 1448 * -EAGAIN: stay on the from list 1449 * -ENOMEM: stay on the from list 1450 * Other errno: put on ret_pages list then splice to 1451 * from list 1452 */ 1453 switch(rc) { 1454 /* 1455 * THP migration might be unsupported or the 1456 * allocation could've failed so we should 1457 * retry on the same page with the THP split 1458 * to base pages. 1459 * 1460 * Head page is retried immediately and tail 1461 * pages are added to the tail of the list so 1462 * we encounter them after the rest of the list 1463 * is processed. 1464 */ 1465 case -ENOSYS: 1466 /* THP migration is unsupported */ 1467 if (is_thp) { 1468 nr_thp_failed++; 1469 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1470 nr_thp_split++; 1471 goto retry; 1472 } 1473 /* Hugetlb migration is unsupported */ 1474 } else if (!no_subpage_counting) { 1475 nr_failed++; 1476 } 1477 1478 nr_failed_pages += nr_subpages; 1479 break; 1480 case -ENOMEM: 1481 /* 1482 * When memory is low, don't bother to try to migrate 1483 * other pages, just exit. 1484 * THP NUMA faulting doesn't split THP to retry. 1485 */ 1486 if (is_thp && !nosplit) { 1487 nr_thp_failed++; 1488 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1489 nr_thp_split++; 1490 goto retry; 1491 } 1492 } else if (!no_subpage_counting) { 1493 nr_failed++; 1494 } 1495 1496 nr_failed_pages += nr_subpages; 1497 /* 1498 * There might be some subpages of fail-to-migrate THPs 1499 * left in thp_split_pages list. Move them back to migration 1500 * list so that they could be put back to the right list by 1501 * the caller otherwise the page refcnt will be leaked. 1502 */ 1503 list_splice_init(&thp_split_pages, from); 1504 nr_thp_failed += thp_retry; 1505 goto out; 1506 case -EAGAIN: 1507 if (is_thp) 1508 thp_retry++; 1509 else 1510 retry++; 1511 break; 1512 case MIGRATEPAGE_SUCCESS: 1513 nr_succeeded += nr_subpages; 1514 if (is_thp) 1515 nr_thp_succeeded++; 1516 break; 1517 default: 1518 /* 1519 * Permanent failure (-EBUSY, etc.): 1520 * unlike -EAGAIN case, the failed page is 1521 * removed from migration page list and not 1522 * retried in the next outer loop. 1523 */ 1524 if (is_thp) 1525 nr_thp_failed++; 1526 else if (!no_subpage_counting) 1527 nr_failed++; 1528 1529 nr_failed_pages += nr_subpages; 1530 break; 1531 } 1532 } 1533 } 1534 nr_failed += retry; 1535 nr_thp_failed += thp_retry; 1536 /* 1537 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1538 * counting in this round, since all subpages of a THP is counted 1539 * as 1 failure in the first round. 1540 */ 1541 if (!list_empty(&thp_split_pages)) { 1542 /* 1543 * Move non-migrated pages (after 10 retries) to ret_pages 1544 * to avoid migrating them again. 1545 */ 1546 list_splice_init(from, &ret_pages); 1547 list_splice_init(&thp_split_pages, from); 1548 no_subpage_counting = true; 1549 retry = 1; 1550 goto thp_subpage_migration; 1551 } 1552 1553 rc = nr_failed + nr_thp_failed; 1554 out: 1555 /* 1556 * Put the permanent failure page back to migration list, they 1557 * will be put back to the right list by the caller. 1558 */ 1559 list_splice(&ret_pages, from); 1560 1561 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1562 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1563 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1564 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1565 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1566 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1567 nr_thp_failed, nr_thp_split, mode, reason); 1568 1569 if (ret_succeeded) 1570 *ret_succeeded = nr_succeeded; 1571 1572 return rc; 1573 } 1574 1575 struct page *alloc_migration_target(struct page *page, unsigned long private) 1576 { 1577 struct folio *folio = page_folio(page); 1578 struct migration_target_control *mtc; 1579 gfp_t gfp_mask; 1580 unsigned int order = 0; 1581 struct folio *new_folio = NULL; 1582 int nid; 1583 int zidx; 1584 1585 mtc = (struct migration_target_control *)private; 1586 gfp_mask = mtc->gfp_mask; 1587 nid = mtc->nid; 1588 if (nid == NUMA_NO_NODE) 1589 nid = folio_nid(folio); 1590 1591 if (folio_test_hugetlb(folio)) { 1592 struct hstate *h = page_hstate(&folio->page); 1593 1594 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1595 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1596 } 1597 1598 if (folio_test_large(folio)) { 1599 /* 1600 * clear __GFP_RECLAIM to make the migration callback 1601 * consistent with regular THP allocations. 1602 */ 1603 gfp_mask &= ~__GFP_RECLAIM; 1604 gfp_mask |= GFP_TRANSHUGE; 1605 order = folio_order(folio); 1606 } 1607 zidx = zone_idx(folio_zone(folio)); 1608 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1609 gfp_mask |= __GFP_HIGHMEM; 1610 1611 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1612 1613 return &new_folio->page; 1614 } 1615 1616 #ifdef CONFIG_NUMA 1617 1618 static int store_status(int __user *status, int start, int value, int nr) 1619 { 1620 while (nr-- > 0) { 1621 if (put_user(value, status + start)) 1622 return -EFAULT; 1623 start++; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int do_move_pages_to_node(struct mm_struct *mm, 1630 struct list_head *pagelist, int node) 1631 { 1632 int err; 1633 struct migration_target_control mtc = { 1634 .nid = node, 1635 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1636 }; 1637 1638 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1639 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1640 if (err) 1641 putback_movable_pages(pagelist); 1642 return err; 1643 } 1644 1645 /* 1646 * Resolves the given address to a struct page, isolates it from the LRU and 1647 * puts it to the given pagelist. 1648 * Returns: 1649 * errno - if the page cannot be found/isolated 1650 * 0 - when it doesn't have to be migrated because it is already on the 1651 * target node 1652 * 1 - when it has been queued 1653 */ 1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1655 int node, struct list_head *pagelist, bool migrate_all) 1656 { 1657 struct vm_area_struct *vma; 1658 struct page *page; 1659 int err; 1660 1661 mmap_read_lock(mm); 1662 err = -EFAULT; 1663 vma = vma_lookup(mm, addr); 1664 if (!vma || !vma_migratable(vma)) 1665 goto out; 1666 1667 /* FOLL_DUMP to ignore special (like zero) pages */ 1668 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1669 1670 err = PTR_ERR(page); 1671 if (IS_ERR(page)) 1672 goto out; 1673 1674 err = -ENOENT; 1675 if (!page || is_zone_device_page(page)) 1676 goto out; 1677 1678 err = 0; 1679 if (page_to_nid(page) == node) 1680 goto out_putpage; 1681 1682 err = -EACCES; 1683 if (page_mapcount(page) > 1 && !migrate_all) 1684 goto out_putpage; 1685 1686 if (PageHuge(page)) { 1687 if (PageHead(page)) { 1688 err = isolate_hugetlb(page, pagelist); 1689 if (!err) 1690 err = 1; 1691 } 1692 } else { 1693 struct page *head; 1694 1695 head = compound_head(page); 1696 err = isolate_lru_page(head); 1697 if (err) 1698 goto out_putpage; 1699 1700 err = 1; 1701 list_add_tail(&head->lru, pagelist); 1702 mod_node_page_state(page_pgdat(head), 1703 NR_ISOLATED_ANON + page_is_file_lru(head), 1704 thp_nr_pages(head)); 1705 } 1706 out_putpage: 1707 /* 1708 * Either remove the duplicate refcount from 1709 * isolate_lru_page() or drop the page ref if it was 1710 * not isolated. 1711 */ 1712 put_page(page); 1713 out: 1714 mmap_read_unlock(mm); 1715 return err; 1716 } 1717 1718 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1719 struct list_head *pagelist, int __user *status, 1720 int start, int i, unsigned long nr_pages) 1721 { 1722 int err; 1723 1724 if (list_empty(pagelist)) 1725 return 0; 1726 1727 err = do_move_pages_to_node(mm, pagelist, node); 1728 if (err) { 1729 /* 1730 * Positive err means the number of failed 1731 * pages to migrate. Since we are going to 1732 * abort and return the number of non-migrated 1733 * pages, so need to include the rest of the 1734 * nr_pages that have not been attempted as 1735 * well. 1736 */ 1737 if (err > 0) 1738 err += nr_pages - i - 1; 1739 return err; 1740 } 1741 return store_status(status, start, node, i - start); 1742 } 1743 1744 /* 1745 * Migrate an array of page address onto an array of nodes and fill 1746 * the corresponding array of status. 1747 */ 1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1749 unsigned long nr_pages, 1750 const void __user * __user *pages, 1751 const int __user *nodes, 1752 int __user *status, int flags) 1753 { 1754 int current_node = NUMA_NO_NODE; 1755 LIST_HEAD(pagelist); 1756 int start, i; 1757 int err = 0, err1; 1758 1759 lru_cache_disable(); 1760 1761 for (i = start = 0; i < nr_pages; i++) { 1762 const void __user *p; 1763 unsigned long addr; 1764 int node; 1765 1766 err = -EFAULT; 1767 if (get_user(p, pages + i)) 1768 goto out_flush; 1769 if (get_user(node, nodes + i)) 1770 goto out_flush; 1771 addr = (unsigned long)untagged_addr(p); 1772 1773 err = -ENODEV; 1774 if (node < 0 || node >= MAX_NUMNODES) 1775 goto out_flush; 1776 if (!node_state(node, N_MEMORY)) 1777 goto out_flush; 1778 1779 err = -EACCES; 1780 if (!node_isset(node, task_nodes)) 1781 goto out_flush; 1782 1783 if (current_node == NUMA_NO_NODE) { 1784 current_node = node; 1785 start = i; 1786 } else if (node != current_node) { 1787 err = move_pages_and_store_status(mm, current_node, 1788 &pagelist, status, start, i, nr_pages); 1789 if (err) 1790 goto out; 1791 start = i; 1792 current_node = node; 1793 } 1794 1795 /* 1796 * Errors in the page lookup or isolation are not fatal and we simply 1797 * report them via status 1798 */ 1799 err = add_page_for_migration(mm, addr, current_node, 1800 &pagelist, flags & MPOL_MF_MOVE_ALL); 1801 1802 if (err > 0) { 1803 /* The page is successfully queued for migration */ 1804 continue; 1805 } 1806 1807 /* 1808 * The move_pages() man page does not have an -EEXIST choice, so 1809 * use -EFAULT instead. 1810 */ 1811 if (err == -EEXIST) 1812 err = -EFAULT; 1813 1814 /* 1815 * If the page is already on the target node (!err), store the 1816 * node, otherwise, store the err. 1817 */ 1818 err = store_status(status, i, err ? : current_node, 1); 1819 if (err) 1820 goto out_flush; 1821 1822 err = move_pages_and_store_status(mm, current_node, &pagelist, 1823 status, start, i, nr_pages); 1824 if (err) 1825 goto out; 1826 current_node = NUMA_NO_NODE; 1827 } 1828 out_flush: 1829 /* Make sure we do not overwrite the existing error */ 1830 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1831 status, start, i, nr_pages); 1832 if (err >= 0) 1833 err = err1; 1834 out: 1835 lru_cache_enable(); 1836 return err; 1837 } 1838 1839 /* 1840 * Determine the nodes of an array of pages and store it in an array of status. 1841 */ 1842 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1843 const void __user **pages, int *status) 1844 { 1845 unsigned long i; 1846 1847 mmap_read_lock(mm); 1848 1849 for (i = 0; i < nr_pages; i++) { 1850 unsigned long addr = (unsigned long)(*pages); 1851 struct vm_area_struct *vma; 1852 struct page *page; 1853 int err = -EFAULT; 1854 1855 vma = vma_lookup(mm, addr); 1856 if (!vma) 1857 goto set_status; 1858 1859 /* FOLL_DUMP to ignore special (like zero) pages */ 1860 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1861 1862 err = PTR_ERR(page); 1863 if (IS_ERR(page)) 1864 goto set_status; 1865 1866 if (page && !is_zone_device_page(page)) { 1867 err = page_to_nid(page); 1868 put_page(page); 1869 } else { 1870 err = -ENOENT; 1871 } 1872 set_status: 1873 *status = err; 1874 1875 pages++; 1876 status++; 1877 } 1878 1879 mmap_read_unlock(mm); 1880 } 1881 1882 static int get_compat_pages_array(const void __user *chunk_pages[], 1883 const void __user * __user *pages, 1884 unsigned long chunk_nr) 1885 { 1886 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1887 compat_uptr_t p; 1888 int i; 1889 1890 for (i = 0; i < chunk_nr; i++) { 1891 if (get_user(p, pages32 + i)) 1892 return -EFAULT; 1893 chunk_pages[i] = compat_ptr(p); 1894 } 1895 1896 return 0; 1897 } 1898 1899 /* 1900 * Determine the nodes of a user array of pages and store it in 1901 * a user array of status. 1902 */ 1903 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1904 const void __user * __user *pages, 1905 int __user *status) 1906 { 1907 #define DO_PAGES_STAT_CHUNK_NR 16UL 1908 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1909 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1910 1911 while (nr_pages) { 1912 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1913 1914 if (in_compat_syscall()) { 1915 if (get_compat_pages_array(chunk_pages, pages, 1916 chunk_nr)) 1917 break; 1918 } else { 1919 if (copy_from_user(chunk_pages, pages, 1920 chunk_nr * sizeof(*chunk_pages))) 1921 break; 1922 } 1923 1924 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1925 1926 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1927 break; 1928 1929 pages += chunk_nr; 1930 status += chunk_nr; 1931 nr_pages -= chunk_nr; 1932 } 1933 return nr_pages ? -EFAULT : 0; 1934 } 1935 1936 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1937 { 1938 struct task_struct *task; 1939 struct mm_struct *mm; 1940 1941 /* 1942 * There is no need to check if current process has the right to modify 1943 * the specified process when they are same. 1944 */ 1945 if (!pid) { 1946 mmget(current->mm); 1947 *mem_nodes = cpuset_mems_allowed(current); 1948 return current->mm; 1949 } 1950 1951 /* Find the mm_struct */ 1952 rcu_read_lock(); 1953 task = find_task_by_vpid(pid); 1954 if (!task) { 1955 rcu_read_unlock(); 1956 return ERR_PTR(-ESRCH); 1957 } 1958 get_task_struct(task); 1959 1960 /* 1961 * Check if this process has the right to modify the specified 1962 * process. Use the regular "ptrace_may_access()" checks. 1963 */ 1964 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1965 rcu_read_unlock(); 1966 mm = ERR_PTR(-EPERM); 1967 goto out; 1968 } 1969 rcu_read_unlock(); 1970 1971 mm = ERR_PTR(security_task_movememory(task)); 1972 if (IS_ERR(mm)) 1973 goto out; 1974 *mem_nodes = cpuset_mems_allowed(task); 1975 mm = get_task_mm(task); 1976 out: 1977 put_task_struct(task); 1978 if (!mm) 1979 mm = ERR_PTR(-EINVAL); 1980 return mm; 1981 } 1982 1983 /* 1984 * Move a list of pages in the address space of the currently executing 1985 * process. 1986 */ 1987 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1988 const void __user * __user *pages, 1989 const int __user *nodes, 1990 int __user *status, int flags) 1991 { 1992 struct mm_struct *mm; 1993 int err; 1994 nodemask_t task_nodes; 1995 1996 /* Check flags */ 1997 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1998 return -EINVAL; 1999 2000 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2001 return -EPERM; 2002 2003 mm = find_mm_struct(pid, &task_nodes); 2004 if (IS_ERR(mm)) 2005 return PTR_ERR(mm); 2006 2007 if (nodes) 2008 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2009 nodes, status, flags); 2010 else 2011 err = do_pages_stat(mm, nr_pages, pages, status); 2012 2013 mmput(mm); 2014 return err; 2015 } 2016 2017 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2018 const void __user * __user *, pages, 2019 const int __user *, nodes, 2020 int __user *, status, int, flags) 2021 { 2022 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2023 } 2024 2025 #ifdef CONFIG_NUMA_BALANCING 2026 /* 2027 * Returns true if this is a safe migration target node for misplaced NUMA 2028 * pages. Currently it only checks the watermarks which is crude. 2029 */ 2030 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2031 unsigned long nr_migrate_pages) 2032 { 2033 int z; 2034 2035 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2036 struct zone *zone = pgdat->node_zones + z; 2037 2038 if (!managed_zone(zone)) 2039 continue; 2040 2041 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2042 if (!zone_watermark_ok(zone, 0, 2043 high_wmark_pages(zone) + 2044 nr_migrate_pages, 2045 ZONE_MOVABLE, 0)) 2046 continue; 2047 return true; 2048 } 2049 return false; 2050 } 2051 2052 static struct page *alloc_misplaced_dst_page(struct page *page, 2053 unsigned long data) 2054 { 2055 int nid = (int) data; 2056 int order = compound_order(page); 2057 gfp_t gfp = __GFP_THISNODE; 2058 struct folio *new; 2059 2060 if (order > 0) 2061 gfp |= GFP_TRANSHUGE_LIGHT; 2062 else { 2063 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2064 __GFP_NOWARN; 2065 gfp &= ~__GFP_RECLAIM; 2066 } 2067 new = __folio_alloc_node(gfp, order, nid); 2068 2069 return &new->page; 2070 } 2071 2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2073 { 2074 int nr_pages = thp_nr_pages(page); 2075 int order = compound_order(page); 2076 2077 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2078 2079 /* Do not migrate THP mapped by multiple processes */ 2080 if (PageTransHuge(page) && total_mapcount(page) > 1) 2081 return 0; 2082 2083 /* Avoid migrating to a node that is nearly full */ 2084 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2085 int z; 2086 2087 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2088 return 0; 2089 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2090 if (managed_zone(pgdat->node_zones + z)) 2091 break; 2092 } 2093 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2094 return 0; 2095 } 2096 2097 if (isolate_lru_page(page)) 2098 return 0; 2099 2100 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2101 nr_pages); 2102 2103 /* 2104 * Isolating the page has taken another reference, so the 2105 * caller's reference can be safely dropped without the page 2106 * disappearing underneath us during migration. 2107 */ 2108 put_page(page); 2109 return 1; 2110 } 2111 2112 /* 2113 * Attempt to migrate a misplaced page to the specified destination 2114 * node. Caller is expected to have an elevated reference count on 2115 * the page that will be dropped by this function before returning. 2116 */ 2117 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2118 int node) 2119 { 2120 pg_data_t *pgdat = NODE_DATA(node); 2121 int isolated; 2122 int nr_remaining; 2123 unsigned int nr_succeeded; 2124 LIST_HEAD(migratepages); 2125 int nr_pages = thp_nr_pages(page); 2126 2127 /* 2128 * Don't migrate file pages that are mapped in multiple processes 2129 * with execute permissions as they are probably shared libraries. 2130 */ 2131 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2132 (vma->vm_flags & VM_EXEC)) 2133 goto out; 2134 2135 /* 2136 * Also do not migrate dirty pages as not all filesystems can move 2137 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2138 */ 2139 if (page_is_file_lru(page) && PageDirty(page)) 2140 goto out; 2141 2142 isolated = numamigrate_isolate_page(pgdat, page); 2143 if (!isolated) 2144 goto out; 2145 2146 list_add(&page->lru, &migratepages); 2147 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2148 NULL, node, MIGRATE_ASYNC, 2149 MR_NUMA_MISPLACED, &nr_succeeded); 2150 if (nr_remaining) { 2151 if (!list_empty(&migratepages)) { 2152 list_del(&page->lru); 2153 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2154 page_is_file_lru(page), -nr_pages); 2155 putback_lru_page(page); 2156 } 2157 isolated = 0; 2158 } 2159 if (nr_succeeded) { 2160 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2161 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2162 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2163 nr_succeeded); 2164 } 2165 BUG_ON(!list_empty(&migratepages)); 2166 return isolated; 2167 2168 out: 2169 put_page(page); 2170 return 0; 2171 } 2172 #endif /* CONFIG_NUMA_BALANCING */ 2173 2174 /* 2175 * node_demotion[] example: 2176 * 2177 * Consider a system with two sockets. Each socket has 2178 * three classes of memory attached: fast, medium and slow. 2179 * Each memory class is placed in its own NUMA node. The 2180 * CPUs are placed in the node with the "fast" memory. The 2181 * 6 NUMA nodes (0-5) might be split among the sockets like 2182 * this: 2183 * 2184 * Socket A: 0, 1, 2 2185 * Socket B: 3, 4, 5 2186 * 2187 * When Node 0 fills up, its memory should be migrated to 2188 * Node 1. When Node 1 fills up, it should be migrated to 2189 * Node 2. The migration path start on the nodes with the 2190 * processors (since allocations default to this node) and 2191 * fast memory, progress through medium and end with the 2192 * slow memory: 2193 * 2194 * 0 -> 1 -> 2 -> stop 2195 * 3 -> 4 -> 5 -> stop 2196 * 2197 * This is represented in the node_demotion[] like this: 2198 * 2199 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 2200 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 2201 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate 2202 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 2203 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 2204 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate 2205 * 2206 * Moreover some systems may have multiple slow memory nodes. 2207 * Suppose a system has one socket with 3 memory nodes, node 0 2208 * is fast memory type, and node 1/2 both are slow memory 2209 * type, and the distance between fast memory node and slow 2210 * memory node is same. So the migration path should be: 2211 * 2212 * 0 -> 1/2 -> stop 2213 * 2214 * This is represented in the node_demotion[] like this: 2215 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 2216 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate 2217 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate 2218 */ 2219 2220 /* 2221 * Writes to this array occur without locking. Cycles are 2222 * not allowed: Node X demotes to Y which demotes to X... 2223 * 2224 * If multiple reads are performed, a single rcu_read_lock() 2225 * must be held over all reads to ensure that no cycles are 2226 * observed. 2227 */ 2228 #define DEFAULT_DEMOTION_TARGET_NODES 15 2229 2230 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES 2231 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) 2232 #else 2233 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES 2234 #endif 2235 2236 struct demotion_nodes { 2237 unsigned short nr; 2238 short nodes[DEMOTION_TARGET_NODES]; 2239 }; 2240 2241 static struct demotion_nodes *node_demotion __read_mostly; 2242 2243 /** 2244 * next_demotion_node() - Get the next node in the demotion path 2245 * @node: The starting node to lookup the next node 2246 * 2247 * Return: node id for next memory node in the demotion path hierarchy 2248 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 2249 * @node online or guarantee that it *continues* to be the next demotion 2250 * target. 2251 */ 2252 int next_demotion_node(int node) 2253 { 2254 struct demotion_nodes *nd; 2255 unsigned short target_nr, index; 2256 int target; 2257 2258 if (!node_demotion) 2259 return NUMA_NO_NODE; 2260 2261 nd = &node_demotion[node]; 2262 2263 /* 2264 * node_demotion[] is updated without excluding this 2265 * function from running. RCU doesn't provide any 2266 * compiler barriers, so the READ_ONCE() is required 2267 * to avoid compiler reordering or read merging. 2268 * 2269 * Make sure to use RCU over entire code blocks if 2270 * node_demotion[] reads need to be consistent. 2271 */ 2272 rcu_read_lock(); 2273 target_nr = READ_ONCE(nd->nr); 2274 2275 switch (target_nr) { 2276 case 0: 2277 target = NUMA_NO_NODE; 2278 goto out; 2279 case 1: 2280 index = 0; 2281 break; 2282 default: 2283 /* 2284 * If there are multiple target nodes, just select one 2285 * target node randomly. 2286 * 2287 * In addition, we can also use round-robin to select 2288 * target node, but we should introduce another variable 2289 * for node_demotion[] to record last selected target node, 2290 * that may cause cache ping-pong due to the changing of 2291 * last target node. Or introducing per-cpu data to avoid 2292 * caching issue, which seems more complicated. So selecting 2293 * target node randomly seems better until now. 2294 */ 2295 index = get_random_int() % target_nr; 2296 break; 2297 } 2298 2299 target = READ_ONCE(nd->nodes[index]); 2300 2301 out: 2302 rcu_read_unlock(); 2303 return target; 2304 } 2305 2306 /* Disable reclaim-based migration. */ 2307 static void __disable_all_migrate_targets(void) 2308 { 2309 int node, i; 2310 2311 if (!node_demotion) 2312 return; 2313 2314 for_each_online_node(node) { 2315 node_demotion[node].nr = 0; 2316 for (i = 0; i < DEMOTION_TARGET_NODES; i++) 2317 node_demotion[node].nodes[i] = NUMA_NO_NODE; 2318 } 2319 } 2320 2321 static void disable_all_migrate_targets(void) 2322 { 2323 __disable_all_migrate_targets(); 2324 2325 /* 2326 * Ensure that the "disable" is visible across the system. 2327 * Readers will see either a combination of before+disable 2328 * state or disable+after. They will never see before and 2329 * after state together. 2330 * 2331 * The before+after state together might have cycles and 2332 * could cause readers to do things like loop until this 2333 * function finishes. This ensures they can only see a 2334 * single "bad" read and would, for instance, only loop 2335 * once. 2336 */ 2337 synchronize_rcu(); 2338 } 2339 2340 /* 2341 * Find an automatic demotion target for 'node'. 2342 * Failing here is OK. It might just indicate 2343 * being at the end of a chain. 2344 */ 2345 static int establish_migrate_target(int node, nodemask_t *used, 2346 int best_distance) 2347 { 2348 int migration_target, index, val; 2349 struct demotion_nodes *nd; 2350 2351 if (!node_demotion) 2352 return NUMA_NO_NODE; 2353 2354 nd = &node_demotion[node]; 2355 2356 migration_target = find_next_best_node(node, used); 2357 if (migration_target == NUMA_NO_NODE) 2358 return NUMA_NO_NODE; 2359 2360 /* 2361 * If the node has been set a migration target node before, 2362 * which means it's the best distance between them. Still 2363 * check if this node can be demoted to other target nodes 2364 * if they have a same best distance. 2365 */ 2366 if (best_distance != -1) { 2367 val = node_distance(node, migration_target); 2368 if (val > best_distance) 2369 goto out_clear; 2370 } 2371 2372 index = nd->nr; 2373 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, 2374 "Exceeds maximum demotion target nodes\n")) 2375 goto out_clear; 2376 2377 nd->nodes[index] = migration_target; 2378 nd->nr++; 2379 2380 return migration_target; 2381 out_clear: 2382 node_clear(migration_target, *used); 2383 return NUMA_NO_NODE; 2384 } 2385 2386 /* 2387 * When memory fills up on a node, memory contents can be 2388 * automatically migrated to another node instead of 2389 * discarded at reclaim. 2390 * 2391 * Establish a "migration path" which will start at nodes 2392 * with CPUs and will follow the priorities used to build the 2393 * page allocator zonelists. 2394 * 2395 * The difference here is that cycles must be avoided. If 2396 * node0 migrates to node1, then neither node1, nor anything 2397 * node1 migrates to can migrate to node0. Also one node can 2398 * be migrated to multiple nodes if the target nodes all have 2399 * a same best-distance against the source node. 2400 * 2401 * This function can run simultaneously with readers of 2402 * node_demotion[]. However, it can not run simultaneously 2403 * with itself. Exclusion is provided by memory hotplug events 2404 * being single-threaded. 2405 */ 2406 static void __set_migration_target_nodes(void) 2407 { 2408 nodemask_t next_pass; 2409 nodemask_t this_pass; 2410 nodemask_t used_targets = NODE_MASK_NONE; 2411 int node, best_distance; 2412 2413 /* 2414 * Avoid any oddities like cycles that could occur 2415 * from changes in the topology. This will leave 2416 * a momentary gap when migration is disabled. 2417 */ 2418 disable_all_migrate_targets(); 2419 2420 /* 2421 * Allocations go close to CPUs, first. Assume that 2422 * the migration path starts at the nodes with CPUs. 2423 */ 2424 next_pass = node_states[N_CPU]; 2425 again: 2426 this_pass = next_pass; 2427 next_pass = NODE_MASK_NONE; 2428 /* 2429 * To avoid cycles in the migration "graph", ensure 2430 * that migration sources are not future targets by 2431 * setting them in 'used_targets'. Do this only 2432 * once per pass so that multiple source nodes can 2433 * share a target node. 2434 * 2435 * 'used_targets' will become unavailable in future 2436 * passes. This limits some opportunities for 2437 * multiple source nodes to share a destination. 2438 */ 2439 nodes_or(used_targets, used_targets, this_pass); 2440 2441 for_each_node_mask(node, this_pass) { 2442 best_distance = -1; 2443 2444 /* 2445 * Try to set up the migration path for the node, and the target 2446 * migration nodes can be multiple, so doing a loop to find all 2447 * the target nodes if they all have a best node distance. 2448 */ 2449 do { 2450 int target_node = 2451 establish_migrate_target(node, &used_targets, 2452 best_distance); 2453 2454 if (target_node == NUMA_NO_NODE) 2455 break; 2456 2457 if (best_distance == -1) 2458 best_distance = node_distance(node, target_node); 2459 2460 /* 2461 * Visit targets from this pass in the next pass. 2462 * Eventually, every node will have been part of 2463 * a pass, and will become set in 'used_targets'. 2464 */ 2465 node_set(target_node, next_pass); 2466 } while (1); 2467 } 2468 /* 2469 * 'next_pass' contains nodes which became migration 2470 * targets in this pass. Make additional passes until 2471 * no more migrations targets are available. 2472 */ 2473 if (!nodes_empty(next_pass)) 2474 goto again; 2475 } 2476 2477 /* 2478 * For callers that do not hold get_online_mems() already. 2479 */ 2480 void set_migration_target_nodes(void) 2481 { 2482 get_online_mems(); 2483 __set_migration_target_nodes(); 2484 put_online_mems(); 2485 } 2486 2487 /* 2488 * This leaves migrate-on-reclaim transiently disabled between 2489 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 2490 * whether reclaim-based migration is enabled or not, which 2491 * ensures that the user can turn reclaim-based migration at 2492 * any time without needing to recalculate migration targets. 2493 * 2494 * These callbacks already hold get_online_mems(). That is why 2495 * __set_migration_target_nodes() can be used as opposed to 2496 * set_migration_target_nodes(). 2497 */ 2498 #ifdef CONFIG_MEMORY_HOTPLUG 2499 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 2500 unsigned long action, void *_arg) 2501 { 2502 struct memory_notify *arg = _arg; 2503 2504 /* 2505 * Only update the node migration order when a node is 2506 * changing status, like online->offline. This avoids 2507 * the overhead of synchronize_rcu() in most cases. 2508 */ 2509 if (arg->status_change_nid < 0) 2510 return notifier_from_errno(0); 2511 2512 switch (action) { 2513 case MEM_GOING_OFFLINE: 2514 /* 2515 * Make sure there are not transient states where 2516 * an offline node is a migration target. This 2517 * will leave migration disabled until the offline 2518 * completes and the MEM_OFFLINE case below runs. 2519 */ 2520 disable_all_migrate_targets(); 2521 break; 2522 case MEM_OFFLINE: 2523 case MEM_ONLINE: 2524 /* 2525 * Recalculate the target nodes once the node 2526 * reaches its final state (online or offline). 2527 */ 2528 __set_migration_target_nodes(); 2529 break; 2530 case MEM_CANCEL_OFFLINE: 2531 /* 2532 * MEM_GOING_OFFLINE disabled all the migration 2533 * targets. Reenable them. 2534 */ 2535 __set_migration_target_nodes(); 2536 break; 2537 case MEM_GOING_ONLINE: 2538 case MEM_CANCEL_ONLINE: 2539 break; 2540 } 2541 2542 return notifier_from_errno(0); 2543 } 2544 #endif 2545 2546 void __init migrate_on_reclaim_init(void) 2547 { 2548 node_demotion = kcalloc(nr_node_ids, 2549 sizeof(struct demotion_nodes), 2550 GFP_KERNEL); 2551 WARN_ON(!node_demotion); 2552 #ifdef CONFIG_MEMORY_HOTPLUG 2553 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 2554 #endif 2555 /* 2556 * At this point, all numa nodes with memory/CPus have their state 2557 * properly set, so we can build the demotion order now. 2558 * Let us hold the cpu_hotplug lock just, as we could possibily have 2559 * CPU hotplug events during boot. 2560 */ 2561 cpus_read_lock(); 2562 set_migration_target_nodes(); 2563 cpus_read_unlock(); 2564 } 2565 2566 bool numa_demotion_enabled = false; 2567 2568 #ifdef CONFIG_SYSFS 2569 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 2570 struct kobj_attribute *attr, char *buf) 2571 { 2572 return sysfs_emit(buf, "%s\n", 2573 numa_demotion_enabled ? "true" : "false"); 2574 } 2575 2576 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 2577 struct kobj_attribute *attr, 2578 const char *buf, size_t count) 2579 { 2580 ssize_t ret; 2581 2582 ret = kstrtobool(buf, &numa_demotion_enabled); 2583 if (ret) 2584 return ret; 2585 2586 return count; 2587 } 2588 2589 static struct kobj_attribute numa_demotion_enabled_attr = 2590 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 2591 numa_demotion_enabled_store); 2592 2593 static struct attribute *numa_attrs[] = { 2594 &numa_demotion_enabled_attr.attr, 2595 NULL, 2596 }; 2597 2598 static const struct attribute_group numa_attr_group = { 2599 .attrs = numa_attrs, 2600 }; 2601 2602 static int __init numa_init_sysfs(void) 2603 { 2604 int err; 2605 struct kobject *numa_kobj; 2606 2607 numa_kobj = kobject_create_and_add("numa", mm_kobj); 2608 if (!numa_kobj) { 2609 pr_err("failed to create numa kobject\n"); 2610 return -ENOMEM; 2611 } 2612 err = sysfs_create_group(numa_kobj, &numa_attr_group); 2613 if (err) { 2614 pr_err("failed to register numa group\n"); 2615 goto delete_obj; 2616 } 2617 return 0; 2618 2619 delete_obj: 2620 kobject_put(numa_kobj); 2621 return err; 2622 } 2623 subsys_initcall(numa_init_sysfs); 2624 #endif /* CONFIG_SYSFS */ 2625 #endif /* CONFIG_NUMA */ 2626